EP3690318B1 - Method for regulating a fuel-air mixture in a heating device - Google Patents
Method for regulating a fuel-air mixture in a heating device Download PDFInfo
- Publication number
- EP3690318B1 EP3690318B1 EP20150310.9A EP20150310A EP3690318B1 EP 3690318 B1 EP3690318 B1 EP 3690318B1 EP 20150310 A EP20150310 A EP 20150310A EP 3690318 B1 EP3690318 B1 EP 3690318B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- ionisation
- fuel gas
- combustion
- speed
- signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 38
- 238000010438 heat treatment Methods 0.000 title claims description 21
- 230000001105 regulatory effect Effects 0.000 title claims description 15
- 239000000203 mixture Substances 0.000 title description 7
- 238000002485 combustion reaction Methods 0.000 claims description 33
- 239000002737 fuel gas Substances 0.000 claims description 24
- 238000005259 measurement Methods 0.000 claims description 17
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims description 13
- 229910002091 carbon monoxide Inorganic materials 0.000 claims description 13
- 238000012544 monitoring process Methods 0.000 claims description 13
- 238000011156 evaluation Methods 0.000 claims description 9
- 239000000567 combustion gas Substances 0.000 claims description 7
- 238000004590 computer program Methods 0.000 claims description 5
- 150000002500 ions Chemical class 0.000 claims description 3
- 238000012937 correction Methods 0.000 claims description 2
- 239000003570 air Substances 0.000 description 27
- 239000007789 gas Substances 0.000 description 13
- 238000010586 diagram Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 239000000446 fuel Substances 0.000 description 4
- 230000007257 malfunction Effects 0.000 description 3
- 230000006870 function Effects 0.000 description 2
- 230000036962 time dependent Effects 0.000 description 2
- 230000001960 triggered effect Effects 0.000 description 2
- 241000701959 Escherichia virus Lambda Species 0.000 description 1
- GVGLGOZIDCSQPN-PVHGPHFFSA-N Heroin Chemical compound O([C@H]1[C@H](C=C[C@H]23)OC(C)=O)C4=C5[C@@]12CCN(C)[C@@H]3CC5=CC=C4OC(C)=O GVGLGOZIDCSQPN-PVHGPHFFSA-N 0.000 description 1
- 239000012080 ambient air Substances 0.000 description 1
- 230000008033 biological extinction Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000011088 calibration curve Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000002574 poison Substances 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N5/00—Systems for controlling combustion
- F23N5/02—Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
- F23N5/12—Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods
- F23N5/123—Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods using electronic means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D14/00—Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
- F23D14/02—Premix gas burners, i.e. in which gaseous fuel is mixed with combustion air upstream of the combustion zone
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N1/00—Regulating fuel supply
- F23N1/02—Regulating fuel supply conjointly with air supply
- F23N1/022—Regulating fuel supply conjointly with air supply using electronic means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N5/00—Systems for controlling combustion
- F23N5/02—Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
- F23N5/12—Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23Q—IGNITION; EXTINGUISHING-DEVICES
- F23Q3/00—Igniters using electrically-produced sparks
- F23Q3/008—Structurally associated with fluid-fuel burners
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N2227/00—Ignition or checking
- F23N2227/20—Calibrating devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N2231/00—Fail safe
- F23N2231/06—Fail safe for flame failures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N2231/00—Fail safe
- F23N2231/10—Fail safe for component failures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N2231/00—Fail safe
- F23N2231/12—Fail safe for ignition failures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N2233/00—Ventilators
- F23N2233/06—Ventilators at the air intake
- F23N2233/08—Ventilators at the air intake with variable speed
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N2237/00—Controlling
- F23N2237/24—Controlling height of burner
- F23N2237/26—Controlling height of burner oxygen-air ratio
Definitions
- the invention is in the field of regulating a fuel gas-air mixture for a combustion process in a heating device, in particular for preparing hot water or heating a building.
- a heating device in particular for preparing hot water or heating a building.
- an ionization measurement is carried out in a flame area, especially in many heating devices. Such measurements should enable stable regulation over long periods of time. If the control fails, in most cases the heater has to be switched off, which of course should happen as rarely as possible.
- flame monitoring is typically also carried out in heating devices, the main task of which is to ensure that no fuel gas is supplied after the heating device has been started if there is no flame. This prevents the formation of a potentially explosive mixture and the escape of unburned fuel gas. This can be accomplished in a number of different ways. There are optical, thermal and electronic systems. An electronic flame monitor that is often used uses an ignition electrode that is already present, which is otherwise not otherwise required after a flame has been ignited, to generate an ionization signal which, in the prior art, is not used for regulating but for monitoring the flame.
- the specially prepared ionization signal can not only reliably detect the presence of a flame or its extinction, but also, for example, the physical lifting of the flame from the burner due to excessively high temperatures Measure the combustion air supply in good time. This means that it can be switched off at an early stage if the flame becomes unstable.
- the regulation has so far often been carried out during operation by means of a separate ionization electrode.
- the respective actual value of the ionization in the flame area is determined, which is proportional to the currently present lambda value, so that this can be derived from the ionization measurement.
- An alternating voltage is applied to the ionization electrode, the flame area ionized in the presence of flames having a rectifying effect, so that an ionization current mainly only flows during one half-cycle of the alternating current.
- This current or a proportional voltage signal derived therefrom, referred to below as an ionization signal, are measured and, if necessary, after digitization, further processed as an ionization signal in an analog / digital converter.
- the lambda value can be measured and regulated to a target value by means of a control circuit.
- the supply of air and / or fuel gas is changed by suitable actuators until the desired target value for lambda is reached.
- a lambda value> 1 (1 corresponds to a stoichiometric ratio) is aimed for, e.g. B.
- Lambda 1.3 to ensure that enough air is supplied for clean combustion with essentially no carbon monoxide generation.
- lambda must remain so small that stable combustion is guaranteed.
- the regulation can in particular take place via a valve for the supply of fuel gas and / or a fan for the supply of ambient air.
- combustion controls which regulate the desired combustion quality (lambda value) via stored ionization current control curves.
- the electrodes used are subject to a time-dependent drift, which essentially results from a growing oxide layer on the electrode surface, which has a negative influence on the measured signal.
- calibration sequences are triggered cyclically (e.g. after a specifiable number of operating hours).
- the basic structure of such heating devices, of measuring systems for ionization measurement and their use for regulation are, for example, also from the EP 0 770 824 B1 and the EP 2 466 204 B1 known.
- the control accuracy can change in the course of time due to various influences, in particular due to influences on the state or the shape of the ionization electrode.
- Various methods for recalibrating if necessary are specified, but all of them require a relatively high level of effort and / or, above all, can have the disadvantage that during recalibration the heater has to be operated at lambda values of 1 or even below at times, which leads to temporary generation of undesirable carbon monoxide.
- the present invention aims to provide a remedy here in order to enable safe and reliable operation of a heater, stable control or, if necessary, emergency control in the event of malfunctions in a primary control system.
- a heating device can be reliably regulated with these method steps, the time span t being able to be very long compared to the duration of the other method steps, for example several hours or even longer.
- the control remains in the desired control range for the lambda value, and even when all process steps are repeated, there are no excessively high flame temperatures.
- a method is preferred in which, if the fan speed stored in step 1.6 deviates from the value set in step 1.1 greater than a predeterminable deviation value, the setting of the fuel gas valve is corrected accordingly and steps 1.3 to 1.7 are repeated until the deviation is smaller than the deviation value, which corresponds to the achievement of a desired output of the heater.
