JPH06100335B2 - Combustion control device - Google Patents

Combustion control device

Info

Publication number
JPH06100335B2
JPH06100335B2 JP61090407A JP9040786A JPH06100335B2 JP H06100335 B2 JPH06100335 B2 JP H06100335B2 JP 61090407 A JP61090407 A JP 61090407A JP 9040786 A JP9040786 A JP 9040786A JP H06100335 B2 JPH06100335 B2 JP H06100335B2
Authority
JP
Japan
Prior art keywords
combustion
flame
amount
air
burner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61090407A
Other languages
Japanese (ja)
Other versions
JPS62245019A (en
Inventor
博久 今井
慶一 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61090407A priority Critical patent/JPH06100335B2/en
Publication of JPS62245019A publication Critical patent/JPS62245019A/en
Publication of JPH06100335B2 publication Critical patent/JPH06100335B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/12Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods
    • F23N5/123Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2235/00Valves, nozzles or pumps
    • F23N2235/30Pumps

Description

【発明の詳細な説明】 産業上の利用分野 本発明はガスや石油等を使用した燃焼機器における空燃
比の制御装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air-fuel ratio control device in a combustion device that uses gas, oil, or the like.

従来の技術 ガスや石油を燃料として燃焼させる時、燃料と空気量を
最適な比率にして供給する事により逆火や失火、あるい
は不完全燃焼の発生を防ぎ安定な燃焼を維持できる。こ
の燃料と空気量の比を空燃比と呼び、従来より燃焼状態
を検知して常に最適な空燃比を保つように燃料、あるい
は空気量を制御する手段が考えられていた。
2. Description of the Related Art When burning gas or oil as a fuel, by supplying the fuel and air in an optimal ratio, it is possible to prevent backfire, misfire, or incomplete combustion and maintain stable combustion. The ratio of this fuel to the air amount is called the air-fuel ratio, and conventionally there has been considered a means for detecting the combustion state and controlling the fuel or the air amount so as to always maintain the optimum air-fuel ratio.

石油燃焼機器における空燃比制御の方式は、例えば特開
昭61−24917号公報に記載されているものがよく考えら
れる。これは火炎に挿入したフレームロッドにより火炎
の炎イオン電流を検出し、この炎イオン電流が空燃比に
より変化することを利用して空燃比を最適にするように
燃料供給用ポンプの駆動周波数を調節する構成である。
第6図に炎イオン電流値Ifの一例を示す。横軸は一次空
気比μでここでは空燃比を一次空気比μで説明する。代
表的な入力範囲(3000〜1000kcal/h)では、炎イオン電
流値Ifはほぼμ=0.8〜0.9でピークを持つ分布をしてい
る。そこでポンプ駆動周波数を調節して、炎イオン電流
値Ifが最大値になるように灯油供給量を決めることによ
り空燃比制御を行ない安定した燃焼状態を維持するもの
である。
As an air-fuel ratio control system for oil burning equipment, for example, the one described in Japanese Patent Laid-Open No. 61-24917 is often considered. This is to detect the flame ion current of the flame by the flame rod inserted into the flame and utilize the fact that this flame ion current changes depending on the air-fuel ratio to adjust the drive frequency of the fuel supply pump to optimize the air-fuel ratio. This is the configuration.
FIG. 6 shows an example of the flame ion current value I f . The horizontal axis represents the primary air ratio μ, and the air-fuel ratio will be described herein by the primary air ratio μ. In a typical input range (3000 to 1000 kcal / h), the flame ion current value I f has a distribution with a peak at approximately μ = 0.8 to 0.9. Therefore, the pump driving frequency is adjusted to determine the kerosene supply amount so that the flame ion current value If becomes the maximum value, thereby performing the air-fuel ratio control and maintaining a stable combustion state.

