EP1761728B1 - Method for adjusting the excess air coefficient on a firing apparatus, and firing apparatus - Google Patents
Method for adjusting the excess air coefficient on a firing apparatus, and firing apparatus Download PDFInfo
- Publication number
- EP1761728B1 EP1761728B1 EP05766826.1A EP05766826A EP1761728B1 EP 1761728 B1 EP1761728 B1 EP 1761728B1 EP 05766826 A EP05766826 A EP 05766826A EP 1761728 B1 EP1761728 B1 EP 1761728B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- mass flow
- gas
- air
- firing device
- value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Not-in-force
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N1/00—Regulating fuel supply
- F23N1/02—Regulating fuel supply conjointly with air supply
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N1/00—Regulating fuel supply
- F23N1/02—Regulating fuel supply conjointly with air supply
- F23N1/022—Regulating fuel supply conjointly with air supply using electronic means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N2225/00—Measuring
- F23N2225/08—Measuring temperature
- F23N2225/16—Measuring temperature burner temperature
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N2225/00—Measuring
- F23N2225/26—Measuring humidity
- F23N2225/30—Measuring humidity measuring lambda
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N2227/00—Ignition or checking
- F23N2227/20—Calibrating devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N2233/00—Ventilators
- F23N2233/06—Ventilators at the air intake
- F23N2233/08—Ventilators at the air intake with variable speed
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N2235/00—Valves, nozzles or pumps
- F23N2235/12—Fuel valves
- F23N2235/14—Fuel valves electromagnetically operated
Definitions
- the invention relates to a firing device, in particular a gas burner, which is adapted to carry out the method.
- the household gas burners are used for example as a water heater for the preparation of hot water in a boiler or to provide heating. In the respective operating conditions, different requirements are placed on the device. This relates in particular to the output of the burner, commonly referred to as the burner load, and the temperature generated by the burner flame.
- the burner load is essentially determined by the adjustment of the amount of combustion air and the mixing ratio between gas and air.
- the Adjustment of the mixing ratio takes place, in particular for gas burners used in the household, by a pneumatic gas control valve (principle of the pneumatic composite).
- pneumatic control pressures or pressure differences are measured at orifices, in constrictions or in venturi nozzles. These quantities are used as control variables for the gas control valve.
- a disadvantage of the pneumatic control is in particular that sensitive mechanical components must be used, which are subject to hysteresis effects due to the friction. Therefore, especially at low working pressures it comes to inaccuracies.
- the expense of manufacturing the diaphragm-equipped pneumatic gas control valves is remarkable because of the high precision requirements.
- an easily controllable gas control valve such as pulse width modulated coil or stepper motor, can be used to set in conjunction with a variable speed fan the desired amount of air and the desired gas-air mixing ratio (electronic composite). It is possible to respond flexibly to changes in gas quality.
- the air ratio ⁇ is typically used to characterize the mixing ratio between gas and air. It is defined as the ratio of the actual amount of air supplied to the amount of air theoretically required for optimal stoichiometric combustion.
- CO, CO 2 exhaust gas values
- gas burners are typically operated with excess air.
- the setpoint for the air ratio ⁇ s is 1.3 for hygienically optimal combustion.
- US 5971745 also describes a method for setting operating parameters on a firing device by means of an ionization electrode.
- the object is achieved by a method according to the main claim and by a device according to claim 6.
- the amount of fuel supplied per unit time is changed continuously or stepwise at a constant rate of air supplied per unit time.
- the amount of fuel supplied per unit time is adjusted so that the measured temperature assumes a maximum.
- the amount of air supplied per unit time is increased while maintaining the previously set amount of fuel using the air mass flow sensor by the factor ⁇ hy .
- a structurally suitable blending geometry can reduce the increase of the amount of gas to a negligible value.
- a control device can reset the gas mass flow to the value m Gtmax found at T max by means of a corresponding admission of the gas valve without constructive adaptation.
- a readjustment of the air ratio should be made to ensure the hygienically optimal combustion.
- An adjustment of the air ratio can be carried out, for example, at periodic intervals, during a load change, at the start of operation, or during maintenance of the device.
