EP2594848B1 - Method for controlling a firing device and firing device - Google Patents

Method for controlling a firing device and firing device Download PDF

Info

Publication number
EP2594848B1
EP2594848B1 EP13152525.5A EP13152525A EP2594848B1 EP 2594848 B1 EP2594848 B1 EP 2594848B1 EP 13152525 A EP13152525 A EP 13152525A EP 2594848 B1 EP2594848 B1 EP 2594848B1
Authority
EP
European Patent Office
Prior art keywords
opening
firing device
value
gas
burner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP13152525.5A
Other languages
German (de)
French (fr)
Other versions
EP2594848A1 (en
Inventor
Rudolf Tungl
Martin Geiger
Ulrich Geiger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebm Papst Landshut GmbH
Original Assignee
Ebm Papst Landshut GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE102004030299A external-priority patent/DE102004030299A1/en
Priority claimed from DE202004017851U external-priority patent/DE202004017851U1/en
Application filed by Ebm Papst Landshut GmbH filed Critical Ebm Papst Landshut GmbH
Publication of EP2594848A1 publication Critical patent/EP2594848A1/en
Application granted granted Critical
Publication of EP2594848B1 publication Critical patent/EP2594848B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/02Regulating fuel supply conjointly with air supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/02Regulating fuel supply conjointly with air supply
    • F23N1/022Regulating fuel supply conjointly with air supply using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/022Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/10Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using thermocouples
    • F23N5/102Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using thermocouples using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2233/00Ventilators
    • F23N2233/06Ventilators at the air intake
    • F23N2233/08Ventilators at the air intake with variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2235/00Valves, nozzles or pumps
    • F23N2235/02Air or combustion gas valves or dampers
    • F23N2235/06Air or combustion gas valves or dampers at the air intake
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2235/00Valves, nozzles or pumps
    • F23N2235/02Air or combustion gas valves or dampers
    • F23N2235/10Air or combustion gas valves or dampers power assisted, e.g. using electric motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2241/00Applications
    • F23N2241/02Space-heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/16Systems for controlling combustion using noise-sensitive detectors

Definitions

  • the invention relates to a method for controlling a firing device, in particular a gas burner, and a firing device, in particular a gas burner, which comprises a gas valve for adjusting the fuel supply to the firing device.
  • the power output is essentially determined by the setting of the supply of Fuel gas and air and determined by the set mixing ratio between gas and air.
  • the temperature generated by the flame is also a function of the mixing ratio between gas and air.
  • the mixing ratio can be specified, for example, as the ratio of the mass flows or the volume flows of the air and the gas. However, other parameters, such as the fuel composition, have an influence on the sizes mentioned.
  • a mixing ratio can be determined which maximizes the effectiveness of the combustion, i. where the fuel burns as completely and clean as possible.
  • known gas burners are usually equipped with a radial fan, which sucks the mixture of air and gas during operation.
  • the adjustment of the mass flows of air and gas can be done for example by changing the speed and thus the suction of the impeller of the radial fan.
  • valves can be provided in the gas and / or air supply line, which can be actuated to set the individual mass flows or their ratio.
  • various sensors can be arranged at suitable locations.
  • appropriate measuring devices can be provided for measuring the mass flow and / or the volume flow of the gas and / or the air and / or the mixture.
  • state variables such as the temperature of the air, pressures, etc., can be measured at appropriate locations, evaluated and used for the control.
  • the regulation of the mixing ratio is done today by default, especially for gas burners used in the household, by pneumatic control of a gas valve in dependence on the volume flow of the supplied air quantity (principle of pneumatic composite).
  • pneumatic control pressures or pressure differences on orifices, in constrictions, or in venturi nozzles are used as control variables for a pneumatic gas control valve that adjusts the gas supply to the airflow.
  • a disadvantage of the pneumatic control is in particular that mechanical components must be used which are subject to hysteresis effects due to the friction. Especially at low working pressures, inaccuracies in the control, so that the blower must always produce a certain minimum pressure to achieve a sufficiently precise control, which inversely leads.
  • the use of the electronic interconnect also presents situations that can not be adequately addressed, such as a change in sensitivity of the sensors due to contamination.
  • the DE 100 45 270 C2 discloses a firing device and method for controlling the firing device with fluctuating fuel quality.
  • the fuel-air ratio becomes corresponding changed.
  • the mixture composition is adjusted for each suitable type of fuel until the desired flame core temperature is reached.
  • maps are used for different fuels, from which a new, suitable fuel-air ratio is read out whenever the performance requirements change.
  • a derivative component for the control signal of the gas valve is derived from the speed change of the air blower. Since the power control signal characteristic is known and stored in an evaluation circuit, the derivative part can be determined.
  • the reference signal J ' ie a change in the power requirement
  • the speed of the fan is changed. This change in the speed determines via an adder a positive or negative derivative part, by which the control signal is adjusted. The resulting control signal changes accordingly the position of the gas valve.
  • the EP 1 293 727 A1 further discloses a burner control apparatus using an ionization electrode and a calibration unit.
  • a control system for a gas burner is shown.
  • the regulation takes place here using a temperature measured at the burner surface. Since the surface temperature depends on the flow rate of the air-gas mixture, falling below a certain temperature, the speed of the fan motor is lowered, whereby the air flow and thus the air-gas ratio is lowered.
  • a method for controlling a gas burner is known in which the CO concentration in the exhaust gases of the burner flame is detected with an exhaust gas sensor.
  • a certain CO value corresponds to a certain gas-air ratio.
  • gas-air ratio at a certain CO value a desired gas-air ratio can be set.
  • the EP 770 824 B1 shows a control of the gas-air ratio in the fuel-air mixture by measuring a Ionisationsstrorns, which depends on the excess air in the exhaust gases of the burner flame. In stoichiometric combustion is known a maximum of the ionization current is measured. Depending on this value, the mixture composition can be optimized.
  • a disadvantage of the last-mentioned method is that the feedback signal can only be detected when the flame is burning and fed back to the control loop.
  • the inertia of the sensors limits accurate readjustment.
  • the sensors used are subject to contamination, so that the combustion is suboptimal regulated over time and thus increase the pollutant levels.
  • pneumatic regulator which, however, increases the complexity of the plant as well as the costs.
  • the inventive method for controlling a firing device is characterized by the combination of features according to claim 1.
  • the actuators such as the fan or a gas control valve
  • a certain period of time which depends on the inertia of the sensors, be readjusted. It thus takes place in the execution of the method according to the invention, a transition from a pure control to a control.
  • the parameter corresponding to the burner load is the mass flow of the air to be supplied to the firing device.
  • the opening values of the gas valve can therefore be represented in this embodiment as a function of the mass of the air.
  • the characteristic of this characteristic is determined inter alia by the properties of the gas valve.
  • the burner load is substantially proportional to the amount of air supplied to the gas burner per unit time.
  • the change of the opening of the gas valve may be performed by the modulation of a pulse width, by the variation of a voltage or a current of a valve spool, or by the operation of a stepping motor of a valve.
  • Exceeding the upper or lower limit of the opening of the gas valve can be detected in the process. While after the control process, the opening of the gas valve is between the upper and lower limit, after the control step, the gas opening may be above or below the upper or lower limit. This can occur, in particular, if the setpoint values for the opening of the gas valve that are defined when the characteristic curve is generated deviate greatly from the optimally adjusted values. This can be due to changes in the fuel composition, changes in the measurement characteristics of the sensors or the settings of the system parameters.
  • the characteristic resulting from the opening values of the gas valve as a function of the parameter corresponding to the burner load is recalibrated based on the control unit operating parameters set by the controller. Falls after the regulation, the value of the opening of the gas valve from the through the upper and lower limits limited range, so a recalibration of the characteristic can be performed. For example, during this recalibration, the setpoints may be shifted so that the new setpoint line passes through the adjusted value for the opening of the gas valve. In the same way, the upper and lower limits can be shifted, so that the new setpoint curve is surrounded by a tolerance corridor, as in the previously valid characteristic curve.
  • Exceeding the upper or falling below the lower limit can, in particular after the expiry of a predetermined period of time, lead to switching off the firing device. This measure can be based on both safety concerns and economic considerations. Control to a range outside the desired margin indicated by the limits may, for example, indicate an undesirable change in the default settings of the gas burner, so that it may operate in an unsafe or ineffective operating range. The device would have to be checked and maintained below.
  • a firing device in particular a gas burner, comprises: a gas valve for adjusting the fuel supply to the firing device; a memory for storing set values that depend on a parameter corresponding to the burner load and upper and lower limits; a device for controlling the opening of the gas valve, which, in the event of a change of the parameter corresponding to the burner load from a starting value to a target value, adapts the opening of the gas valve from a first to a second opening value according to a stored nominal value, the second opening value between a stored upper and a lower limit, and wherein during the transition of the opening of the gas valve from the first to the second opening value, no control of the fuel supply is performed; Means for controlling, after reaching the target value of the parameter corresponding to the burner load, operating parameters of the firing device and means for recalibration a characteristic resulting from the set values for the opening (w) of the gas valve in dependence on the parameter (m L ), based on the operating parameters set by a controller following the control, when the valve opening (w)
  • the gas valve may be an actuator, in particular a stepper motor, a pulse width modulated or a coil controlled by an electrical variable.
  • the firing device has at least one mass flow sensor for measuring the amount of air supplied to the firing device per unit time.
  • the firing device may further comprise a mass flow sensor for measuring the amount of fuel medium supplied to the firing device per unit time and / or the amount of the supplied mixture of air and fuel medium.
  • the firing device in the region of the burner flame may have a device for measuring a temperature generated by the firing device.
  • the temperature sensor may be arranged, for example, in the region of the flame, but also on the burner in the vicinity of the flame.
  • a thermocouple can be used as a temperature sensor.
  • FIG. 1 shows a gas burner in which a mixture of air L and gas G is premixed and burned.
  • the gas burner has an air supply section 1, is sucked through the combustion air L.
  • a mass flow sensor 2 measures the mass flow of the air L sucked in by a blower 9.
  • the mass flow sensor 2 is arranged so that as laminar a flow as possible is generated in its environment in order to avoid measurement errors.
  • the mass flow sensor could be arranged in a bypass (not shown) and using a laminar element.
  • a valve 3 may be arranged for the combustion air. However, however, usually a regulated fan with air mass flow sensor will be used, so that the valve can be omitted.
  • a gas supply section 4 is provided, which is connected to a gas supply line.
  • the gas flows through the section 4, during operation of the gas burner.
  • a valve 6, which may be an electronically controlled valve the gas flows through a conduit 7 into the mixing region 8.
  • a mixing of the gas G with the air L takes place.
  • the fan of the fan 9 is driven at an adjustable speed to suck in both the air L and the gas G.
  • the valve 6 is adjusted so that, taking into account the other operating parameters, such as the speed of the fan, a predetermined air-gas ratio enters the mixing area 8.
  • the air-gas ratio should be chosen so that the most clean and effective combustion takes place.
  • the air-gas mixture flows from the blower 9 to the burner part 11. There it exits and feeds the burner flame 13, which is to deliver a predetermined heat output.
  • a temperature sensor 12 for example a thermocouple
  • an actual temperature is measured, which is used in carrying out the method described below for controlling or controlling the gas burner.
  • the temperature sensor 12 is arranged on a surface of the burner part 11. However, it is also conceivable to arrange the sensor elsewhere in the area of action of the flame 13.
  • the reference temperature of the thermocouple is measured at a position outside the effective range of the flame 13, for example in the air supply line 1.
  • a device, not shown, for controlling or regulating the air and / or gas flow receives input data from the temperature sensor 12 and the mass flow sensor 2 and outputs control signals to the valve 6 and to the drive of the blower 9.
  • the opening of the valve 6 and the speed of the fan of the fan 9 are adjusted so that the desired air and gas supply results.
  • control device has a memory for storing characteristic curves or nominal values as well as a corresponding data processing unit which is set up to carry out the corresponding methods.
  • FIG. 2 is a dependence of the opening w of the gas valve 6, which determines the fuel supply, shown in dependence on the mass flow m L of the burner supplied air.
  • the mean curve K3 corresponds to a desired value curve which indicates the predetermined opening values w soll of a gas valve 6 as a function of a corresponding air mass flow m L.
  • the air mass flow m L is changed from an initial value m L1 to a second value m L2 and adapted to the new load Q 2 .
  • the control is switched off and the opening value w of the gas valve from previously set value w 1 changed to a new target opening value w 2 ,
  • the value w 2 is on the target opening curve K3.
  • the adjusting opening of the gas valve is in any case between an upper limit curve K1 and a lower limit curve K2, which indicate a tolerance range for the opening of the gas valve.
  • the upper limit curve K1 corresponds to a maximum allowable opening of the gas valve
  • the lower limit curve K2 a minimum allowable opening of the gas valve. 6
  • the operating parameters of the firing device in particular the setting of the valve 6 and the speed of the fan of the fan 9 are adjusted so that the combustion process is optimized.
  • the scheme can be done in any way. In the present example it is done by measuring a generated by the burner flame 13 in its sphere of temperature T is 12 by a temperature sensor
  • the control can for example take place as in the method described above.
  • pulse width modulated valves electronically controlled valves or valves with a stepper motor actuated actuator.
  • the control signal for adjusting the opening of the gas valve can accordingly trigger, for example, the operation of a stepping motor, or change the pulse width, the voltage or the current of a coil.
  • the air mass flows m L and gas mass flows m G are measured by mass flow sensors 2 and 5.
  • a valve opening w which lies above the upper limit curve K1 or below the lower limit curve K2 is now set in one phase of the method before or after the control process has been carried out, appropriate consequences can be drawn.
  • leaving the tolerance corridor lying between K1 and K2 can lead to a calibration process.
  • the setpoint curve K3 like the limit curves K1 and K2, can be shifted so that a uniform tolerance corridor for the opening of the gas valve 6 around the setpoint curve K3 also results in the new curve.
  • exceeding the limit curves K1 or K2 upwards or downwards after a certain period of time or in case of repeated overshoot or undershoot can cause the device to be switched off. It may happen that certain gas burner settings change over time or certain boundary conditions have changed so that a safety hazard occurs or the gas burner operates in a non-effective operating state.
  • a deviation of the opening of the gas valve from the permitted corridor can be triggered for example by a deviation of the gas pressure from the permissible inlet pressure range or by a malfunction of the sensors. The shutdown can thus be interpreted as an indication that a review and maintenance of the device is required.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Regulation And Control Of Combustion (AREA)