- the fan speed is the most accurate value to be measured in a heater, which is why it is preferred to set a desired output.
- a method is particularly preferred in which the predeterminable amount in step 1.4 is selected so small that a distance between the lambda value and a range in which an impermissible amount or concentration of carbon monoxide can be generated is maintained. This embodiment ensures that when the method is carried out, regardless of the duration of the period t, only very little carbon monoxide is generated, even if the calibration of the system is checked again and again.
- the method is carried out in the same way for fan speeds corresponding to different powers and associated settings of the fuel gas valve, which results in a calibration of the control that is updated again and again at time intervals of the length of the time span (t) all changes in the system are taken into account.
- a calibration curve which is corrected again and again, is created for different outputs of the heater, so that the regulation described can be used in particular as a primary regulation.
- a particularly preferred embodiment of the method is its use as a so-called emergency control.
- a method according to one of claims 1 to 1 is used in the event of failure of the first ionization measurement or the control based on it 4, in particular using existing monitoring electronics. This option increases the availability of heating devices significantly, since in the event of a malfunction in the primary control system, the system cannot be switched off, but only switched over to the emergency system.
- a heater which is particularly suitable for switching from a primary control to an emergency system, has the following components: an air supply and a fuel gas supply, which are controlled by a first control unit, and with a first measuring system, comprising an ionization electrode, a counter electrode, a first alternating current source and a first electronic evaluation system for determining a first ionization signal, which can be fed to the control unit, a second measuring system being present for measuring a second ionization signal, which can be generated between an ignition electrode for igniting a combustion and the counter electrode of the second measuring system, and where the first and the second system are each set up to determine a lambda value.
- this also enables switching at Malfunctions of a primary control on an emergency system that can take over the control.
- the heater preferably has a switchover unit which, if at least one component of the first measurement system fails, switches over to control with the second measurement system.
- the ionization measurement according to the invention which can be used in this way for flame monitoring and control, works according to the following principle:
- An alternating voltage without a direct voltage component from a voltage source with a high output impedance is applied between an ionization electrode and a counter electrode (ground). Due to a rectifying effect of a flame plasma when the flame is burning, an ionization current flows off to ground during each positive half-wave of the alternating voltage. The voltage amplitude of each positive half-wave is reduced because of the high output impedance of the voltage source, while the negative half-wave remains unchanged. As a result, a negative direct voltage component is impressed on the alternating voltage. The amplitude of this negative DC voltage component is converted as a mean value by means of an amplifier circuit into a voltage signal which, due to its characteristic curve, can be used for the purposes described here with a constant gas supply and increasing air supply. Typically, this signal is digitized by means of an analog / digital converter (eg into values between 0 and 1023) so that it can be further processed in a microprocessor.
- an analog / digital converter eg into values between 0 and 1023
- the characteristic curve of the signal results from a combination of different effects.
- the ionization in the flame area is strongest when the combustion is operated in a stoichiometric ratio of combustion gas and combustion air
- the flames move away (physical lift-off of the flames) with increasing gas mixture speed (larger combustion air volume per unit of time) from the outlet openings in the burner, which electronically form the mass in the system, which reduces the ion flow.
- the temperature of the ionization electrode or the flame may also play a role in the rectifying effect.
- the result is a curve with an easily reproducible minimum, which is close to a lambda value that is typical for continuous operation.
- the invention also relates to a computer program product, comprising instructions which cause the described device to carry out the method proposed here.
- Modern heating devices typically contain an electronic control which contains at least one programmable microprocessor which can be controlled by such a computer program product.
- existing devices with ionization measurement and flame monitoring can be retrofitted for the method according to the invention using such a computer program product.
- the invention also relates to an emergency running system for gas-operated heating devices, in particular in the case of combustion control based on ionization current.
- ionization current is usually measured with an ionization current electrode to which a voltage is applied.
- ionization current electrode to which a voltage is applied.
- These electrodes are subject to a time-dependent drift, which essentially results from a growing oxide layer on the electrode surface, which has a negative influence on the measured signal.
- calibration sequences are initiated cyclically (e.g. after x burner operating hours).
- DE 195 39 568 C1 includes a calibration at the operating point with maximum ionization current (SCOT) or in the vicinity of this point (Sitherm).
- the mixture that emerges from the burner is via an ignition voltage that is applied to the ignition electrode and forms sparks there ignited.
- the respective minimum value of the signal is stored and the air volume flow through the fan is increased until a threshold value of the increase in the ionization current relative to the minimum value (point 3) is reached (point 2). Finally, the minimum value (point 3) is approached, which at the same time represents the operating point of the device. At this point, the device runs by regulating the fan until a period of time t has expired. After the time period t has elapsed, the system starts again from point 1.
- the procedure for controlling combustion in a gas-powered heater is characterized by the following steps - the fan runs to a specified speed - the gas valve follows the fan speed via a specially designed characteristic ( Gas valve stepper position via fan speed) - the position of the gas valve stepper motor is now "frozen” and the fan speed is reduced in a defined manner, - the fan speed is now continuously increased, with the measured ionization signal following the characteristic curve - the respective minimum value of the signal is saved and the air volume flow is increased the fan is increased until a threshold value of the increase in the ionization current relative to the minimum value is reached, - lastly the minimum value is approached, which also represents the operating point of the device, - at this point the device runs through a control of the fan until a period of time t aba is called, - after the period t has elapsed, the system moves again starting from point 1.
- FIG. 1 shows schematically an embodiment of a device proposed here.
- a flame area 2 is formed during operation. Air enters the heater 1 via an air supply 3 and a fan 5. Combustion gas is mixed with the air via a combustion gas supply 4 and a combustion gas valve 6. An ignition electrode 7 ignites the mixture at the start of the combustion process and is then z. B. used as part of a flame monitor. A first ionization signal is measured in the flame region 2 by means of an ionization electrode 8.
- a first measuring system S1 is used for this, from which the ionization electrode 8 is subjected to an alternating voltage from a first alternating voltage source, a first evaluation electronics 13 measuring the resulting ionization signal and converting it into a lambda value, i.e. a lambda value, according to calibration data (control curve) stored in a calibration data memory 15 Mixing ratio of air to fuel converted.
- a control unit 17 can control the fan 5 and / or the fuel gas valve 6 in such a way that a sets the desired target value for lambda.
- a flame monitor 16 can also be present.
- a second measuring system S2 is put into operation by means of a switching unit 10, which connects a second AC voltage source 12 instead of ignition electronics to the ignition electrode 7 (if this has not already been done for flame monitoring), with a second Evaluation electronics 14 a second ionization signal is measured and evaluated, which also supplies an actual value for lambda and enables the lambda value to be regulated by means of the method according to the invention.
- this type of control can also be used as a primary control, specifically in parallel to flame monitoring by means of an ignition electrode as the only ionization electrode or by means of a dedicated ionization electrode only for control.
- only the second measuring system S2 needs to be present and can be used as the primary control system by means of its own calibration data.
- the heater initially works in normal operation with a certain supply of fuel gas and an associated speed of the fan 5, with the ionization signal I1 being adjusted to a value of z. B. 100 ⁇ A [microAmpere] is controlled by adjusting the speed of the fan and / or the fuel supply. With valid calibration data (map, control curve), this type of control ensures that a desired lambda value is maintained over a large load range.