- the firing device according to the invention in particular a gas burner, is adapted to carry out one of the above-mentioned methods.
- the firing device has a temperature sensor in the area of action of the burner flame of the firing device.
- the temperature sensor can be arranged in the flame kernel, at the base of the flame, at the tip of the flame, but also at some distance from the flame, for example at the burner plate itself.
- the firing device preferably has a gas valve with an actuator, in particular with a stepper motor, a pulse-width-modulated coil or with a coil controlled by an electrical variable. Since the method is particularly suitable for the electronic composite, said valves, which are simple and precise operable, can be used.
- the firing device has a mass flow sensor for measuring the amount of air supplied to the firing device per unit time.
- FIG. 1 shows a gas burner in which a mixture of air L and gas G is premixed and burned.
- the gas burner has an air supply section 1, via which combustion air L is drawn in by a variable-speed fan 9.
- a mass flow sensor 2 measures the mass flow of the intake air L.
- the mass flow sensor 2 is arranged so that as laminar a flow as possible is generated in its environment in order to avoid measurement errors.
- the mass flow sensor could be placed in a bypass (not shown) and using a flow straightener. With the aid of the mass flow sensor and the variable-speed blower 9, the air supply into the mixing region 8 can be precisely controlled.
- a gas supply section 4 is provided, which is connected to a gas supply line.
- the gas supply section may be provided with a mass flow sensor of suitable design.
- a valve 6 for example a pulse-width-modulated or electronically controlled valve, which is equipped, for example, with an actuator with a stepping motor, the inflow of gas through a line 7 into the mixing region 8 is controlled.
- a mixing of the gas G with the air L takes place.
- the fan of the fan 9 is equipped with an adjustable Speed driven to suck in both the air L and the gas G.
- the valve 6 is opened so far that the air-gas mixture passes with the desired mixing ratio in the mixing region 8.
- the air ratio ⁇ is set so that a hygienically optimal combustion takes place.
- the air-gas mixture flows from the blower 9 to the burner part 11. There it exits and feeds the burner flame 13, which is to deliver a predetermined heat output.
- a temperature sensor 12 for example a thermocouple
- an actual temperature is measured, which is used in carrying out the method described below for setting the setpoint ⁇ h of the air ratio.
- the temperature sensor 12 is arranged on a surface of the burner part 11.
- the reference temperature of the thermocouple is measured at a position outside the effective range of the flame 13, for example in the air supply line 1.
- a device, not shown, for controlling or regulating the air and / or gas flow receives input data from the temperature sensor 12 and from the mass flow sensor 2 and outputs control signals to the valve 6 as well as to the drive of the blower 9.
- the opening of the valve 6 and the speed of the fan of the fan 9 are adjusted so that the desired air and gas supply results.
- control device has a memory for storing characteristic curves or nominal values and a corresponding data processing unit which is set up to carry out the method.
- a certain air ratio ⁇ 0 which corresponds for example to the last set value.
- ⁇ 0 is above the value ⁇ 1 , at which the temperature maximum T max results.
- the change in the gas mass flow can be carried out stepwise, for example, by varying the steps of the stepping motor of the gas valve.
- the actual temperature T ist determined with the temperature sensor 12, which is arranged in the region of the burner flame.
- the opening of the gas valve is then varied until the temperature maximum T max is established.
- the air mass flow m L1 is increased by the desired value ⁇ hy of the air ratio.
- the air ratio is thus set exactly to the desired setpoint ⁇ hy , and the combustion is hygienically optimal.
- the associated temperature T soll is measured.
- the process is usually carried out again.
- the process can also be performed after switching on the gas burner or repeated at periodic intervals. In this way it is ensured that the gas burner is always operated in an optimal range.
- FIG. 3 a second characteristic, as in FIG. 3 shown to be determined.
- the set temperature T soll which is like in FIG. 2 has been determined, depending on the air mass flow m L1 , which is directly proportional to the burner load, shown.
- the setpoint of the air ratio ⁇ hy arises at a certain burner load exactly when the measured in the range of action of the burner flame temperature T is from the FIG. 3 read target temperature T soll corresponds.