Description

Die Erfindung betrifft ein Verfahren zur Steuerung einer Feuerungseinrichtung, insbesondere eines Gasbrenners, und eine Feuerungseinrichtung, insbesondere einen Gasbrenner, der ein Gasventil zur Einstellung der Brennstoffzufuhr zur Feuerungseinrichtung umfasst.The invention relates to a method for controlling a firing device, in particular a gas burner, and a firing device, in particular a gas burner, which comprises a gas valve for adjusting the fuel supply to the firing device.

Im Haushalt werden Gasbrenner beispielsweise als Durchlauferhitzer, für die Bereitung von Warmwasser in einem Kessel, zur Bereitstellung von Heizwärme u. ä. eingesetzt. In den jeweiligen Betriebszuständen werden an das Gerät unterschiedliche Anforderungen gestellt. Dies betrifft insbesondere die Leistungsabgabe des Brenners.In the household gas burners, for example, as a water heater, for the preparation of hot water in a boiler, to provide heating and the like. Ä. Used. In the respective operating conditions, different requirements are placed on the device. This concerns in particular the output of the burner.

Die Leistungsabgabe wird im Wesentlichen durch die Einstellung der Zufuhr von Brenngas und Luft und durch das eingestellte Mischungsverhältnis zwischen Gas und Luft bestimmt. Auch die von der Flamme erzeugte Temperatur ist unter anderem eine Funktion des Mischungsverhältnisses zwischen Gas und Luft. Das Mischungsverhältnis kann beispielsweise als Verhältnis der Massenströme oder der Volumenströme der Luft und des Gases angegeben werden. Es haben jedoch auch andere Parameter, wie die Brennstoffzusammensetzung, Einfluss auf die genannten Größen.The power output is essentially determined by the setting of the supply of Fuel gas and air and determined by the set mixing ratio between gas and air. The temperature generated by the flame is also a function of the mixing ratio between gas and air. The mixing ratio can be specified, for example, as the ratio of the mass flows or the volume flows of the air and the gas. However, other parameters, such as the fuel composition, have an influence on the sizes mentioned.

Für jeden vorgegebenen Luft-Massenstrom bzw. Gas-Massenstrom lässt sich zudem ein Mischungsverhältnis bestimmen, bei dem die Effektivität der Verbrennung maximiert wird, d.h. bei dem der Brennstoff möglichst vollständig und sauber verbrennt.In addition, for any given air mass flow or gas mass flow, a mixing ratio can be determined which maximizes the effectiveness of the combustion, i. where the fuel burns as completely and clean as possible.

Aus diesem Grund hat es sich als sinnvoll erwiesen, die Massenströme von Gas und Luft zu regeln und stets so einzustellen, dass jeweils eine optimale Verbrennung unter sich verändernden Anforderungen und Randbedingungen erreicht wird. Eine Regelung kann laufend oder in periodischen Abständen stattfinden. Insbesondere ist eine Regelung bei einer Umstellung des Betriebszustands, jedoch beispielsweise auch auf Grund von Änderungen der Brennstoffzusammensetzung im kontinuierlichen Betrieb erforderlich.For this reason, it has proven to be useful to regulate the mass flows of gas and air and always set so that in each case an optimal combustion is achieved under changing requirements and boundary conditions. A regulation can take place continuously or at regular intervals. In particular, a control in a change of the operating state, but for example also due to changes in the fuel composition in continuous operation is required.

Zur Bereitstellung des Luft-/Gasgemisches, durch das die Brennerflamme gespeist wird, sind bekannte Gasbrenner in der Regel mit einem Radialgebläse ausgestattet, das im Betrieb das Gemisch aus Luft und Gas ansaugt. Die Einstellung der Massenströme von Luft und Gas kann beispielsweise durch die Änderung der Drehzahl und damit der Ansaugleistung des Gebläserads des Radialgebläses erfolgen. Zusätzlich können Ventile in der Gas- und/oder Luftzufuhrleitung vorgesehen sein, die zur Einstellung der einzelnen Massenströme oder ihres Verhältnisses betätigt werden können. Zur Messung einzelner Parameter können verschiedene Sensoren an geeigneten Stellen angeordnet sein. So können zur Messung des Massenstroms und/oder des Volumenstroms des Gases und/oder der Luft und/oder des Gemisches entsprechende Messvorrichtungen vorgesehen sein. Ebenso können Zustandsgrößen wie die Temperatur der Luft, Drücke usw. an geeigneten Stellen gemessen, ausgewertet und für die Regelung verwendet werden.To provide the air / gas mixture through which the burner flame is fed, known gas burners are usually equipped with a radial fan, which sucks the mixture of air and gas during operation. The adjustment of the mass flows of air and gas can be done for example by changing the speed and thus the suction of the impeller of the radial fan. In addition, valves can be provided in the gas and / or air supply line, which can be actuated to set the individual mass flows or their ratio. To measure individual parameters, various sensors can be arranged at suitable locations. Thus, appropriate measuring devices can be provided for measuring the mass flow and / or the volume flow of the gas and / or the air and / or the mixture. Likewise, state variables such as the temperature of the air, pressures, etc., can be measured at appropriate locations, evaluated and used for the control.

Die Regelung des Mischungsverhältnisses erfolgt heute standardmäßig, insbesondere bei im Haushalt eingesetzten Gasbrennern, durch pneumatische Steuerung eines Gasventils in Abhängigkeit vom Volumenstrom der zugeführten Luftmenge (Prinzip des pneumatischen Verbunds). Bei der pneumatischen Steuerung werden Drücke oder Druckdifferenzen an Blenden, in Verengungen oder in Venturidüsen als Steuergrößen für ein pneumatisches Gasregelventil, durch das die Gaszufuhr zum Luftstrom eingestellt wird, verwendet. Nachteilhaft an der pneumatischen Steuerung ist jedoch insbesondere, dass mechanische Bauteile eingesetzt werden müssen, die auf Grund der Reibung mit Hystereseeffekten behaftet sind. Besonders bei niedrigen Arbeitsdrücken kommt es zu Ungenauigkeiten in der Steuerung, so dass das Gebläse stets einen bestimmten Mindestdruck erzeugen muss, um eine ausreichend präzise Regelung zu erreichen, was umgekehrt.aber zu einer Überdimensionierung des Gebläses für die Maximalleistung führt. Außerdem ist der Aufwand bei der Herstellung der mit Membranen ausgestatteten pneumatischen Gasregelventile wegen der hohen Präzisionsanforderungen beachtlich. Im pneumatischen Verbund kann zudem auf Änderungen der Gasart und -qualität nicht flexibel reagiert werden. Um gewünschte Anpassungen der Gaszufuhr dennoch vornehmen zu können, müssen zusätzliche Einrichtungen, z.B. Stellglieder, bereit - und eingestellt werden, was erheblichen zusätzlichen Aufwand bei der Montage oder Wartung eines Gasheizgerätes bedeutet.The regulation of the mixing ratio is done today by default, especially for gas burners used in the household, by pneumatic control of a gas valve in dependence on the volume flow of the supplied air quantity (principle of pneumatic composite). In pneumatic control, pressures or pressure differences on orifices, in constrictions, or in venturi nozzles are used as control variables for a pneumatic gas control valve that adjusts the gas supply to the airflow. A disadvantage of the pneumatic control, however, is in particular that mechanical components must be used which are subject to hysteresis effects due to the friction. Especially at low working pressures, inaccuracies in the control, so that the blower must always produce a certain minimum pressure to achieve a sufficiently precise control, which inversely leads. But to over-dimensioning of the blower for the maximum performance. In addition, the expense of manufacturing the diaphragm-equipped pneumatic gas control valves is remarkable because of the high precision requirements. In addition, in the pneumatic network it is not possible to respond flexibly to changes in the gas type and quality. To be able to make desired adjustments to the gas supply nevertheless, additional equipment, such as actuators, must be prepared and adjusted, which means considerable additional expense in the installation or maintenance of a gas heater.