- a switch to an emergency system can be triggered instead of a shutdown. In this case, a switch is made from the first measuring system S1 to the second measuring system S2.
- a defined speed is set by the fan 5 approached and the associated fuel quantity is set using the stored characteristic curves.
- the measuring system S2 determines a second ionization signal I2 determined by means of the ignition electrode 7. Then the gas supply is left unchanged, while the fan speed is reduced in a defined manner until a value below the desired lambda value is definitely reached, which is still well above a stoichiometric ratio of air to fuel gas, so that hardly any carbon monoxide is generated during this process and the flame temperature is not excessively high (see point "1" in Fig. 3 ). Starting from this lambda value, the speed of the fan 5 is increased until the second ionization signal detects a lifting of the flame from the burner 9 due to a sharp rise (see point "2" in FIG Fig. 3 ).
- the heater can be operated (further) with this type of control as the primary control. If it is only used as an emergency control, when the heater is restarted it can be checked whether the primary control is working again and only switched to the emergency control if this is not the case.
- Fig. 2 shows schematically a circuit as it can be used for the measuring system S2.
- a second AC voltage source 12 with a high output resistance 18 initially supplies an AC voltage without a DC voltage component to the ignition electrode 7 and the counter electrode 9 (ground).
- the voltage only drops in a half-wave due to the rectifying effect of the flame (shown as a diode in the equivalent circuit diagram), so that an alternating voltage is present at the input of the second evaluation electronics 14 (amplifier and converter) with a negative DC voltage component is present, which becomes the second ionization signal in the evaluation electronics 14 and can be converted in an analog / digital converter 20 and then processed further.
- Fig. 3 illustrates qualitatively what happens in the process of regulating according to the invention by means of the second measuring system S2.
- the second ionization signal I2 is plotted on the Y axis (in digitized form as a number between 0 and 1023) against the fan speed [rpm] on the X axis with a constant gas supply.
- the resulting characteristic diagram shows an almost constant initial range, a decrease to a minimum (point "3") and then an increase.
- the flame begins to detach, which can then become unstable as the air supply increases. Between points "1" and “2", however, the air supply can be varied without producing inadmissible amounts of carbon monoxide or instabilities in order to find the minimum at point "3" and use it for regulation.
- the X-axis could also be provided with the lambda value as a scale because of the relationship described between the fan speed and the lambda value.
- the present invention makes it possible, without significant changes to a heater itself, to set up a reliable emergency control system using only additional electronics, or even to use a method as the primary control system which does not generate any inadmissible amounts of carbon monoxide even during (re) calibration.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Control Of Combustion (AREA)
- Regulation And Control Of Combustion (AREA)
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
Description
Die Erfindung liegt auf dem Gebiet der Regelung eines Brenngas-Luftgemisches für einen Verbrennungsprozess in einem Heizgerät, insbesondere zur Warmwasserbereitung oder Beheizung eines Gebäudes. Zur Messung einer Qualität der Verbrennung, die hauptsächlich von dem während der Verbrennung vorliegenden Verhältnis von Luft zu Brenngas (Lambda-Wert, auch Luftzahl genannt) abhängt, wird insbesondere bei vielen Heizgeräten eine lonisationsmessung in einem Flammenbereich durchgeführt. Solche Messungen sollen eine stabile Regelung über lange Zeiträume ermöglichen. Fällt die Regelung aus, so muss in den meisten Fällen das Heizgerät abgeschaltet werden, was natürlich möglichst selten vorkommen sollte.The invention is in the field of regulating a fuel gas-air mixture for a combustion process in a heating device, in particular for preparing hot water or heating a building. To measure the quality of the combustion, which mainly depends on the ratio of air to fuel gas (lambda value, also known as the air ratio) that is present during the combustion, an ionization measurement is carried out in a flame area, especially in many heating devices. Such measurements should enable stable regulation over long periods of time. If the control fails, in most cases the heater has to be switched off, which of course should happen as rarely as possible.
Außerdem wird in Heizgeräten typischerweise auch eine Flammenüberwachung durchgeführt, deren wesentliche Aufgabe darin besteht, sicherzustellen, dass nach dem Start des Heizgerätes keine Zufuhr von Brenngas erfolgt, wenn keine Flamme vorliegt. Damit werden die Entstehung eines eventuell explosiven Gemisches und das Austreten von unverbranntem Brenngas verhindert. Dies kann auf viele verschiedene Weisen erreicht werden. Es gibt optische, thermische und elektronische Systeme. Ein oft eingesetzter elektronischer Flammenwächter nutzt eine ohnehin vorhandene Zündelektrode, die ansonsten nach der Zündung einer Flamme nicht anderweitig benötigt wird, zur Erzeugung eines lonisationssignals, welches im Stand der Technik nicht zur Regelung, sondern zur Überwachung der Flamme dient. Das speziell aufbereitete lonisationssignal kann nicht nur das Vorhandensein einer Flamme bzw. deren Erlöschen sicher detektieren, sondern beispielsweise auch das physische Abheben der Flamme vom Brenner durch zu hohe Verbrennungsluftzufuhr frühzeitig messen. So kann bei Instabilitäten der Flamme frühzeitig eine Abschaltung erfolgen.In addition, flame monitoring is typically also carried out in heating devices, the main task of which is to ensure that no fuel gas is supplied after the heating device has been started if there is no flame. This prevents the formation of a potentially explosive mixture and the escape of unburned fuel gas. This can be accomplished in a number of different ways. There are optical, thermal and electronic systems. An electronic flame monitor that is often used uses an ignition electrode that is already present, which is otherwise not otherwise required after a flame has been ignited, to generate an ionization signal which, in the prior art, is not used for regulating but for monitoring the flame. The specially prepared ionization signal can not only reliably detect the presence of a flame or its extinction, but also, for example, the physical lifting of the flame from the burner due to excessively high temperatures Measure the combustion air supply in good time. This means that it can be switched off at an early stage if the flame becomes unstable.