- a regulation of the actual temperature T is set to the predetermined target value T soll automatically leads to a setting of the optimum air ratio at a given burner load.
- characteristic curve can be operated over a certain period of time, in which preferably the boundary conditions are not crucial, the system without re-implementation of the method with changing burner loads, ie in different operating conditions.
- the characteristic curve should be redetermined in order to adapt to the available gas quality or instabilities in the system Reach system.
- FIG. 3 is the Sölltemperatur T soll in dependence on the mass flow of air m L , which corresponds to a certain burner load, represented. If the load is switched from an operating state 1 to an operating state 2, corresponding to the air mass flows m L1 or m L2 , then the temperature of the gas burner is controlled so that the temperature T soll2 sets. For this purpose, the air-gas mixture is emaciated or greased by adjusting the gas valve 6.
- the implementation of the method leads to an operating mode in which a hygienically optimal combustion is achieved.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Regulation And Control Of Combustion (AREA)
Description
Verfahren zur Einstellung von Betriebsparametern an einer Feuerungseinrichtung, insbesondere an einem Gasbrenner mit Gebläse, wobei die von der Feuerungseinrichtung erzeugte Temperatur (Tist) von dem Wert der Luftzahl (λ) abhängt und bei dem Wert λ1=1 ein Maximum (Tmax) aufweist. Außerdem betrifft die Erfindung eine Feuerungseinrichtung, insbesondere einen Gasbrenner, der zur Durchführung des Verfahrens angepasst ist.Method for setting operating parameters on a firing device, in particular on a gas burner with blower, wherein the temperature (T ist ) generated by the firing device depends on the value of the air ratio (λ) and at the value λ 1 = 1 a maximum (T max ) having. Moreover, the invention relates to a firing device, in particular a gas burner, which is adapted to carry out the method.
Im Haushalt werden Gasbrenner beispielsweise als Durchlauferhitzer für die Bereitung von Warmwasser in einem Kessel oder zur Bereitstellung von Heizwärme eingesetzt. In den jeweiligen Betriebszuständen werden an das Gerät unterschiedliche Anforderungen gestellt. Dies betrifft insbesondere die Leistungsabgabe des Brenners, üblicherweise als Brennerbelastung bezeichnet, und die von der Brennerflamme erzeugte Temperatur.In the household gas burners are used for example as a water heater for the preparation of hot water in a boiler or to provide heating. In the respective operating conditions, different requirements are placed on the device. This relates in particular to the output of the burner, commonly referred to as the burner load, and the temperature generated by the burner flame.
Die Brennerbelastung wird im Wesentlichen durch die Einstellung der Menge von Verbrennungsluft und des Mischungsverhältnisses zwischen Gas und Luft bestimmt. Die Einstellung des Mischungsverhältnisses erfolgt, insbesondere bei im Haushalt eingesetzten Gasbrennern, durch ein pneumatisches Gasregelventil (Prinzip des pneumatischen Verbunds). Bei der pneumatischen Reglung werden Drücke oder Druckdifferenzen an Blenden, in Verengungen oder in Venturidüsen gemessen. Diese Größen werden als Steuergrößen für das Gasregelventil verwendet. Nachteilig an der pneumatischen Regelung ist jedoch insbesondere, dass empfindliche mechanische Bauteile eingesetzt werden müssen, die auf Grund der Reibung mit Hystereseeffekten behaftet sind. Besonders bei niedrigen Arbeitsdrücken kommt es daher zu Ungennauigkeiten. Außerdem ist der Aufwand bei der Herstellung der mit Membranen ausgestatteten pneumatischen Gasregelventile wegen der hohen Präzisionsanforderungen beachtlich. Im pneumatischen Verbund kann zudem auf Änderungen der Gasart und -qualität nicht flexibel reagiert werden. Um gewünschte Anpassungen der Gaszufuhr dennoch vornehmen zu können, müssen zusätzliche Einrichtungen, z.B. Düsen und Blenden gasartenabhängig bereitgestellt werden, was jedoch zusätzlichen Aufwand bedeutet.The burner load is essentially determined by the adjustment of the amount of combustion air and the mixing ratio between gas and air. The Adjustment of the mixing ratio takes place, in particular for gas burners used in the household, by a pneumatic gas control valve (principle of the pneumatic composite). In pneumatic control, pressures or pressure differences are measured at orifices, in constrictions or in venturi nozzles. These quantities are used as control variables for the gas control valve. A disadvantage of the pneumatic control, however, is in particular that sensitive mechanical components must be used, which are subject to hysteresis effects due to the friction. Therefore, especially at low working pressures it comes to inaccuracies. In addition, the expense of manufacturing the diaphragm-equipped pneumatic gas control valves is remarkable because of the high precision requirements. In addition, in the pneumatic network it is not possible to respond flexibly to changes in the gas type and quality. In order to be able to make desired adjustments to the gas supply nevertheless, additional devices, eg nozzles and orifices, must be provided depending on the gas type, which means additional expense.
