EP3690318B1 - Procédé de régulation d'un mélange air-gaz de combustion dans un appareil de chauffage - Google Patents

Procédé de régulation d'un mélange air-gaz de combustion dans un appareil de chauffage Download PDF

Info

Publication number
EP3690318B1
EP3690318B1 EP20150310.9A EP20150310A EP3690318B1 EP 3690318 B1 EP3690318 B1 EP 3690318B1 EP 20150310 A EP20150310 A EP 20150310A EP 3690318 B1 EP3690318 B1 EP 3690318B1
Authority
EP
European Patent Office
Prior art keywords
ionisation
fuel gas
combustion
speed
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20150310.9A
Other languages
German (de)
English (en)
Other versions
EP3690318A3 (fr
EP3690318A2 (fr
Inventor
Heinz-Jörg Tomczak
Christian Schwarz
Stefan Hucke
Jochen Grabe
Tobias Funke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vaillant GmbH
Original Assignee
Vaillant GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE102019119186.6A external-priority patent/DE102019119186A1/de
Application filed by Vaillant GmbH filed Critical Vaillant GmbH
Publication of EP3690318A2 publication Critical patent/EP3690318A2/fr
Publication of EP3690318A3 publication Critical patent/EP3690318A3/fr
Application granted granted Critical
Publication of EP3690318B1 publication Critical patent/EP3690318B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/12Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods
    • F23N5/123Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/02Premix gas burners, i.e. in which gaseous fuel is mixed with combustion air upstream of the combustion zone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/02Regulating fuel supply conjointly with air supply
    • F23N1/022Regulating fuel supply conjointly with air supply using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/12Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23QIGNITION; EXTINGUISHING-DEVICES
    • F23Q3/00Igniters using electrically-produced sparks
    • F23Q3/008Structurally associated with fluid-fuel burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2227/00Ignition or checking
    • F23N2227/20Calibrating devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2231/00Fail safe
    • F23N2231/06Fail safe for flame failures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2231/00Fail safe
    • F23N2231/10Fail safe for component failures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2231/00Fail safe
    • F23N2231/12Fail safe for ignition failures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2233/00Ventilators
    • F23N2233/06Ventilators at the air intake
    • F23N2233/08Ventilators at the air intake with variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2237/00Controlling
    • F23N2237/24Controlling height of burner
    • F23N2237/26Controlling height of burner oxygen-air ratio

