JPS6018887B2 - Combustion control device - Google Patents

Combustion control device

Info

Publication number
JPS6018887B2
JPS6018887B2 JP53045502A JP4550278A JPS6018887B2 JP S6018887 B2 JPS6018887 B2 JP S6018887B2 JP 53045502 A JP53045502 A JP 53045502A JP 4550278 A JP4550278 A JP 4550278A JP S6018887 B2 JPS6018887 B2 JP S6018887B2
Authority
JP
Japan
Prior art keywords
pressure
fuel
air
diaphragm
injector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53045502A
Other languages
Japanese (ja)
Other versions
JPS54137128A (en
Inventor
芳雄 山本
行夫 長岡
義幸 横綱代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP53045502A priority Critical patent/JPS6018887B2/en
Priority to GB7912736A priority patent/GB2018970B/en
Priority to DE2914681A priority patent/DE2914681C2/en
Priority to FR7909349A priority patent/FR2426212A1/en
Publication of JPS54137128A publication Critical patent/JPS54137128A/en
Priority to US06/268,758 priority patent/US4385887A/en
Publication of JPS6018887B2 publication Critical patent/JPS6018887B2/en
Expired legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/02Regulating fuel supply conjointly with air supply
    • F23N1/027Regulating fuel supply conjointly with air supply using mechanical means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2233/00Ventilators
    • F23N2233/06Ventilators at the air intake
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2235/00Valves, nozzles or pumps
    • F23N2235/12Fuel valves
    • F23N2235/14Fuel valves electromagnetically operated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2235/00Valves, nozzles or pumps
    • F23N2235/12Fuel valves
    • F23N2235/18Groups of two or more valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2235/00Valves, nozzles or pumps
    • F23N2235/12Fuel valves
    • F23N2235/20Membrane valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2235/00Valves, nozzles or pumps
    • F23N2235/12Fuel valves
    • F23N2235/24Valve details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2239/00Fuels
    • F23N2239/04Gaseous fuels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/7722Line condition change responsive valves
    • Y10T137/7754Line flow effect assisted
    • Y10T137/7756Reactor surface separated from flow by apertured partition
    • Y10T137/7757Through separate aperture

Description

【発明の詳細な説明】 本発明は、送風機によって燃焼空気を供総合する強制給
気方式の燃焼装置に関するもので、空気量と燃料の比率
、いわゆる空気過剰率をある一定範囲内に保つことによ
って、燃焼安定性を確保すると共に、燃焼量を調整する
場合でも燃焼効率が低下しないようにしたものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a forced air combustion system that supplies combustion air using a blower, and by keeping the ratio of air amount and fuel, so-called excess air ratio, within a certain range. In addition to ensuring combustion stability, the combustion efficiency is not reduced even when the combustion amount is adjusted.

特に、空気と燃料の混合部の空気系洛中の圧力損を低減
することによって送風機の小型化を可能とし、もって燃
焼機器全体の小型軽量化の実現を目的としている。従来
の強制給気方式の燃焼装置では、送風機の系路中にバー
ナを配設してこれに燃料を供給しているが、空気側と燃
料側には特に関連を持たせていないものが一般的である
。これらの機器では、送風機の電圧変化やバラッキ、給
気路の抵抗変化、及び給気孔や排気孔に加わる外気の風
の強さによって送風量が変化したり、機器内圧が変化す
るので空気過剰率は一定には保持出来なかった。また、
燃焼量を変える時には、バーナの本数を切り換えたり、
燃料供給圧を変えているので空気過剰率も当然、大幅に
変化している。このため、バーナとしては空気過剰率が
大和風こ変化しても良いバーナを選定することが要求さ
れており、このことはバーナ自体も大型化する結果を招
いていた。更に、燃焼量を低く調整した場合には空気過
剰率が大幅に上昇するから燃焼効率の低下も生じていた
。空気過剰率を制御して燃焼させる例としては加熱炉や
、熱処理炉など工業用の目的で使用される燃焼装置があ
る。
In particular, the aim is to reduce the pressure loss in the air system of the air and fuel mixing section, thereby making it possible to downsize the blower, thereby making the entire combustion equipment smaller and lighter. In conventional forced air combustion systems, a burner is placed in the blower system and fuel is supplied to it, but there is generally no relationship between the air side and the fuel side. It is true. In these devices, the amount of air blown and the internal pressure of the device change depending on voltage changes and variations in the blower, changes in the resistance of the air supply path, and the strength of the outside air applied to the air supply and exhaust holes, so the excess air ratio changes. could not be held constant. Also,
When changing the combustion amount, switch the number of burners,
Naturally, since the fuel supply pressure is changed, the excess air ratio also changes significantly. For this reason, it is necessary to select a burner that can withstand changes in excess air ratio, which has resulted in the burner itself becoming larger. Furthermore, when the combustion amount is adjusted to a low value, the excess air ratio increases significantly, resulting in a decrease in combustion efficiency. Examples of combustion that control the excess air ratio include combustion apparatuses used for industrial purposes, such as heating furnaces and heat treatment furnaces.

これらの装置では、送風機としては数百柳水柱以上の高
圧送風機を使い、燃料がガスの場合には中圧配管から偽
給したり、昇圧機でガスを加圧して供給している。従っ
て、当然機器としては大型化しているばかりでなく、低
圧ガスが供給されている一般家庭では使用出来るもので
は無かった。本発明は上記従来の欠点を解消したもので
、以下その実施例を添附図面とともに説明する。
In these devices, a high-pressure blower with a capacity of several hundred or more water columns is used as the blower, and when gas is used as fuel, it is fed falsely from medium-pressure piping or the gas is pressurized using a booster. Naturally, therefore, not only was the device large in size, but it could not be used in general households where low-pressure gas was supplied. The present invention eliminates the above-mentioned conventional drawbacks, and embodiments thereof will be described below with reference to the accompanying drawings.

第1図において、1は燃焼空気を斑給するため送風機で
、その空気系路4にィンジェクタ2が配設され、ここで
燃料と空気が混合されて予混合燃焼バーナ3へ供給され
て燃焼する。一方、燃料は圧力調整器5で制御されて電
磁弁6を通り、燃料供給系路7を経て、ィンジェクタ2
へ供給される。ィンジェクタ2は空気の上流側に位置す
る入口部8から径が縮少する縮流部9を経て絞り部10
とこれに蓬通して徐々に径が拡大する拡大部11を有し
、これらは同一軸線上に配置されている。又、絞り部1
0の入口端面に臨み、絞り部10と同Dに設けられてい
る燃料噴出口12があって、前記の燃料供給系路7と接
続している。こうして絞り部1川こ於ては中心部からは
燃料が、周囲からは空気が噴出しており、これらが混合
しつつ流れ、拡大部でその混合が促進され、又、圧力が
回復している。13は燃料噴出量を設定するノズルであ
る。
In Fig. 1, reference numeral 1 designates a blower for supplying combustion air unevenly, and an injector 2 is disposed in the air system path 4, where fuel and air are mixed and supplied to a premix combustion burner 3 for combustion. . On the other hand, fuel is controlled by a pressure regulator 5, passes through a solenoid valve 6, passes through a fuel supply line 7, and then flows to an injector 2.
supplied to The injector 2 passes from an inlet part 8 located on the upstream side of the air to a constriction part 9 where the diameter is reduced, and then to a constriction part 10.
and an enlarged part 11 which passes through this and whose diameter gradually increases, and these parts are arranged on the same axis. Also, the aperture part 1
There is a fuel injection port 12 facing the inlet end face of the fuel injection valve 0 and provided at the same position D as the constriction portion 10, and is connected to the fuel supply line 7 described above. In this way, fuel is ejected from the center and air is ejected from the periphery of the constricted part 1, and these flow while mixing, and the mixing is promoted in the enlarged part, and the pressure is restored. . 13 is a nozzle for setting the fuel injection amount.

