JPS62245021A - Combustion control device - Google Patents

Combustion control device

Info

Publication number
JPS62245021A
JPS62245021A JP61090412A JP9041286A JPS62245021A JP S62245021 A JPS62245021 A JP S62245021A JP 61090412 A JP61090412 A JP 61090412A JP 9041286 A JP9041286 A JP 9041286A JP S62245021 A JPS62245021 A JP S62245021A
Authority
JP
Japan
Prior art keywords
combustion
air
amount
section
flame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61090412A
Other languages
Japanese (ja)
Inventor
Hirohisa Imai
博久 今井
Keiichi Mori
慶一 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61090412A priority Critical patent/JPS62245021A/en
Publication of JPS62245021A publication Critical patent/JPS62245021A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/12Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods
    • F23N5/123Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2225/00Measuring
    • F23N2225/08Measuring temperature
    • F23N2225/12Measuring temperature room temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2233/00Ventilators
    • F23N2233/06Ventilators at the air intake
    • F23N2233/08Ventilators at the air intake with variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2235/00Valves, nozzles or pumps
    • F23N2235/30Pumps

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Regulation And Control Of Combustion (AREA)
  • Control Of Combustion (AREA)

Abstract

PURPOSE:To make it possible to maintain stable combustion conditions by a method wherein at least either the amount of air supplied or the amount of fuel supplied is adjusted and controlled by the minimum value retrieval output signal of flame current which is detected with a flame rod. CONSTITUTION:A combustion rate control part 11 calculates the combustion rate in accordance with the difference between the temperature measured by a room temperature sensor 13 and the set temperature 14 in order to control a fuel pump 3. When the result of calculation at the combustion rate control part 11 is larger than the predetermined amount, an air flow rate control part 12 calculates the air flow rate in proportion to the combustion rate in order to control a fan 4. Or, when the result of calculation is smaller than the predetermined value, a flame rod 10 detects flame current If in order to control the fan 4 in such a manner that the flame current If turns to be minimum and the resultant fan output is stored in a storage part 19. When the combustion rate is larger than the predetermined rate, the air flow rate control part 12 calculates the rotational speed of the fan 4 in accordance with the oscillation frequency of the fuel pump 3 by means of the contents of memory of the storage part 19 in order to obtain the driving output of the fan 4.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はガスや石油等を使用した燃焼機器における空燃
比の制御装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an air-fuel ratio control device for combustion equipment using gas, oil, or the like.

従来の技術 ガスや石油を燃料として燃焼させる時、燃料と空気量を
最適な比率にして供給する事により逆火や失火、あるい
は不完全燃焼の発生を防ぎ安定な燃焼を維持できる。こ
の燃料と空気量の比を空燃比と呼び、従来よシ燃焼状態
を検知して常に最適な空燃比を保つように燃料、あるい
は空気量を制御する手段が考えられていた。
Conventional technology When burning gas or oil as fuel, stable combustion can be maintained by preventing backfire, misfire, or incomplete combustion by supplying the fuel and air at an optimal ratio. This ratio of the amount of fuel and air is called the air-fuel ratio, and conventional methods have been devised to detect the combustion state and control the amount of fuel or air so as to always maintain an optimal air-fuel ratio.

石油燃焼機器における空燃比制御の方式は、例えば特開
昭61−24917号公報に記載されているものがよく
考えられる。これは火炎に挿入したフレームロッドによ
り火炎の炎イオン電流を検出し、この炎イオン電流が空
燃比により変化することを利用して空燃比を最適にする
ように燃料供給用ポンプの駆動周波数を調節する構成で
ある。
As a method of air-fuel ratio control in oil-burning equipment, for example, the method described in Japanese Patent Application Laid-Open No. 61-24917 can be considered. This detects the flame ion current of the flame with a flame rod inserted into the flame, and uses the fact that this flame ion current changes depending on the air-fuel ratio to adjust the driving frequency of the fuel supply pump to optimize the air-fuel ratio. It is configured to do this.

第6図に炎イオン電流値Ifの一例を示す。横軸は一次
空気比lでここでは空燃比を一次空気比声で説明する。
FIG. 6 shows an example of the flame ion current value If. The horizontal axis is the primary air ratio l, and here the air-fuel ratio will be explained in terms of the primary air ratio.