Nach dem Stand der Technik wird bisher im Betrieb die Regelung oft mittels einer gesonderten lonisationselektrode durchgeführt. Unabhängig von der Art der Elektrode wird der jeweilige Ist-Wert der Ionisation im Flammenbereich ermittelt, der proportional dem gerade vorliegenden Lambda-Wert ist, so dass dieser aus der lonisationsmessung abgeleitet werden kann. Dabei wird an die lonisationselektrode eine Wechselspannung angelegt, wobei der bei Vorhandensein von Flammen ionisierte Flammenbereich eine gleichrichtende Wirkung hat, so dass ein lonisationsstrom hauptsächlich jeweils nur während einer Halbwelle des Wechselstromes fließt. Dieser Strom oder ein daraus abgeleitetes proportionales Spannungssignal, im Folgenden lonisationssignal genannt, werden gemessen und gegebenenfalls nach einer Digitalisierung in einem Analog/Digital-Wandler als lonisationssignal weiterverarbeitet. So kann der Lambda-Wert gemessen und mittels eines Regelkreises auf einen Sollwert geregelt werden. Dabei wird die Zufuhr von Luft und/oder Brenngas durch geeignete Stellglieder verändert, bis der gewünschte Sollwert für Lambda erreicht ist. Im Allgemeinen wird ein Lambda-Wert > 1 (1 entspricht einem stöchiometrischen Verhältnis) angestrebt, z. B. Lambda = 1,3, um sicherzustellen, dass genug Luft für eine saubere Verbrennung im Wesentlichen ohne Erzeugung von Kohlenmonoxid zugeführt wird. Dabei muss Lambda aber so klein bleiben, dass eine stabile Verbrennung gewährleistet ist. Die Regelung kann insbesondere über ein Ventil für die Zufuhr von Brenngas und/oder ein Gebläse für die Zufuhr von Umgebungsluft erfolgen.According to the prior art, the regulation has so far often been carried out during operation by means of a separate ionization electrode. Regardless of the type of electrode, the respective actual value of the ionization in the flame area is determined, which is proportional to the currently present lambda value, so that this can be derived from the ionization measurement. An alternating voltage is applied to the ionization electrode, the flame area ionized in the presence of flames having a rectifying effect, so that an ionization current mainly only flows during one half-cycle of the alternating current. This current or a proportional voltage signal derived therefrom, referred to below as an ionization signal, are measured and, if necessary, after digitization, further processed as an ionization signal in an analog / digital converter. In this way, the lambda value can be measured and regulated to a target value by means of a control circuit. The supply of air and / or fuel gas is changed by suitable actuators until the desired target value for lambda is reached. In general, a lambda value> 1 (1 corresponds to a stoichiometric ratio) is aimed for, e.g. B. Lambda = 1.3 to ensure that enough air is supplied for clean combustion with essentially no carbon monoxide generation. However, lambda must remain so small that stable combustion is guaranteed. The regulation can in particular take place via a valve for the supply of fuel gas and / or a fan for the supply of ambient air.
Aus der
Aus der
Der grundsätzliche Aufbau solcher Heizgeräte, von Messystemen zur lonisationsmessung und zu deren Benutzung zur Regelung sind beispielsweise auch aus der
Aus der
Hier will die vorliegende Erfindung Abhilfe schaffen, um einen sicheren und zuverlässigen Betrieb eines Heizgerätes, eine stabile Regelung oder bei Bedarf eine Notlaufregelung bei Störungen in einem primären Regelsystem zu ermöglichen.The present invention aims to provide a remedy here in order to enable safe and reliable operation of a heater, stable control or, if necessary, emergency control in the event of malfunctions in a primary control system.
Zur Lösung dieser Aufgabe dienen ein Verfahren sowie ein Computerprogrammprodukt gemäß den unabhängigen Ansprüchen. Vorteilhafte Ausgestaltungen und Weiterbildungen der Erfindung sind in den jeweiligen abhängigen Ansprüchen angegeben. Die Beschreibung, insbesondere im Zusammenhang mit den Figuren, veranschaulicht die Erfindung und gibt weitere Ausführungsbeispiele an.A method and a computer program product according to the independent claims serve to solve this problem. Advantageous refinements and developments of the invention are specified in the respective dependent claims. The description, in particular in connection with the figures, illustrates the invention and specifies further exemplary embodiments.
Das erfindungsgemäße Verfahren zur Regelung einer Verbrennung in einem Heizgerät mittels eines in einem Flammenbereich des mit Verbrennungsluft und Brenngas betriebenen Heizgerätes gemessenen lonisationssignals, welches aus einem von einer lonisationselektrode zu einer Gegenelektrode durch den Flammenbereich fließenden lonenstrom abgeleitet wird, wobei das Verhältnis (Lambda-Wert) von Verbrennungsluft zu Brenngas bei der Verbrennung in dem Heizgerät anhand von Kalibrierdaten aus dem lonisationssignal bestimmt und mittels Einstellung der Zufuhr an Brenngas und/oder der Zufuhr an Verbrennungsluft geregelt wird, weist zumindest folgende Schritte auf:
- 1.1 ein Gebläse zur Zufuhr von Verbrennungsluft wird auf eine vorgebbare Drehzahl gebracht,
- 1.2 ein Brenngasventil wird mittels einer vorgebbaren Kennlinie auf eine dieser Drehzahl zugeordnete Stellung gebracht,
- 1.3 in dieser Stellung wird das Brenngasventil festgehalten,
- 1.4 die Drehzahl wird um einen vorgebbaren Betrag reduziert,
- 1.5 anschließend wird die Drehzahl kontinuierlich oder schrittweise erhöht und das jeweilige lonisationssignal gemessen,
- 1.6 dabei wird ein Minimum des lonisationssignals festgestellt und mit der zugehörigen Gebläsedrehzahl gespeichert,
- 1.7 die Gebläsedrehzahl wird weiter erhöht, bis ein vorgebbarer Schwellwert des lonisationssignals relativ zum Minimum erreicht wird,
- 1.8 danach wird die Gebläsedrehzahl auf die zu dem Minimum gehörige Gebläsedrehzahl reduziert und dort für eine vorgebbare Zeitspanne t gehalten oder zur Regelung des lonisationssignals auf den aktuellen konstanten Wert genutzt,
- 1.9 nach Ablauf der Zeitspanne t werden die Schritte ab 1.4 wiederholt.
- 1.1 a fan for supplying combustion air is brought to a predefinable speed,
- 1.2 a fuel gas valve is brought to a position assigned to this speed by means of a predeterminable characteristic curve,
- 1.3 the fuel gas valve is held in this position,
- 1.4 the speed is reduced by a specifiable amount,
- 1.5 then the speed is increased continuously or step by step and the respective ionization signal is measured,
- 1.6 a minimum of the ionization signal is determined and stored with the associated fan speed,
- 1.7 the fan speed is increased further until a predeterminable threshold value of the ionization signal is reached relative to the minimum,
- 1.8 then the fan speed is reduced to the fan speed associated with the minimum and held there for a predeterminable period of time t or used to control the ionization signal to the current constant value,
- 1.9 after the time period t has elapsed, steps from 1.4 are repeated.
Mit diesen Verfahrensschritten lässt sich ein Heizgerät zuverlässig regeln, wobei die Zeitspanne t sehr lang im Vergleich zu der Dauer der anderen Verfahrensschritte sein kann, beispielsweise mehrere Stunden oder noch länger. Andererseits entsteht bei der Wiederholung der Schritte ab 1.4 vernachlässigbar wenig Kohlenmonoxid, so dass es auf die Länge der Zeitspanne in dieser Hinsicht nicht ankommt und auch sonst keine wesentlichen Nachteile gegen eine Wiederholung sprechen. Die Regelung bleibt dadurch in dem gewünschten Regelbereich für den Lambda-Wert und auch bei der Wiederholung aller Verfahrensschritte entstehen keine übermäßig hohen Flammtemperaturen.A heating device can be reliably regulated with these method steps, the time span t being able to be very long compared to the duration of the other method steps, for example several hours or even longer. On the other hand, if you repeat steps from 1.4 onwards, negligibly little carbon monoxide is produced, so that it affects the The length of the time span does not matter in this regard and there are no other significant disadvantages against a repetition. As a result, the control remains in the desired control range for the lambda value, and even when all process steps are repeated, there are no excessively high flame temperatures.