Bei einer elektronischen Steuerung kann hingegen ein einfach steuerbares Gasregelventil, etwa mit pulsweitenmodulierter Spule oder Schrittmotor, eingesetzt werden, um in Verbindung mit einem drehzahlsteuerbaren Gebläse die gewünschte Luftmenge und das gewünschte Gas-Luft-Mischungsverhältnis einzustellen (elektronischer Verbund). Dabei kann auf Änderungen der Gasqualität flexibel reagiert werden.In an electronic control, however, an easily controllable gas control valve, such as pulse width modulated coil or stepper motor, can be used to set in conjunction with a variable speed fan the desired amount of air and the desired gas-air mixing ratio (electronic composite). It is possible to respond flexibly to changes in gas quality.
Bei vorgegebener Luftmenge ist das Mischungsverhältnis zwischen Gas und Luft so einzustellen, dass das Gas möglichst vollständig und sauber verbrennt. Zur Charakterisierung des Mischungsverhältnisses zwischen Gas und Luft wird typischerweise die Luftzahl λ verwendet. Sie ist definiert als das Verhältnis der tatsächlich zugeführten Luftmenge zu der theoretisch für optimale stöchiometrische Verbrennung erforderlichen Luftmenge. Zu einer Optimierung der Abgaswerte (CO, CO2) werden Gasbrenner typischerweise mit Luftüberschuss betrieben. Der Sollwert für die Luftzahl λs liegt für hygienisch optimale Verbrennung bei 1,3. Beim Betrieb eines Gasbrenners mit elektronischem Verbund ist sicherzustellen, dass die Luftzahl λ bei den unterschiedlichen Brennerbelastungen immer möglichst nahe am Sollwert λs liegt. Zusätzlich ist zu beachten, dass sich die Betriebsbedingungen nach der Inbetriebnahme des Geräts ändern können und dann die Parameter der Verbrennungsregelung entsprechend angepasst werden müssen.For a given amount of air, the mixing ratio between gas and air must be adjusted so that the gas burns as completely and cleanly as possible. The air ratio λ is typically used to characterize the mixing ratio between gas and air. It is defined as the ratio of the actual amount of air supplied to the amount of air theoretically required for optimal stoichiometric combustion. To optimize the exhaust gas values (CO, CO 2 ), gas burners are typically operated with excess air. The setpoint for the air ratio λ s is 1.3 for hygienically optimal combustion. When operating a gas burner with an electronic composite, it must be ensured that the air ratio λ at the different burner loads is always as close as possible to the setpoint λ s . In addition, it should be noted that the operating conditions may change after commissioning the device and then the parameters of the combustion control must be adjusted accordingly.
In der
Mit diesem Verfahren, das alleine auf das Signal der Ionisationselektrode zurückgreift, ist es zwar möglich das Ionisationssignal für λ = 1 genau zu bestimmen. Allerdings kann der Sollwert für die Luftzahl anschließend nicht genau eingestellt werden, da zum Beispiel die Anlagenkennlinie unberücksichtigt bleibt.With this method, which solely relies on the signal of the ionization electrode, it is possible to determine the ionization signal for λ = 1 exactly. However, the setpoint for the air ratio can not then be set precisely, since, for example, the system characteristic is ignored.