代表的な入力範囲(3000〜1000kcal/h)
  では、炎イオン電流値Ifはほぼμ=0.8〜0.
9でピークを持つ分布をしている。そこでポンプ駆動周
波数を調節して、炎イオン電流値1iが最大値になるよ
うに灯油供給量を決めることにより空燃比制御を行ない
安定した燃焼状態を維持するものである。
Typical input range (3000-1000kcal/h)
Then, the flame ion current value If is approximately μ=0.8 to 0.
The distribution has a peak at 9. Therefore, by adjusting the pump driving frequency and determining the amount of kerosene supplied so that the flame ion current value 1i becomes the maximum value, the air-fuel ratio is controlled and a stable combustion state is maintained.

発明が解決しようとする問題点 上記従来例ではμ=0.8〜0.9で最も安定した燃焼
状態を維持できるようにm成したバーナを使用したが1
μm1.5付近で最も安定した燃焼状態を維持できるよ
うに構成したバーナもある。(以下、全−次燃焼バーナ
と記す)全−火燃焼バーナは一般に、火炎温度が低く、
排ガス中の有害成分である窒素酸化物(NO3C)が極
めて少ないという特長を有し、NOx低減のためには効
果の大きWく−ナ構成であることが知られている。
Problems to be Solved by the Invention In the conventional example described above, a burner with m structure was used so that the most stable combustion state could be maintained at μ = 0.8 to 0.9.
There is also a burner configured to maintain the most stable combustion state around μm 1.5. Full-fire combustion burners (hereinafter referred to as full-fire combustion burners) generally have a low flame temperature,
It has the feature that nitrogen oxides (NO3C), which are harmful components in exhaust gas, are extremely low, and it is known that the W tanker configuration is highly effective in reducing NOx.

しかしながら上記のような従来の空燃比制御手段は、炎
イオン電流値Hが最大値になるように灯油供給量を決め
るので1.u=0.8〜0.9に調節してしまい、μ=
1.5付近での安定した燃焼状態の維持ができないとい
う問題点を有していた。
However, the conventional air-fuel ratio control means as described above determines the kerosene supply amount so that the flame ion current value H becomes the maximum value. I ended up adjusting u=0.8 to 0.9, and μ=
The problem was that a stable combustion state around 1.5 could not be maintained.

本発明はかかる従来の問題を解消するもので、全−次燃
焼バーナでμ=1.5付近に調節し安定した燃焼状態を
維持することを目的とする。
The present invention aims to solve such conventional problems, and aims to maintain a stable combustion state by adjusting μ to around 1.5 in a full-primary combustion burner.

問題点を解決するための手段 上記問題点を解決するために本発明の燃焼制御装置は、
燃料を燃焼するバーナと、前記バーナへ燃料を供給する
燃料供給手段と、燃焼空気を供給する送風機と、燃焼火
炎に挿入したフレームロッドと、前記バーナの燃焼制御
を行なう制御回路部を有し、前記制御回路部は燃焼量が
所定量以下の時に空燃比を設定する空燃比設定部と、燃
焼量が所定量以上の時には前記空燃比設定部で設定した
空燃比を基に演算して燃焼量を変更し制御する燃焼制御
部を有し、前記空燃比設定部は前記フレームロッドによ
り炎のイオン電流を検出する炎電流検出部と、前記炎電
流検出部の出力信号が最小値となるところを検索する最
小値検索部と、前記最小値検索部の出力信号により前記
送風機の供給空気量又は前記燃料供給手段の供給燃料量
の少なくとも一方を調整する調整部と、前記調整部の調
整値を記憶する記憶部を有し、前記燃焼制御部は前記記
憶部の出力信号よシ燃焼量を演算し前記燃料供給手段を
制御する燃焼量制御部と、空気量を演算し前記送風機を
制御する空気量制御部を有する構成としたものである。
Means for Solving the Problems In order to solve the above problems, the combustion control device of the present invention includes:
A burner for burning fuel, a fuel supply means for supplying fuel to the burner, a blower for supplying combustion air, a flame rod inserted into a combustion flame, and a control circuit section for controlling combustion of the burner, The control circuit section includes an air-fuel ratio setting section that sets an air-fuel ratio when the combustion amount is below a predetermined amount, and calculates the combustion amount based on the air-fuel ratio set by the air-fuel ratio setting section when the combustion amount is above a predetermined amount. The air-fuel ratio setting section includes a flame current detection section that detects the ionic current of the flame by the flame rod, and a combustion control section that changes and controls the flame current detection section. a minimum value search unit for searching; an adjustment unit for adjusting at least one of the amount of air supplied by the blower or the amount of fuel supplied by the fuel supply means based on the output signal of the minimum value search unit; and storing the adjustment value of the adjustment unit. The combustion control section has a combustion amount control section that calculates a combustion amount based on the output signal of the storage section and controls the fuel supply means, and an air amount control section that calculates an air amount and controls the blower. The configuration includes a control section.