次に燃料供給側について見ると、圧力調整器5の入口1
4から燃料が入り、弁口15と弁体16で構成される制
御弁を通り弁室17へ流れる。
Next, looking at the fuel supply side, the inlet 1 of the pressure regulator 5
Fuel enters from 4, passes through a control valve composed of a valve port 15 and a valve body 16, and flows into a valve chamber 17.

次に差圧発生体18を通過して出口19から電磁弁6へ
接続されている。20か弁体16を移動させる主ダイヤ
フラムで、その一方には差圧発生体18の低圧部21の
燃料圧が放つているダイヤフラム室22が設けられてお
り、他方はインジェクタ2の入口部8の空気圧が均圧管
28によって導かれた背圧室23が構成されている。
Next, it passes through the differential pressure generating body 18 and is connected to the solenoid valve 6 from the outlet 19. 20 is a main diaphragm for moving the valve body 16, one of which is provided with a diaphragm chamber 22 in which the fuel pressure of the low pressure part 21 of the differential pressure generator 18 is released, and the other is provided with the diaphragm chamber 22 in which the fuel pressure of the low pressure part 21 of the differential pressure generator 18 is released, and the other part is provided with the diaphragm chamber 22 in which the fuel pressure of the low pressure part 21 of the differential pressure generator 18 is released. A back pressure chamber 23 to which air pressure is introduced by a pressure equalization pipe 28 is configured.

更に、24は、弁〇15とほぼ等しい有効蓬を有し、燃
料の入口14とダイヤフラム室22の間を隔てているバ
ランスダイヤフラムである。25は調整ネジ26によっ
て支持され、主ダイヤフラム20に対して働いている調
整スプリングである。
Further, 24 is a balance diaphragm having an effective width approximately equal to that of valve 15 and separating the fuel inlet 14 and the diaphragm chamber 22. 25 is an adjustment spring supported by an adjustment screw 26 and acting against the main diaphragm 20.

27は調整ネジ26からの気密洩れを防ぐためのメクラ
キャツプである。
27 is a blind cap for preventing airtight leakage from the adjustment screw 26.

以上のような構成を有する燃焼制御装置の動作について
次に述べる。
The operation of the combustion control device having the above configuration will be described next.

第1図に於て送風機1から燃焼に必要な空気を送り、こ
の空気量に応じて圧力調整器5で調圧制御された燃料が
、開閉弁6を開けばィンジヱクタ2の燃料噴出口12か
ら噴出して空気と混合して予混合燃焼バーナ3に送られ
、ここで燃焼を行う。
In FIG. 1, the air necessary for combustion is sent from the blower 1, and the fuel whose pressure is regulated by the pressure regulator 5 according to the amount of air is released from the fuel jet port 12 of the injector 2 when the on-off valve 6 is opened. It is ejected, mixed with air, and sent to the premix combustion burner 3, where it is combusted.

この場合に、燃料と空気量の比率はバーナに於て完全燃
焼をし最高熱効率が得られる空気過剰率に設定されてお
り、入力制御は送風量を変えて行うがその時も最適空気
過剰率を保持しているものである。従来のこの種の制御
機構では、空気と燃料の比率を一定化するため、両者の
供給圧力は数百肌水柱以上なので、ィンジェクタ2での
圧力損が問題とならない工業用のみに使用されていた。
一般家庭では、このような高圧を得ることが出来なかっ
たので空気過剰率を制御することが不可能とされて来た
。本発明は、この点に関して改良を加え、家庭機器とし
て応用可能にしたもので先ず第2図はインジェクタ2の
断面拡大図であるが、入口部8から入り、拡大部11へ
流れる燃焼空気によって絞り部10の圧力は低下する。
この入口部8と絞り部10の圧力差は、絞り部入口に於
いて燃料噴出ロー2と絞り部10で定められた環状の空
気通路を通る空気速度によって決定されていて、第3図
のようになる。数式で示すならばPai−Pn=ka(
VC)2=Ka(QC)2 ‐‐イー)Pa
i:入口部8の圧力Pn :絞り部10の圧力 Vc :空気噴出速度 Qc :空気量 尚、Kaは縞流部9や絞り部10の寸法形状によって定
められる定数である。
In this case, the ratio of fuel and air amount is set to an excess air ratio that achieves complete combustion in the burner and the highest thermal efficiency, and input control is performed by changing the air flow, but at that time, the optimal excess air ratio is also set. It is something that is kept. Conventional control mechanisms of this type maintain a constant ratio of air and fuel, and the supply pressure for both is over several hundred water columns, so it was only used for industrial applications where pressure loss at the injector 2 was not a problem. .
In ordinary households, it has been considered impossible to control the excess air ratio because it has not been possible to obtain such high pressure. The present invention improves this point and makes it applicable to household appliances. First, Figure 2 is an enlarged cross-sectional view of the injector 2. The pressure in section 10 decreases.
The pressure difference between the inlet section 8 and the constriction section 10 is determined by the air velocity passing through the annular air passage defined by the fuel injection row 2 and the constriction section 10 at the inlet of the constriction section, as shown in Fig. 3. become. If expressed in a mathematical formula, Pai-Pn=ka(
VC)2=Ka(QC)2--E)Pa
i: Pressure Pn at the inlet section 8: Pressure Vc at the constriction section 10: Air ejection speed Qc: Air amount Ka is a constant determined by the size and shape of the striped flow section 9 and the constriction section 10.

ここで与えた絞り部10の圧力Pnは絞り部10の壁面
に働く圧力では無く、絞り都入口端部に臨んでいる燃料
噴出口12に対して作用する有効圧力である。次に圧力
調整器5についてであるが、その出口19の圧力と、前
述の絞り部圧力Pnによって燃料流量が決定される。
The pressure Pn of the throttle section 10 given here is not the pressure acting on the wall surface of the throttle section 10, but is the effective pressure acting on the fuel jet port 12 facing the end of the throttle inlet. Next, regarding the pressure regulator 5, the fuel flow rate is determined by the pressure at its outlet 19 and the aforementioned throttle pressure Pn.

その関係は次の‘2)式のようになる。Qg=KgノP
go−pn ・・・■QZ:燃料流
量P戦:圧力調整器5の出口19の圧力 尚、Kgは燃料供給系路7の中の開閉弁6やノズル13
の寸法形状や燃料の比重量などで決まる定数である。
The relationship is as shown in the following equation '2). Qg=KgノP
go-pn... ■QZ: Fuel flow rate P battle: Pressure at the outlet 19 of the pressure regulator 5. Kg is the pressure at the on-off valve 6 or nozzle 13 in the fuel supply line 7.
It is a constant determined by the dimensions and shape of the fuel and the specific weight of the fuel.

燃焼バーナでは燃料の理論空気量に対する空気量の倍率
で示す空気過剰率が問題となるが、その関係は次のよう
になる。
In combustion burners, the excess air ratio, which is expressed as the ratio of the air amount to the theoretical air amount of the fuel, is a problem, and the relationship is as follows.