Definitions

  • the invention is in the field of regulating a fuel gas-air mixture for a combustion process in a heating device, in particular for preparing hot water or heating a building.
  • a heating device in particular for preparing hot water or heating a building.
  • an ionization measurement is carried out in a flame area, especially in many heating devices. Such measurements should enable stable regulation over long periods of time. If the control fails, in most cases the heater has to be switched off, which of course should happen as rarely as possible.
  • flame monitoring is typically also carried out in heating devices, the main task of which is to ensure that no fuel gas is supplied after the heating device has been started if there is no flame. This prevents the formation of a potentially explosive mixture and the escape of unburned fuel gas. This can be accomplished in a number of different ways. There are optical, thermal and electronic systems. An electronic flame monitor that is often used uses an ignition electrode that is already present, which is otherwise not otherwise required after a flame has been ignited, to generate an ionization signal which, in the prior art, is not used for regulating but for monitoring the flame.
  • the specially prepared ionization signal can not only reliably detect the presence of a flame or its extinction, but also, for example, the physical lifting of the flame from the burner due to excessively high temperatures Measure the combustion air supply in good time. This means that it can be switched off at an early stage if the flame becomes unstable.
  • the regulation has so far often been carried out during operation by means of a separate ionization electrode.
  • the respective actual value of the ionization in the flame area is determined, which is proportional to the currently present lambda value, so that this can be derived from the ionization measurement.
  • An alternating voltage is applied to the ionization electrode, the flame area ionized in the presence of flames having a rectifying effect, so that an ionization current mainly only flows during one half-cycle of the alternating current.
  • This current or a proportional voltage signal derived therefrom, referred to below as an ionization signal, are measured and, if necessary, after digitization, further processed as an ionization signal in an analog / digital converter.
  • the lambda value can be measured and regulated to a target value by means of a control circuit.
  • the supply of air and / or fuel gas is changed by suitable actuators until the desired target value for lambda is reached.
  • a lambda value> 1 (1 corresponds to a stoichiometric ratio) is aimed for, e.g. B.
  • Lambda 1.3 to ensure that enough air is supplied for clean combustion with essentially no carbon monoxide generation.
  • lambda must remain so small that stable combustion is guaranteed.
  • the regulation can in particular take place via a valve for the supply of fuel gas and / or a fan for the supply of ambient air.
  • combustion controls which regulate the desired combustion quality (lambda value) via stored ionization current control curves.
  • the electrodes used are subject to a time-dependent drift, which essentially results from a growing oxide layer on the electrode surface, which has a negative influence on the measured signal.
  • calibration sequences are triggered cyclically (e.g. after a specifiable number of operating hours).
  • the basic structure of such heating devices, of measuring systems for ionization measurement and their use for regulation are, for example, also from the EP 0 770 824 B1 and the EP 2 466 204 B1 known.
  • the control accuracy can change in the course of time due to various influences, in particular due to influences on the state or the shape of the ionization electrode.
  • Various methods for recalibrating if necessary are specified, but all of them require a relatively high level of effort and / or, above all, can have the disadvantage that during recalibration the heater has to be operated at lambda values of 1 or even below at times, which leads to temporary generation of undesirable carbon monoxide.
  • the present invention aims to provide a remedy here in order to enable safe and reliable operation of a heater, stable control or, if necessary, emergency control in the event of malfunctions in a primary control system.
  • a heating device can be reliably regulated with these method steps, the time span t being able to be very long compared to the duration of the other method steps, for example several hours or even longer.
  • the control remains in the desired control range for the lambda value, and even when all process steps are repeated, there are no excessively high flame temperatures.
  • a method is preferred in which, if the fan speed stored in step 1.6 deviates from the value set in step 1.1 greater than a predeterminable deviation value, the setting of the fuel gas valve is corrected accordingly and steps 1.3 to 1.7 are repeated until the deviation is smaller than the deviation value, which corresponds to the achievement of a desired output of the heater.
  • the fan speed is the most accurate value to be measured in a heater, which is why it is preferred to set a desired output.
  • a method is particularly preferred in which the predeterminable amount in step 1.4 is selected so small that a distance between the lambda value and a range in which an impermissible amount or concentration of carbon monoxide can be generated is maintained. This embodiment ensures that when the method is carried out, regardless of the duration of the period t, only very little carbon monoxide is generated, even if the calibration of the system is checked again and again.
  • the method is carried out in the same way for fan speeds corresponding to different powers and associated settings of the fuel gas valve, which results in a calibration of the control that is updated again and again at time intervals of the length of the time span (t) all changes in the system are taken into account.
  • a calibration curve which is corrected again and again, is created for different outputs of the heater, so that the regulation described can be used in particular as a primary regulation.