作   用 本発明は上記した構成によって、低カロリー燃焼の時に
炎電流検出部の出力信号が最小値となるように空燃比を
調整して常にp = 1.5付近で安定した燃焼状態を
維持するのである。
Effect: With the above-described configuration, the present invention adjusts the air-fuel ratio so that the output signal of the flame current detection section becomes the minimum value during low-calorie combustion, and always maintains a stable combustion state around p = 1.5. It is.

実施例 以下1本発明の実施例を添付図面にもとづいて説明する
。実施例では石油気化式バーナによる室内開放燃焼型温
風暖房器(ファンヒータ)を例にして説明していく。
Embodiments Below, one embodiment of the present invention will be described based on the accompanying drawings. In the embodiment, an indoor open combustion hot air heater (fan heater) using an oil vaporization burner will be described as an example.

第1図は本発明のシステムブロック図を示す。FIG. 1 shows a system block diagram of the present invention.

1はバーナで多数の小孔を有するパンチング板の外側に
金網で炎口全形成した全−次燃焼バーナであシ、燃料タ
ンク2から燃料ポンプ3により供給された燃料と送風機
4により送風された空気を気化混合器5により気化混合
されバーナ1で燃焼する。制御回路部6は空燃比設定部
7と燃焼制御部8とタイマー部9で構成し、フレームロ
ット10やその他のセンサの信号を受けてバーナ1の安
全燃焼を行なう。燃焼制御部8は燃焼量制御部11と空
気量制御部12よシ構成し、燃焼量制御部11料ポンプ
3を制御する。燃焼量制御部11の演算結果が所定量以
上であればスイッチ15は図の接点に接続し、空気量制
御部12は燃焼量に応じ空気量を演算しその空気量で送
風機4を制御する。
1 is a burner, which is a full-primary combustion burner in which a flame port is entirely formed with a wire mesh on the outside of a punched plate having a large number of small holes, and fuel is supplied from a fuel tank 2 by a fuel pump 3 and air is blown by a blower 4. Air is vaporized and mixed by a vaporization mixer 5 and combusted by a burner 1. The control circuit section 6 includes an air-fuel ratio setting section 7, a combustion control section 8, and a timer section 9, and performs safe combustion in the burner 1 in response to signals from the flame rod 10 and other sensors. The combustion control section 8 includes a combustion amount control section 11 and an air amount control section 12, and controls the combustion amount control section 11 and the fuel pump 3. If the calculation result of the combustion amount control section 11 is greater than or equal to a predetermined amount, the switch 15 is connected to the contact shown in the figure, and the air amount control section 12 calculates the amount of air according to the amount of combustion and controls the blower 4 using the amount of air.

又、燃焼量制御部11の演算した燃焼量が所定量以下で
あればスイッチ15を図と逆方向の接点に接続して空燃
比設定部7が空燃比設定を行なう。
If the combustion amount calculated by the combustion amount control section 11 is less than or equal to a predetermined amount, the switch 15 is connected to a contact point in the opposite direction as shown in the figure, and the air-fuel ratio setting section 7 sets the air-fuel ratio.

フレームロッド10により炎電流Ifを炎電流検出部1
6が検出し、送風機4は炎電流11が最小値となるよう
に最小値検索部17の出力信号に応じて調整部18で調
整される。調整が終了すればこの調整値、即ち炎電流I
fが最小値の時の送風機出力(回転数)を記憶部19に
記憶する。炎電流検出部16と最小値検索部17と調整
部18と記憶部19を空燃比設定部7としている。燃焼
量が所定量以上の時にはスイッチ15は図の接点に戻り
空気量制御部12は以後燃焼量制御部11からの燃料ポ
ンプ3の発振周波数出力に応じて送風次に具体動作を説
明していく。第2図は全−火燃焼バーナにおいての炎電
流Ifの特性を示す。
Flame current detection section 1 detects flame current If using flame rod 10.
6 detects the flame current, and the blower 4 is adjusted by the adjustment unit 18 according to the output signal of the minimum value search unit 17 so that the flame current 11 becomes the minimum value. When the adjustment is completed, this adjusted value, that is, the flame current I
The blower output (rotation speed) when f is the minimum value is stored in the storage unit 19. The flame current detection section 16, the minimum value search section 17, the adjustment section 18, and the storage section 19 constitute an air-fuel ratio setting section 7. When the combustion amount is greater than or equal to the predetermined amount, the switch 15 returns to the contact point shown in the figure, and the air amount control section 12 blows air according to the oscillation frequency output of the fuel pump 3 from the combustion amount control section 11.The detailed operation will be explained next. . FIG. 2 shows the characteristic of the flame current If in an all-fire combustion burner.