M=為 .・・【3’ M:空気過剰率 q:単位燃料流量当りの理論空気量 ‘3}式に‘1}式と■式を代入すると Jを企ai−Pn) M=巻‐q・KMg。M = for. ...【3' M: excess air ratio q: Theoretical air amount per unit fuel flow rate Substituting the ‘1’ and ■ expressions into the ‘3’ expression, we get J ai-Pn) M=volume-q・KMg.

‐pn−q‐Kg≧Jha‐」毒苧ま辛 =K5要言串 ‐‐‐■ ・ 但し、K=q.Ka.〃るaである。-pn-q-Kg≧Jha-”Poisonous sweet potato spicy =K5 key word skewer ---■ ・ However, K=q. Ka. It is a.

ここで、圧力調整器5の出口19の圧力Pgoと、ィン
ジェクタ2の入口部8の圧力Paiの関係が次式で示さ
れるとする。
Here, it is assumed that the relationship between the pressure Pgo at the outlet 19 of the pressure regulator 5 and the pressure Pai at the inlet 8 of the injector 2 is expressed by the following equation.

Pgo=Pai十△P
・・・【51これはP弧とPaiの間に△Pの差が生じ
ていることを示しており、この‘5}式を【4)式に代
入すると、M=K農−Pn=へ/P羊云虫PPqo−P
n =へ/1十声生Pn (6) ‘61式が得られる。
Pgo = Pai ten △P
...[51 This shows that there is a difference of △P between P arc and Pai, and by substituting this '5} formula into formula [4], we get M = K - Pn = /P sheep insect PPqo-P
n = to/1 ten-tone student Pn (6) '61 formula is obtained.

従って、△Pか零になるべく、燃料側の出口圧Pqoと
空気側の入口圧Paiが等しくなれば空気過剰率は流量
には関係なく、あらかじめ設定出来る寸法形状のみで決
定される。圧力調整器5は■式で示す△Pが零になるよ
う制御弁の関度を制御している。主ダイヤフラム20に
は燃料側の圧力と、ィンジェクタ入口部8の圧力が働い
ているから、例えば燃料側の圧力が高くなれば弁体16
を閉じる方向にダイヤフラムは移動し、逆に空気側の圧
力が高くなれば弁体16を開く方向にダイヤフラムが移
動して、いずれも圧力差が無くなる方向へ作用している
。ところで、完全にはこの【5’式での△Pを零にする
ことは出来ないが、その影響について第4図と第5図で
述べる。第4図は【5’式での△P(=P籾−Pai)
が零の時の基準空気過剰率をMとして、それのプラス・
マイナス10%と20%の空気過剰率を示すことになる
△Pとィンジェク夕2で生じる発生有効圧力差(Pai
−Pn)との関係を示すものである。
Therefore, if the outlet pressure Pqo on the fuel side and the inlet pressure Pai on the air side become equal so that ΔP becomes zero, the excess air ratio is determined only by the dimensions and shape that can be set in advance, regardless of the flow rate. The pressure regulator 5 controls the relationship of the control valve so that ΔP shown in equation (2) becomes zero. Since the pressure on the fuel side and the pressure at the injector inlet section 8 act on the main diaphragm 20, for example, if the pressure on the fuel side becomes high, the valve body 16
The diaphragm moves in the direction of closing the valve body 16, and conversely, when the pressure on the air side increases, the diaphragm moves in the direction of opening the valve body 16, both of which act in the direction of eliminating the pressure difference. Incidentally, it is not possible to completely reduce ΔP in equation [5' to zero, but the influence thereof will be described in FIGS. 4 and 5. Figure 4 shows [△P (=P paddy - Pai) in formula 5'
Let the standard excess air ratio when is zero be M, and its plus
△P and the effective pressure difference (Pai
-Pn).

これは、‘6’式でも示している通りで発生圧力差が大
きくなれば、同じ空気過剰率の変動をもたらす△Pの値
は大きくなる。逆に同じ△Pの値であれば発生圧力差が
少し、ほど空気過剰率の値は変動しやすいことになると
表現出釆る。第5図は別の表現でその関係を示している
。Pai−Pnに対してPqo−Pai(すなわち△P
)の割合によって空気過剰率Mが基準状態からどの位、
変化するかを示したものである。ここで△Pを生じる原
因について述べる。これは圧力調整器5の背圧室23の
空気圧と、出口19の燃料圧の差について考えることに
なる。先ず、燃料の供給圧は、ガスの場合では都市ガス
、天然ガス、LPガスで各々異る上に、配管中の圧力降
下がガス需要の集中する時と、需要が少し、時とでは異
るため、実際の供給圧がガス質の差も入れて6倍以上変
化すると言われている。
This is as shown in equation '6', and as the generated pressure difference increases, the value of ΔP that causes the same fluctuation in excess air ratio increases. Conversely, if the value of ΔP is the same, the smaller the generated pressure difference, the more likely the value of the excess air ratio will fluctuate. FIG. 5 shows the relationship in another representation. Pqo-Pai (i.e. △P
) How far is the excess air ratio M from the standard state?
This shows how things change. Here, the cause of ΔP will be described. This means considering the difference between the air pressure in the back pressure chamber 23 of the pressure regulator 5 and the fuel pressure at the outlet 19. First, in the case of gas, the fuel supply pressure is different for city gas, natural gas, and LP gas, and the pressure drop in the piping differs when gas demand is concentrated and when demand is small. Therefore, the actual supply pressure is said to vary by more than six times, including the difference in gas quality.