Aus diesen Gründen geht man dazu über, Gasbrenner mit einem elektronischen Verbund auszustatten. Bei elektronischer Steuerung können einfach steuerbare Ventile, etwa mit Pulsweiten modulierten Spulen oder mit Schrittmotoren, eingesetzt werden. Der elektronische Verbund funktioniert durch Erfassung wenigstens eines die Verbrennung charakterisierenden Signals, das an einen Regelkreis zum Nachregeln zurückgeführt wird.For these reasons, one goes to equip gas burner with an electronic composite. With electronic control easily controllable valves, such as pulse width modulated coils or stepper motors, can be used. The electronic composite operates by detecting at least one combustion characterizing signal which is fed back to a feedback control loop.

Jedoch treten auch beim Einsatz des elektronischen Verbunds Situationen auf, auf die nicht angemessen reagiert werden kann, wie zum Beispiel eine Veränderung der Empfindlichkeit der Sensoren auf Grund von Verschmutzung. Außerdem besteht bei Änderungen der Last bzw. des Betriebszustands oder unmittelbar nach dem Betriebsstart des Gasbrenners die Gefahr, dass die Regelung wegen der Trägheit der Sensoren zeitlich verzögert funktioniert, was zu einer unvollkommenen Verbrennung und im Extremfall zum Erlöschen der Brennerflamme führt.However, the use of the electronic interconnect also presents situations that can not be adequately addressed, such as a change in sensitivity of the sensors due to contamination. In addition, there is a risk that changes in the load or the operating state or immediately after the start of operation of the gas burner, that the scheme due to the inertia of the sensors delayed in time, resulting in an imperfect combustion and in extreme cases to extinguish the burner flame.

Die DE 100 45 270 C2 offenbart eine Feuerungseinrichtung und ein Verfahren zum Regeln der Feuerungseinrichtung bei schwankender Brennstoffqualität. Insbesondere wird bei einer Änderung der Gasqualität das Brennstoff-Luftverhältnis entsprechend verändert. Dabei wird für jede geeignete Brennstoffart die Gemischzusammensetzung so lange nachgeregelt, bis die gewünschte Flammenkerntemperatur erreicht ist. Außerdem werden Kennfelder für verschiedene Brennstoffe verwendet, aus denen bei jeder Änderung der Leistungsanforderungen ein neues, geeignetes Brennstoff-Luftverhältnis ausgelesen wird.The DE 100 45 270 C2 discloses a firing device and method for controlling the firing device with fluctuating fuel quality. In particular, when the gas quality changes, the fuel-air ratio becomes corresponding changed. In this case, the mixture composition is adjusted for each suitable type of fuel until the desired flame core temperature is reached. In addition, maps are used for different fuels, from which a new, suitable fuel-air ratio is read out whenever the performance requirements change.

Das Verfahren der DE 196 27 857 C2 soll bei der Regelschaltung des Gasbrenners große Regelabweichungen vermeiden. Dafür wird aus der Drehzahländerung des Luft-Gebläses ein Vorhalteanteil für das Steuersignal des Gasventils abgeleitet. Da die Leistungs-Steuersignal-Kennlinie bekannt und in einer Auswerteschaltung gespeichert ist, kann der Vorhalteanteil ermittelt werden. Bei einer Änderung des Bezugssignals J', d.h. einer Änderung des Leistungsbedarfs, wird die Drehzahl des Gebläses verändert. Diese Änderung der Drehzahl bestimmt über einen Addierer einen positiven oder negativen Vorhalteanteil, durch den das Steuersignal angepasst wird. Das daraus resultierende Steuersignal verändert entsprechend die Stellung des Gasventils.The procedure of DE 196 27 857 C2 should avoid large deviations in the control circuit of the gas burner. For this purpose, a derivative component for the control signal of the gas valve is derived from the speed change of the air blower. Since the power control signal characteristic is known and stored in an evaluation circuit, the derivative part can be determined. When changing the reference signal J ', ie a change in the power requirement, the speed of the fan is changed. This change in the speed determines via an adder a positive or negative derivative part, by which the control signal is adjusted. The resulting control signal changes accordingly the position of the gas valve.

Die EP 1 293 727 A1 offenbart ferner eine Regeleinrichtung für Brenner unter Verwendung einer Ionisationselektrode und einer Kalibiereinheit.The EP 1 293 727 A1 further discloses a burner control apparatus using an ionization electrode and a calibration unit.

In der GB 2 270 748 A ist ein Steuerungssystem für einen Gasbrenner gezeigt. Die Regelung erfolgt hier unter Verwendung einer an der Brenneroberfläche gemessenen Temperatur. Da die Oberflächentemperatur von der Flussrate des Luft-Gas-Gemisches abhängt, wird bei Unterschreiten einer bestimmten Temperatur die Geschwindigkeit des Gebläserotors gesenkt, wodurch der Luftfluss und damit das Luft-Gas-Verhältnis gesenkt wird.In the GB 2 270 748 A a control system for a gas burner is shown. The regulation takes place here using a temperature measured at the burner surface. Since the surface temperature depends on the flow rate of the air-gas mixture, falling below a certain temperature, the speed of the fan motor is lowered, whereby the air flow and thus the air-gas ratio is lowered.

Aus der AT 411 189.B ist ein Verfahren zur Regelung eines Gasbrenners bekannt, bei dem die CO-Konzentration in den Abgasen der Brennerflamme mit einem Abgassensor erfasst wird. Ein bestimmter CO-Wert entspricht einem bestimmten Gas-LuftVerhältnis. Ausgehend von einem bekannten, z.B. experimentell ermittelten, Gas-Luftverhältnis bei einem bestimmten CO-Wert kann ein gewünschtes Gas-Luftverhältnis eingestellt werden.From the AT 411 189.B a method for controlling a gas burner is known in which the CO concentration in the exhaust gases of the burner flame is detected with an exhaust gas sensor. A certain CO value corresponds to a certain gas-air ratio. Starting from a known, for example experimentally determined, gas-air ratio at a certain CO value, a desired gas-air ratio can be set.

Die EP 770 824 B1 zeigt eine Regelung des Gas-Luftverhältnisses im Brennstoff-Luftgemisch durch Messen eines Ionisationsstrorns, der vom Luftüberschuss in den Abgasen der Brennerflamme abhängt. Bei stöchiometrischer Verbrennung wird bekanntermaßen ein Maximum des Ionisationsstroms gemessen. In Abhängigkeit von diesem Wert kann die Gemischzusammensetzung optimiert werden.The EP 770 824 B1 shows a control of the gas-air ratio in the fuel-air mixture by measuring a Ionisationsstrorns, which depends on the excess air in the exhaust gases of the burner flame. In stoichiometric combustion is known a maximum of the ionization current is measured. Depending on this value, the mixture composition can be optimized.

Nachteilhaft an den zuletzt genannten Verfahren ist jedoch, dass das Rückkopplungssignal erst bei brennender Flamme erfasst und an den Regelkreis zurückgeführt werden kann. Außerdem limitiert die Trägheit der Sensoren eine genaue Nachregelung. Zudem unterliegen die verwendeten Sensoren Verschmutzungen, so dass die Verbrennung im Zeitverlauf suboptimal geregelt wird und somit die Schadstoffwerte steigen. Insbesondere beim Startvorgang, bei dem noch kein Verbrennungssignal vorliegt, oder bei Laständerungen, bei denen in kurzer Zeit erhebliche Änderungen der Betriebsparameter erforderlich sind, kann es zu Schwierigkeiten und im Extremfall zu einem Erlöschen der Flamme kommen Häufig wird aus diesen Gründen zusätzlich auf pneumatische Regler zurückgegriffen, was jedoch eine Erhöhung der Komplexität der Anlage sowie der Kosten nach sich zieht.A disadvantage of the last-mentioned method, however, is that the feedback signal can only be detected when the flame is burning and fed back to the control loop. In addition, the inertia of the sensors limits accurate readjustment. In addition, the sensors used are subject to contamination, so that the combustion is suboptimal regulated over time and thus increase the pollutant levels. In particular, during the starting process, in which there is no combustion signal, or load changes in which significant changes in operating parameters are required in a short time, it can cause difficulties and in extreme cases to extinguish the flame Frequently, for these reasons, resort to pneumatic regulator which, however, increases the complexity of the plant as well as the costs.

Ausgehend davon ist es eine Aufgabe der vorliegenden Erfindung, eine Steuerung zu einer Feuerungseinrichtung bereitzustellen, die zum einen bei schnellen Lastwechseln und in der Startphase ohne Zeitverzögerung eine gasartenunabhängige Brennstoffzufuhr zuverlässig gewährleistet, zum anderen auch bei stark veränderten Bedingungen, insbesondere hinsichtlich der Brennstoffzusammensetzung oder einer Veränderung der Messcharakteristiken der Sensoren oder der Einstellungen der Anlagenparameter ohne störungsbedingte Ausfälle funktioniert.Based on this, it is an object of the present invention to provide a control system to a firing device, which reliably ensures a gas-independent fuel supply during fast load changes and in the starting phase without delay, on the other hand even under greatly changed conditions, in particular with regard to the fuel composition or a change the measurement characteristics of the sensors or the settings of the system parameters without malfunctioning failures works.

Das erfindungsgemäße Verfahren zur Steuerung einer Feuerungseinrichtung, insbesondere eine Gasbrenners, ist durch die Merkmalskombination gemäß Patentanspruch 1 gekennzeichnet.The inventive method for controlling a firing device, in particular a gas burner, is characterized by the combination of features according to claim 1.

Mit Hilfe dieses Verfahrens können bei schnellem Lastwechsel, insbesondere aber auch beim Startvorgang, unmittelbar stabile Verhältnisse erreicht werden. Eine Nachregelung des Gasventils, welche bei starken Schwankungen der Betriebsparameter viel Zeit in Anspruch nimmt und durch die Trägheit der Sensoren unvollkommen ist, kann somit entfallen. An die Stelle einer Regelung tritt eine Steuerung, die in Abhängigkeit vom Zielwert des ersten Parameters einen Sollwert für eine neue Einstellung vorgibt Erst im darauf folgenden Schritt wird unter Verwendung realer Messgrößen nachgeregelt. Mit dem Verfahren kann unabhängig von der Trägheit der für die Regelung verwendeten Sensoren eine schnelle und zuverlässige Einstellung des Gasventils gefunden werden. Die reale Öffnung des Gasventils liegt dabei zwischen einem oberen und einem unteren Grenzwert. Bei schnellen Sollwertänderungen können die Stellglieder, beispielsweise der Ventilator oder ein Gasstellventil, nach einer gewissen Zeitspanne, die von der Trägheit der Sensoren abhängt, nachgeregelt werden. Es erfolgt also bei der Ausführung des erfindungsgemäßen Verfahrens ein Übergang von einer reinen Steuerung zu einer Regelung.With the help of this method, stable conditions can be achieved with fast load changes, but especially during the starting process. A readjustment of the gas valve, which takes a great deal of time with large fluctuations in the operating parameters and is imperfect due to the inertia of the sensors, can thus be dispensed with. The control is replaced by a controller that specifies a setpoint value for a new setting as a function of the target value of the first parameter. Only in the following step is realignment carried out using real measured variables. With the method, regardless of the inertia of the sensors used for the control, a fast and reliable adjustment of the gas valve being found. The real opening of the gas valve is between an upper and a lower limit. For rapid setpoint changes, the actuators, such as the fan or a gas control valve, after a certain period of time, which depends on the inertia of the sensors, be readjusted. It thus takes place in the execution of the method according to the invention, a transition from a pure control to a control.