図のA、B線は燃焼量による差で燃焼量が小さい時はA
線、大きい時はB線となる。燃焼量が小さい時は%=0
.9付近で火炎中のイオン濃度が最も高くlが大きくな
るに従いイオン濃度が低くなる。
Lines A and B in the diagram are the difference depending on the amount of combustion, and when the amount of combustion is small, it is A.
line, and when it is large, it becomes line B. When the combustion amount is small, %=0
.. The ion concentration in the flame is highest near 9, and as l increases, the ion concentration decreases.

全−火燃焼バーナでば声=0.9付近では火炎はバーナ
に密着し、fiが大きくなるに従い火炎が伸びてくる現
象を確認している。火炎が伸びてくるに従い火炎中で最
もイオン密度の高い部分がフレームロッドに近づいてく
る。従ってμ70.9の領域で炎イオン電流Ifは声が
大きくなるに従い、イオン濃度低下による減少の現象と
、イオン密度の高い部分がフレームロッドに近づくこと
による増加の現象があり、双方の作用によV) )t 
= 1.5〜1.6付近で最小の極値をとるA線の特性
となることを確認している。一方、燃焼量が大きい時は
同様にp−0,9付近で火炎中のイオン濃度が最も高く
μず、イオン密度の高い部分がフレームロッドに近づく
ことによる増加の影響が少なく最小の極値をとらないB
線の特性となることを確認している。
It has been confirmed that in a full-fire combustion burner, the flame adheres closely to the burner when the pitch is around 0.9, and as fi increases, the flame grows longer. As the flame grows, the part of the flame with the highest ion density approaches the flame rod. Therefore, in the region of μ70.9, as the flame ion current If becomes louder, there are two phenomena: a decrease due to a decrease in ion concentration, and an increase due to the area with high ion density approaching the flame rod, due to the effects of both. V))t
It has been confirmed that the characteristic is that of the A line, which takes the minimum extreme value around = 1.5 to 1.6. On the other hand, when the combustion amount is large, the ion concentration in the flame is the highest near p-0 and 9, and the influence of the increase due to the area with high ion density approaching the flame rod is small, and the lowest extreme value is reached. Do not take B
It has been confirmed that this is a characteristic of the line.

声は、ある燃焼量に固定した時の供給空気量と比例する
ためバーナの燃焼量OFに対する燃料ポンプ3の発振周
波数(、および送風機4の送風モータ回転数nは第a図
a、bに示す様に比例関係となる。今、第2図でμ=j
、の時のモータ回転数はnA、nBとな9ポンプ周波数
はfA、fBとなる。図でC,D、B線は燃料ポンプ3
のばらつきであり、同じポンプ周波敗報であっても燃焼
量はQFA’〜QPA’まで変化する。このためモータ
回転数nAが一定でもμ=μmからずれてしまう。
Since the noise is proportional to the amount of air supplied when the combustion amount is fixed at a certain combustion amount, the oscillation frequency of the fuel pump 3 (and the rotation speed n of the blower motor of the blower 4 are shown in Figures a and b) Now, in Figure 2, μ=j
When , the motor rotation speeds are nA and nB, and the pump frequencies are fA and fB. In the diagram, C, D, and B lines are fuel pump 3
Even if the pump frequency is the same, the combustion amount varies from QFA' to QPA'. Therefore, even if the motor rotation speed nA is constant, it deviates from μ=μm.

これを解決するためにポンプばらつきに応じてモータ回
転数nA/あるいはn7に調整する必要がある。本発明
では空燃比設定部7でこの作業を行なう。
In order to solve this problem, it is necessary to adjust the motor rotation speed to nA/or n7 depending on the pump variation. In the present invention, this work is performed by the air-fuel ratio setting section 7.

第4図に空燃比設定部7をマイクロコンピュータで構成
した場合の流れ図を示し説明する。今。
FIG. 4 shows a flowchart in the case where the air-fuel ratio setting section 7 is configured by a microcomputer and will be described. now.