第1図のように弁口15とほぼ等しい有効蓬を有するバ
ランスダイヤフラムを用いて、弁体16を開こうとする
力とバランスダイヤフラムが発生して弁体16を閉じよ
うとする力を釣り合わせる方法を用いて供給圧の影響を
除去しているか、実際には、完全に釣り合うことは難し
い。というのは、例えば、同じ燃焼入力であっても都市
ガスとLPガスではガス流量が5〜6倍異るので弁体1
6の閉口度が異る。この結果、バランスダイヤフラム2
4の動作している位置が変って来ることになって、その
有効径も異なるためである。工業用の場合のように、あ
らかじめ設定されたガス圧で供給する場合には、この影
響は考えなくても良い。次の要因として、流量変化の影
響がある。これは、同じ燃焼装置でその入力を温度制御
の目的などで入力を可変する場合と、同じ入力でもガス
質によって流量が変わる場合があって、例えば入力を1
/3まで制御するならガス費の差も含めて15〜18倍
まで流量が変化することになる。一般にガスの圧力調整
器では流量が増加するに従って出口圧が低下することが
知られている。これは流量増加と共に、調整器内部での
圧力損が増加すること、弁体が開く方向に移動すること
による主ダイヤフラム有効径の変化とスプリング荷重の
変化などに起因しており、例えば第6図のA線のように
なる。すなわち、ある点で調圧しても、流量増加と共に
出口圧が低下するのである。第1図の圧力調整器5では
この傾向を改善して既述の△Pを少くなるよう工夫がさ
れている。ダイヤフラム室22の圧力は出口19の圧力
では無く差圧発生体18の低圧部21の圧力が加えられ
ている。第6図で、背圧室23を基準としてそれとの差
を示しているが、同図で、Aがダイヤフラム室22の圧
力で、Bが弁室17の圧力、更にCは出口19の圧力で
ある。葦圧発生体18によって出口圧Cよりも低い圧力
をダイヤフラム室へ加えることによって弁室17の圧力
を高くしていることになる。差圧発生体自体18として
は、圧損はB−Cで表わされ、低圧部21と出口19の
間の差圧はC一Aで表わされる。いずれも、流量に対し
てほぼ2案の関係になるので、A線を基準に表わすと同
図のようになる。流量が増加すると弁体16が開いて前
述のような理由で出口圧が低下するのに対し、出口圧よ
り更に低い圧力をダイヤフラムに働かせてやることによ
って補償しているのである。この補償の程度は、差圧発
生体の特性によって決まり、低圧部21の仕様によって
第7図のイから二の各線のような特性は任意に選定可能
である。このような補償を行う場合、本発明の燃焼制御
装置では次のように行うのが最も適している。第4図で
も説明したようにィンジェクタ2での発生圧力差が少し
、場合が最も問題となるが、これは燃焼空気量が少く、
従って、供〉給燃量の流量が少し、場合のことである。
従って、最低入力に見合う流量に於て△Pが最少になる
ようにすべきである。そして、ガス質を定められない一
般家庭用に於ては、最低入力に見合うLPガス流量から
、都市ガス流量の間に於て、その流量変化分による出口
圧変化を補償する差圧発生体を設けてやるのが良い。実
験によると、△Pの値は次のようであった。但し、入力
可変幅は1/3までである。この実験によると△P自体
が少〈なっていることはもちろん、流量変化による△P
の変化も少くなっている。最低入力時のガス質による流
量変化の影響ではぐ8.25の結果の方が好ましいが、
この場合は、圧力調整器5としての圧力損が増加してい
るので、供給圧力が低下する場合に△Pが増加すること
になるから、家庭用では、これまでに述べた△P発生要
因を総合的に考慮しなければならない。以上の他に△P
が生じる原因は、製作時の調整ネジ26による調圧のバ
ラッキや、温度によるダイヤフラム剛性の変化などがあ
る。以上■式で示した△Pの要因について述べたが、前
述のように圧力調整器5としては、第5図で示した範囲
で、空気過剰率が変動するので、例えば、最低入力時の
空気量によってィンジェクタが生じる圧力差Pai−P
nが5肋水柱とし、空気過剰率Mの許容幅が、バーナの
条件によって十20%から−20%であるとするなら、
△Pの値は、一1.8肋水柱から十2.81撒水柱の間
に、収まるように制御しなければならない。
As shown in FIG. 1, a balance diaphragm having an effective width approximately equal to that of the valve port 15 is used to balance the force trying to open the valve body 16 and the force generated by the balance diaphragm and trying to close the valve body 16. Methods are used to eliminate or, in practice, completely balance the effect of supply pressure. This is because, for example, even if the combustion input is the same, the gas flow rate is 5 to 6 times different between city gas and LP gas.
6 have different degrees of closure. As a result, balance diaphragm 2
This is because the operating position of 4 is changing, and its effective diameter is also different. When gas is supplied at a preset gas pressure, as in the case of industrial use, this effect does not need to be considered. The next factor is the influence of flow rate changes. This is possible when the input is varied for the purpose of temperature control with the same combustion device, or when the flow rate changes depending on the gas quality even with the same input.
If it were to be controlled up to /3, the flow rate would change by a factor of 15 to 18, including the difference in gas costs. It is generally known that in a gas pressure regulator, the outlet pressure decreases as the flow rate increases. This is due to an increase in pressure loss inside the regulator as the flow rate increases, a change in the effective diameter of the main diaphragm due to the movement of the valve body in the opening direction, and a change in the spring load. For example, as shown in Figure 6. It will look like the A line. That is, even if the pressure is regulated at a certain point, the outlet pressure decreases as the flow rate increases. The pressure regulator 5 shown in FIG. 1 is designed to improve this tendency and reduce the above-mentioned ΔP. The pressure in the diaphragm chamber 22 is not the pressure at the outlet 19, but the pressure at the low pressure section 21 of the differential pressure generator 18 is applied. In Fig. 6, the difference between the back pressure chamber 23 and the back pressure chamber 23 is shown as a reference. be. By applying a pressure lower than the outlet pressure C to the diaphragm chamber by the reed pressure generator 18, the pressure in the valve chamber 17 is increased. As for the differential pressure generator itself 18, the pressure drop is represented by B-C, and the differential pressure between the low pressure part 21 and the outlet 19 is represented by C-A. In either case, there are approximately two relationships with respect to the flow rate, so if line A is used as a reference, the relationship will be as shown in the same figure. When the flow rate increases, the valve body 16 opens and the outlet pressure decreases for the reasons mentioned above, but this is compensated for by applying a pressure even lower than the outlet pressure to the diaphragm. The degree of this compensation is determined by the characteristics of the differential pressure generator, and the characteristics shown in lines A to 2 in FIG. 7 can be arbitrarily selected depending on the specifications of the low pressure section 21. When performing such compensation, it is most suitable for the combustion control device of the present invention to perform it as follows. As explained in Fig. 4, the problem is most when the pressure difference generated at the injector 2 is small, but this is because the amount of combustion air is small.
Therefore, this applies only when the flow rate of fuel supply is small.
Therefore, ΔP should be minimized at the flow rate that corresponds to the minimum input. For general household use where gas quality cannot be determined, a differential pressure generator is used to compensate for the change in outlet pressure due to the change in flow rate between the LP gas flow rate corresponding to the minimum input and the city gas flow rate. It is good to set it up. According to experiments, the value of ΔP was as follows. However, the input variable width is up to 1/3. According to this experiment, not only △P itself has decreased, but also △P due to flow rate changes.
There are also fewer changes. The result of 8.25 is preferable due to the influence of flow rate changes due to gas quality at the lowest input, but
In this case, since the pressure loss as the pressure regulator 5 is increasing, △P will increase when the supply pressure decreases, so for home use, the factors that cause △P mentioned above should be considered. Must be considered comprehensively. In addition to the above, △P
The causes of this include variations in pressure regulation by the adjustment screw 26 during manufacture and changes in diaphragm rigidity due to temperature. The factors of △P shown in equation (■) have been described above, but as mentioned above, as for the pressure regulator 5, the excess air ratio fluctuates within the range shown in Fig. 5. The pressure difference Pai-P caused by the injector depending on the amount
If n is 5 water columns and the allowable range of excess air ratio M is from 120% to -20% depending on the burner conditions, then
The value of ΔP must be controlled to fall between -1.8 and 12.81 water columns.

この値は、すべての外的な変動要素や、製作上のバラツ
キがあっても守らねばならぬ値である。ここで、ィンジ
ェクタ2の圧力差が同一空気量でも、更に多く得られる
なら△Pはもっと多くても良いことになるが、その面に
ついても制約がある。
This value must be maintained despite all external variables and manufacturing variations. Here, even if the pressure difference of the injector 2 is the same and the amount of air is the same, if a larger amount can be obtained, ΔP may be larger, but there are restrictions in this respect as well.