Es ist daher die Aufgabe der Erfindung, ein Verfahren anzugeben, mit dem die Parameter der Verbrennung an geforderte Brennerbelastungen einfach und zuverlässig eingestellt werden können. Auch ist es Aufgabe der Erfindung, eine entsprechende Vorrichtung zu schaffen, mit der das Verfahren durchgeführt werden kann.It is therefore an object of the invention to provide a method by which the parameters of the combustion can be adjusted to required burner loads easily and reliably. It is also an object of the invention to provide a corresponding device with which the method can be performed.
Die Aufgabe wird gelöst durch ein Verfahren gemäß Hauptanspruch sowie durch eine Vorrichtung gemäß Anspruch 6.The object is achieved by a method according to the main claim and by a device according to
Bei dem Verfahren zur Einstellung von Betriebsparametern an einer Feuerungseinrichtung, insbesondere an einem Gasbrenner mit Gebläse, mit einer Luftmassenmessung, wobei die von der Feuerungseinrichtung erzeugte Temperatur (Tist) von dem Wert der Luftzahl (λ) abhängt und bei dem Wert λ1=1 ein Maximum (Tmax) aufweist, werden die folgende Schritte durchgeführt:
- Einsteuern eines vorgegebenen Luft-Massenstroms (mL);
- Ermitteln des für die Temperatur (Tmax) zugehörigen Gasmassenstroms (mGTmax).
- Festlegen eines Sollwerts der Luftzahl(λhy) für eine gewünschte hygienische Verbrennung;
- Einsteuern der gewünschten hygienischen Verbrennung durch Erhöhen des Luft-Massenstroms (mL) um den Faktor (λhy) bei konstanter Zufuhr des Gasmassenstroms (mGTmax)·
- Controlling a given air mass flow (m L );
- Determining the gas mass flow associated with the temperature (T max ) (m GTmax ).
- Setting a desired value of the air ratio (λ hy ) for a desired hygienic combustion;
- Controlled supply of the desired hygienic combustion by increasing the air mass flow (m L) by a factor (λ h y) at a constant supply of the gas mass flow (m GTm ax) ·
Die sich dabei ergebende Ist-Temperatur wird registriert.The resulting actual temperature is registered.
Ausgehend von einem zufällig oder zuletzt eingestellten Mischungsverhältnis zwischen Luft und Brennstoff wird die pro Zeiteinheit zugeführte Brennstoffmenge bei konstanter pro Zeiteinheit zugeführten Luftmenge kontinuierlich oder schrittweise verändert. Durch Ermittlung und Erfassung der im Wirkungsbereich der Brennerflamme gemessenen Temperatur wird die pro Zeiteinheit zugeführte Brennstoffmenge so eingestellt, dass die gemessene Temperatur ein Maximum annimmt. Anschließend wird die pro Zeiteinheit zugeführte Luftmenge unter Beibehaltung der vorher eingestellten Brennstoffmenge unter Nutzung des Luftmassenstromsensors um den Faktor λhy erhöht. Auf diese Weise kann für jede gewünschte Brennerbelastung bei unterschiedlichen Gasqualitäten, aber auch bei Veränderung von Einstellungen bzw. bei einer Änderung der Charakteristika der am Gasbrenner angeordneten Sensoren, der Sollwert der Luftzahl für hygienisch optimale Verbrennung genau, sicher und zuverlässig eingestellt werden.Starting from a random or last set mixing ratio between air and fuel, the amount of fuel supplied per unit time is changed continuously or stepwise at a constant rate of air supplied per unit time. By determining and recording the measured in the range of the burner flame Temperature, the amount of fuel supplied per unit time is adjusted so that the measured temperature assumes a maximum. Subsequently, the amount of air supplied per unit time is increased while maintaining the previously set amount of fuel using the air mass flow sensor by the factor λ hy . In this way, for any desired burner load at different gas qualities, but also when changing settings or when changing the characteristics of the sensors arranged on the gas burner, the setpoint of the air ratio for hygienically optimal combustion can be set accurately, safely and reliably.