QPAで所定量以下であったとすると、調整部18はQ
FAに応じたモータ回転数nAでモータ回転するように
送風機4を駆動し、nAを最適回転数nAoとして記憶
する。その時の炎電流1(を炎電流検出部16が検出す
る。最小値検索部17は炎電流11 を最小値If工、
nとして記憶し、モータ回転数を△nだけ増加するよう
調整部18に言置出力する。その時の炎電流xl  と
最小値Ifmtnと比較し、I(が小さければそのIf
 を新しく最小値Ifminとして記憶し又、その時の
モータ回転数を新しく最適回転数nAoとして記憶し更
にモータ回転数を△nだけ増加するよう調整部18に言
置出力する。逆にIf がLfminよシ大きければ△
nだけ減少するよう調整部18に信号出力する。以後、
15<If、、4ユの時はIl を新しくIfminに
モータ回転数を新しくnAoに書き換えて同じ方向にモ
ータ回転数を△nだけずらし、If  > Ifmin
の時は逆の方向に△nだけずらす操作を繰り返す。△n
だけずらす方向の逆転が2回発生すれば調整を終以上の
ようにポンプのばらつきに応じた最適なモータ回転数n
Aoが決定されると、記憶部19にこの値を記憶する。
If the QPA is below the predetermined amount, the adjustment unit 18
The blower 4 is driven so that the motor rotates at a motor rotation speed nA corresponding to FA, and nA is stored as the optimum rotation speed nAo. The flame current detection section 16 detects the flame current 1 at that time.The minimum value search section 17 detects the flame current 11 as the minimum value If,
n, and outputs an instruction to the adjustment unit 18 to increase the motor rotation speed by Δn. Compare the flame current xl at that time with the minimum value Ifmtn, and if I( is small, that Ifmtn is
is stored as a new minimum value Ifmin, the motor rotation speed at that time is stored as a new optimum rotation speed nAo, and an instruction is output to the adjustment unit 18 to increase the motor rotation speed by Δn. Conversely, if If is larger than Lfmin, △
A signal is output to the adjustment unit 18 so that the value is decreased by n. From then on,
When 15<If,, 4U, rewrite Il to new Ifmin and the motor rotation speed to new nAo, shift the motor rotation speed by △n in the same direction, and If > Ifmin.
In this case, repeat the operation of shifting by △n in the opposite direction. △n
Adjustment is complete if two reversals occur in the direction of shifting by the amount n.
Once Ao is determined, this value is stored in the storage unit 19.

一方、燃焼量制御部11は温度センサ13と温度設定値
14の温度差△Tに応じ燃焼量を演算し演算結果が所定
量以上であればスイッチ15を図の接点に接続する。△
Tと燃焼量に応じた燃料ポンプ3の発振周波数量の特性
を第5図に示す。第5図右側の特性は横軸に温度差△T
 (Rsは設定温度14、RTは温度センサ13の値)
、縦軸量はポンプ周波数を示し燃焼量制御部11の動作
特性を示す。また左側の図は横軸にファンモータの回転
数n、縦軸にポンプ周波数fを示し空電量制御部12の
動作特性を示す。空気量制御部12は温度差△Tに応じ
てポンプ周波数量が決定すればこの値を基にモータ回転
数nを演算して決定するが、この時燃料ポンプ3のばら
つきに応じて空燃比設定部7の記憶部19に記憶されて
いるnAoの値を係数として演算する。例えばモータ回
転数n’=L−nAo(a−f +b )という演算式
でポy7”周波数量に応じた最適な送風モータ回転数n
が決定される。尚、上式でa、bは定数である。以上か
ら第5図でポンプばらつきがない時はF線上を第3図の
様にポンプばらつきがあると、高燃焼量側にある時はG
線上を、低燃焼量側にある時はH線上で制御する。又、
所定量以上の燃焼量が長時間連続する時にはタイマー部
9から定期的に信号入力があり、燃焼量を強制的に所定
量以下にして空燃比設定を行なう。
On the other hand, the combustion amount control section 11 calculates the combustion amount according to the temperature difference ΔT between the temperature sensor 13 and the temperature set value 14, and connects the switch 15 to the contact point shown in the figure if the calculation result is a predetermined amount or more. △
FIG. 5 shows the characteristics of the oscillation frequency of the fuel pump 3 depending on T and the combustion amount. The characteristics on the right side of Figure 5 are the temperature difference △T on the horizontal axis.
(Rs is the set temperature 14, RT is the value of the temperature sensor 13)
, the vertical axis indicates the pump frequency and indicates the operating characteristics of the combustion amount control section 11. The diagram on the left shows the operating characteristics of the static electricity amount control unit 12, with the horizontal axis representing the rotation speed n of the fan motor and the vertical axis representing the pump frequency f. Once the pump frequency amount is determined according to the temperature difference ΔT, the air amount control unit 12 calculates and determines the motor rotation speed n based on this value. The value of nAo stored in the storage unit 19 of the unit 7 is used as a coefficient for calculation. For example, with the calculation formula motor rotation speed n'=L-nAo(a-f +b), the optimal blower motor rotation speed n according to the frequency amount can be calculated.
is determined. Note that in the above formula, a and b are constants. From the above, in Figure 5, when there is no pump variation, the F line is on the F line, and when there is pump variation as shown in Figure 3, when it is on the high combustion amount side, the G
When it is on the low combustion amount side, it is controlled on the H line. or,
When the combustion amount exceeds a predetermined amount for a long period of time, a signal is periodically input from the timer section 9, and the air-fuel ratio is set by forcibly reducing the combustion amount to a predetermined amount or less.