発明が解決しようとする問題点 上記従来例ではμ=0.8〜0.9で最も安定した燃焼状態を
維持できるように構成したバーナを使用したが、μ=1.
5付近で最も安定した燃焼状態を維持できるように構成
したバーナもある。(以下、全一次燃焼バーナと記す)
全一次燃焼バーナは一般に、火炎温度が低く、排ガス中
の有害成分である窒素化合物(NOx)が極めて少ないと
いう特長を有しNOx低減のためには効果の大きいバーナ
構成であることが知られている。
Problems to be Solved by the Invention In the above conventional example, the burner configured to maintain the most stable combustion state at μ = 0.8 to 0.9 was used, but μ = 1.
There is also a burner configured to maintain the most stable combustion state around 5. (Hereinafter, referred to as all primary combustion burners)
It is known that all primary combustion burners generally have a low flame temperature and very few nitrogen compounds (NOx), which are harmful components in exhaust gas, and have a great effect on reducing NOx. There is.

しかしながら上記のような従来の空燃比制御手段は、炎
イオン電流値Ifが最大値になるように灯油供給量を決め
るので、μ=0.8〜0.9に調節してしまい、μ=1.5付近
での安定した燃焼状態の維持ができないという問題点を
有していた。
However, since the conventional air-fuel ratio control means as described above determines the kerosene supply amount so that the flame ion current value If becomes the maximum value, it is adjusted to μ = 0.8 to 0.9, and in the vicinity of μ = 1.5. There was a problem that a stable combustion state could not be maintained.

本発明はかかる従来の問題を解消するもので、全一次燃
焼バーナでμ=1.5付近に調節し安定した燃焼状態を維
持することを目的とする。
The present invention solves such a conventional problem, and an object of the present invention is to maintain a stable combustion state by adjusting around μ = 1.5 in all primary combustion burners.

問題点を解決するための手段 上記問題点を解決するために本発明の燃焼制御装置は、
多数の小孔を有する筒と、前記筒の外側に金網を設けて
形成したバーナと、前記バーナへ燃料を供給する燃料供
給手段と、燃焼空気を供給する送風機と、燃焼火炎に挿
入したフレームロッドと、前記バーナの燃焼制御を行な
う制御回路部を有し、前記制御回路部は前記フレームロ
ッドにより炎のイオン電流を検出する炎電流検出部と、
前記炎電流検出部の出力信号が最小値となるところを検
索する最小値検索部と、前記最小値検索部の出力信号に
より予め定められた範囲内で前記燃料供給手段の供給燃
料量を制御する燃焼量制御部を有する構成としたもので
ある。
Means for Solving the Problems In order to solve the above problems, the combustion control device of the present invention is
A cylinder having a large number of small holes, a burner formed by providing a wire mesh on the outside of the cylinder, a fuel supply means for supplying fuel to the burner, a blower for supplying combustion air, and a frame rod inserted in the combustion flame. And a control circuit section for performing combustion control of the burner, the control circuit section being a flame current detection section for detecting an ion current of a flame by the flame rod,
A minimum value search unit that searches where the output signal of the flame current detection unit has a minimum value, and controls the amount of fuel supplied by the fuel supply means within a range that is predetermined by the output signal of the minimum value search unit. The configuration has a combustion amount control unit.

作用 本発明は上記した構成によって、炎電流検出部の出力信
号が最小値となるように空燃比を調節してμ=1.5付近
で安定した燃焼状態を維持するのである。
Action The present invention has the above-described configuration to adjust the air-fuel ratio so that the output signal of the flame current detection unit becomes the minimum value and maintain a stable combustion state at around μ = 1.5.

実施例 以下、本発明の実施例を添付図面にもとづいて説明す
る。実施例では石油気化式バーナによる室内開放燃焼型
温風暖房器(ファンヒータ)を例にして説明していく。
Embodiments Embodiments of the present invention will be described below with reference to the accompanying drawings. In the embodiment, an indoor open combustion type hot air heater (fan heater) using an oil vaporization burner will be described as an example.