Der Parameter, der der Brennerbelastung entspricht, ist die der Massenstrom der der Feuerungseinrichtung zuzuführenden Luft. Die Öffnungswerte des Gasventils können also in dieser Ausführung in Abhängigkeit vom Massen- der Luft dargestellt sein. Die Charakteristik dieser Kennlinie wird unter anderem durch die Eigenschaften des Gasventils bestimmt.The parameter corresponding to the burner load is the mass flow of the air to be supplied to the firing device. The opening values of the gas valve can therefore be represented in this embodiment as a function of the mass of the air. The characteristic of this characteristic is determined inter alia by the properties of the gas valve.

Die Brennerbelastung ist im Wesentlichen proportional zu der dem Gasbrenner zugeführten Luftmenge pro Zeiteinheit. Damit steht fest, dass die Darstellung der Öffnung des Gasventils in Abhängigkeit von Massenstrom der Luft äquivalent zu einer Darstellung der Öffnung des Gasventils in Abhängigkeit von einer Belastung des Brenners ist.The burner load is substantially proportional to the amount of air supplied to the gas burner per unit time. Thus, it is clear that the representation of the opening of the gas valve as a function of mass flow of the air is equivalent to a representation of the opening of the gas valve in response to a load on the burner.

Die Änderung der Öffnung des Gasventils kann durch die Modulation einer Pulsweite, durch die Variation einer Spannung oder eines Stroms einer Ventilspule, oder durch Betätigung eines Schrittmotors eines Ventils durchgeführt werden. Ein Überschreiten des oberen oder des unteren Grenzwerts der Öffnung des Gasventils kann im Rahmen des Verfahrens erfasst werden. Während nach dem Steuerungsprozess die Öffnung des Gasventils zwischen oberem und unterem Grenzwert liegt, kann nach dem Regelungsschritt die Gasöffnung oberhalb oder unterhalb des oberen bzw. unteren Grenzwerts liegen. Dazu kann es insbesondere kommen, wenn die bei Erstellung der Kennlinie festgelegten Sollwerte für die Öffnung des Gasventils von den optimal eingeregelten Werten stark abweichen. Ursachen dafür können Änderungen in der Brennstoffzusammensetzung, Veränderungen der Messcharakteristiken der Sensoren oder der Einstellungen der Anlagenparameter sein.The change of the opening of the gas valve may be performed by the modulation of a pulse width, by the variation of a voltage or a current of a valve spool, or by the operation of a stepping motor of a valve. Exceeding the upper or lower limit of the opening of the gas valve can be detected in the process. While after the control process, the opening of the gas valve is between the upper and lower limit, after the control step, the gas opening may be above or below the upper or lower limit. This can occur, in particular, if the setpoint values for the opening of the gas valve that are defined when the characteristic curve is generated deviate greatly from the optimally adjusted values. This can be due to changes in the fuel composition, changes in the measurement characteristics of the sensors or the settings of the system parameters.

Die Kennlinie, die sich aus den Sollwerten für die Öffnung des Gasventils in Abhängigkeit von dem Parameter ergibt, der der Brennerbelastung entspricht, wird auf Basis der durch die Regelung eingestellten Betriebsparameter der Feuerungseinrichtung neu kalibriert. Fällt nach der Regelung der Wert der Öffnung des Gasventils aus dem durch den oberen und den unteren Grenzwert begrenzten Bereich, so kann eine Neukalibrierung der Kennlinie durchgeführt werden. Bei dieser Neukalibrierung können beispielsweise die Sollwerte so verschoben werden, dass die neue Sollwertlinie durch den eingeregelten Wert für die Öffnung des Gasventils verläuft. In gleicher Weise können die oberen und die unteren Grenzwerte verschoben werden, so dass die neue Sollwertkurve wie bei der bisher geltenden Kennlinie von einem Toleranzkorridor umgeben ist.The characteristic resulting from the opening values of the gas valve as a function of the parameter corresponding to the burner load is recalibrated based on the control unit operating parameters set by the controller. Falls after the regulation, the value of the opening of the gas valve from the through the upper and lower limits limited range, so a recalibration of the characteristic can be performed. For example, during this recalibration, the setpoints may be shifted so that the new setpoint line passes through the adjusted value for the opening of the gas valve. In the same way, the upper and lower limits can be shifted, so that the new setpoint curve is surrounded by a tolerance corridor, as in the previously valid characteristic curve.

Ein Überschreiten des oberen oder ein Unterschreiten des unteren Grenzwerts kann, insbesondere nach dem Ablauf einer vorgegebenen Zeitspanne, zum Abschalten der Feuerungseinrichtung führen. Dieser Maßnahme können sowohl Sicherheitsbedenken als auch wirtschaftlich Überlegungen zugrunde liegen. Eine Regelung in einen Bereich außerhalb der gewünschten, durch die Grenzwerte angegebenen Spanne kann beispielsweise eine unerwünschte Änderung der vorgegebenen Einstellungen des Gasbrenners anzeigen, so dass dieser möglicherweise in einem unsicheren oder uneffektiven Betriebsbereich arbeitet. Das Gerät müsste im Folgenden überprüft und gewartet werden.Exceeding the upper or falling below the lower limit can, in particular after the expiry of a predetermined period of time, lead to switching off the firing device. This measure can be based on both safety concerns and economic considerations. Control to a range outside the desired margin indicated by the limits may, for example, indicate an undesirable change in the default settings of the gas burner, so that it may operate in an unsafe or ineffective operating range. The device would have to be checked and maintained below.

Eine erfindungsgemäße Feuerungseinrichtung, insbesondere ein Gasbrenner, umfasst: ein Gasventil zur Einstellung der Brennstoffzufuhr zur Feuerungseinrichtung; einen Speicher zum Abspeichern von Sollwerten, die von einem Parameter abhängen, der der Brennerbelastung entspricht, und von oberen und unteren Grenzwerten; eine Einrichtung zur Steuerung der Öffnung des Gasventils, die bei einer Änderung des Parameters, der der Brennerbelastung entspricht, von einem Startwert zu einem Zielwert die Öffnung des Gasventils von einem ersten zu einem zweiten Öffnungswert unter Vorgabe eines abgespeicherten Sollwerts anpasst, wobei der zweite Öffnungswert zwischen einem abgespeicherten oberen und einem unteren Grenzwert liegt, und wobei während des Übergangs der Öffnung des Gasventils vom ersten zum zweiten Öffnungswert keine Regelung der Brennstoffzufuhr durchgeführt wird; Mittel zur Regelung, die nach Erreichen des Zielwerts des Parameters, der der Brennerbelastung entspricht, Betriebsparameter der Feuerungseinrichtung regeln und Mittel zur neu Kalibrierung eine Kennlinie, die sich aus den Sollwerten für die Öffnung (w) des Gasventils in Abhängigkeit von dem Parameter (mL) ergibt, auf Basis der durch einer sich der Steuerung anschließenden Regelung eingestellten Betriebsparameter, wenn die Ventilöffnung (w) oberhalb einer oberen Grenzkurve (K1) oder unterhalb einer unteren Grenzkurve (K2) liegt.A firing device according to the invention, in particular a gas burner, comprises: a gas valve for adjusting the fuel supply to the firing device; a memory for storing set values that depend on a parameter corresponding to the burner load and upper and lower limits; a device for controlling the opening of the gas valve, which, in the event of a change of the parameter corresponding to the burner load from a starting value to a target value, adapts the opening of the gas valve from a first to a second opening value according to a stored nominal value, the second opening value between a stored upper and a lower limit, and wherein during the transition of the opening of the gas valve from the first to the second opening value, no control of the fuel supply is performed; Means for controlling, after reaching the target value of the parameter corresponding to the burner load, operating parameters of the firing device and means for recalibration a characteristic resulting from the set values for the opening (w) of the gas valve in dependence on the parameter (m L ), based on the operating parameters set by a controller following the control, when the valve opening (w) is above an upper limit curve (K 1 ) or below a lower limit curve (K 2 ).

Das Gasventil kann ein Stellglied, insbesondere einen Schrittmotor, eine pulsweitenmodulierte oder eine durch eine elektrische Größe gesteuerte Spule, umfassen.The gas valve may be an actuator, in particular a stepper motor, a pulse width modulated or a coil controlled by an electrical variable.

Die Feuerungseinrichtung weist wenigstens einen Massenstromsensor zur Messung der der Feuerungseinrichtung pro Zeiteinheit zugeführten Luftmenge auf. Die Feuerungseinrichtung kann ferner einen Massenstromsensor zur Messung der der Feuerungseinrichtung pro Zeiteinheit zugeführten Menge an Brennstoffmedium und/oder der Menge des zugeführten Gemisches aus Luft und Brennstoffmedium aufweisen.The firing device has at least one mass flow sensor for measuring the amount of air supplied to the firing device per unit time. The firing device may further comprise a mass flow sensor for measuring the amount of fuel medium supplied to the firing device per unit time and / or the amount of the supplied mixture of air and fuel medium.

Insbesondere kann die Feuerungseinrichtung im Bereich der Brennerflamme eine Einrichtung zum Messen einer von der Feuerungseinrichtung erzeugten Temperatur aufweisen.In particular, the firing device in the region of the burner flame may have a device for measuring a temperature generated by the firing device.

Der Temperatursensor kann beispielsweise im Bereich der Flamme, aber auch am Brenner in der Nähe der Flamme angeordnet sein. Beispielsweise kann auch ein Thermoelement als Temperatursensor verwendet werden.The temperature sensor may be arranged, for example, in the region of the flame, but also on the burner in the vicinity of the flame. For example, a thermocouple can be used as a temperature sensor.

Weitere Merkmale und Vorteile des Gegenstands der Erfindung ergeben sich aus der nachfolgenden Beschreibung spezieller Ausführungsbeispiele. Es zeigen:

Fig. 1
eine Feuerungseinrichtung;
Fig. 2
eine Kennlinie, wie sie zur Durchführung des erfindungsgemäßen Verfahrens verwendet wird.
Further features and advantages of the subject of the invention will become apparent from the following description of specific embodiments. Show it:
Fig. 1
a firing device;
Fig. 2
a characteristic curve, as used for carrying out the method according to the invention.

Figur 1 zeigt einen Gasbrenner, bei dem ein Gemisch aus Luft L und Gas G vorgemischt und verbrannt wird. FIG. 1 shows a gas burner in which a mixture of air L and gas G is premixed and burned.

Der Gasbrenner weist einen Luftzufuhrabschnitt 1 auf, über den Verbrennungsluft L angesaugt wird. Ein Massenstromsensor 2 misst den Massenstrom der von einem Gebläse 9 angesaugten Luft L. Der Massenstromsensor 2 ist so angeordnet, dass in seiner Umgebung eine möglichst laminare Strömung erzeugt wird, um Messfehler zu vermeiden. Insbesondere könnte der Massenstromsensor in einem Bypass (nicht gezeigt) und unter Verwendung eines Laminarelements angeordnet werden.The gas burner has an air supply section 1, is sucked through the combustion air L. A mass flow sensor 2 measures the mass flow of the air L sucked in by a blower 9. The mass flow sensor 2 is arranged so that as laminar a flow as possible is generated in its environment in order to avoid measurement errors. In particular, the mass flow sensor could be arranged in a bypass (not shown) and using a laminar element.