というのは、圧力差Pai−Pnを増大するにはィンジ
ェクタ2の圧力損の増加をも伴って単に送風機が大型化
するばかりで無く、Paiの絶対値も増加する。ところ
が家庭用のガス配管での供V給圧は制限があり、特に都
市ガスでは5比舷水柱まで下る場合があるとされている
。更に、給排気の筒が外気に出ている場合では2血/秒
の風が当れば15〜2仇舷水柱の内圧上昇も見られる。
この内圧上昇はPaiの絶対値が上昇することになるか
らP奴一Pajで表わされる△Pとして見れば、供給ガ
ス圧が15〜2仇物水柱だけ低下したことになる。この
結果、圧力調整器5の弁体16が全開になってもまだP
go<Paiの状態となってガス量不足のため空気過剰
率が上昇する結果を招く。従って、工業用のように、昇
圧機や、中圧ガス配管からガスを供給しない限り、たと
え大型送風機を使用したと仮定しても△Pを零には出来
ない。家庭用としては、ィンジェクタ2の入口部8の圧
力Paiを高くすること無く、有効圧力差Pai一Pn
を多く得ることが重要で、本発明は、その点に大きなポ
イントがある。ィンジェクタ2は第2図のような構成で
あって、先ず空気の噴出方向とガス等燃料の噴出方向が
同じでベクトルを一致させているから、両流体の干渉に
よる乱れが生じにくく運動エネルギーのロスか、工業用
で見られるベンチュリーミキサーと呼ばれる空気の方向
と、ガスの噴出方向が直角の場合に比して少〈出釆る。
This is because, in order to increase the pressure difference Pai-Pn, the pressure loss of the injector 2 increases, which not only increases the size of the blower, but also increases the absolute value of Pai. However, there is a limit to the V supply pressure in domestic gas piping, and in particular for city gas, it is said that it may drop to 5 volts of water column. Furthermore, when the air supply and exhaust pipes are exposed to the outside air, if the wind blows at 2 blood per second, the internal pressure will increase by 15 to 2 mw water columns.
This increase in internal pressure means that the absolute value of Pai increases, so if we look at it as ΔP expressed as P and Paj, it means that the supply gas pressure has decreased by 15 to 2 columns of water. As a result, even if the valve body 16 of the pressure regulator 5 is fully opened, P
go<Pai, resulting in an increase in excess air ratio due to insufficient gas amount. Therefore, unless gas is supplied from a booster or medium-pressure gas piping, as in industrial use, ΔP cannot be reduced to zero even if a large blower is used. For household use, the effective pressure difference Pai - Pn can be reduced without increasing the pressure Pai at the inlet 8 of the injector 2.
It is important to obtain a large amount of , and this is a major point of the present invention. The injector 2 has a configuration as shown in Fig. 2. First, the direction in which air is ejected and the direction in which fuel such as gas is ejected are the same and the vectors match, so disturbances due to interference between the two fluids are less likely to occur and kinetic energy loss is reduced. Or, compared to a Venturi mixer seen in industrial use, where the direction of air and the direction of gas ejection are at right angles, there is less ejection.

これは絞り部10のように圧力ロスを生じやすい部分で
混合する場合に有利なことである。次に、絞り部10の
内径Dを一定としてその長さクt,燃料噴出口の外蚤d
の関係と圧力損の関係について述べる。
This is advantageous when mixing is performed at a portion where pressure loss is likely to occur, such as the constriction section 10. Next, assuming that the inner diameter D of the throttle part 10 is constant, its length t, and the outer diameter d of the fuel injection port are
This section describes the relationship between the pressure drop and the pressure drop.

尚、ここで、圧力損とは次の式で示される値である。P
レOSS=Paj一Pao
・・・【71Pao:拡大部11を出た部分での空気圧
PLOSS:ィンジエクタ2での圧力損 第8図では、空気量はある一定量を流しつづけ燃料噴出
口12からガスを零から次第に増加して行った場合の圧
力損の関係を示している。
Note that here, the pressure loss is a value expressed by the following formula. P
Les OSS=Paj-Pao
...[71Pao: Air pressure at the part exiting the enlarged part 11 PLOSS: Pressure loss at the injector 2 In Fig. 8, the amount of air continues to flow at a certain amount and the gas from the fuel jet port 12 gradually increases from zero. It shows the relationship of pressure loss when

ガス噴出が無い場合は圧力損が少〈、実験した範囲内で
は、空気噴出速度に比してガス噴出速度が遅い場合であ
るが、ガス量増加と共に圧力損が増加する煩向を示した
。d/Dが大きい場合は、空気噴出面積が少し・ので圧
力損自体も大きいがガス量による変化も大きい。又、そ
t/Dによっても圧力損が変ることはもちろん、ガス量
による変化傾向も変っている。次に、ィンジェクタ2と
しての圧力効率弁孔開度りを考える。びai−Pn)−
PL。
When there is no gas ejection, the pressure loss is small (within the experimental range, when the gas ejection speed is slow compared to the air ejection speed, the pressure loss tends to increase as the gas amount increases). When d/D is large, the air ejection area is small, so the pressure loss itself is large, but the change depending on the gas amount is also large. Moreover, not only does the pressure loss change depending on the t/D, but also the tendency of change depending on the gas amount. Next, consider the pressure efficiency valve hole opening degree of the injector 2. ai-Pn)-
P.L.

ssり= Paj一Pn Pao−Pn ・
・側一pai−Pnこの効率刀が高いほど好ましいわけ
である。
ssri = Paj-Pn Pao-Pn ・
・The higher the efficiency of this sword, the better it is.