第1図は本発明のシステムブロック図を示す。1はバー
ナで多数の小孔を有するパンチング板の外側に金網で炎
口を形成した全一次燃焼バーナであり、燃料タンク2か
ら燃料ポンプ3により供給された燃料を送風機4により
供給された空気と気化混合器5により気化混合されバー
ナ1で燃焼する。6はフレームロッドでバーナ1の火炎
に流れる炎電流Ifを制御回路部7の炎電流検出部8に伝
える。9は最小値検索部で炎電流検出部8の出力信号が
最小となるように燃焼量制御部10に燃焼量を変更する信
号を出力する。燃焼量制御部10は最小値検索部9の出力
信号によりポンプ3を調節して供給燃料量を調節する。
FIG. 1 shows a system block diagram of the present invention. Reference numeral 1 denotes a burner, which is an all-primary combustion burner in which a flame port is formed by a wire mesh on the outside of a punching plate having a large number of small holes. It is vaporized and mixed by the vaporization mixer 5 and burned in the burner 1. Reference numeral 6 is a frame rod for transmitting the flame current If flowing in the flame of the burner 1 to the flame current detection unit 8 of the control circuit unit 7. A minimum value search unit 9 outputs a signal for changing the combustion amount to the combustion amount control unit 10 so that the output signal of the flame current detection unit 8 is minimized. The combustion amount control unit 10 adjusts the pump 3 by the output signal of the minimum value search unit 9 to adjust the amount of fuel supplied.

第2図に全一次燃焼バーナにおいての炎イオン電流If
特性を示す。μ=0.9付近で火炎中のイオン濃度が最も
高くμが大きくなるに従いイオン濃度が低くなる。全一
次燃焼バーナではμ=0.9付近では火炎はバーナに密着
し、μが大きくなるに従い火炎が伸びてくる現象を確認
している。火炎が伸びてくるに従い火炎中で最もイオン
密度の高い部分がフレームロッドに近づいてくる。従っ
てμ>0.9の領域で炎イオン電流Ifはμが大きくなるに
従い、イオン濃度低下による減少の現象と、イオン密度
の高い部分がフレームロッドに近づくことによる増加の
現象があり、双方の作用によりμ=1.5〜1.6付近で最小
の極値をとる第2図に示す特性となることを確認してい
る。第3図に一定空気量での燃焼量QFと炎電流Ifとの関
係の特性図を示す。炎電流Ifはμ=1.5に相当する燃焼
量QF0よりも少し小さい燃焼量で最小の極小値をもつ曲
線になる。これは燃焼量の減少による炎電流の減少の影
響があるからである。QF>QF0はμ<1.5,QF<QF0はμ>
1.5で第2図で示した曲線を対称にしたような曲線を描
く。
Figure 2 shows the characteristics of the flame ion current I f in all primary combustion burners. The ion concentration in the flame is highest around μ = 0.9, and the ion concentration decreases as μ increases. With all primary combustion burners, it was confirmed that the flame adheres to the burner around μ = 0.9 and the flame extends as μ increases. As the flame grows, the part of the flame with the highest ion density approaches the frame rod. Therefore, in the region of μ> 0.9, as the flame ion current I f increases, there is a phenomenon of decrease due to a decrease in ion concentration, and a phenomenon of increase due to a portion with a high ion density approaching the frame rod. It has been confirmed that the characteristics shown in Fig. 2 have the smallest extremum around µ = 1.5 to 1.6. FIG. 3 shows a characteristic diagram of the relationship between the combustion amount Q F and the flame current I f at a constant air amount. The flame current I f becomes a curve having a minimum minimum value with a combustion amount slightly smaller than the combustion amount Q F0 corresponding to μ = 1.5. This is because there is an influence of a decrease in flame current due to a decrease in combustion amount. Q F > Q F0 is μ <1.5, Q F <Q F0 is μ>
At 1.5, draw a curve that is symmetrical to the curve shown in Fig. 2.