Im Luftzufuhrabschnitt 1 kann auch ein Ventil 3 für die Verbrennungsluft angeordnet sein. Allerdings wird jedoch in der Regel ein geregeltes Gebläse mit Luftmassenstromsensor eingesetzt werden, so dass das Ventil entfallen kann.In the air supply section 1, a valve 3 may be arranged for the combustion air. However, however, usually a regulated fan with air mass flow sensor will be used, so that the valve can be omitted.

Für die Gaszufuhr ist ein Gaszufuhrabschnitt 4 vorgesehen, der an eine Gaszuleitung angeschlossen ist. Das Gas strömt während des Betriebs des Gasbrenners durch den Abschnitt 4,. Durch ein Ventil 6, das ein elektronisch gesteuertes Ventil sein kann, strömt das Gas durch eine Leitung 7 in den Mischungsbereich 8. Im Mischungsbereich 8 findet eine Vermischung des Gases G mit der Luft L statt. Der Ventilator des Gebläses 9 wird mit einer einstellbaren Drehzahl angetrieben, um sowohl die Luft L als auch das Gas G anzusaugen.For the gas supply, a gas supply section 4 is provided, which is connected to a gas supply line. The gas flows through the section 4, during operation of the gas burner. Through a valve 6, which may be an electronically controlled valve, the gas flows through a conduit 7 into the mixing region 8. In the mixing region 8, a mixing of the gas G with the air L takes place. The fan of the fan 9 is driven at an adjustable speed to suck in both the air L and the gas G.

Das Ventil 6 ist so eingestellt, dass bei Berücksichtigung der übrigen Betriebsparameter, beispielsweise der Drehzahl des Ventilators, ein vorgegebenes Luft-Gas-Verhältnis in den Mischbereich 8 gelangt. Das Luft-Gas-Verhältnis soll dabei so gewählt sein, dass eine möglichst saubere und effektive Verbrennung stattfindet.The valve 6 is adjusted so that, taking into account the other operating parameters, such as the speed of the fan, a predetermined air-gas ratio enters the mixing area 8. The air-gas ratio should be chosen so that the most clean and effective combustion takes place.

Über eine Leitung 10 strömt das Luft-Gasgemisch vom Gebläse 9 zum Brennerteil 11. Dort tritt es aus und speist die Brennerflamme 13, die eine vorgegebene Wärmeleistung abgeben soll. Am Brennerteil 11 ist eine Temperatursensor 12, beispielsweise ein Thermoelement, angeordnet. Mit Hilfe dieses Thermoelements wird eine Ist-Temperatur gemessen, die bei der Durchführung der nachfolgend beschriebenen Verfahren zur Regelung bzw. zur Steuerung des Gasbrenners verwendet wird. Im vorliegenden Beispiel ist der Temperatursensor 12 an einer Oberfläche des Brennerteils 11 angeordnet. Es ist jedoch auch denkbar, den Sensor an anderer Stelle im Wirkungsbereich der Flamme 13 anzuordnen. Die Referenztemperatur des Thermoelements wird an einer Stelle außerhalb des Wirkungsbereichs der Flamme 13, beispielsweise in der Luftzufuhrleitung 1, gemessen.Via a line 10, the air-gas mixture flows from the blower 9 to the burner part 11. There it exits and feeds the burner flame 13, which is to deliver a predetermined heat output. On the burner part 11, a temperature sensor 12, for example a thermocouple, is arranged. With the aid of this thermocouple an actual temperature is measured, which is used in carrying out the method described below for controlling or controlling the gas burner. In the present example, the temperature sensor 12 is arranged on a surface of the burner part 11. However, it is also conceivable to arrange the sensor elsewhere in the area of action of the flame 13. The reference temperature of the thermocouple is measured at a position outside the effective range of the flame 13, for example in the air supply line 1.

Eine nicht dargestellte Einrichtung zur Steuerung bzw. zur Regelung des Luft- und/oder Gasstroms erhält Eingangsdaten vom Temperatursensor 12 und von dem Massenstromsensor 2 und gibt Steuersignale an das Ventil 6 sowie an den Antrieb des Gebläses 9 ab. Die Öffnung des Ventils 6 und die Drehzahl des Ventilators des Gebläses 9 werden so eingestellt, dass sich die gewünschte Luft- und Gaszufuhr ergibt.A device, not shown, for controlling or regulating the air and / or gas flow receives input data from the temperature sensor 12 and the mass flow sensor 2 and outputs control signals to the valve 6 and to the drive of the blower 9. The opening of the valve 6 and the speed of the fan of the fan 9 are adjusted so that the desired air and gas supply results.

Die Steuerung erfolgt dabei durch Durchführung der nachfolgend beschriebenen Verfahren. Insbesondere weist die Steuereinrichtung einen Speicher zum Abspeichern von Kennlinien bzw. von Sollwerten sowie eine entsprechende Datenverarbeitungseinheit auf, die zur Durchführung der entsprechenden Verfahren eingerichtet ist.The control is carried out by performing the method described below. In particular, the control device has a memory for storing characteristic curves or nominal values as well as a corresponding data processing unit which is set up to carry out the corresponding methods.

In Figur 2 ist eine Abhängigkeit der Öffnung w des Gasventils 6, welches die Brennstoffzufuhr bestimmt, in Abhängigkeit vom Massenstrom mL der dem Brenner zugeführten Luft dargestellt. Dabei entspricht die mittlere Kurve K3 einer Sollwertkurve, die die vorgegebenen Öffnungswerte wsoll eines Gasventils 6 in Abhängigkeit von einem entsprechenden Luftmassenstrom mL angibt.In FIG. 2 is a dependence of the opening w of the gas valve 6, which determines the fuel supply, shown in dependence on the mass flow m L of the burner supplied air. In this case, the mean curve K3 corresponds to a desired value curve which indicates the predetermined opening values w soll of a gas valve 6 as a function of a corresponding air mass flow m L.

Bei einer Änderung der vorgegebenen Brennerbelastung Q, beispielsweise bei einer Änderung des Betriebszustandes oder beim Starten der Anlage, wird der Luftmassenstrom mL von einem Anfangswert mL1 zu einem zweiten Wert mL2 verändert und an die neue Belastung Q2 angepasst.When the prescribed burner load Q changes, for example when the operating state changes or when the system is started, the air mass flow m L is changed from an initial value m L1 to a second value m L2 and adapted to the new load Q 2 .

Da eine Regelung der Gaszufuhr bei dem relativ kurzfristigem Übergang von mL1 auf mL2 auf Grund der Trägheit der Sensoren zeitlich stark verzögert wäre, wird die Regelung ausgeschaltet und der Öffnungswert w des Gasventils vom bisher eingestellten Wert w1 auf einen neuen Sollöffnungswert w2 geändert. Der Wert w2 liegt auf der Sollöffnungskurve K3.Since a control of the gas supply would be greatly delayed in time at the relatively short transition from m L1 to m L2 due to the inertia of the sensors, the control is switched off and the opening value w of the gas valve from previously set value w 1 changed to a new target opening value w 2 , The value w 2 is on the target opening curve K3.

Die sich einstellende Öffnung des Gasventils liegt jedenfalls zwischen einer oberen Grenzkurve K1 und einer unteren Grenzkurve K2, welche einen Toleranzbereich für die Öffnung des Gasventils angeben. Die obere Grenzkurve K1 entspricht dabei einer maximalen erlaubten Öffnung des Gasventils, die untere Grenzkurve K2 einer minimalen erlaubten Öffnung des Gasventils 6.The adjusting opening of the gas valve is in any case between an upper limit curve K1 and a lower limit curve K2, which indicate a tolerance range for the opening of the gas valve. The upper limit curve K1 corresponds to a maximum allowable opening of the gas valve, the lower limit curve K2 a minimum allowable opening of the gas valve. 6

Danach schießt sich ein Regelungsvorgang an. Bei dem Regelungsvorgang werden die Betriebsparameter der Feuerungseinrichtung, insbesondere die Einstellung des Ventils 6 sowie die Drehzahl des Ventilators des Gebläses 9 so angepasst, dass der Verbrennungsvorgang optimiert wird. Die Regelung kann dabei in beliebiger Weise erfolgen. Im vorliegenden Beispiel erfolgt sie durch Messung einer von der Brennerflamme 13 in ihrem Wirkungsbereich erzeugten Temperatur Tist durch einen Temperatursensor 12. Die Regelung kann beispielsweise wie im zuvor beschriebenen Verfahren erfolgen.Thereafter, a regulatory action shoots. In the control process, the operating parameters of the firing device, in particular the setting of the valve 6 and the speed of the fan of the fan 9 are adjusted so that the combustion process is optimized. The scheme can be done in any way. In the present example it is done by measuring a generated by the burner flame 13 in its sphere of temperature T is 12 by a temperature sensor The control can for example take place as in the method described above.

Es bietet sich an, pulsweitenmodulierte Ventile, ein elektronisch gesteuerte Ventile oder ein Ventile mit einem durch einen Schrittmotor betätigten Stellglied zu verwenden.It is useful to use pulse width modulated valves, electronically controlled valves or valves with a stepper motor actuated actuator.

Das Ansteuersignal zur Einstellung der Öffnung des Gasventils kann entsprechend z.B. die Betätigung eines Schrittmotors auslösen, oder die Pulsweite, die Spannung oder den Strom einer Spule verändern. Die Luftmassenströme mL und Gasmassenströme mG werden durch Massenstromsensoren 2 und 5 gemessen.The control signal for adjusting the opening of the gas valve can accordingly trigger, for example, the operation of a stepping motor, or change the pulse width, the voltage or the current of a coil. The air mass flows m L and gas mass flows m G are measured by mass flow sensors 2 and 5.

Wird nun in einer Phase des Verfahrens vor oder nach Durchführung des Regelvorgangs eine Ventilöffnung w eingestellt, die oberhalb der oberen Grenzkurve K1 oder unterhalb der unteren Grenzkurve K2 liegt, so können entsprechende Konsequenzen gezogen werden. Erfindungsgemäß kann ein Verlassen des zwischen K1 und K2 liegenden Toleranzkorridors zu einem Kalibriervorgang führen. Bei der Kalibrierung könnten die nach der Regelung eingestellten Bedingungen in einem Speicher der Steuereinrichtung abgelegt und für den nächsten Start verwendet werden. Die Sollwertkurve K3 kann wie die Grenzkurven K1 und K2, verschoben werden, so dass sich auch bei der neuen Kurve ein gleichmäßiger Toleranzkorridor für die Öffnung des Gasventils 6 um die Sollwertkurve K3 ergibt.If a valve opening w, which lies above the upper limit curve K1 or below the lower limit curve K2, is now set in one phase of the method before or after the control process has been carried out, appropriate consequences can be drawn. According to the invention, leaving the tolerance corridor lying between K1 and K2 can lead to a calibration process. During calibration, the conditions set after the control could be stored in a memory of the controller and used for the next start. The setpoint curve K3, like the limit curves K1 and K2, can be shifted so that a uniform tolerance corridor for the opening of the gas valve 6 around the setpoint curve K3 also results in the new curve.