それが実験によれば第9図のような結果を得た。すなわ
ち、d/Dは小さい方が効率が高く、又、そt/Dに対
する最高効率の点はd/Dが大きくなるに従って〆t/
Dも大きな値に移動している。第9図は第8図のような
実験を行い、各ガス噴出量に於ける実際の有効なPai
−Pnを求めてその時の圧力損とから算出した圧力効率
曲線を求めて、その最も効率が低い点をプロットして作
成したものである。ここでd/○を小さく設定する圧力
効率りも高くそt/Dも少く出来て有利であるが、家庭
用では前述の理由でPaiを余り高く出来ないから従っ
てPgoも低いので所定入力以上の燃料流量を流すため
にはdを余り細く出来ないという制約が生じる。更に、
第10図ではィンジェクタ2の拡大部1 1を通過した
出口面での空気とガスの濃度分布を求めたものであり、
これはあるそt/Dに於けるd/Dをパラメータとした
ものである。d/Dが大きい程、濃度分布としては均一
化されているという結果を得ている。バーナ3に於ては
その空気過剰率は全体として所定範囲内に入っているこ
とはもちろん、各炎孔の単独としても空気過剰率が制御
されていることが望まれる。ィンジェクタ2とバーナ3
の間で更に濃度分布の均一化は促進されるが、ィンジェ
クタ2自体で促進しておく方が好ましいことは言うまで
も無い。これらの実験結果によってそt/Dは0.5〜
3及びd/Dは0.3〜0.5が圧力効率や濃度分布の
点から最も良いことが判明した。次に燃料噴出012の
先端と絞り部10の位置関係について説明する。絞り部
10の入口端面との位贋を第2図のように〆nで示すと
、このそnによって圧力損と発生圧力差は第11図のよ
うな結果を得た。すなわち、入口端面から離れると発生
圧力差は減少便向を示し、絞り部内蓬Dの25%以上離
れると急速に低下する。又、入口端面から絞り部10の
中へ入れて行くと、空気の噴出面積としては変らないか
ら発生圧力差としては低下せず、むしろ摩擦分だけ増加
する。ところが、圧力効率は低下してくる。従って、あ
る一定以上の発生圧力差が得うれ、且つ圧力効率が高い
位置としては入口端面を中心として前後に絞り都直径の
0.2牙昔以内に燃料噴出口12の先端を位遣させるの
が良いという結果を得た。更に、拡大部1 1に関して
は一般に知られているように拡大角は8度前後が最も圧
力損が少くなるという結果を得ている。以上の各要素に
よってィンジェクタ2は構成され、圧力損が少〈して大
きな発生圧力差を得ることが出釆るようになったので、
低ガス圧時でも十分空気過剰率を制御出来る装置を得る
ことが可能になった。
According to experiments, the results shown in Figure 9 were obtained. In other words, the smaller d/D is, the higher the efficiency is, and the point of maximum efficiency with respect to t/D becomes smaller as d/D becomes larger.
D is also moving to a large value. Figure 9 shows the actual effective Pa
-Pn is determined, a pressure efficiency curve is calculated from the pressure loss at that time, and the point with the lowest efficiency is plotted to create the pressure efficiency curve. Here, it is advantageous to set d/○ small because the pressure efficiency is high and t/D can be reduced, but for home use, Pai cannot be made too high for the reasons mentioned above, so Pgo is also low. In order to allow the fuel to flow, there is a restriction that d cannot be made too thin. Furthermore,
In FIG. 10, the concentration distribution of air and gas at the exit surface after passing through the enlarged part 11 of the injector 2 is obtained.
This uses d/D at t/D as a parameter. The results show that the larger d/D is, the more uniform the concentration distribution is. It is desired that the excess air ratio of the burner 3 as a whole is within a predetermined range, and that the excess air ratio of each flame hole alone is also controlled. Injector 2 and burner 3
It goes without saying that it is preferable to promote uniformity of the concentration distribution in the injector 2 itself. According to these experimental results, the t/D is 0.5~
3 and d/D of 0.3 to 0.5 was found to be best from the viewpoint of pressure efficiency and concentration distribution. Next, the positional relationship between the tip of the fuel jet 012 and the throttle part 10 will be explained. When the alignment with the inlet end face of the constricted portion 10 is indicated by 〆n as shown in Fig. 2, the pressure loss and the generated pressure difference were obtained as shown in Fig. 11. That is, the generated pressure difference tends to decrease as it moves away from the inlet end face, and rapidly decreases when it moves away from it by more than 25% of the inner diameter D of the constriction part. Further, when the air is introduced into the constricted portion 10 from the inlet end face, the ejection area of the air remains unchanged, so the generated pressure difference does not decrease, but rather increases by the amount of friction. However, pressure efficiency decreases. Therefore, the position where a generated pressure difference above a certain level can be obtained and the pressure efficiency is high is to position the tip of the fuel nozzle 12 within 0.2 degrees of the aperture diameter back and forth around the inlet end face. We obtained good results. Furthermore, regarding the enlarged portion 11, as is generally known, the pressure loss is minimized when the enlarged angle is around 8 degrees. The injector 2 is configured with each of the above elements, and it is now possible to obtain a large generated pressure difference with less pressure loss.
It has become possible to obtain a device that can sufficiently control the excess air ratio even at low gas pressures.

ガスの場合には同じ入力でも燃料流量が異るが、その場
合は、{21式に示した定数X9を変えれば良い。具体
的には第1図のノズル13のみ交換して対処する。圧力
調整器5自体や、ィンジェクタ2はガス質が変る場合で
もそのままで良い。又、必要に応じて入力をオン・オフ
する場合に燃料側に開閉弁を挿入するなら第1図のよう
に圧力調整器5とィンジェクタ2の中間に挿入すること
が良い。というのは、既に説明して来たように家庭に於
けるガス供v給圧が低下した場合を考えると、△Pを零
に保つにはPaiよりも高い供給圧で圧力調整器5に入
らなければならないから圧力調整器5より上流側の圧力
損を極力少〈しなければならない。電磁弁は数側水柱か
ら十数側水柱の圧力損を供うから、これは{21式で示
した定数kgの要因として考えて、第1図のようにした
方がガス圧低下に対して空気過剰率の変化を少く出来る
。例えば、電磁弁の圧力損をIW収水柱として、ガス圧
10仇舷水柱の時の空気過剰率に対して20%空気過剰
率が上昇してしまうガス圧がどうなるかを考えると、圧
力調整器5より上流側に配置した場合に6仇奴水柱とす
るなら、第1図の配置なら5Q豚水柱までガス圧低下に
耐えられることになる。本発明の制御装置によれば燃焼
空気量に応じて燃料流量がコントロールされるから送風
機1からの空気量を制御するのみで入力制御が可能とな
る。一般家庭用として入力は負荷に応じて制御すること
が使い勝手の上からも、又、省エネルギーの点からも必
要とされるが、その点、制御しやすい装置と言える。尚
、第1図では空気はすべて一次空気として供給している
が、二次空気が必要なら空気供給系路4から分岐してバ
ーナ3へ直接、供給すれば良い。
In the case of gas, the fuel flow rate differs even with the same input, but in that case, it is sufficient to change the constant X9 shown in equation {21. Specifically, only the nozzle 13 shown in FIG. 1 is replaced. The pressure regulator 5 itself and the injector 2 may be left as they are even if the gas quality changes. If an on-off valve is inserted on the fuel side to turn on and off the input as necessary, it is preferable to insert it between the pressure regulator 5 and the injector 2 as shown in FIG. This is because, as already explained, if we consider the case where the gas supply pressure in the home decreases, in order to keep △P at zero, it is necessary to enter the pressure regulator 5 with a supply pressure higher than Pai. Therefore, the pressure loss upstream of the pressure regulator 5 must be minimized as much as possible. Since the solenoid valve provides pressure loss from the water column on the few side to the water column on the tenth side, considering this as a factor of the constant kg shown in equation 21, it is better to do as shown in Figure 1 to reduce the air pressure loss against the drop in gas pressure. Changes in excess rate can be reduced. For example, if we assume that the pressure loss of a solenoid valve is the IW water column, and consider what will happen to the gas pressure that will cause the excess air ratio to increase by 20% compared to the air excess ratio when the gas pressure is 10 m. If it is placed upstream of 5 and the water column is 6, then the arrangement shown in Figure 1 can withstand a drop in gas pressure up to 5Q. According to the control device of the present invention, since the fuel flow rate is controlled according to the amount of combustion air, input control is possible only by controlling the amount of air from the blower 1. For general household use, it is necessary to control the input according to the load from the standpoint of usability and energy saving, and in that respect it can be said that the device is easy to control. In FIG. 1, all air is supplied as primary air, but if secondary air is required, it may be branched from the air supply line 4 and supplied directly to the burner 3.

その時も一次空気と二次空気の比はあらかじめ設定出来
るから、一次空気、二次空気、燃料流量の比は常に一定
に保つことが可能となる。
Even at that time, the ratio of primary air to secondary air can be set in advance, so the ratio of primary air, secondary air, and fuel flow rates can always be kept constant.

このように本発明によれば、空気過剰率が入力や、燃料
供窃陰圧、外気風圧などの変化があってもほぼ一定に保
たれて完全燃焼が可能となるばかりで無く、低入力時の
効率低下も招かない。
As described above, according to the present invention, the excess air ratio is not only kept almost constant even when there are changes in the input, fuel supply negative pressure, outside air wind pressure, etc., and complete combustion is possible, but also when the input is low. It also does not cause a decrease in efficiency.