次に最小値検索部9の動作の一例について第4図の流れ
図にもとづいて説明する。Kは燃焼量の増減方向を示す
変数で、増加するときには+1、減少するときには−1
の値をとり、便宜上初期値は+1とする。燃焼量制御部
10は予め定めた燃焼量QFで燃焼するように燃料ポンプ3
を駆動する。その時の炎電流Ifを炎電流検出部8が検出
する。最小値検索部9は炎電流IfをIfminとして記憶
し、燃焼量をK×ΔQFだけ変化させる。即ち燃焼量をΔ
QFだけ増加するよう燃焼量制御部10に信号出力する。そ
の時の炎電流Ifと最小値Ifminと比較し、Ifが小さけれ
ばそのIfを新しく最小値Ifminとして記憶し燃焼量をK
×ΔQFだけ変化させる。即ち燃焼量を更にΔQFだけ増加
するよう燃焼量制御部10に信号出力する。逆にIfがI
fminより大きければKに−1を乗じたものを新たなKと
して、燃焼量をK×ΔQFだけ変化させる。即ち燃焼量を
ΔQFだけ減少するよう燃焼量制御部10に信号出力する。
以後、If<Ifminの時はIfを新しくIfminに書き換えてK
はそのままの値を用い、If>Ifminの時はKに−1を乗
じたものを新たなKとして、燃焼量をK×QFだけ変化す
る操作を繰り返す。即ち燃焼量は、If<Ifminの時は1
回目と同じ方向にΔQF、If>Ifminの時は1回前と逆の
方向にΔQFだけずらす操作を繰り返すのである。この途
中にQFが予め定めた範囲QFmin〜QFmaxから出てしまうと
異常と判断して燃焼を停止する。以上の操作により炎電
流Ifが最小となるところでの燃焼を維持するように制御
する。
Next, an example of the operation of the minimum value search unit 9 will be described based on the flowchart of FIG. K is a variable indicating the increasing / decreasing direction of the combustion amount, and is +1 when increasing and -1 when decreasing.
, And the initial value is +1 for convenience. Burning amount control unit
10 is the fuel pump 3 so that it burns with a predetermined combustion amount Q F.
To drive. The flame current detection unit 8 detects the flame current If at that time. The minimum value search unit 9 stores the flame current I f as I fmin and changes the combustion amount by K × ΔQ F. That is, the combustion amount is Δ
A signal is output to the combustion amount control unit 10 so as to increase by Q F. Compared with flames current I f and the minimum value I fmin at that time, I f is less if the I f stores a new minimum value I fmin combustion amount K
× Change by ΔQ F. That is, a signal is output to the combustion amount control unit 10 so as to further increase the combustion amount by ΔQ F. Conversely, I f is I
If it is larger than fmin , a value obtained by multiplying K by -1 is set as a new K, and the combustion amount is changed by K × ΔQ F. That is, a signal is output to the combustion amount control unit 10 so as to reduce the combustion amount by ΔQ F.
After that, when I f <I fmin is rewritten to new I fmin the I f K
Is used as it is, and when I f > I fmin , K is multiplied by −1 to obtain a new K, and the operation of changing the combustion amount by K × Q F is repeated. That is, the combustion amount is 1 when I f <I fmin
When ΔQ F and I f > I fmin in the same direction as the first time, the operation of shifting by ΔQ F in the opposite direction from the previous time is repeated. If Q F goes out of a predetermined range Q Fmin to Q Fmax during this process, it is determined to be abnormal and combustion is stopped. By the above operation, the combustion is controlled to be maintained where the flame current If is minimum.