  • a particularly preferred embodiment of the method is its use as a so-called emergency control.
  • a method according to one of claims 1 to 1 is used in the event of failure of the first ionization measurement or the control based on it 4, in particular using existing monitoring electronics. This option increases the availability of heating devices significantly, since in the event of a malfunction in the primary control system, the system cannot be switched off, but only switched over to the emergency system.
  • a heater which is particularly suitable for switching from a primary control to an emergency system, has the following components: an air supply and a fuel gas supply, which are controlled by a first control unit, and with a first measuring system, comprising an ionization electrode, a counter electrode, a first alternating current source and a first electronic evaluation system for determining a first ionization signal, which can be fed to the control unit, a second measuring system being present for measuring a second ionization signal, which can be generated between an ignition electrode for igniting a combustion and the counter electrode of the second measuring system, and where the first and the second system are each set up to determine a lambda value.
  • this also enables switching at Malfunctions of a primary control on an emergency system that can take over the control.
  • the heater preferably has a switchover unit which, if at least one component of the first measurement system fails, switches over to control with the second measurement system.
  • the ionization measurement according to the invention which can be used in this way for flame monitoring and control, works according to the following principle:
  • An alternating voltage without a direct voltage component from a voltage source with a high output impedance is applied between an ionization electrode and a counter electrode (ground). Due to a rectifying effect of a flame plasma when the flame is burning, an ionization current flows off to ground during each positive half-wave of the alternating voltage. The voltage amplitude of each positive half-wave is reduced because of the high output impedance of the voltage source, while the negative half-wave remains unchanged. As a result, a negative direct voltage component is impressed on the alternating voltage. The amplitude of this negative DC voltage component is converted as a mean value by means of an amplifier circuit into a voltage signal which, due to its characteristic curve, can be used for the purposes described here with a constant gas supply and increasing air supply. Typically, this signal is digitized by means of an analog / digital converter (eg into values between 0 and 1023) so that it can be further processed in a microprocessor.
  • an analog / digital converter eg into values between 0 and 1023
  • the characteristic curve of the signal results from a combination of different effects.
  • the ionization in the flame area is strongest when the combustion is operated in a stoichiometric ratio of combustion gas and combustion air
  • the flames move away (physical lift-off of the flames) with increasing gas mixture speed (larger combustion air volume per unit of time) from the outlet openings in the burner, which electronically form the mass in the system, which reduces the ion flow.
  • the temperature of the ionization electrode or the flame may also play a role in the rectifying effect.
  • the result is a curve with an easily reproducible minimum, which is close to a lambda value that is typical for continuous operation.
  • the invention also relates to a computer program product, comprising instructions which cause the described device to carry out the method proposed here.
  • Modern heating devices typically contain an electronic control which contains at least one programmable microprocessor which can be controlled by such a computer program product.
  • existing devices with ionization measurement and flame monitoring can be retrofitted for the method according to the invention using such a computer program product.
  • the invention also relates to an emergency running system for gas-operated heating devices, in particular in the case of combustion control based on ionization current.
  • ionization current is usually measured with an ionization current electrode to which a voltage is applied.
  • ionization current electrode to which a voltage is applied.
  • These electrodes are subject to a time-dependent drift, which essentially results from a growing oxide layer on the electrode surface, which has a negative influence on the measured signal.
  • calibration sequences are initiated cyclically (e.g. after x burner operating hours).
  • DE 195 39 568 C1 includes a calibration at the operating point with maximum ionization current (SCOT) or in the vicinity of this point (Sitherm).
  • the mixture that emerges from the burner is via an ignition voltage that is applied to the ignition electrode and forms sparks there ignited.
  • the respective minimum value of the signal is stored and the air volume flow through the fan is increased until a threshold value of the increase in the ionization current relative to the minimum value (point 3) is reached (point 2). Finally, the minimum value (point 3) is approached, which at the same time represents the operating point of the device. At this point, the device runs by regulating the fan until a period of time t has expired. After the time period t has elapsed, the system starts again from point 1.
  • the procedure for controlling combustion in a gas-powered heater is characterized by the following steps - the fan runs to a specified speed - the gas valve follows the fan speed via a specially designed characteristic ( Gas valve stepper position via fan speed) - the position of the gas valve stepper motor is now "frozen” and the fan speed is reduced in a defined manner, - the fan speed is now continuously increased, with the measured ionization signal following the characteristic curve - the respective minimum value of the signal is saved and the air volume flow is increased the fan is increased until a threshold value of the increase in the ionization current relative to the minimum value is reached, - lastly the minimum value is approached, which also represents the operating point of the device, - at this point the device runs through a control of the fan until a period of time t aba is called, - after the period t has elapsed, the system moves again starting from point 1.