Aus konstruktionsbedingten Gründen kann es möglich sein, dass mit der Erhöhung der Luftmenge zwangsläufig auch eine Erhöhung der Gasmenge einhergeht. In einem solchen Fall kann eine konstruktiv geeignet gestaltete Zumischungsgeometrie die Erhöhung der Gasmenge auf einen vernachläßigbaren Wert reduzieren.For design reasons, it may be possible that with the increase in the amount of air inevitably accompanied by an increase in the amount of gas. In such a case, a structurally suitable blending geometry can reduce the increase of the amount of gas to a negligible value.
Durch Verwendung von Massenstromsensoren im Gasmassenstrom kann jedoch ohne konstruktive Anpassung eine Steuereinrichtung den Gasmassenstrom durch eine entsprechende Beaufschlagung des Gasventils auf den bei Tmax gefundenen Wert mGtmax zurückstellen.By using mass flow sensors in the gas mass flow, however, a control device can reset the gas mass flow to the value m Gtmax found at T max by means of a corresponding admission of the gas valve without constructive adaptation.
Schließlich ist es auch möglich, den erhöhten Gasmassenstrom rechnerisch zu ermitteln und die Luftzahl λhy entsprechend höher einzustellen. Auch kann daran gedacht werden, die Gasmenge um den errechneten Wert zu reduzieren, was jedoch ein höchst genaues Ventil erfordert.Finally, it is also possible to calculate the increased gas mass flow and set the air ratio λ hy correspondingly higher. Also, it can be thought to reduce the amount of gas by the calculated value, but this requires a highly accurate valve.
Insbesondere bei Schwankungen der Qualität des Verbrennungsgases sollte eine Neueinstellung der Luftzahl vorgenommen werden, um die hygienisch optimale Verbrennung sicherzustellen. Ein Nachstellen der Luftzahl kann dabei beispielsweise in periodischen Zeitabständen, bei einem Lastwechsel, beim Betriebsstart, oder bei einer Wartung des Geräts durchgeführt werden.In particular, with variations in the quality of the combustion gas, a readjustment of the air ratio should be made to ensure the hygienically optimal combustion. An adjustment of the air ratio can be carried out, for example, at periodic intervals, during a load change, at the start of operation, or during maintenance of the device.
Die erfindungsgemäße Feuerungseinrichtung, insbesondere ein Gasbrenner, ist zur Durchführung eines der oben genannten Verfahren angepasst.The firing device according to the invention, in particular a gas burner, is adapted to carry out one of the above-mentioned methods.
Insbesondere weist die Feuerungseinrichtung einen Temperatursensor im Wirkungsbereich der Brennerflamme der Feuerungseinrichtung auf. Der Temperatursensor kann dabei im Flammenkern, am Flammenfußpunkt, an der Flammenspitze, jedoch auch in einiger Entfernung von der Flamme, beispielsweise am Brennerblech selbst, angeordnet sein.In particular, the firing device has a temperature sensor in the area of action of the burner flame of the firing device. The temperature sensor can be arranged in the flame kernel, at the base of the flame, at the tip of the flame, but also at some distance from the flame, for example at the burner plate itself.
Außerdem weist die Feuerungseinrichtung bevorzugt ein Gasventil mit einem Stellglied, insbesondere mit einem Schrittmotor, einer pulsweitenmodulierten Spule oder mit einer durch eine elektrische Größe gesteuerten Spule, auf. Da das Verfahren insbesondere für den elektronischen Verbund geeignet ist, können die genannten Ventile, die einfach und präzise betätigbar sind, eingesetzt werden.In addition, the firing device preferably has a gas valve with an actuator, in particular with a stepper motor, a pulse-width-modulated coil or with a coil controlled by an electrical variable. Since the method is particularly suitable for the electronic composite, said valves, which are simple and precise operable, can be used.
Die Feuerungseinrichtung weist erfindungsgemäß einen Massenstromsensor zur Messung der der Feuerungseinrichtung pro Zeiteinheit zugeführten Luftmenge auf.According to the invention, the firing device has a mass flow sensor for measuring the amount of air supplied to the firing device per unit time.