Dazu kann ein Überschreiten der Grenzkurven K1 oder K2 nach oben bzw. nach unten nach einer bestimmten Zeitspanne oder bei wiederholten Über- bzw. Unterschreiten ein Abschalten des Geräts bewirken. Es kann vorkommen, dass sich bestimmte Einstellungen des Gasbrenners im Laufe der Zeit verstellen oder sich bestimmte Randbedingungen so geändert haben, dass ein Sicherheitsrisiko auftritt oder der Gasbrenner in einem nicht effektiven Betriebszustand arbeitet. Eine Abweichung der Öffnung des Gasventils vom erlaubten Korridor kann beispielsweise durch eine Abweichung des Gasdrucks vom zulässigen Eingangsdruckbereich oder durch eine Fehlfunktion der Sensoren ausgelöst werden. Das Abschalten kann somit als Hinweis gewertet werden, dass eine Überprüfung und Wartung des Geräts erforderlich ist.For this purpose, exceeding the limit curves K1 or K2 upwards or downwards after a certain period of time or in case of repeated overshoot or undershoot can cause the device to be switched off. It may happen that certain gas burner settings change over time or certain boundary conditions have changed so that a safety hazard occurs or the gas burner operates in a non-effective operating state. A deviation of the opening of the gas valve from the permitted corridor can be triggered for example by a deviation of the gas pressure from the permissible inlet pressure range or by a malfunction of the sensors. The shutdown can thus be interpreted as an indication that a review and maintenance of the device is required.

Durch das beschriebene Verfahren kann sichergestellt werden, dass, bis eine wirksame Regelung der Gaszufuhr einsetzen kann, durch die Steuerung, sei es bei einem Lastwechsel des Gasbrenners oder in der Startphase, eine plausible Öffnung w2 des Gasventils eingestellt wird. Auf diese Weise kann verhindert werden, dass etwa die Flamme während der Laständerung erlischt.By means of the method described, it can be ensured that, until an effective control of the gas supply can start, a plausible opening w 2 of the gas valve is set by the control, be it during a load change of the gas burner or in the starting phase. In this way it can be prevented that, for example, the flame goes out during the load change.

Durch das Verfahren wird beim Start des Brenners gewährleistet, dass in einem weiten Bereich, angepasst an die vorgegebene Brennerbelastung, gezündet werden kann. Bei Lastwechseln findet eine schnelle Anpassung der Gaszufuhr an die neue Last statt, bevor durch eine nachfolgende Regelung die Feineinstellung gefunden wird.By the method is ensured at the start of the burner, that in a wide range, adapted to the predetermined burner load, can be ignited. During load changes, a quick adaptation of the gas supply to the new load takes place, before the fine adjustment is found by a subsequent regulation.

Claims (9)

  1. A method for controlling a firing device having a subsequent regulation, wherein
    when a parameter (mL) which is a mass flow of air provided to the firing device and which corresponds to the burner load (Q) is changed from a start value (Q1) to a target value (Q2), the supply of fuel to the firing device is adapted by a change to the opening of the gas valve (6) from a first (w1) to a second opening value (w2) specifying a desired value which is dependent upon the parameter (mL) received by a measurement of the air mass flow, the second opening value (w2) lying between an upper and a lower limit value, and during the transition of the opening of the gas valve from the first (w1) to the second opening value (w2), no regulation of the supply of fuel being implemented, and after the target value of the parameter (mL), which corresponds to the burner load (Q), has been reached, regulation of the operating parameters of the firing device being implemented, wherein a characteristic which is produced from the desired values for the opening (w) of the gas valve dependent upon the parameter (mL) which corresponds to the burner loading (Q), is re-calibrated upon the basis of the operating parameters of the firing device set by the regulation when the valve opening (w) is above an upper limiting line (K1) or below a lower limiting line (K2).
  2. The method according to claim 1, wherein the burner load (Q) is substantially in proportion to the quantity of air supplied to the gas burner per unit of time (mL).
  3. The method according to claim 1 or 2, wherein the change to the opening of the gas valve is implemented by modulating a pulse width, by varying a voltage or a current of a valve coil, or by actuating a stepper motor of a valve.
  4. The method according to one of the claims 1 to 3, wherein passing the upper or lower limit value of the opening is registered.
  5. The method according to one of the claims 1 to 4, wherein passing over the upper or passing below the lower limit value, after a pre-determined period of time has passed, leads to the firing device shutting down.
  6. Firing device for conducting the method according to one of the claims 1 to 5 comprising:
    a gas valve (6) for setting the supply of fuel to the firing device;
    a storage unit for storing desired values which are dependent upon a parameter (mL) which corresponds to the burner load (Q) and upon upper and lower limit values;
    at least one air mass sensor (2, 5) for measuring the mass flow of air (mL) supplied to the firing device per unit of time which is used as the parameter;
    a device for controlling the opening of the gas valve which, when a parameter (mL), which corresponds to the burner load (Q), is changed from a start value to a target value, adapts the opening of the gas valve from a first (w1) to a second opening value (w2) according to a stored desired value, the second opening value (w2) lying between a stored upper and a lower limit value, and during the transition of the opening of the gas valve from the first (w1) to the second opening value (w2) no regulation of the fuel supply being implemented; and
    regulating means which, after reaching the target value of the parameter, which corresponds to the burner load (Q), regulate the operating parameters of the firing device, and
    means for re-calibrating of a characteristic which is produced from the desired values for the opening (w) of the gas valve dependent upon the parameter (mL) which corresponds to the burner loading (Q), upon the basis of the operating parameters of the firing device set by the regulation following a controlling when the valve opening (w) is above an upper limiting line (K1) or below a lower limiting line (K2).
  7. The firing device according to claim 6, wherein the gas valve (6) comprises a correcting element, in particular a stepper motor, a pulse width modulated coil or a coil controlled by an electrical value.
  8. The firing device according to claim 8, wherein the firing device has at least one mass flow sensor (2, 5) for measuring the quantity of fuel medium (mG) supplied per unit of time and/or the quantity of the mix (mM) of air and fuel medium supplied.
  9. The firing device according to one of the claims 6 to 8, wherein in the region of the burner flame (13), the firing device has a device (12) for measuring a temperature (Tist) produced by the firing device.
EP13152525.5A 2004-06-23 2005-06-20 Method for controlling a firing device and firing device Not-in-force EP2594848B1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102004030299A DE102004030299A1 (en) 2004-06-23 2004-06-23 Firing equipment for gas burners has means for determining value dependent on measured temperature and means for regulating generated temperature using characteristic line representing value range corresponding to ideal temperature
DE202004017851U DE202004017851U1 (en) 2004-06-23 2004-06-23 Firing equipment for gas burners has means for determining value dependent on measured temperature and means for regulating generated temperature using characteristic line representing value range corresponding to ideal temperature
DE102004055716A DE102004055716C5 (en) 2004-06-23 2004-11-18 Method for controlling a firing device and firing device (electronic composite I)
EP05752994.3A EP1902254B1 (en) 2004-06-23 2005-06-20 Method for regulating and controlling a firing apparatus and firing apparatus

Related Parent Applications (3)

Application Number Title Priority Date Filing Date
EP05752994.3A Division EP1902254B1 (en) 2004-06-23 2005-06-20 Method for regulating and controlling a firing apparatus and firing apparatus
EP05752994.3A Division-Into EP1902254B1 (en) 2004-06-23 2005-06-20 Method for regulating and controlling a firing apparatus and firing apparatus
EP05752994.3 Division 2005-06-20

Publications (2)

Publication Number Publication Date
EP2594848A1 EP2594848A1 (en) 2013-05-22
EP2594848B1 true EP2594848B1 (en) 2015-09-23

Family

ID=34970763

Family Applications (2)

Application Number Title Priority Date Filing Date
EP05752994.3A Not-in-force EP1902254B1 (en) 2004-06-23 2005-06-20 Method for regulating and controlling a firing apparatus and firing apparatus
EP13152525.5A Not-in-force EP2594848B1 (en) 2004-06-23 2005-06-20 Method for controlling a firing device and firing device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP05752994.3A Not-in-force EP1902254B1 (en) 2004-06-23 2005-06-20 Method for regulating and controlling a firing apparatus and firing apparatus

Country Status (6)

Country Link
US (2) US8500441B2 (en)
EP (2) EP1902254B1 (en)
KR (2) KR20070043712A (en)
CA (2) CA2571520C (en)
DE (1) DE102004055716C5 (en)
WO (1) WO2006000366A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022122820A1 (en) 2022-09-08 2024-03-14 Vaillant Gmbh Method for evaluating an installation of a gas-air system of a heater, gas-air system and computer program