以上の構成によりポンプのばらつきに応じて空気量を自
動的に調整され、常に最適な燃焼状態を保ちながら燃焼
可能となる。
With the above configuration, the amount of air is automatically adjusted according to variations in the pump, and combustion can be performed while always maintaining an optimal combustion state.

さらに安全性を向上させるために調整部18にモータ回
転数nの可変幅(最大値と最小値)を限定し、この値以
上に回転数nをもってこなければ最小の極値がない時は
ゴミづまシ等により正常な空気量が送られてこない、あ
るいは正常な燃焼量が出ていないと判定して燃焼を停止
する構成にしてもよい。また最小値検索部17はこの時
の炎電流1iの値にも上下に限界値を決めておくことに
よりフレームロッドの絶縁不良や不完全燃焼の検出とし
て燃焼を停止することも容易に実現できる。
Furthermore, in order to improve safety, the variable range (maximum value and minimum value) of the motor rotation speed n is limited in the adjustment section 18, and if the rotation speed n is not brought above this value, if there is no minimum extreme value, it is garbage. It may be configured to stop combustion when it is determined that a normal amount of air is not being sent due to a jam or the like, or that a normal amount of combustion is not being produced. Furthermore, by setting upper and lower limit values for the value of the flame current 1i at this time, the minimum value search unit 17 can easily stop the combustion as a result of detecting poor insulation of the flame rod or incomplete combustion.

尚1本実施例では石油7アンヒータで説明したが、ファ
ンヒータ以外の燃焼機器やガス燃料であっても同様の効
果が得られる。
Although the present embodiment has been explained using a petroleum 7 unheater, similar effects can be obtained using combustion equipment other than a fan heater or gas fuel.

発明の効果 以上のように本発明の燃焼制御装置によれば次の効果が
得られる。
Effects of the Invention As described above, the combustion control device of the present invention provides the following effects.

(1)  空燃比最適点に自動設定されるため1手動の
調整手段が不要で常に安定した燃焼状態を維持できる。
(1) Since the air-fuel ratio is automatically set to the optimum point, no manual adjustment is required and a stable combustion state can be maintained at all times.

2)l=1・5〜1.6付近に調整できるのでNOxの
低い全−火燃焼バーナでの燃焼制御に応用できる。
2) Since l can be adjusted to around 1.5 to 1.6, it can be applied to combustion control in full-fire combustion burners with low NOx.

(3)炎電流の絶対値で制御するのでなく最小値となる
ように制御するので、ロッド電極の距離やロッド形状、
印加電圧などの差があっても補正され、影響を受けるこ
となく正確な空燃比制御が可能である。
(3) Since the flame current is controlled not by the absolute value but by the minimum value, the distance of the rod electrode, the rod shape, etc.
Even if there is a difference in applied voltage, etc., it is corrected and accurate air-fuel ratio control is possible without being affected.