Bevorzugt wird ein Verfahren, bei dem bei einer Abweichung der in Schritt 1.6 gespeicherten Gebläsedrehzahl von der in Schritt 1.1 eingestellten größer als ein vorgebbarer Abweichungswert eine entsprechende Korrektur der Einstellung des Brenngasventils vorgenommen und die Schritte 1.3 bis 1.7 so oft wiederholt werden, bis die Abweichung kleiner als der Abweichungswert ist, was dem Erreichen einer gewünschten Leistung des Heizgerätes entspricht. Dies führt dazu, dass nicht nur ein gewünschter Lambda-Wert eingehalten, sondern auch eine bestimmte vorgebbare Leistung eingeregelt werden kann. Im Allgemeinen ist die Gebläsedrehzahl der am genauesten zu messende Wert in einem Heizgerät, weshalb diese zur Einstellung einer gewünschten Leistung bevorzugt eingesetzt wird.A method is preferred in which, if the fan speed stored in step 1.6 deviates from the value set in step 1.1 greater than a predeterminable deviation value, the setting of the fuel gas valve is corrected accordingly and steps 1.3 to 1.7 are repeated until the deviation is smaller than the deviation value, which corresponds to the achievement of a desired output of the heater. This leads to the fact that not only a desired lambda value is maintained, but also that a certain specifiable power can be regulated. In general, the fan speed is the most accurate value to be measured in a heater, which is why it is preferred to set a desired output.
Besonders bevorzugt ist ein Verfahren, bei dem der vorgebbare Betrag in Schritt 1.4 so gering gewählt wird, dass ein Abstand des Lambda-Wertes zu einem Bereich, in dem eine unzulässige Menge oder Konzentration an Kohlenmonoxid erzeugt werden kann, eingehalten wird. Diese Ausführung stellt sicher, dass bei der Durchführung des Verfahrens unabhängig von der Dauer der Zeitspanne t nur sehr wenig Kohlenmonoxid erzeugt wird, auch wenn die Kalibrierung des Systems immer wieder geprüft wird.A method is particularly preferred in which the predeterminable amount in step 1.4 is selected so small that a distance between the lambda value and a range in which an impermissible amount or concentration of carbon monoxide can be generated is maintained. This embodiment ensures that when the method is carried out, regardless of the duration of the period t, only very little carbon monoxide is generated, even if the calibration of the system is checked again and again.
In einer Ausführungsform der Erfindung wird das Verfahren für unterschiedlichen Leistungen entsprechende Gebläsedrehzahlen und zugehörigen Einstellungen des Brenngasventils in gleicher Weise durchgeführt, woraus sich eine immer wieder in Zeitabständen der Länge der Zeitspanne (t) aktualisierte Kalibrierung der Regelung ergibt, die alle Änderungen im System berücksichtigt. Auf diese Weise entsteht eine immer wieder korrigierte Kalibrierkurve für unterschiedliche Leistungen des Heizgerätes, wodurch die beschriebene Regelung insbesondere als primäre Regelung eingesetzt werden kann.In one embodiment of the invention, the method is carried out in the same way for fan speeds corresponding to different powers and associated settings of the fuel gas valve, which results in a calibration of the control that is updated again and again at time intervals of the length of the time span (t) all changes in the system are taken into account. In this way, a calibration curve, which is corrected again and again, is created for different outputs of the heater, so that the regulation described can be used in particular as a primary regulation.
Eine besonders bevorzugte Ausführungsform des Verfahrens ist aber die Verwendung als sogenannte Notlaufregelung. Für Heizgeräte, die eine Regelung mittels eines ersten Messsystems mit einer ersten lonisationsmessung und eine separate von einer Überwachungs-Elektronik durchgeführte Flammenüberwachung mittels einer zweiten lonisationsmessung aufweisen, wird bei Ausfall der ersten lonisationsmessung oder der darauf basierenden Regelung auf ein Verfahren gemäß einem der Ansprüche 1 bis 4, insbesondere unter Nutzung einer vorhandenen Überwachungs-Elektronik umgeschaltet. Diese Möglichkeit erhöht die Verfügbarkeit von Heizgeräten signifikant, da bei einer Störung der primären Regelung nicht abgeschaltet, sondern nur auf das Notlaufsystem umgeschaltet werden kann.A particularly preferred embodiment of the method, however, is its use as a so-called emergency control. For heating devices that have a control by means of a first measurement system with a first ionization measurement and a separate flame monitoring carried out by monitoring electronics by means of a second ionization measurement, a method according to one of
Ein Heizgerät, das insbesondere für die Umschaltung von einer primären Regelung auf ein Notlaufsystem geeignet ist, hat folgende Komponenten: eine Luftzufuhr und eine Brenngaszufuhr, die von einer ersten Regeleinheit geregelt werden, und mit einem ersten Messsystem, umfassend eine lonisationselektrode, eine Gegenelektrode, eine erste Wechselstromquelle und eine erste Auswertelektronik zur Ermittlung eines ersten Ionisationssignales, das der Regeleinheit zuführbar ist, wobei ein zweites Messsystem zur Messung eines zweiten lonisationssignales vorhanden ist, welches zwischen einer zur Zündung einer Verbrennung vorhandenen Zündelektrode und der Gegenelektrode vom zweiten Messsystem erzeugbar ist und wobei das erste und das zweite System jeweils zur Bestimmung eines Lambda-Wertes eingerichtet sind. Dies ermöglicht neben den bekannten Funktionen der Regelung und Flammenüberwachung auch noch eine Umschaltung bei Störungen einer primären Regelung auf ein Notlaufsystem, welches die Regelung übernehmen kann.A heater, which is particularly suitable for switching from a primary control to an emergency system, has the following components: an air supply and a fuel gas supply, which are controlled by a first control unit, and with a first measuring system, comprising an ionization electrode, a counter electrode, a first alternating current source and a first electronic evaluation system for determining a first ionization signal, which can be fed to the control unit, a second measuring system being present for measuring a second ionization signal, which can be generated between an ignition electrode for igniting a combustion and the counter electrode of the second measuring system, and where the the first and the second system are each set up to determine a lambda value. In addition to the known functions of control and flame monitoring, this also enables switching at Malfunctions of a primary control on an emergency system that can take over the control.
Bevorzugt weist das Heizgerät dazu eine Umschalteinheit auf, die bei Ausfall mindestens einer Komponente des ersten Messsystems auf eine Regelung mit dem zweiten Messsystem umschaltet.For this purpose, the heater preferably has a switchover unit which, if at least one component of the first measurement system fails, switches over to control with the second measurement system.
Die erfindungsgemäße Ionisationsmessung, die in dieser Art zur Flammenüberwachung und Regelung eingesetzt werden kann, arbeitet nach folgendem Prinzip:The ionization measurement according to the invention, which can be used in this way for flame monitoring and control, works according to the following principle:
Zwischen einer lonisationselektrode und einer Gegenelektrode (Masse) wird eine Wechselspannung ohne Gleichspannungsanteil aus einer Spannungsquelle mit hoher Ausgangsimpedanz angelegt. Durch einen gleichrichtenden Effekt eines Flammenplasmas bei brennender Flamme fließt ein lonisationsstrom während jeder positiven Halbwelle der Wechselspannung gegen Masse ab. Die Spannungsamplitude jeder positiven Halbwelle wird wegen der hohen Ausgangsimpedanz der Spannungsquelle reduziert, während die negative Halbwelle unverändert erhalten bleibt. Hierdurch wird der Wechselspannung ein negativer Gleichspannungsanteil aufgeprägt. Die Amplitude dieses negativen Gleichspannungsanteils wird als Mittelwert mittels einer Verstärkerschaltung in ein Spannungssignal umgewandelt, das aufgrund seines charakteristischen Verlaufs bei gleichbleibender Gaszufuhr und steigender Luftzufuhr für die hier beschriebenen Zwecke verwendet werden kann. Typischerweise wird dieses Signal mittels eines Analog/Digitalwandlers (z.B. in Werte zwischen 0 und 1023) digitalisiert, so dass es in einem Mikroprozessor weiterverarbeitet werden kann.An alternating voltage without a direct voltage component from a voltage source with a high output impedance is applied between an ionization electrode and a counter electrode (ground). Due to a rectifying effect of a flame plasma when the flame is burning, an ionization current flows off to ground during each positive half-wave of the alternating voltage. The voltage amplitude of each positive half-wave is reduced because of the high output impedance of the voltage source, while the negative half-wave remains unchanged. As a result, a negative direct voltage component is impressed on the alternating voltage. The amplitude of this negative DC voltage component is converted as a mean value by means of an amplifier circuit into a voltage signal which, due to its characteristic curve, can be used for the purposes described here with a constant gas supply and increasing air supply. Typically, this signal is digitized by means of an analog / digital converter (eg into values between 0 and 1023) so that it can be further processed in a microprocessor.