  • FIG. 1 shows schematically an embodiment of a device proposed here.
  • a flame area 2 is formed during operation. Air enters the heater 1 via an air supply 3 and a fan 5. Combustion gas is mixed with the air via a combustion gas supply 4 and a combustion gas valve 6. An ignition electrode 7 ignites the mixture at the start of the combustion process and is then z. B. used as part of a flame monitor. A first ionization signal is measured in the flame region 2 by means of an ionization electrode 8.
  • a first measuring system S1 is used for this, from which the ionization electrode 8 is subjected to an alternating voltage from a first alternating voltage source, a first evaluation electronics 13 measuring the resulting ionization signal and converting it into a lambda value, i.e. a lambda value, according to calibration data (control curve) stored in a calibration data memory 15 Mixing ratio of air to fuel converted.
  • a control unit 17 can control the fan 5 and / or the fuel gas valve 6 in such a way that a sets the desired target value for lambda.
  • a flame monitor 16 can also be present.
  • a second measuring system S2 is put into operation by means of a switching unit 10, which connects a second AC voltage source 12 instead of ignition electronics to the ignition electrode 7 (if this has not already been done for flame monitoring), with a second Evaluation electronics 14 a second ionization signal is measured and evaluated, which also supplies an actual value for lambda and enables the lambda value to be regulated by means of the method according to the invention.
  • this type of control can also be used as a primary control, specifically in parallel to flame monitoring by means of an ignition electrode as the only ionization electrode or by means of a dedicated ionization electrode only for control.
  • only the second measuring system S2 needs to be present and can be used as the primary control system by means of its own calibration data.
  • the heater initially works in normal operation with a certain supply of fuel gas and an associated speed of the fan 5, with the ionization signal I1 being adjusted to a value of z. B. 100 ⁇ A [microAmpere] is controlled by adjusting the speed of the fan and / or the fuel supply. With valid calibration data (map, control curve), this type of control ensures that a desired lambda value is maintained over a large load range.
  • a switch to an emergency system can be triggered instead of a shutdown. In this case, a switch is made from the first measuring system S1 to the second measuring system S2.
  • a defined speed is set by the fan 5 approached and the associated fuel quantity is set using the stored characteristic curves.
  • the measuring system S2 determines a second ionization signal I2 determined by means of the ignition electrode 7. Then the gas supply is left unchanged, while the fan speed is reduced in a defined manner until a value below the desired lambda value is definitely reached, which is still well above a stoichiometric ratio of air to fuel gas, so that hardly any carbon monoxide is generated during this process and the flame temperature is not excessively high (see point "1" in Fig. 3 ). Starting from this lambda value, the speed of the fan 5 is increased until the second ionization signal detects a lifting of the flame from the burner 9 due to a sharp rise (see point "2" in FIG Fig. 3 ).
  • the heater can be operated (further) with this type of control as the primary control. If it is only used as an emergency control, when the heater is restarted it can be checked whether the primary control is working again and only switched to the emergency control if this is not the case.
  • Fig. 2 shows schematically a circuit as it can be used for the measuring system S2.
  • a second AC voltage source 12 with a high output resistance 18 initially supplies an AC voltage without a DC voltage component to the ignition electrode 7 and the counter electrode 9 (ground).
  • the voltage only drops in a half-wave due to the rectifying effect of the flame (shown as a diode in the equivalent circuit diagram), so that an alternating voltage is present at the input of the second evaluation electronics 14 (amplifier and converter) with a negative DC voltage component is present, which becomes the second ionization signal in the evaluation electronics 14 and can be converted in an analog / digital converter 20 and then processed further.
  • Fig. 3 illustrates qualitatively what happens in the process of regulating according to the invention by means of the second measuring system S2.
  • the second ionization signal I2 is plotted on the Y axis (in digitized form as a number between 0 and 1023) against the fan speed [rpm] on the X axis with a constant gas supply.
  • the resulting characteristic diagram shows an almost constant initial range, a decrease to a minimum (point "3") and then an increase.
  • the flame begins to detach, which can then become unstable as the air supply increases. Between points "1" and “2", however, the air supply can be varied without producing inadmissible amounts of carbon monoxide or instabilities in order to find the minimum at point "3" and use it for regulation.
  • the X-axis could also be provided with the lambda value as a scale because of the relationship described between the fan speed and the lambda value.
  • the present invention makes it possible, without significant changes to a heater itself, to set up a reliable emergency control system using only additional electronics, or even to use a method as the primary control system which does not generate any inadmissible amounts of carbon monoxide even during (re) calibration.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Combustion (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Regulation And Control Of Combustion (AREA)