特に、空気量と燃料の混合部での圧力効率を高めること
によって低圧での使用が可能となったから送風機が小型
化されたばかりで無く、一般家庭用として好適である。
In particular, by increasing the pressure efficiency in the mixing section of air and fuel, it is possible to use the blower at low pressure, which not only makes the blower more compact, but also makes it suitable for general household use.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す断面図、第2図はィン
ジェクタの断面図で、第3図はィンジヱクタでの空気風
速と発生圧力差の関係を示す図、第4図、第5図は発生
圧力差と、圧力調整器の性館による空気過剰率変化への
影響を示す図、第6図と第7図は圧力調整器の流量に対
する出口圧変動の関係を説明する図、第8,9,10,
11図は、いずれもインジェクタの諸要素の影響につい
て示した図である。 2……インジヱクタ、3……予混合燃焼バーナ、4・・
・・・・一次空気系路、5・…・・圧力調整器、6・・
・・・・開閉弁、7・・・・・・燃料供給系路、8・・
・・・・入口室、10・・・・・・絞り部、11拡大部
、12・・・・・・燃料噴出口、13…・・・ノズル、
15・・・・・・弁孔、16・・・・・・弁体、18・
・・・・・差圧発生体、20・・・・・・主ダイヤフラ
ム、21・・・・・・低圧部、22・・・・・・ダイヤ
フラム室、23・・・・・・背圧室、24・・・・・・
バランスダイヤフラム、28・・…・均圧管。 第1図 第2図 第3図 第4図 第5図 第6図 第7図 第8図 第9図 第10図 第11図
FIG. 1 is a sectional view showing an embodiment of the present invention, FIG. 2 is a sectional view of an injector, FIG. 3 is a diagram showing the relationship between air velocity and generated pressure difference in the injector, and FIGS. The figure shows the difference in generated pressure and the influence of the pressure regulator on the change in excess air ratio due to the sex hall. Figures 6 and 7 are diagrams explaining the relationship between the outlet pressure fluctuation and the flow rate of the pressure regulator. 8,9,10,
FIG. 11 is a diagram showing the influence of various elements of the injector. 2...Injector, 3...Premix combustion burner, 4...
...Primary air system path, 5...Pressure regulator, 6...
...Opening/closing valve, 7...Fuel supply line, 8...
...Inlet chamber, 10... Throttle part, 11 Enlarged part, 12... Fuel spout, 13... Nozzle,
15... Valve hole, 16... Valve body, 18...
... Differential pressure generator, 20 ... Main diaphragm, 21 ... Low pressure section, 22 ... Diaphragm chamber, 23 ... Back pressure chamber , 24...
Balance diaphragm, 28... pressure equalization tube. Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11

Claims (1)

【特許請求の範囲】 1 一次空気を要する予混合燃焼バーナと、一次空気を
供給する一次空気系路と、一次空気系路中に設けられ実
質的に同径でその内径の0.5から3倍の長さを有する
絞り部と、それに連通しバーナ入口径と等しくなるまで
拡大した拡大部と、絞り部内径の0.3から0.5倍の
外径を有し絞り部と同心で絞り部入口端面に位置した燃
料噴出口とを有するインジエクタと、燃料噴出口に連通
する燃料供給系路と、燃料供給系路中に設けられ弁孔開
度を制御する弁体と、弁孔より下流にあつてベンチユリ
ー管状の縮流部、低圧部、拡張部からなる差圧発生体と
、弁孔の反対側で弁孔とほぼ等しい面積を有するバラン
スダイヤフラムと、バランスダイヤフラムより広い面積
の主ダイヤフラムとを有し、両ダイヤフラムと弁体を連
結して両ダイヤフラム間に形成されるダイヤフラム室と
差圧発生体の低圧部を連通した圧力調整器と、インジエ
クタの入口室と圧力調整器の主ダイヤフラムの弁体と反
対側に形成した背圧室とを連通する均圧管と、圧力調整
器と燃料噴出口の中間の燃料供給系路中に設けたノズル
とから構成された燃焼制御装置。 2 燃焼制御開閉弁を燃料噴出口と圧力調整器の間の燃
料供給系路に配設した特許請求の範囲第1項記載の燃焼
制御装置。
[Scope of Claims] 1. A premix combustion burner that requires primary air, a primary air system passage for supplying primary air, and a premix combustion burner that is provided in the primary air system passage and has substantially the same diameter and 0.5 to 3 of the inner diameter thereof. A constriction part with twice the length, an enlarged part that communicates with the constriction part and enlarged until it becomes equal to the burner inlet diameter, and a concentric constriction with the constriction part that has an outer diameter of 0.3 to 0.5 times the inner diameter of the constriction part. an injector having a fuel spout located at the end face of the inlet; a fuel supply line communicating with the fuel spout; a valve body provided in the fuel supply line for controlling the opening degree of the valve hole; A differential pressure generator consisting of a ventilated tube-shaped constriction section, a low pressure section, and an expansion section, a balance diaphragm having an area approximately equal to the valve hole on the opposite side of the valve hole, and a main diaphragm having an area larger than the balance diaphragm. a pressure regulator which connects both diaphragms and a valve body and communicates the diaphragm chamber formed between the two diaphragms with the low pressure part of the differential pressure generator, and the inlet chamber of the injector and the main diaphragm of the pressure regulator. A combustion control device consisting of a pressure equalizing pipe that communicates with a back pressure chamber formed on the opposite side of the valve body, and a nozzle installed in the fuel supply line between the pressure regulator and the fuel injection port. 2. The combustion control device according to claim 1, wherein the combustion control on-off valve is disposed in the fuel supply line between the fuel injection port and the pressure regulator.
JP53045502A 1978-04-17 1978-04-17 Combustion control device Expired JPS6018887B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP53045502A JPS6018887B2 (en) 1978-04-17 1978-04-17 Combustion control device
GB7912736A GB2018970B (en) 1978-04-17 1979-04-11 Combustion control apparatus
DE2914681A DE2914681C2 (en) 1978-04-17 1979-04-11 Control device for a burner
FR7909349A FR2426212A1 (en) 1978-04-17 1979-04-12 COMBUSTION CONTROL UNIT
US06/268,758 US4385887A (en) 1978-04-17 1981-06-01 Combustion control apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53045502A JPS6018887B2 (en) 1978-04-17 1978-04-17 Combustion control device

Publications (2)

Publication Number Publication Date
JPS54137128A JPS54137128A (en) 1979-10-24
JPS6018887B2 true JPS6018887B2 (en) 1985-05-13

Family

ID=12721171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53045502A Expired JPS6018887B2 (en) 1978-04-17 1978-04-17 Combustion control device

Country Status (5)