Der charakteristische Verlauf des Signals ergibt sich aus einer Kombination verschiedener Effekte. Einerseits ist die Ionisation im Flammenbereich am stärksten, wenn die Verbrennung in einem stöchiometrischen Verhältnis von Verbrennungsgas und Verbrennungsluft betrieben wird, andererseits entfernen sich die Flammen (physisches Abheben der Flammen) bei steigender Gasgemischgeschwindigkeit (größerer Verbrennungsluftmenge pro Zeiteinheit) von den Austrittsöffnungen im Brenner, die elektronisch die Masse in dem System bilden, was den lonenstrom verringert. Unter Umständen spielt auch die Temperatur der lonisationselektrode bzw. der Flamme für den gleichrichtenden Effekt eine Rolle. Im Ergebnis ergibt sich ein Verlauf mit einem gut reproduzierbaren Minimum, welches in der Nähe eines für einen Dauerbetrieb typischen Lambda-Wertes liegt.The characteristic curve of the signal results from a combination of different effects. On the one hand, the ionization in the flame area is strongest when the combustion is operated in a stoichiometric ratio of combustion gas and combustion air, on the other hand, the flames move away (physical lift-off of the flames) with increasing gas mixture speed (larger combustion air volume per unit of time) from the outlet openings in the burner, which electronically form the mass in the system, which reduces the ion flow. The temperature of the ionization electrode or the flame may also play a role in the rectifying effect. The result is a curve with an easily reproducible minimum, which is close to a lambda value that is typical for continuous operation.
Die Erfindung betrifft auch ein Computerprogrammprodukt, umfassend Befehle, die bewirken, dass die beschriebene Vorrichtung das hier vorgeschlagene Verfahren ausführt. Moderne Heizgeräte enthalten typischerweise eine elektronische Steuerung, die mindestens einen programmierbaren Mikroprozessor enthält, der durch ein solches Computerprogrammprodukt gesteuert werden kann. Insbesondere können vorhandene Geräte mit einer lonisationsmessung und einer Flammenüberwachung durch ein solches Computerprogrammprodukt für das erfindungsgemäße Verfahren nachgerüstet werden.The invention also relates to a computer program product, comprising instructions which cause the described device to carry out the method proposed here. Modern heating devices typically contain an electronic control which contains at least one programmable microprocessor which can be controlled by such a computer program product. In particular, existing devices with ionization measurement and flame monitoring can be retrofitted for the method according to the invention using such a computer program product.
Mit anderen Worten betrifft die Erfindung auch ein Notlaufsystem für gasbetriebene Heizgeräte, insbesondere bei lonisationsstrom-basierter Verbrennungsregelung. Aus der
Ein schematisches Ausführungsbeispiel der Erfindung, auf das diese jedoch nicht beschränkt ist, und die Funktionsweise des erfindungsgemäßen Verfahrens werden nun anhand der Zeichnung detailliert erläutert. Es stellen dar:
- Fig. 1:
- schematisch ein erfindungsgemäßes Heizgerät,
- Fig. 2:
- eine schematische Schaltung zur Erzeugung eines lonisationssignals gemäß der Erfindung und
- Fig. 3:
- ein Diagramm zur Veranschaulichung eines Mess- und Regelvorganges mit dem erfindungsgemäßen Verfahren.
- Fig. 1:
- schematically a heater according to the invention,
- Fig. 2:
- a schematic circuit for generating an ionization signal according to the invention and
- Fig. 3:
- a diagram to illustrate a measurement and control process with the method according to the invention.
Bei einer wie auch immer gearteten Störung dieser Regelung wird mittels einer Umschalteinheit 10 ein zweites Messsystem S2 in Betrieb gesetzt, welches eine zweite Wechselspannungsquelle 12 statt einer Zündelektronik auf die Zündelektrode 7 aufschaltet (sofern dies nicht zur Flammenüberwachung bereits erfolgt ist), wobei in einer zweiten Auswerteelektronik 14 ein zweites lonisationssignal gemessen und ausgewertet wird, das ebenfalls einen Ist-Wert für Lambda liefert und mittels des erfindungsgemäßen Verfahrens eine Regelung des Lambda-Wertes ermöglicht. Grundsätzlich ist diese Art der Regelung auch als primäre Regelung einsetzbar, und zwar parallel zu einer Flammenüberwachung mittels einer Zündelektrode als einzige lonisationselektrode oder mittels einer eigenen lonisationselektrode nur für die Regelung. In diesem Fall muss nur das zweite Messsystem S2 vorhanden sein und kann mittels eigener Kalibrierdaten als primäres Regelungssystem eingesetzt werden.In the event of any kind of disturbance of this regulation, a second measuring system S2 is put into operation by means of a
In dem hier gewählten Ausführungsbeispiel arbeitet das Heizgerät zunächst im Normalbetrieb bei einer bestimmten Zufuhr von Brenngas und einer zugehörigen Drehzahl des Gebläses 5, wobei mittels des ersten Messsystems S1 das lonisationssignal I1 auf einen für diesen Zustand als Soll-Wert vorgegebenen Wert von z. B. 100 µA [mikroAmpere] geregelt wird, indem die Drehzahl des Gebläses und/oder die Brennstoffzufuhr verstellt werden. Diese Art der Regelung bewirkt bei gültigen Kalibrierdaten (Kennfeld, Regelkurve), dass über einen großen Lastbereich ein gewünschter Lambda-Wert eingehalten wird. Bei einer Störung in diesem System, kann statt einer Abschaltung eine Umschaltung auf ein Notlaufsystem ausgelöst werden. In diesem Fall wird vom ersten Messsystem S1 auf das zweite Messsystem S2 umgeschaltet. Eine definierte Drehzahl wird über das Gebläse 5 angefahren und die über hinterlegte Kennlinien zugehörige Brennstoffmenge eingestellt. Das Messsystem S2 ermittelt zu Beginn des Notlaufes ein mittels der Zündelektrode 7 ermitteltes zweites lonisationssignal I2. Dann wird die Gaszufuhr unverändert gelassen, während die Gebläsedrehzahl definiert abgesenkt wird, bis sicher ein Wert unterhalb des gewünschten Lambda-Wertes erreicht ist, der aber immer noch deutlich oberhalb eines stöchiometrischen Verhältnisses von Luft zu Brenngas liegt, so dass kaum Kohlenmonoxid bei diesem Vorgang erzeugt wird und auch keine übermäßig erhöhte Flammtemperatur herrscht (siehe Punkt "1" in
Regelungstechnisch ist es einfacher einen Wert in einer Flanke nahe eines Minimums als Sollwert zu nutzen (hier insbesondere in der Flanke hin zum fetteren Gemisch, also zwischen Punkt "1" und "3" in
Es kann allerdings sein, dass nach Einstellung des gewünschten Lambda-Wertes (noch) nicht die gewünschte Leistung (gewünschte Drehzahl des Gebläses) exakt erreicht ist. Änderungen z. B. an der Gasarmatur, deren Stellmotor, den Umgebungsbedingungen oder den Strömungsverhältnissen in dem Heizgerät können dazu führen, dass nach Einstellung des gewünschten Lambda-Wertes eine andere als die zur gewünschten Leistung gehörige Gebläsedrehzahl (die am genauesten festlegbare Größe in dem System) anliegt. In diesem Fall wird die Öffnung der Gasarmatur in der erforderlichen Richtung geändert und der ganze Vorgang, falls erforderlich iterativ, wiederholt, bis Lambda-Wert und Leistung die gewünschten Sollwerte annehmen. In der Regel wird dies maximal drei Durchgänge des beschriebenen Verfahrens erfordern.However, it is possible that after setting the desired lambda value, the desired output (desired speed of the fan) has not (yet) been reached exactly. Changes z. B. on the gas valve, its servomotor, the ambient conditions or the flow conditions in the heater can lead to the fact that, after setting the desired lambda value, a different output than that of the desired output Corresponding fan speed (the most precisely definable variable in the system) is applied. In this case, the opening of the gas valve is changed in the required direction and the whole process, if necessary iteratively, is repeated until the lambda value and power take on the desired setpoints. As a rule, this will require a maximum of three rounds of the procedure described.