Claims (6)

  1. Procédé de régulation d'une combustion dans un appareil de chauffage (1) au moyen d'un signal d'ionisation (I2) mesuré dans une zone de flamme (2) de l'appareil de chauffage (1) fonctionnant avec de l'air de combustion et du gaz de combustion, lequel est dérivé d'un courant ionique circulant d'une électrode d'ionisation (7, 8) à une contre-électrode (9) à travers la zone de flamme (2), dans lequel le rapport (valeur lambda) entre l'air de combustion et le gaz de combustion pendant la combustion dans l'appareil de chauffage (1) est déterminé à l'aide de données d'étalonnage du signal d'ionisation (I2) et est régulé au moyen d'un réglage de l'alimentation en gaz de combustion et/ou de l'alimentation en air de combustion, caractérisé par les étapes suivantes :
    1.1 Un ventilateur (5) pour l'alimentation en air de combustion est amené à une vitesse de rotation prédéterminable,
    1.2 Une soupape de gaz de combustion (6) est amenée à une position affectée à cette vitesse de rotation au moyen d'une courbe caractéristique prédéterminable,
    1.3 La soupape de gaz de combustion (6) est maintenue dans cette position,
    1.4 La vitesse de rotation est réduite d'une quantité prédéterminable,
    1.5 La vitesse de rotation est ensuite augmentée en continu ou progressivement et le signal d'ionisation respectif (I2) est mesuré,
    1.6 À cet effet, un minimum du signal d'ionisation (I2) est déterminé et enregistré avec la vitesse de rotation de ventilateur correspondante,
    1.7 La vitesse de rotation de ventilateur continue d'être augmentée jusqu'à ce qu'une valeur seuil prédéterminable du signal d'ionisation par rapport au minimum soit atteinte,
    1.8 Puis la vitesse de rotation de ventilateur est réduite à la vitesse de rotation de ventilateur correspondant au minimum et y est maintenue pendant une période de temps prédéterminable (t) ou utilisée pour réguler le signal d'ionisation (I2) à la valeur constante actuelle,
    1.9 Après l'écoulement de la période de temps (t), les étapes à partir de 1.4 sont répétées.
  2. Procédé selon la revendication 1, dans lequel si la vitesse de rotation de ventilateur mémorisée à l'étape 1.6 s'écarte de celle réglée à l'étape 1.1 supérieure à une valeur d'écart prédéterminable, une correction correspondante du réglage de la soupape de gaz de combustion est réalisée et les étapes 1.3 à 1.7 sont répétées jusqu'à ce que l'écart soit inférieur à la valeur d'écart, ce qui correspond à l'obtention d'une puissance souhaitée de l'appareil de chauffage (1).
  3. Procédé selon la revendication 1 ou 2, dans lequel la quantité prédéterminable à l'étape 1.4 est sélectionnée suffisamment petite pour maintenir une distance de la valeur lambda à une plage dans laquelle une quantité ou concentration inacceptable de monoxyde de carbone peut être générée.
  4. Procédé selon l'une quelconque des revendications précédentes, dans lequel le procédé est mis en œuvre de la même manière pour des vitesses de rotation de ventilateur correspondant à différentes puissances et des réglages associés de la soupape de gaz de combustion (6), ce qui aboutit à un étalonnage de la régulation qui est mis à jour de manière répétée à des intervalles de la longueur de la période de temps (t) et qui prend en compte toutes les modifications dans le système.
  5. Procédé selon l'une quelconque des revendications précédentes, dans lequel, pour les appareils de chauffage qui présentent une régulation au moyen d'un premier système de mesure (S1) avec une première mesure d'ionisation et une surveillance de flamme séparée mise en œuvre par une électronique de surveillance au moyen d'une seconde mesure d'ionisation, en cas de défaillance de la première mesure d'ionisation ou de la régulation basée sur celle-ci, un passage vers un procédé selon l'une quelconque des revendications 1 à 4 est réalisé en utilisant l'électronique de surveillance présente.
  6. Produit de programme informatique, comprenant des instructions qui amènent une unité de régulation (17) d'un appareil de chauffage (1), présentant une alimentation en air (3) et une alimentation en gaz de combustion (4), qui peuvent être régulées par l'unité de régulation (17), et avec un premier système de mesure (S1), comprenant une électrode d'ionisation (8), une contre-électrode (9), une première source de courant alternatif (11) et une première électronique d'évaluation (13) pour déterminer un premier signal d'ionisation (I1), qui peut être fourni à l'unité de régulation (17), dans lequel un second système de mesure (S2) est présent pour mesurer un second signal d'ionisation (I2) qui peut être généré par le second système de mesure (S2) entre une électrode d'allumage (7) présente pour l'allumage de la combustion et la contre-électrode (9), et dans lequel le premier (S1) et le second (S2) systèmes sont chacun configurés pour déterminer une valeur lambda, qui met en œuvre le procédé selon l'une quelconque des revendications 1 à 5.
EP20150310.9A 2019-01-29 2020-01-06 Procédé de régulation d'un mélange air-gaz de combustion dans un appareil de chauffage Active EP3690318B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019102128 2019-01-29
DE102019119186.6A DE102019119186A1 (de) 2019-01-29 2019-07-16 Verfahren und Vorrichtung zur Regelung eines Brenngas-Luft-Gemisches in einem Heizgerät