Families Citing this family (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006006964B4 (en) * 2006-02-14 2012-09-06 Ebm-Papst Landshut Gmbh Method for starting a firing device under unknown conditions
AT505064B8 (en) * 2007-03-22 2009-07-15 Vaillant Austria Gmbh CONTROL OF THE COMBUSTION GAS-AIR MIXTURE ABOUT THE BURNER OR FLAME TEMPERATURE OF A HEATER
EP1923634B1 (en) * 2006-11-15 2017-06-28 Vaillant GmbH Adjustment of fuel gas/air mixture via the burner or flame temperature of a heating device
CA2884436C (en) 2007-11-16 2018-04-03 Wolfedale Engineering Limited Temperature control apparatus for a barbeque grill
US9119977B2 (en) * 2008-07-11 2015-09-01 Zodiac Aerotechnics Oxygen breathing device with mass flow control
DE102008038949A1 (en) 2008-08-13 2010-02-18 Ebm-Papst Landshut Gmbh Safety system in and method of operation of an incinerator
CA2706061A1 (en) * 2009-06-03 2010-12-03 Nordyne Inc. Premix furnace and methods of mixing air and fuel and improving combustion stability
US9217654B2 (en) * 2010-09-15 2015-12-22 General Electric Company Submetering hydrocarbon fueled water heaters with energy manager systems
CN101949549B (en) * 2010-10-18 2011-12-21 攀钢集团钢铁钒钛股份有限公司 Flow control method of combustion system
US20120125240A1 (en) * 2010-11-22 2012-05-24 Alstom Technology Ltd. System and method of managing energy utilized in a flue gas processing system
ITMI20110411A1 (en) * 2011-03-15 2012-09-16 Bertelli & Partners Srl PERFECTED METHOD OF CONTROL OF A GAS APPLIANCE OR BOILER
JP5742553B2 (en) * 2011-07-28 2015-07-01 株式会社ノーリツ Combustion device
US8899264B2 (en) 2011-12-15 2014-12-02 Honeywell International Inc. Gas valve with electronic proof of closure system
US9557059B2 (en) 2011-12-15 2017-01-31 Honeywell International Inc Gas valve with communication link
US8947242B2 (en) 2011-12-15 2015-02-03 Honeywell International Inc. Gas valve with valve leakage test
US9835265B2 (en) 2011-12-15 2017-12-05 Honeywell International Inc. Valve with actuator diagnostics
US8839815B2 (en) 2011-12-15 2014-09-23 Honeywell International Inc. Gas valve with electronic cycle counter
US9074770B2 (en) 2011-12-15 2015-07-07 Honeywell International Inc. Gas valve with electronic valve proving system
US8905063B2 (en) 2011-12-15 2014-12-09 Honeywell International Inc. Gas valve with fuel rate monitor
US9846440B2 (en) 2011-12-15 2017-12-19 Honeywell International Inc. Valve controller configured to estimate fuel comsumption
US9851103B2 (en) 2011-12-15 2017-12-26 Honeywell International Inc. Gas valve with overpressure diagnostics
US9995486B2 (en) 2011-12-15 2018-06-12 Honeywell International Inc. Gas valve with high/low gas pressure detection
US20130337388A1 (en) * 2012-06-14 2013-12-19 Webasto Ag Method of controlling a mobile heating device
EP2685168B1 (en) * 2012-07-13 2015-10-14 Honeywell Technologies Sarl Method for operating a gas burner
US10422531B2 (en) * 2012-09-15 2019-09-24 Honeywell International Inc. System and approach for controlling a combustion chamber
US10317076B2 (en) 2014-09-12 2019-06-11 Honeywell International Inc. System and approach for controlling a combustion chamber
US9234661B2 (en) 2012-09-15 2016-01-12 Honeywell International Inc. Burner control system
DE102012019409A1 (en) * 2012-10-04 2014-04-10 August Brötje GmbH Device for generating heat from at least one energy carrier medium with the addition of air
ITBO20120568A1 (en) * 2012-10-17 2014-04-18 Gas Point S R L ADJUSTMENT AND CONTROL EQUIPMENT FOR COMBUSTION IN A FUEL GAS BURNER
EP2868970B1 (en) 2013-10-29 2020-04-22 Honeywell Technologies Sarl Regulating device
US10024439B2 (en) 2013-12-16 2018-07-17 Honeywell International Inc. Valve over-travel mechanism
US9841122B2 (en) 2014-09-09 2017-12-12 Honeywell International Inc. Gas valve with electronic valve proving system
US9645584B2 (en) 2014-09-17 2017-05-09 Honeywell International Inc. Gas valve with electronic health monitoring
US10503181B2 (en) 2016-01-13 2019-12-10 Honeywell International Inc. Pressure regulator
US10274195B2 (en) * 2016-08-31 2019-04-30 Honeywell International Inc. Air/gas admittance device for a combustion appliance
DE102017204021A1 (en) 2016-09-02 2018-03-08 Robert Bosch Gmbh Method for updating a characteristic curve in a heating system as well as a control unit and a heating system
US10564062B2 (en) 2016-10-19 2020-02-18 Honeywell International Inc. Human-machine interface for gas valve
DE102017126138A1 (en) 2017-11-08 2019-05-09 Ebm-Papst Landshut Gmbh Method for controlling a fuel gas operated heater
DE102017126137A1 (en) 2017-11-08 2019-05-09 Ebm-Papst Landshut Gmbh Method for controlling a fuel gas operated heater
US11073281B2 (en) 2017-12-29 2021-07-27 Honeywell International Inc. Closed-loop programming and control of a combustion appliance
US10718517B2 (en) * 2018-05-03 2020-07-21 Grand Mate Co., Ltd. Gas appliance and control method thereof
US10697815B2 (en) 2018-06-09 2020-06-30 Honeywell International Inc. System and methods for mitigating condensation in a sensor module
DE102019101189A1 (en) 2019-01-17 2020-07-23 Ebm-Papst Landshut Gmbh Process for regulating a gas mixture
DE102019101191A1 (en) 2019-01-17 2020-07-23 Ebm-Papst Landshut Gmbh Method for controlling a gas mixture using a gas sensor and a gas mixture sensor
DE202019100263U1 (en) 2019-01-17 2019-02-04 Ebm-Papst Landshut Gmbh Heater with control of a gas mixture using a gas sensor, a fuel gas sensor and a gas mixture sensor
DE102019101190A1 (en) 2019-01-17 2020-07-23 Ebm-Papst Landshut Gmbh Method for regulating a gas mixture using a gas sensor, a fuel gas sensor and a gas mixture sensor
DE202019100264U1 (en) 2019-01-17 2019-02-04 Ebm-Papst Landshut Gmbh Heater with control of a gas mixture using a gas sensor and a gas mixture sensor
DE202019100261U1 (en) 2019-01-17 2019-02-04 Ebm-Papst Landshut Gmbh Heater with regulation of a gas mixture
EP3938707A1 (en) * 2019-03-12 2022-01-19 Bekaert Combustion Technology B.V. Method to operate a modulating burner
NL2022826B1 (en) 2019-03-28 2020-10-02 Bdr Thermea Group B V Method for operating a premix gas burner, a premix gas burner and a boiler
DE102019110977A1 (en) * 2019-04-29 2020-10-29 Ebm-Papst Landshut Gmbh Method for checking a gas mixture sensor in a fuel gas operated heater
DE102019110976A1 (en) * 2019-04-29 2020-10-29 Ebm-Papst Landshut Gmbh Method for checking a gas mixture sensor and ionization sensor in a fuel gas operated heater
DE102019113985A1 (en) * 2019-05-24 2020-11-26 Ebm-Papst Landshut Gmbh Gas blower device with a gas blower and an anemometer
DE102019114919A1 (en) * 2019-06-04 2020-12-10 Ebm-Papst Landshut Gmbh Method for regulating a fuel gas operated heater
DE102021214839A1 (en) 2021-03-15 2022-09-15 Siemens Aktiengesellschaft Flame monitoring with temperature sensor
ES2953159T3 (en) 2021-03-16 2023-11-08 Siemens Ag Performance detection and air ratio control using sensors in the combustion chamber
DE102021121093A1 (en) 2021-08-13 2023-02-16 Vaillant Gmbh Method for operating a heater, computer program, storage medium, regulation and control device, heater and use of a signal
DE102021124643A1 (en) 2021-09-23 2023-03-23 Vaillant Gmbh Method for detecting flame extinction of a burner
DE102022112173A1 (en) 2022-05-16 2023-11-16 Vaillant Gmbh Method for operating a heater, computer program, control and control device, heater and use of a determined electrical resistance
DE102022123899A1 (en) 2022-09-19 2024-03-21 Vaillant Gmbh Method for operating a heater, computer program, control and control device, heater and use of a detected speed