Mit den so gefundenen Einstellungen kann jetzt die weitere Regelung für eine vorgebbare Zeitspanne t durchgeführt werden, nach der der beschriebene Vorgang zur Kalibrierung oder Überprüfung dieser Regelung wiederholt wird. Grundsätzlich kann das Heizgerät allein mit dieser Art der Regelung als primäre Regelung (weiter) betrieben werden. Falls sie nur als Notlaufregelung dient, kann bei einem Neustart des Heizgerätes jeweils geprüft werden, ob die primäre Regelung wieder funktioniert und erst dann auf die Notlaufregelung umgeschaltet werden, wenn dies nicht der Fall ist.With the settings found in this way, the further control can now be carried out for a predeterminable period of time t, after which the described process for calibrating or checking this control is repeated. In principle, the heater can be operated (further) with this type of control as the primary control. If it is only used as an emergency control, when the heater is restarted it can be checked whether the primary control is working again and only switched to the emergency control if this is not the case.
Die vorliegende Erfindung erlaubt es, ohne wesentliche Veränderungen an einem Heizgerät selbst nur durch zusätzliche Elektronik eine zuverlässige Notlaufregelung einzurichten oder sogar als primäre Regelung ein Verfahren einzusetzen, welches auch bei einer (Nach-)Kalibrierung keine unzulässigen Mengen an Kohlenmonoxid erzeugt.The present invention makes it possible, without significant changes to a heater itself, to set up a reliable emergency control system using only additional electronics, or even to use a method as the primary control system which does not generate any inadmissible amounts of carbon monoxide even during (re) calibration.
- 11
- Heizgerätheater
- 22
- FlammenbereichFlame area
- 33
- LuftzufuhrAir supply
- 44th
- BrenngaszufuhrFuel gas supply
- 55
- Gebläsefan
- 66th
- BrenngasventilFuel gas valve
- 77th
- ZündelektrodeIgnition electrode
- 88th
- lonisationselektrodeionization electrode
- 99
- Brenner / GegenelektrodeTorch / counter electrode
- 1010
- UmschalteinheitSwitching unit
- 1111
- erste Wechselspannungsquellefirst AC voltage source
- 1212th
- zweite Wechselspannungsquellesecond AC voltage source
- 1313th
- erste Auswerteelektronikfirst evaluation electronics
- 1414th
- zweite Auswerteelektroniksecond evaluation electronics
- 1515th
- KalibrierdatenspeicherCalibration data memory
- 1616
- FlammenüberwachungFlame control
- 1717th
- RegeleinheitControl unit
- 1818th
- AusgangswiderstandOutput resistance
- 1919th
- Ersatzschaltbild einer FlammeEquivalent circuit diagram of a flame
- 2020th
- Analog/DigitalwandlerAnalog / digital converter
- S1S1
- erstes Messsystemfirst measuring system
- S2S2
- zweites Messsystemsecond measuring system
- I1I1
- erstes lonisationssignalfirst ionization signal
- I2I2
- zweites lonisationssignalsecond ionization signal
Claims (6)
- Method for regulating combustion in a heating device (1) by means of an ionisation signal (I2) measured in a flame region (2) of the heating device (1) operated with combustion air and fuel gas, which ionisation signal is derived from an ion current flowing from an ionisation electrode (7, 8) to a counter electrode (9) through the flame region (2), wherein the ratio (lambda value) of combustion air to fuel gas during combustion in the heating device (1) is determined by way of calibrating data from the ionisation signal (I2) and is regulated by adjusting the supply of combustion gas and/or the supply of combustion air, characterised by the following steps:1.1 a fan (5) for supplying combustion air is brought to a predeterminable speed,1.2 a fuel gas valve (6) is brought to a position associated with this speed by means of a predeterminable characteristic,1.3 the fuel gas valve (6) is held in this position,1.4 the speed is reduced by a predeterminable amount,1.5 afterwards the speed is increased continuously or stepwise and the respective ionisation signal (I2) is measured,1.6 a minimum of the ionisation signal (I2) is detected and stored with the corresponding fan speed,1.7 the fan speed is increased further until a predeterminable threshold value of the ionisation signal relative to the minimum is reached,1.8 the fan speed is then reduced to the minimum associated fan speed and held there for a preset time period (t) or is used to regulate the ionisation signal (I2) to the current constant value,1.9 after the time period (t) has elapsed the steps from 1.4 are repeated.
- Method according to claim 1, wherein if the fan speed saved in step 1.6 deviates from the fan speed set in 1.1 by more than a predefinable deviation valve, a corresponding correction is made to the setting of the fuel gas valve and steps 1.3 to 1.7 are repeated until the deviation is smaller than the deviation valve which corresponds to the heating device (1) achieving a desired output.
- Method according to claim 1 or 2, wherein the predefinable amount in step 1.4 is selected to be so low that a distance of the lambda value is maintained to a region in which an inadmissible amount or concentration of carbon monoxide can be produced.
- Method according to any of the preceding claims, wherein the method is carried out in the same way for fan speeds corresponding to different outputs and associated settings of the fuel gas valve (6), resulting in a calibration of the regulation which is updated repeatedly at intervals of the length of the time period (t) and which takes into account all changes in the system.
- Method according to any of the preceding claims, wherein for heating devices which have regulation by means of a first measuring system (S1) with a first ionisation measurement and a separate flame monitoring carried out by monitoring electronics by means of a second ionisation measurement, in the event of failure of the first ionisation measurement or the regulation based thereon, switching over to a method according to any of claims 1 to 4 using existing monitoring electronics.