Publications (3)

Publication Number Publication Date
EP3690318A2 EP3690318A2 (fr) 2020-08-05
EP3690318A3 EP3690318A3 (fr) 2020-09-30
EP3690318B1 true EP3690318B1 (fr) 2021-11-24

Family

ID=69137771

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20150310.9A Active EP3690318B1 (fr) 2019-01-29 2020-01-06 Procédé de régulation d'un mélange air-gaz de combustion dans un appareil de chauffage

Country Status (2)

Country Link
EP (1) EP3690318B1 (fr)
ES (1) ES2902463T3 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019119214A1 (de) * 2019-07-16 2021-01-21 Vaillant Gmbh Verfahren und Vorrichtung zur Nachkalibrierung eines Messsystems zur Regelung eines Brenngas-Luft-Gemisches in einem Heizgerät
DE102020127558B4 (de) * 2020-10-20 2023-06-29 Viessmann Climate Solutions Se Heizungsanlage und Verfahren zum Betreiben einer Heizungsanlage
DE102021113220A1 (de) 2021-05-21 2022-11-24 Vaillant Gmbh Verfahren zur Überwachung des Betriebes eines Heizgerätes, Heizgerät sowie Computerprogramm und computerlesbares Medium
DE102022112785A1 (de) * 2022-05-20 2023-11-23 Vaillant Gmbh Verfahren zum Betreiben eines Heizgerätes, Computerprogramm, Regel- und Steuergerät und Heizgerät

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19502901C2 (de) 1995-01-31 2000-02-24 Stiebel Eltron Gmbh & Co Kg Regeleinrichtung für einen Gasbrenner
DE19618573C1 (de) 1996-05-09 1997-06-26 Stiebel Eltron Gmbh & Co Kg Verfahren und Einrichtung zum Betrieb eines Gasbrenners
DE19539568C1 (de) 1995-10-25 1997-06-19 Stiebel Eltron Gmbh & Co Kg Verfahren und Schaltung zur Regelung eines Gasbrenners
DE59604283D1 (de) 1995-10-25 2000-03-02 Stiebel Eltron Gmbh & Co Kg Verfahren und Schaltung zur Regelung eines Gasbrenners
SE507416C2 (sv) * 1997-05-12 1998-05-25 Mecel Ab Metod för återkopplad reglering av insprutningstidpunkten i förbränningsmotorer
AT505442B1 (de) 2007-07-13 2009-07-15 Vaillant Austria Gmbh Verfahren zur brenngas-luft-einstellung für einen brenngasbetriebenen brenner
EP2466204B1 (fr) 2010-12-16 2013-11-13 Siemens Aktiengesellschaft Dispositif de réglage pour une installation de brûleur
ES2646213T3 (es) * 2012-07-04 2017-12-12 Vaillant Gmbh Procedimiento para la supervisión de un quemador que funciona con gas de combustión

Also Published As

Publication number Publication date
EP3690318A3 (fr) 2020-09-30
ES2902463T3 (es) 2022-03-28
EP3690318A2 (fr) 2020-08-05