Family Cites Families (88)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2884009A (en) * 1955-05-16 1959-04-28 Sidney W Hetherington Fluid flow control valve with modulating orifice
US3191917A (en) * 1962-03-30 1965-06-29 Mcgraw Edison Company Inc Dryer control and dryer
US3266551A (en) * 1965-08-31 1966-08-16 Electronics Corp America Combustion control system
GB1288824A (en) * 1970-05-06 1972-09-13
US3741710A (en) * 1971-12-20 1973-06-26 L Nelson Combustion control valve means and system
US3861858A (en) * 1972-12-11 1975-01-21 Midland Ross Corp Throat mix burner
US4059385A (en) * 1976-07-26 1977-11-22 International Business Machines Corporation Combustion monitoring and control system
US4083677A (en) * 1976-09-22 1978-04-11 Bloom Engineering Company, Inc. Method and apparatus for heating a furnace chamber
US4150939A (en) * 1977-08-22 1979-04-24 Reliance Instrument Manufacturing Corp. Differential controller for positioning combustion system
JPS6018887B2 (en) * 1978-04-17 1985-05-13 松下電器産業株式会社 Combustion control device
SE439980B (en) * 1978-06-02 1985-07-08 United Stirling Ab & Co METHOD AND DEVICE FOR REGULATING AIR / FUEL MIXTURE BY BURNER OF THE TYPE DESIGNED WITH AN EVAPORATOR TUBE
JPS57166416A (en) * 1981-04-04 1982-10-13 Chugai Ro Kogyo Kaisha Ltd Automatic air-fuel ratio controller of combustion equipment using preheated air
JPS57196016A (en) * 1981-05-28 1982-12-01 Mitsubishi Electric Corp Combustion device
DE3407552A1 (en) * 1984-03-01 1985-09-05 Bodenseewerk Perkin Elmer Co GAS CONTROL DEVICE FOR CONTROLLING THE FUEL GAS AND OXIDE SUPPLY TO A BURNER IN AN ATOMIC ABSORPTION SPECTROMETER
JPS62107241U (en) * 1985-12-24 1987-07-09
JPS62206319A (en) * 1986-03-04 1987-09-10 Yamamoto Seisakusho:Kk Air-fuel ratio control device of burner
JPS62218724A (en) * 1986-03-20 1987-09-26 Matsushita Electric Ind Co Ltd Hot water boiler
JPS6332218A (en) * 1986-07-24 1988-02-10 Matsushita Electric Ind Co Ltd Burning control device
US4688547A (en) * 1986-07-25 1987-08-25 Carrier Corporation Method for providing variable output gas-fired furnace with a constant temperature rise and efficiency
DE3712392C1 (en) 1987-04-11 1988-10-13 Programmelectronic Eng Ag Method and arrangement for increasing the operating reliability of furnace burner systems
JPH0198818A (en) * 1987-10-08 1989-04-17 Nippon Denso Co Ltd Control device for gas hot water feeder
US4889103A (en) * 1988-01-25 1989-12-26 Joseph Fraioli Infrared wok heater
DE3812697A1 (en) * 1988-04-16 1989-12-28 Programmelectronic Eng Ag METHOD FOR REDUCING THE INTERFERENCE EFFECT IN FAN BURNER PLANTS AND FAN BURNER PLANT
JPH0282015A (en) * 1988-09-19 1990-03-22 Sanyo Electric Co Ltd Combustion control device for heater
FR2638819A1 (en) 1988-11-10 1990-05-11 Vaillant Sarl METHOD AND DEVICE FOR PREPARING A COMBUSTIBLE-AIR MIXTURE FOR COMBUSTION
CA2005415C (en) * 1989-01-10 1994-03-01 Willie H. Best High efficiency gas burner assembly
US4865540A (en) * 1989-02-01 1989-09-12 Foster Wheeler Energy Corporation Air flow measurement device for fluidized bed reactor
DE3908138A1 (en) * 1989-03-14 1990-09-20 Klamke Record Oel Gasbrenner Device for monitoring and/or regulating the combustion in an oil or gas burner
US5367470A (en) * 1989-12-14 1994-11-22 Exergetics Systems, Inc. Method for fuel flow determination and improving thermal efficiency in a fossil-fired power plant
JPH04131610A (en) * 1990-09-21 1992-05-06 Toshiba Corp Combustion controller
JPH04327713A (en) * 1991-04-26 1992-11-17 Matsushita Electric Ind Co Ltd Combustion device
JPH0560321A (en) 1991-08-30 1993-03-09 Sanyo Electric Co Ltd Controller for gas burner
JP2524933B2 (en) * 1991-12-27 1996-08-14 黒崎窯業株式会社 Control method of molten steel temperature in arc type electric furnace refining.
GB2270748B (en) * 1992-09-17 1995-12-06 Caradon Heating Ltd Burner control system
US5360335A (en) * 1992-10-22 1994-11-01 Honeywell Inc. Fuel burner control system with selectable standing pilot mode
US5667375A (en) * 1993-08-16 1997-09-16 Sebastiani; Enrico Gas combustion apparatus and method for controlling the same
US5511971A (en) * 1993-08-23 1996-04-30 Benz; Robert P. Low nox burner process for boilers
US5451371A (en) * 1994-06-09 1995-09-19 Ford Motor Company High-sensitivity, silicon-based, microcalorimetric gas sensor
US5599179A (en) * 1994-08-01 1997-02-04 Mississippi State University Real-time combustion controller
DE4429157A1 (en) 1994-08-17 1996-02-22 Kromschroeder Ag G Method for monitoring the function of a control and regulating system
JP3176804B2 (en) * 1994-09-01 2001-06-18 新日本製鐵株式会社 Combustion control method for continuous heat treatment furnace
US5634786A (en) * 1994-11-30 1997-06-03 North American Manufacturing Company Integrated fuel/air ratio control system
EG20966A (en) * 1995-06-06 2000-07-30 Shell Int Research A method for flame stabilization in a process for preparing synthesis gas
ATE189301T1 (en) * 1995-10-25 2000-02-15 Stiebel Eltron Gmbh & Co Kg METHOD AND CIRCUIT FOR CONTROLLING A GAS BURNER
EP0861402A1 (en) * 1995-11-13 1998-09-02 Gas Research Institute Flame ionization control apparatus and method
US5791332A (en) * 1996-02-16 1998-08-11 Carrier Corporation Variable speed inducer motor control method
DE19627857C2 (en) * 1996-07-11 1998-07-09 Stiebel Eltron Gmbh & Co Kg Process for operating a gas fan burner
DE59703939D1 (en) * 1996-05-09 2001-08-09 Stiebel Eltron Gmbh & Co Kg Process for operating a gas burner
US5829962A (en) * 1996-05-29 1998-11-03 L'air Liquide, Societe Anonyme Pour L'etude Et, L'exploitation Des Procedes Georges Method and apparatus for optical flame control of combustion burners
US6045353A (en) * 1996-05-29 2000-04-04 American Air Liquide, Inc. Method and apparatus for optical flame control of combustion burners
SE9602688L (en) * 1996-07-08 1998-01-09 Volvo Ab Catalytic combustion chamber, and method for igniting and controlling the catalytic combustion chamber
CA2205766C (en) * 1996-09-12 2001-02-20 Mitsubishi Denki Kabushiki Kaisha Combustion system and operation control method thereof
US6206687B1 (en) * 1997-01-24 2001-03-27 Aaf-Mcquay Inc. High turndown modulating gas burner
DE19734574B4 (en) * 1997-08-09 2006-06-14 Robert Bosch Gmbh Method and device for controlling a burner, in particular a fully premixing gas burner
KR19990053716A (en) * 1997-12-24 1999-07-15 전주범 Air volume control method in the forward wind of gas boiler
DE19853567A1 (en) 1998-11-20 2000-05-25 Kromschroeder Ag G Process for controlling the air ratio of a fully premixed gas burner
JP2000205524A (en) * 1999-01-20 2000-07-25 Tokyo Gas Co Ltd Burner with temperature raising means and combustion method employing it
IT1310192B1 (en) * 1999-03-19 2002-02-11 Worgas Bruciatori Srl METHOD AND MEANS FOR THE SAFETY CONTROL OF BURNERS.
JP3294215B2 (en) * 1999-03-23 2002-06-24 日本碍子株式会社 Burner combustion control method in batch type combustion furnace
US7568908B2 (en) * 1999-05-20 2009-08-04 Cambridge Engineering, Inc. Low fire start control
DE10025769A1 (en) * 2000-05-12 2001-11-15 Siemens Building Tech Ag Control device for a burner
DE10040358B4 (en) * 2000-08-16 2006-03-30 Honeywell B.V. Control method for gas burners
DE10045270C2 (en) * 2000-08-31 2002-11-21 Heatec Thermotechnik Gmbh Furnace and method for regulating the same
JP2002147749A (en) * 2000-11-07 2002-05-22 Nippon Steel Corp Automatic combustion control system
DE10057902C2 (en) 2000-11-22 2003-01-16 Buderus Heiztechnik Gmbh Gas burner for a heater
AT413004B (en) * 2000-11-23 2005-09-26 Vaillant Gmbh METHOD FOR CONTROLLING A BOILER HEATED BY A FAN SUPPORTED BURNER
WO2002070760A1 (en) * 2001-03-05 2002-09-12 Anglo Operations Limited A furnace and a method of controlling a furnace
DE10110810A1 (en) * 2001-03-06 2002-09-12 Siemens Building Tech Ag Arrangement of a burner control for a gas or oil burner
DE10114405B4 (en) 2001-03-23 2011-03-24 Ebm-Papst Landshut Gmbh Blower for combustion air
WO2002077528A1 (en) * 2001-03-23 2002-10-03 Gvp Gesellschaft Zur Vermarktung Der Porenbrennertechnik Mbh Method and device for adjusting air ratio
US6685464B2 (en) * 2001-03-28 2004-02-03 L'Air Liquide - Societe Anonyme à Directoire et Conseil de Surveillance pour l'Etude et l'Exploitation des Procedes Georges Claude High velocity injection of enriched oxygen gas having low amount of oxygen enrichment
GB2375600A (en) * 2001-05-17 2002-11-20 Wen Chou Chen Gas burner operating system
US6702571B2 (en) * 2001-09-05 2004-03-09 Gas Technology Institute Flex-flame burner and self-optimizing combustion system
DK1293727T3 (en) 2001-09-13 2006-03-06 Siemens Schweiz Ag Controller for a burner and setting method
US20030138747A1 (en) * 2002-01-08 2003-07-24 Yongxian Zeng Oxy-fuel combustion process
US20030134241A1 (en) * 2002-01-14 2003-07-17 Ovidiu Marin Process and apparatus of combustion for reduction of nitrogen oxide emissions
AT411189B (en) * 2002-01-17 2003-10-27 Vaillant Gmbh METHOD FOR CONTROLLING A GAS BURNER
US6827079B2 (en) * 2002-02-26 2004-12-07 Solaronics, Inc. Apparatus and method for reducing peak temperature hot spots on a gas fired infrared industrial heater
US7008218B2 (en) * 2002-08-19 2006-03-07 Abb Inc. Combustion emission estimation with flame sensing system
US20040137390A1 (en) * 2003-01-09 2004-07-15 Arnold Kenny M. Methods and systems for measuring and controlling the percent stoichiometric oxidant in an incinerator
US7048536B2 (en) * 2003-04-25 2006-05-23 Alzeta Corporation Temperature-compensated combustion control
DE10340045A1 (en) * 2003-08-28 2005-03-24 Karl Dungs Gmbh & Co. Kg Ratio controller with dynamic ratio formation
EP1510758A1 (en) * 2003-08-29 2005-03-02 Siemens Building Technologies AG Method for regulating and/or controlling a burner
DE10341543A1 (en) * 2003-09-09 2005-04-28 Honeywell Bv Control method for gas burners
US7241135B2 (en) * 2004-11-18 2007-07-10 Honeywell International Inc. Feedback control for modulating gas burner
US7475646B2 (en) * 2005-11-30 2009-01-13 General Electric Company System and method for decreasing a rate of slag formation at predetermined locations in a boiler system
US7802984B2 (en) * 2006-04-07 2010-09-28 Thomas & Betts International, Inc. System and method for combustion-air modulation of a gas-fired heating system
JP2008108546A (en) * 2006-10-25 2008-05-08 Aisin Seiki Co Ltd Fuel cell system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022122820A1 (en) 2022-09-08 2024-03-14 Vaillant Gmbh Method for evaluating an installation of a gas-air system of a heater, gas-air system and computer program

Also Published As

Publication number Publication date
WO2006000366A1 (en) 2006-01-05
CA2773654A1 (en) 2006-01-05
US20110033808A1 (en) 2011-02-10
US8500441B2 (en) 2013-08-06
CA2571520A1 (en) 2006-01-05
US20080318172A1 (en) 2008-12-25
CA2571520C (en) 2013-11-19
DE102004055716C5 (en) 2010-02-11
EP2594848A1 (en) 2013-05-22
US8636501B2 (en) 2014-01-28
KR20070043712A (en) 2007-04-25
EP1902254A1 (en) 2008-03-26
DE102004055716B4 (en) 2007-09-13
KR20110129884A (en) 2011-12-02
EP1902254B1 (en) 2016-03-30
DE102004055716A1 (en) 2006-01-12

Similar Documents

Publication Publication Date Title
EP2594848B1 (en) Method for controlling a firing device and firing device
EP1761728B1 (en) Method for adjusting the excess air coefficient on a firing apparatus, and firing apparatus
DE3707259C2 (en) Burner device
EP2005066B1 (en) Method for starting a firing device in unknown general conditions
EP1621811B1 (en) Operating Method for a Combustion Apparatus
EP3824366B1 (en) Method for the closed-loop control of a gas mixture using a gas sensor, a combustion-gas sensor and a gas-mixture sensor
EP0614046A1 (en) Control device for gas burner automats of heating installations
EP0833106B1 (en) Method and device for operation optimisation of a gas burner
DE102004048986B4 (en) Method for controlling a gas burner
DE202019100263U1 (en) Heater with control of a gas mixture using a gas sensor, a fuel gas sensor and a gas mixture sensor
EP3683500A1 (en) Method for regulating a gas mixture using a gas sensor and a gas mixture sensor
EP3596391A1 (en) Method for controlling a combustion-gas operated heating device
EP3499124A1 (en) Heating device components and method for adjusting a fuel flow
DE19635974A1 (en) Gas-air mixture system for gas heating apparatus
DE19627857C2 (en) Process for operating a gas fan burner
DE3716641C2 (en) Burner device
DE10045270A1 (en) Gas burner for heating and/or hot water boiler incorporates flame temperature sensor for feedback regulation of air/fuel ratio and/or volumetric flow
DE102004063992B4 (en) Regulating and controlling process for firing apparatus involves using characteristic curve showing value range for setpoint temperature in accordance with two parameters
DE102004055715C5 (en) Method for setting operating parameters on a firing device and firing device
DE102011111453A1 (en) Method for adjusting air ratio of combustion air-fuel mixture to desired air speed in air-fuel mixture combustion, involves controlling air ratio, when variation of combustion air flow or fuel quantity is less than or equal to variation
DE202004017851U1 (en) Firing equipment for gas burners has means for determining value dependent on measured temperature and means for regulating generated temperature using characteristic line representing value range corresponding to ideal temperature
DE102004030299A1 (en) Firing equipment for gas burners has means for determining value dependent on measured temperature and means for regulating generated temperature using characteristic line representing value range corresponding to ideal temperature
DE10040788A1 (en) Device and method for treating webs
DE3114942A1 (en) CONTROL DEVICE FOR THE GAS-FIRED BOILER OF A HOT WATER HEATING SYSTEM
DE102011002324A1 (en) Regulating device for premix burner, has throttle element arranged downstream to throttle device in fuel supply spacer, and mixer arranged downstream from fan to air supply pipe and downstream from throttle element to fuel supply spacer

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AC Divisional application: reference to earlier application

Ref document number: 1902254

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

17P Request for examination filed

Effective date: 20130905

RBV Designated contracting states (corrected)

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140918

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502005014946

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F23N0001020000

Ipc: F23N0005100000

RIC1 Information provided on ipc code assigned before grant

Ipc: F23N 5/16 20060101ALI20150116BHEP

Ipc: F23N 5/02 20060101ALI20150116BHEP

Ipc: F23N 5/10 20060101AFI20150116BHEP

Ipc: F23N 1/02 20060101ALI20150116BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150408

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AC Divisional application: reference to earlier application

Ref document number: 1902254

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 751457

Country of ref document: AT

Kind code of ref document: T

Effective date: 20151015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502005014946

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151224

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160125

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502005014946

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20160624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160620

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 751457

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20050620

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160620

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20190619

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20190626

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20190624

Year of fee payment: 15

Ref country code: DE

Payment date: 20190624

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005014946

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20200701

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200701

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200620

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210101