- Computer program product, comprising commands which mean that a control unit (17) of a heating device (1),having an air supply (3) and a fuel gas supply (4), which can be regulated by a first control unit (17), and having a first measuring system (S1), comprising an ionisation electrode (8), a counter electrode (9), a first alternating current source (11) and a first evaluation electronics (13) for determining a first ionisation signal (I1), which can be supplied to the control unit (17), wherein a second measuring system (S2) for measuring a second ionisation signal (I2) is provided which can be generated by the second measuring system (S2) between an ignition electrode (7) provided for igniting combustion and the counter electrode (9) and wherein the first (S1) and the second (S2) system are set up respectively for determining a lambda value,performs the method according to any of claims 1 to 5.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102019102128 | 2019-01-29 | ||
DE102019119186.6A DE102019119186A1 (en) | 2019-01-29 | 2019-07-16 | Method and device for controlling a fuel gas-air mixture in a heater |
Publications (3)
Publication Number | Publication Date |
---|---|
EP3690318A2 EP3690318A2 (en) | 2020-08-05 |
EP3690318A3 EP3690318A3 (en) | 2020-09-30 |
EP3690318B1 true EP3690318B1 (en) | 2021-11-24 |
Family
ID=69137771
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20150310.9A Active EP3690318B1 (en) | 2019-01-29 | 2020-01-06 | Method for regulating a fuel-air mixture in a heating device |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP3690318B1 (en) |
ES (1) | ES2902463T3 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102019119214A1 (en) * | 2019-07-16 | 2021-01-21 | Vaillant Gmbh | Method and device for recalibrating a measuring system for regulating a fuel gas-air mixture in a heating device |
DE102020127558B4 (en) * | 2020-10-20 | 2023-06-29 | Viessmann Climate Solutions Se | Heating system and method for operating a heating system |
DE102021113220A1 (en) | 2021-05-21 | 2022-11-24 | Vaillant Gmbh | Method for monitoring the operation of a heater, heater and computer program and computer-readable medium |
DE102022112785A1 (en) * | 2022-05-20 | 2023-11-23 | Vaillant Gmbh | Method for operating a heater, computer program, control and control device and heater |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19502901C2 (en) | 1995-01-31 | 2000-02-24 | Stiebel Eltron Gmbh & Co Kg | Control device for a gas burner |
EP0770824B1 (en) | 1995-10-25 | 2000-01-26 | STIEBEL ELTRON GmbH & Co. KG | Method and circuit for controlling a gas burner |
DE19539568C1 (en) | 1995-10-25 | 1997-06-19 | Stiebel Eltron Gmbh & Co Kg | Gas burner regulation system |
DE19618573C1 (en) | 1996-05-09 | 1997-06-26 | Stiebel Eltron Gmbh & Co Kg | Gas burner regulating method controlled by ionisation electrode signal |
SE507416C2 (en) * | 1997-05-12 | 1998-05-25 | Mecel Ab | Method for feedback control of injection timing in internal combustion engines |
AT505442B1 (en) | 2007-07-13 | 2009-07-15 | Vaillant Austria Gmbh | METHOD FOR FUEL GAS AIR ADJUSTMENT FOR A FUEL-DRIVEN BURNER |
PL2466204T3 (en) | 2010-12-16 | 2014-04-30 | Siemens Ag | Regulating device for a burner assembly |
EP2682679B1 (en) * | 2012-07-04 | 2017-08-30 | Vaillant GmbH | Method for monitoring a gas fuelled burner |
-
2020
- 2020-01-06 EP EP20150310.9A patent/EP3690318B1/en active Active
- 2020-01-06 ES ES20150310T patent/ES2902463T3/en active Active
Also Published As
Publication number | Publication date |
---|---|
EP3690318A3 (en) | 2020-09-30 |
ES2902463T3 (en) | 2022-03-28 |
EP3690318A2 (en) | 2020-08-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3690318B1 (en) | Method for regulating a fuel-air mixture in a heating device | |
DE102011079325B4 (en) | Method for controlling the air number of a burner | |
DE3888327T2 (en) | Fuel burner device and a control method. | |
DE102019119186A1 (en) | Method and device for controlling a fuel gas-air mixture in a heater | |
EP0770824B1 (en) | Method and circuit for controlling a gas burner | |
EP2594848B1 (en) | Method for controlling a firing device and firing device | |
EP1621811B1 (en) | Operating Method for a Combustion Apparatus | |
DE19539568C1 (en) | Gas burner regulation system | |
EP0833106B1 (en) | Method and device for operation optimisation of a gas burner | |
EP3841326B1 (en) | Heating device and method for regulating a fan-operated gas burner | |
EP1522790B1 (en) | Method for Controlling a Gas Burner, in particular in Heating Installations with Blower | |
DE202019100263U1 (en) | Heater with control of a gas mixture using a gas sensor, a fuel gas sensor and a gas mixture sensor | |
DE19839160B4 (en) | Method and circuit for regulating a gas burner | |
EP3290797B1 (en) | Method for detecting a state of ageing of a heating system as well as a control unit and a heating system | |
EP3767174B1 (en) | Method and device for recalibrating a measuring system for regulating a fuel-air mixture in a heating device | |
EP3029375A1 (en) | Heater appliance and method for operating a heater appliance | |
EP3182007B1 (en) | Heating device system and method with a heating device system | |
DE3830687A1 (en) | Calibrating method for a controller for controlling the air ratio of gas engines | |
DE19854824C1 (en) | Process and circuit for control of a gas burner uses a lambda sensor to control gas supply | |
DE19734574B4 (en) | Method and device for controlling a burner, in particular a fully premixing gas burner | |
EP1293728B1 (en) | Method for controlling the power of a gas cooking appliance as well as a cooking appliance using this method | |
EP2929248B1 (en) | Method for combustion control in a gas or oil burner | |
EP4023941B1 (en) | Assemblies and method for measuring ionization in a combustion chamber of a premix burner | |
DE10220773A1 (en) | Gas burner regulation method in which a signal from an ionization sensor is subject to spectral frequency analysis to set a fuel-air ratio for regulation of the burner | |
EP3712501B1 (en) | Method and device for regenerating an electrode for ionization measurement in a flame area of a burner |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F23N 1/02 20060101ALI20200824BHEP Ipc: F23N 5/12 20060101AFI20200824BHEP |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20210319 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20210804 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502020000361 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1450139 Country of ref document: AT Kind code of ref document: T Effective date: 20211215 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2902463 Country of ref document: ES Kind code of ref document: T3 Effective date: 20220328 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211124 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211124 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211124 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220224 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220324 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211124 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220324 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211124 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220224 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211124 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211124 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220225 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211124 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211124 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211124 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211124 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502020000361 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211124 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220106 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211124 |
|
26N | No opposition filed |
Effective date: 20220825 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211124 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220106 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SK Payment date: 20231220 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20231219 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20231218 Year of fee payment: 5 Ref country code: CZ Payment date: 20231220 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20231218 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20240201 Year of fee payment: 5 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211124 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211124 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20231219 Year of fee payment: 5 Ref country code: CH Payment date: 20240201 Year of fee payment: 5 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20200106 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20240102 Year of fee payment: 5 Ref country code: IT Payment date: 20240129 Year of fee payment: 5 Ref country code: FR Payment date: 20240126 Year of fee payment: 5 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211124 |