次に最小値検索部9の動作の別の例を第5図を用いて説
明する。制御回路部7は送風機4の供給空気量をQA1,Q
A2となるように切替える出力をする。A線は燃焼量QF=
QFのイオン電流特性で燃焼量QF0のμ=1.5に相当する供
給空気量QA0はQA1<QA0<QA2であるとすると、供給空気
量がQA1のときの炎イオン電流とQA2のときの炎イオン電
流の差ΔIfはわずかである。B線はQF>QF0,C線はQF<Q
F0のそれぞれの特性であり、供給空気量がQA1のときとQ
A2のときの炎イオン電流の差ΔIfは大きなものとなるの
で、このΔIfが一定の値よりも小さくなるように燃焼量
制御部10が燃焼量QFを増減して調節するもので炎電流If
が最小となるところでの燃焼を維持するものである。
Next, another example of the operation of the minimum value search unit 9 will be described with reference to FIG. The control circuit unit 7 controls the amount of air supplied from the blower 4 to Q A1 , Q
Output to switch to A2 . Line A shows the combustion amount QF =
When the supply air amount Q A0 corresponding to mu = 1.5 of Q F ion current characteristics in combustion rate Q F0 is Q A1 <Q A0 <Q A2 , and fire the ion current when the amount of supply air of Q A1 The difference ΔI f of flame ion current at Q A2 is small. B line is Q F > Q F0 , C line is Q F 〈Q
These are the characteristics of F0 , and when the supply air amount is Q A1 and Q
Since the flame ion current difference ΔI f at A2 becomes large, the combustion amount control unit 10 adjusts the combustion amount Q F by increasing or decreasing so that this ΔI f becomes smaller than a certain value. Current I f
It keeps the combustion at the point where is minimum.

上記構成において、炎イオン電流Ifが最小となうように
燃料ポンプ3を調節して供給燃料量を制御するように作
用してμ=1.5〜1.6付近で安定した燃焼状態を維持でき
る。
In the above configuration, the fuel pump 3 is adjusted so that the flame ion current If is minimized, and the supplied fuel amount is controlled, so that a stable combustion state can be maintained around μ = 1.5 to 1.6.

尚本実施例では石油ファンヒータで説明したが、ファン
ヒータ以外の燃焼機器やガス燃料であっても同様の効果
が得られる。
Although the oil fan heater has been described in this embodiment, the same effect can be obtained by using a combustion device or gas fuel other than the fan heater.

発明の効果 以上のように本発明の燃焼制御装置によれば次の効果が
得られる。
Effects of the Invention As described above, the combustion control device of the present invention has the following effects.

(1)空燃比最適点に自動設定されるため、手動の調整
手段が不要で常に安定した燃焼状態を維持できる。
(1) Since the air-fuel ratio is automatically set to the optimum point, no manual adjusting means is required and a stable combustion state can be maintained at all times.

(2)μ=1.5〜1.6付近に調整できるのでNOxの低い全
一次燃焼バーナでの燃焼制御に応用できる。
(2) Since it can be adjusted to around μ = 1.5 to 1.6, it can be applied to combustion control in all primary combustion burners with low NO x .

(3)炎イオン電流の絶対値で制御するのでなく最小値
となるように制御するので、ロッド電極の距離やロッド
形状、印加電圧あどの差があっても補正され、影響を受
けることなく正確な空燃比制御が可能である。
(3) Since the absolute value of the flame ion current is not controlled but the control is performed to the minimum value, it is corrected even if there is a difference in rod electrode distance, rod shape, or applied voltage, and it is accurate without being affected. Air-fuel ratio control is possible.