Weitere Merkmale und Vorteile des Gegenstandes der Erfindung ergeben sich aus der nachfolgenden Beschreibung besonderer Ausführungsbeispiele der Erfindung.Further features and advantages of the subject matter of the invention will become apparent from the following description of particular embodiments of the invention.
Es zeigen:
- Fig. 1
- eine Feuerungseinrichtung gemäß der Erfindung;
- Fig. 2
- eine Kennlinie zur Verdeutlichung des erfindungsgemäßen Verfahrens;
- Fig. 3
- eine weitere Kennlinie zur Verdeutlichung des erfindungsgemäßen Verfahrens.
- Fig. 1
- a firing device according to the invention;
- Fig. 2
- a characteristic curve to illustrate the method according to the invention;
- Fig. 3
- a further characteristic for clarification of the method according to the invention.
Der Gasbrenner weist einen Luftzufuhrabschnitt 1 auf, über den Verbrennungsluft L von einem drehzahlregelbaren Gebläse 9 angesaugt wird. Ein Massenstromsensor 2 misst den Massenstrom der angesaugten Luft L. Der Massenstromsensor 2 ist so angeordnet, dass in seiner Umgebung eine möglichst laminare Strömung erzeugt wird, um Messfehler zu vermeiden. Insbesondere könnte der Massenstromsensor in einem Bypass (nicht gezeigt) und unter Verwendung eines Strömungsgleichrichters angeordnet werden. Mit Hilfe des Massenstromsensors und des drehzahlregelbaren Gebläses 9 kann die Luftzufuhr in den Mischbereich 8 genau gesteuert werden.The gas burner has an
Für die Gaszufuhr ist ein Gaszufuhrabschnitt 4 vorgesehen, der an eine Gaszuleitung angeschlossen ist. Der Gaszufuhrabschnitt kann mit einem Massenstromsensor geeigneter Bauart versehen sein. Mittels eines Ventils 6, beispielsweise eines pulsweitenmodulierten oder elektronisch gesteuerten Ventils, das z.B. mit einem Stellglied mit Schrittmotor ausgestattet ist, wird der Zufluss von Gas durch eine Leitung 7 in den Mischungsbereich 8 gesteuert. Im Mischungsbereich 8 findet eine Vermischung des Gases G mit der Luft L statt. Der Ventilator des Gebläses 9 wird mit einer einstellbaren Drehzahl angetrieben, um sowohl die Luft L als auch das Gas G anzusaugen.For the gas supply, a gas supply section 4 is provided, which is connected to a gas supply line. The gas supply section may be provided with a mass flow sensor of suitable design. By means of a
Bei vogegebenem Luftmassenstrom wird das Ventil 6 so weit geöffnet, dass das Luft-Gas-Gemisch mit dem gewünschten Mischungsverhältnis in den Mischbereich 8 gelangt. Dabei wird die Luftzahl λ so eingestellt, dass eine hygienisch optimale Verbrennung stattfindet.At vogegebenem air mass flow, the
Über eine Leitung 10 strömt das Luft-Gasgemisch vom Gebläse 9 zum Brennerteil 11. Dort tritt es aus und speist die Brennerflamme 13, die eine vorgegebene Wärmeleistung abgeben soll.Via a
Am Brennerteil 11 ist eine Temperatursensor 12, beispielsweise ein Thermoelement, angeordnet. Mit Hilfe dieses Thermoelements wird eine Ist-Temperatur gemessen, die bei der Durchführung des nachfolgend beschriebenen Verfahrens zur Einstellung des Sollwertes λh der Luftzahl verwendet wird. Im vorliegenden Beispiel ist der Temperatursensor 12 an einer Oberfläche des Brennerteils 11 angeordnet. Es ist jedoch auch denkbar, den Sensor an anderer Stelle im Wirkungsbereich der Flamme 13 anzuordnen. Die Referenztemperatur des Thermoelements wird an einer Stelle außerhalb des Wirkungsbereichs der Flamme 13, beispielsweise in der Luftzufuhrleitung 1, gemessen.On the
Eine nicht dargestellte Einrichtung zur Steuerung bzw. zur Regelung des Luft- und/oder Gasstroms erhält Eingangsdaten vom Temperatursensor 12 und vom Massenstromsensor 2 und gibt Steuersignale an das Ventil 6 sowie an den Antrieb des Gebläses 9 ab. Die Öffnung des Ventils 6 und die Drehzahl des Ventilators des Gebläses 9 werden so eingestellt, dass sich die gewünschte Luft- und Gaszufuhr ergibt.A device, not shown, for controlling or regulating the air and / or gas flow receives input data from the
Die Steuerung erfolgt dabei durch Durchführung des nachfolgend beschriebenen Verfahrens. Insbesondere weist die Steuereinrichtung einen Speicher zum Abspeichern von Kennlinien bzw. von Sollwerten sowie eine entsprechende Datenverarbeitungseinheit auf, die zur Durchführung des Verfahrens eingerichtet ist.The control is carried out by performing the method described below. In particular, the control device has a memory for storing characteristic curves or nominal values and a corresponding data processing unit which is set up to carry out the method.