G4)  燃焼量の低い時に空燃比設定を行ない、その
時の調整値を記憶し、その記憶値で高燃焼量の時も制御
するので、燃焼量の広い範囲にわたって安定した燃焼状
態を維持できる。
G4) Since the air-fuel ratio is set when the combustion amount is low, the adjusted value at that time is stored, and the stored value is used to control even when the combustion amount is high, a stable combustion state can be maintained over a wide range of combustion amounts.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の燃焼制御装置の制御ブロッ
ク図、第2図は一次空気比と炎電流の特性図、第3図は
燃焼量とポンプ周波数および送風機モータ回転数の関係
を示す特性図、第4図は空燃比設定部の動作の流れを示
す流れ図、第5図は燃焼制御部の特性図、第6図は従来
の空燃比制御方式の特性図を示す。 1・・・・・・バーナ、3・・・・・・燃料供給手段、
4・・・・・・送風機、6・・・・・・制御回路部、7
・・・・・・空燃比設定部、8・・・・・・燃焼制御部
、10・・・・・・フレームロッド、11・・・・・・
燃焼量制御部、12・・・・・・空気量制御部、16・
・・・・・炎電流検出部、17・・・・・・最小値検索
部、18・・・・・・調整部、19・・・・・記憶部。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名1−
 パーア lo−−−フレームロッド 携 2 図 一ン欠笠気比 Cμノ 第3図 モーダWj車&校”rL(rfτす Afa ポンプ周液数子 第 4 図 第5図 モーグ百転数、rL(rrm)    AT−F!s−
F?−rt’り第6図 一ンシX;た気力くメス、)
Fig. 1 is a control block diagram of a combustion control device according to an embodiment of the present invention, Fig. 2 is a characteristic diagram of primary air ratio and flame current, and Fig. 3 is a diagram showing the relationship between combustion amount, pump frequency, and blower motor rotation speed. FIG. 4 is a flowchart showing the operation flow of the air-fuel ratio setting section, FIG. 5 is a characteristic diagram of the combustion control section, and FIG. 6 is a characteristic diagram of the conventional air-fuel ratio control method. 1...Burner, 3...Fuel supply means,
4...Blower, 6...Control circuit section, 7
...Air-fuel ratio setting section, 8...Combustion control section, 10...Frame rod, 11...
Combustion amount control section, 12... Air amount control section, 16.
... Flame current detection section, 17 ... Minimum value search section, 18 ... Adjustment section, 19 ... Storage section. Name of agent: Patent attorney Toshio Nakao and 1 other person1-
Par lo---Frame rod connection 2 Fig. 1 - Figure 3 Moda Wj car &amp; ) AT-F!s-
F? -rt'ri Figure 6 1 x; strong female,)

Claims (2)

【特許請求の範囲】[Claims] (1)燃料を燃焼するバーナと、前記バーナへ燃料を供
給する燃料供給手段と、燃焼空気を供給する送風機と、
燃焼火炎に挿入したフレームロッドと、前記バーナの燃
焼制御を行なう制御回路部を有し、前記制御回路部は燃
焼量が所定量以下の時に空燃比を設定する空燃比設定部
と、燃焼量が所定量以上の時には前記空燃比設定部で設
定した空燃比を基に演算して燃焼量を変更し制御する燃
焼制御部を有し、前記空燃比設定部は前記フレームロッ
ドにより炎のイオン電流を検出する炎電流検出部と、前
記炎電流検出部の出力信号が最小値となるところを検索
する最小値検索部と、前記最小値検索部の出力信号によ
り前記送風機の供給空気量又は前記燃料供給手段の供給
燃料量の少なくとも一方を調整する調整部と、前記調整
部の調整値を記憶する記憶部を有し、前記燃焼制御部は
燃焼量を演算し前記燃料供給手段を制御する燃焼量制御
部と、空気量を演算し前記送風機を制御する空気量制御
部を有し、燃焼量制御部か前記空気量制御部か少なくと
も一方は前記記憶部の出力信号より演算する構成とした
燃焼制御装置。
(1) a burner that burns fuel, a fuel supply means that supplies fuel to the burner, and a blower that supplies combustion air;
It has a flame rod inserted into a combustion flame, and a control circuit section that controls combustion of the burner, and the control circuit section includes an air-fuel ratio setting section that sets an air-fuel ratio when the combustion amount is below a predetermined amount, and an air-fuel ratio setting section that sets an air-fuel ratio when the combustion amount is below a predetermined amount. When the amount exceeds a predetermined amount, the air-fuel ratio setting section has a combustion control section that calculates and controls the combustion amount based on the air-fuel ratio set by the air-fuel ratio setting section, and the air-fuel ratio setting section controls the ionic current of the flame by the flame rod. A flame current detection unit that detects a flame current, a minimum value search unit that searches for a point where the output signal of the flame current detection unit has a minimum value, and an output signal of the minimum value search unit that determines the amount of air supplied to the blower or the fuel supply. The combustion control unit includes an adjustment section that adjusts at least one of the amount of fuel supplied to the means, and a storage section that stores the adjustment value of the adjustment section, and the combustion control section calculates the combustion amount and controls the fuel supply means. and an air amount control section that calculates the amount of air and controls the blower, and at least one of the combustion amount control section and the air amount control section calculates based on the output signal of the storage section. .
(2)制御回路部は、定期的に一定時間燃焼量を所定量
以下にして空燃比設定部に駆動信号を出力するタイマー
部を有する構成の特許請求の範囲第1項記載の燃焼制御
装置。
(2) The combustion control device according to claim 1, wherein the control circuit section includes a timer section that periodically lowers the combustion amount to a predetermined amount or less for a certain period of time and outputs a drive signal to the air-fuel ratio setting section.
JP61090412A 1986-04-18 1986-04-18 Combustion control device Pending JPS62245021A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61090412A JPS62245021A (en) 1986-04-18 1986-04-18 Combustion control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61090412A JPS62245021A (en) 1986-04-18 1986-04-18 Combustion control device