Similar Documents

Publication Publication Date Title
EP3690318B1 (fr) Procédé de régulation d'un mélange air-gaz de combustion dans un appareil de chauffage
DE102011079325B4 (de) Verfahren zur Luftzahlregelung eines Brenners
DE3888327T2 (de) Brennstoffbrennereinrichtung und ein Kontrollverfahren.
DE102019119186A1 (de) Verfahren und Vorrichtung zur Regelung eines Brenngas-Luft-Gemisches in einem Heizgerät
EP0770824B1 (fr) Procédé et circuit pour commander un brûleur à gaz
EP2594848B1 (fr) Procédé de commande d'un appareil à combustion et appareil à combustion
EP1621811B1 (fr) Procédé de fonctionnement pour un dispositif de combustion
DE19539568C1 (de) Verfahren und Schaltung zur Regelung eines Gasbrenners
EP0833106B1 (fr) Procédé et dispositif d'optimisation du fonctionnement d'un brûleur à gaz
EP3841326B1 (fr) Dispositif chauffant et procédé destiné à régler un brûleur à gaz fonctionnant par soufflerie
EP1522790B1 (fr) Procédé de régulation d'un brûleur à gaz, en particulier dans des installations de chauffe avec ventilateur
DE202019100263U1 (de) Heizgerät mit Regelung eines Gasgemisches unter Nutzung eines Gassensors, eines Brenngassensors und eines Gasgemischsensors
EP3029375B1 (fr) Dispositif d'appareil de chauffage et procédé de fonctionnement d'un dispositif d'appareil de chauffage
EP3290797B1 (fr) Procédé de détection d'un état de vieillissement d'un système de chauffage ainsi qu'une unité de commande et système de chauffage
EP3767174B1 (fr) Procédé et dispositif d'étalonnage ultérieur d'un système de mesure permettant de réguler un mélange gaz-air de combustion dans un appareil de chauffage
EP3182007B1 (fr) Système d'appareil de chauffage et procédé faisant appel à un système d'appareil de chauffage
DE3830687A1 (de) Kalibrierverfahren fuer einen regler zur regelung des luftverhaeltnisses von gasmotoren
DE19854824C1 (de) Verfahren und Schaltung zur Regelung eines Gasbrenners
DE19734574B4 (de) Verfahren und Vorrichtung zum Regeln eines Brenners, insbesondere eines vollvormischenden Gasbrenners
EP1293728B1 (fr) Procédé pour commander la puissance d'un appareil de cuisson à gaz et appareil de cuisson utilisant ce procédé
EP2929248B1 (fr) Procédé de régulation de la combustion sur un brûleur à gaz ou à fioul
EP4023941B1 (fr) Agencements et procédé de mesure d'une ionisation dans une chambre de combustion d'un brûleur à prémélange
DE10220773A1 (de) Verfahren und Einrichtung zur Regelung eines Verbrennungsprozesses, insbesondere eines Brenners
EP3712501B1 (fr) Procédé et dispositif de régénération d'une électrode pour une mesure d'ionisation dans une zone de flamme d'un brûleur
DE102004063992B4 (de) Verfahren zur Steuerung einer Feuerungseinrichtung und Feuerungseinrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: F23N 1/02 20060101ALI20200824BHEP

Ipc: F23N 5/12 20060101AFI20200824BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210319

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210804

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502020000361

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1450139

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2902463

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20220328

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211124

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211124

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211124

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220324

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211124

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220324

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211124

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220224

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211124

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211124

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211124

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211124

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211124

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211124

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502020000361

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211124

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220106

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211124

26N No opposition filed

Effective date: 20220825

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220106

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SK

Payment date: 20231220

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231219

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20231218

Year of fee payment: 5

Ref country code: CZ

Payment date: 20231220

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20231218

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240201

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211124

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211124

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231219

Year of fee payment: 5

Ref country code: CH

Payment date: 20240201

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20200106

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20240102

Year of fee payment: 5

Ref country code: IT

Payment date: 20240129

Year of fee payment: 5

Ref country code: FR

Payment date: 20240126

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211124