(4)送風機のばらつきに応じて燃料供給手段を制御す
る構成としているので応答がはやく、突発的な異常で空
燃比がずれてもすぐに調整できる。
(4) Since the fuel supply means is controlled according to the variation of the blower, the response is quick, and the air-fuel ratio can be adjusted immediately even if it shifts due to a sudden abnormality.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例の燃焼制御装置の制御ブロッ
ク図、第2図は一次空気比と炎電流の特性図、第3図は
燃焼量と炎電流の特性図、第4図は動作の一例を説明す
る流れ図、第5図は動作の別の例を示す特性図、第6図
は従来の空燃比制御方式の特性図である。 1……バーナ、3……燃料供給手段、4……送風機、6
……フレームロッド、7……制御回路部、8……炎電流
検出部、9……最小値検索部、10……燃焼量制御部。
FIG. 1 is a control block diagram of a combustion control device according to an embodiment of the present invention, FIG. 2 is a characteristic diagram of primary air ratio and flame current, FIG. 3 is a characteristic diagram of combustion amount and flame current, and FIG. FIG. 5 is a flow chart explaining an example of the operation, FIG. 5 is a characteristic view showing another example of the operation, and FIG. 6 is a characteristic view of a conventional air-fuel ratio control system. 1 ... Burner, 3 ... Fuel supply means, 4 ... Blower, 6
...... Frame rod, 7 ...... Control circuit part, 8 ...... Flame current detection part, 9 ...... Minimum value search part, 10 ...... Combustion amount control part.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】多数の小孔を有する筒と、前記筒の外側に
金網を設けて形成したバーナと、前記バーナへ燃料を供
給する燃料供給手段と、燃焼空気を供給する送風機と、
燃焼火炎に挿入したフレームロッドと、前記バーナの燃
焼制御を行なう制御回路部を有し、前記制御回路部は前
記フレームロッドにより炎のイオン電流を検出する炎電
流検出部と、前記炎電流検出部の出力信号が最小値とな
るところを検索する最小値検索部と、前記最小値検索部
の出力信号により予め定められた範囲内で前記燃料供給
手段の供給燃料量を制御する燃焼量制御部を有する構成
とした燃焼制御装置。
1. A cylinder having a large number of small holes, a burner formed by providing a wire mesh on the outside of the cylinder, fuel supply means for supplying fuel to the burner, and a blower for supplying combustion air.
A flame rod inserted into the combustion flame, and a control circuit unit for controlling combustion of the burner, the control circuit unit detecting a flame ion current by the flame rod, and a flame current detecting unit. Of the output signal of the minimum value search unit, and a combustion amount control unit for controlling the fuel supply amount of the fuel supply means within a range predetermined by the output signal of the minimum value search unit. A combustion control device configured to have.
JP61090407A 1986-04-18 1986-04-18 Combustion control device Expired - Lifetime JPH06100335B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61090407A JPH06100335B2 (en) 1986-04-18 1986-04-18 Combustion control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61090407A JPH06100335B2 (en) 1986-04-18 1986-04-18 Combustion control device

Publications (2)

Publication Number Publication Date
JPS62245019A JPS62245019A (en) 1987-10-26
JPH06100335B2 true JPH06100335B2 (en) 1994-12-12

Family

ID=13997730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61090407A Expired - Lifetime JPH06100335B2 (en) 1986-04-18 1986-04-18 Combustion control device

Country Status (1)

Country Link
JP (1) JPH06100335B2 (en)

Also Published As

Publication number Publication date
JPS62245019A (en) 1987-10-26

Similar Documents

Publication Publication Date Title
US5924859A (en) Process and circuit for controlling a gas burner
JPH01260213A (en) Fuel burner control method and control device
JPH04203808A (en) Method and apparatus for controlling gas turbine combustion device
JP3771677B2 (en) Pilot ratio automatic adjustment device
JPH11257646A (en) Device for system having liquid fuel supplying source and combustor
JPH06100335B2 (en) Combustion control device
KR0156831B1 (en) Combustion control device
JPS62258928A (en) Combustion control device
JPS62245022A (en) Combustion control device
JPH0776612B2 (en) Proportional combustion controller for gas fired boiler system
JPH073284B2 (en) Combustion control device
JP2681709B2 (en) A combustion amount control method for a heater and a combustion amount control device for a heater.
JPS62245021A (en) Combustion control device
JPS6332218A (en) Burning control device
JPH07117234B2 (en) Combustion control device
JP2568461B2 (en) Gas combustion method and combustion apparatus for implementing the method
JPH06100336B2 (en) Combustion control device
JPS63105318A (en) Combustion control apparatus
JPS63129218A (en) Combustion controller
JPS63169422A (en) Combustion control
JPH0584413B2 (en)
JP3163181B2 (en) Combustion equipment
JP2964844B2 (en) Hot air heater
JPS62228813A (en) Combustion control device
JP2022179847A (en) Combustion control method and combustion control device