Publications (1)

Publication Number Publication Date
JPS62245021A true JPS62245021A (en) 1987-10-26

Family

ID=13997873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61090412A Pending JPS62245021A (en) 1986-04-18 1986-04-18 Combustion control device

Country Status (1)

Country Link
JP (1) JPS62245021A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62266318A (en) * 1986-05-13 1987-11-19 Rinnai Corp Burner
WO2006080612A1 (en) * 2005-01-28 2006-08-03 Kyungdong Network Co., Ltd. Boiler for detecting unnormal burning situation using air pressure sensor and flame
CN104406153A (en) * 2014-09-25 2015-03-11 国家电网公司 Reheat steam temperature control method of four-corner tangential boiler under low-nitrogen combustion mode

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50140932A (en) * 1974-04-26 1975-11-12
JPS556130A (en) * 1978-06-26 1980-01-17 Matsushita Electric Ind Co Ltd Enclosed burner

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50140932A (en) * 1974-04-26 1975-11-12
JPS556130A (en) * 1978-06-26 1980-01-17 Matsushita Electric Ind Co Ltd Enclosed burner

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62266318A (en) * 1986-05-13 1987-11-19 Rinnai Corp Burner
JPH0378528B2 (en) * 1986-05-13 1991-12-16 Rinnai Kk
WO2006080612A1 (en) * 2005-01-28 2006-08-03 Kyungdong Network Co., Ltd. Boiler for detecting unnormal burning situation using air pressure sensor and flame
US8011921B2 (en) 2005-01-28 2011-09-06 Kyungdong Network Co., Ltd. System and control method for detecting an abnormal burning situation using air pressure sensing and flame detection
US8109758B2 (en) 2005-01-28 2012-02-07 Kyungdong Network Co., Ltd. System and control method for detecting an abnormal burning situation using air pressure sensing and flame detection
CN104406153A (en) * 2014-09-25 2015-03-11 国家电网公司 Reheat steam temperature control method of four-corner tangential boiler under low-nitrogen combustion mode
CN104406153B (en) * 2014-09-25 2016-08-24 国家电网公司 Process In A Tangential Firing Switching Logic Control of Reheat Steam Temperature method under low nitrogen burning mode

Similar Documents

Publication Publication Date Title
US5971745A (en) Flame ionization control apparatus and method
EP0104586B1 (en) Gas burner control system
US4253404A (en) Natural draft combustion zone optimizing method and apparatus
WO1997018417A9 (en) Flame ionization control apparatus and method
US4235171A (en) Natural draft combustion zone optimizing method and apparatus
US5997278A (en) Apparatus for providing an air/fuel mixture to a fully premixed burner
JPS62245021A (en) Combustion control device
KR0156831B1 (en) Combustion control device
JPH0584413B2 (en)
JPH0712331A (en) Method and device for controlling combustion of combustor
JPH0423167B2 (en)
JPH06100336B2 (en) Combustion control device
JPS62245022A (en) Combustion control device
JPS62258928A (en) Combustion control device
JPS63169424A (en) Combustion controller
JP3018811B2 (en) Combustion control device
JPH06100335B2 (en) Combustion control device
JPH073284B2 (en) Combustion control device
JP3008735B2 (en) Combustion control device
JP2964844B2 (en) Hot air heater
JPH0345008Y2 (en)
JPS63153316A (en) Combustion control device
JPH0727333A (en) Combustion control device
JPS62142923A (en) Combustion control device
JPH07117234B2 (en) Combustion control device