Country Link
US (1) US4385887A (en)
JP (1) JPS6018887B2 (en)
DE (1) DE2914681C2 (en)
FR (1) FR2426212A1 (en)
GB (1) GB2018970B (en)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5719720U (en) * 1980-07-10 1982-02-01
DE3105862A1 (en) * 1981-02-18 1982-09-09 Stiebel Eltron Gmbh & Co Kg, 3450 Holzminden Gas blower burner
US4588372A (en) * 1982-09-23 1986-05-13 Honeywell Inc. Flame ionization control of a partially premixed gas burner with regulated secondary air
JPS609711A (en) * 1983-06-29 1985-01-18 Haruhisa Ikezoe Washing method of cooling water circuit of mold or molding machine for plastic molding
US4781575A (en) * 1983-12-01 1988-11-01 Gte Products Corporation Temperature compensator for pressure operated fuel regulator
US4585021A (en) * 1984-02-13 1986-04-29 Maxon Corporation Gas flow rate control regulator valve
GB2165347A (en) * 1984-10-04 1986-04-09 British Gas Corp Burner air/gas ratio control
US4766883A (en) * 1986-02-26 1988-08-30 Mor-Flo Industries, Inc. Forced draft controlled mixture heating system using a closed combustion chamber
US4793798A (en) * 1986-08-08 1988-12-27 Sabin Darrel B Burner apparatus
EP0275568A1 (en) * 1987-01-23 1988-07-27 Furigas Assen B.V. Hot water apparatus operating through gas combustion and provided with an air supply fan and a modulating gas/air control
CH680749A5 (en) * 1990-04-04 1992-10-30 Landis & Gyr Betriebs Ag
US5022352A (en) * 1990-05-31 1991-06-11 Mor-Flo Industries, Inc. Burner for forced draft controlled mixture heating system using a closed combustion chamber
US5085579A (en) * 1991-03-25 1992-02-04 Mor-Flo Industries, Inc. Powered chamber combustion system and burner therefor
US5240411A (en) * 1992-02-10 1993-08-31 Mor-Flo Industries, Inc. Atmospheric gas burner assembly
DE4317981A1 (en) * 1993-05-28 1994-12-01 Ranco Inc Gas-air ratio control device for a temperature control loop for gas appliances
US5642724A (en) * 1993-11-29 1997-07-01 Teledyne Industries, Inc. Fluid mixing systems and gas-fired water heater
AU5680494A (en) * 1993-11-29 1995-06-13 Teledyne Industries, Inc. Fluid mixing systems and gas-fired water heater
US5860411A (en) * 1997-03-03 1999-01-19 Carrier Corporation Modulating gas valve furnace control method
US6019593A (en) * 1998-10-28 2000-02-01 Glasstech, Inc. Integrated gas burner assembly
US6749423B2 (en) * 2001-07-11 2004-06-15 Emerson Electric Co. System and methods for modulating gas input to a gas burner
DE10324706B3 (en) * 2003-05-30 2004-12-02 Hovalwerk Ag Device for controlling the gas / air ratio for a premixing combustion device
US20060292505A1 (en) * 2003-09-08 2006-12-28 Massimo Giacomelli System for controlling the delivery of a fuel gas to a burner apparatus
DE102004055716C5 (en) * 2004-06-23 2010-02-11 Ebm-Papst Landshut Gmbh Method for controlling a firing device and firing device (electronic composite I)
KR100681386B1 (en) * 2005-01-12 2007-02-09 주식회사 경동네트웍 Combustion apparatus using air fuel ratio sensor
AT502406B1 (en) * 2006-03-22 2007-03-15 Vaillant Austria Gmbh Gas armature has throttle device for flow limiter, has throttle device positioned in outlet upstream measuring point in gas passage and over nozzle and over connection regulates with mounting fastened to threaded connection of outlet
CN101430091B (en) * 2007-11-05 2010-07-21 中南大学 Catalytic combustion premixing device
JP2010127540A (en) * 2008-11-27 2010-06-10 Noritz Corp Combustion apparatus
JP2010127553A (en) * 2008-11-28 2010-06-10 Noritz Corp Combustion apparatus
JP5354284B2 (en) * 2009-06-29 2013-11-27 株式会社ノーリツ Combustion device
US8544334B2 (en) 2010-11-03 2013-10-01 Yokogawa Corporation Of America Systems, methods, and apparatus for compensating atmospheric pressure measurements in fired equipment
US10274195B2 (en) * 2016-08-31 2019-04-30 Honeywell International Inc. Air/gas admittance device for a combustion appliance
DE102020108198A1 (en) 2020-03-25 2021-09-30 Vaillant Gmbh Method and device for improving the ignition behavior of a premix burner

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1652533A (en) * 1925-02-24 1927-12-13 James Keith & Blackman Company Injector for gas burners
US2305975A (en) * 1940-03-04 1942-12-22 Edwin W Mckinley Fluid pressure regulator
GB687662A (en) * 1949-10-05 1953-02-18 Ronald Calvert Improvements in or relating to gas burners
GB741722A (en) * 1951-02-20 1955-12-14 Leslie Claude Henry Athill Improvements in or relating to mixing gaseous fluids
US2859807A (en) * 1954-05-27 1958-11-11 Newman Leslie William Pressure-fed oil fuel burner
US2962094A (en) * 1959-03-23 1960-11-29 Barber Mfg Company Automatic shut-off valve control for fuel burners
GB1006431A (en) * 1961-05-13 1965-09-29 Zd Y V I Plzen A method of and device for regulating the relative amount of burning components for gas burners
GB1057926A (en) * 1963-08-19 1967-02-08 Varmekraft Ab Improvements in or relating to automatic fuel regulating devices for oil burners
US3269450A (en) * 1963-12-12 1966-08-30 Gen Motors Corp Gas furnace control system
FR1491215A (en) * 1965-09-21 1967-08-11 Bertin & Cie Improvements to ejectors-mixers or tubes
US3404702A (en) * 1967-09-18 1968-10-08 Malsbary Mfg Company Liquid fuel supply system
US3684189A (en) * 1971-05-12 1972-08-15 Zink Co John Pressurized fuel burner
GB1405093A (en) * 1971-09-18 1975-09-03 Stordy Combustion Eng Ltd Control of fuel supply to a burner
US3773071A (en) * 1972-03-13 1973-11-20 Maxitral Co Gas regulator
DE2431674C2 (en) * 1974-07-02 1983-05-11 Lindgens Kg, 7919 Altenstadt Mixing valve for incinerators and the like.
GB1507020A (en) * 1975-05-06 1978-04-12 British Gas Corp Apparatus for the control of gas/air flow ratio in a burner system
NL181601C (en) * 1977-07-27 Stelrad Group Ltd GAS BURNER FOR CONSTANT FLAME SIZE.

Also Published As

Publication number Publication date
GB2018970A (en) 1979-10-24
FR2426212B1 (en) 1984-02-24
US4385887A (en) 1983-05-31
GB2018970B (en) 1982-10-06
JPS54137128A (en) 1979-10-24
DE2914681C2 (en) 1986-01-30
DE2914681A1 (en) 1979-10-18
FR2426212A1 (en) 1979-12-14

Similar Documents

Publication Publication Date Title
JPS6018887B2 (en) Combustion control device
US4095929A (en) Low BTU gas horizontal burner
US5263849A (en) High velocity burner, system and method
JP4874457B2 (en) Fuel staging apparatus and method for gas turbine nozzles
KR20070001939A (en) Mechanically sealed adjustable gas nozzle
CN110207386B (en) Gas water heater capable of achieving staged combustion and control method thereof
US9970654B2 (en) Combustion device for improving turndown ratio
JPH05149149A (en) Gas turbine combustor
US6918757B2 (en) Combustion apparatus
JPH05332517A (en) Linear type burner
US5685706A (en) V-jet atomizer
JPS62174539A (en) Gas turbine controller
US5797738A (en) Burner and method of burning a fuel
US2930191A (en) Air-fuel control in prevaporizer type combustion chambers
US3806038A (en) Burner for low pressure lpg torch
US5178530A (en) Gas heating device, with a catalytic burner and regulating member
US5762490A (en) Premixed gas burner orifice
RU2121068C1 (en) Method of equalizing temperature field in gas turbine plants
JP5483049B2 (en) Combustion device
CN215831904U (en) Low-load self-adaptive micro-oil burner
US1210654A (en) Gas-burner.
KR102384784B1 (en) Load control equipment of an industrial burner
KR101709068B1 (en) Heating power control apparatus of burner for gas range
CN113654039A (en) Low-load self-adaptive micro-oil burner and control method thereof
JPH0356730Y2 (en)