Anhand der in der
Zu Beginn des Verfahrens ist durch die Drehzahl des Gebläses und die Öffnung des Gasventils eine bestimmte Luftzahl λ0 eingestellt, die beispielsweise dem zuletzt eingestellten Wert entspricht. Im vorliegenden Fall liegt λ0 oberhalb des Wertes λ1, bei dem sich das Temperaturmaximum Tmax ergibt. Durch Erhöhung des zugeführten Massenstroms an Brenngas bei konstantem Luftmassenstrom mL1 wird λ reduziert Die Veränderung des Gasmassenstroms kann dabei beispielsweise schrittweise unter Variation der Schritte des Schrittmotors des Gasventils durchgeführt werden. Bei jedem Schritt wird mit dem Temperatursensor 12, der im Bereich der Brennerflamme angeordnet ist, die Ist-Temperatur Tist bestimmt. Mit geeigneten Iterationsverfahren wird die Öffnung des Gasventils dann solange variiert, bis sich das Temperaturmaximum Tmax einstellt.At the beginning of the process is set by the speed of the blower and the opening of the gas valve, a certain air ratio λ 0 , which corresponds for example to the last set value. In the present case, λ 0 is above the value λ 1 , at which the temperature maximum T max results. By increasing the supplied mass flow λ is reduced to fuel gas at a constant air mass flow m L1 . The change in the gas mass flow can be carried out stepwise, for example, by varying the steps of the stepping motor of the gas valve. At each step, the actual temperature T ist determined with the
Im zweiten Verfahrensschritt wird unter Beibehaltung der Öffnung des Gasventils der Luftmassenstrom mL1 um den Sollwert λhy der Luftzahl erhöht. Es ergibt sich der neue Luftmassenstrom mhy =λhy mL1. Die Luftzahl ist damit genau auf den gewünschten Sollwert λhy eingestellt, und die Verbrennung erfolgt hygienisch optimal. Nach Einstellung der gewünschten Luftzahl λhy wird die zugehörige Temperatur Tsoll gemessen.In the second method step, while maintaining the opening of the gas valve, the air mass flow m L1 is increased by the desired value λ hy of the air ratio. The result is the new air mass flow m hy = λ hy m L1 . The air ratio is thus set exactly to the desired setpoint λ hy , and the combustion is hygienically optimal. After setting the desired air ratio λ hy , the associated temperature T soll is measured.
Bei einem Lastwechsel, das heißt bei einer erforderlichen Änderung der Brennerbelastung, wird das Verfahren in der Regel erneut durchgeführt. Das Verfahren kann auch nach dem Einschalten des Gasbrenners durchgeführt oder in periodischen Abständen wiederholt werden. Auf diese Weise wird sichergestellt, dass der Gasbrenner stets in einem optimalen Bereich betrieben wird.In a load change, that is, in a required change in the burner load, the process is usually carried out again. The process can also be performed after switching on the gas burner or repeated at periodic intervals. In this way it is ensured that the gas burner is always operated in an optimal range.
Um zu verhindern, dass das Verfahren bei jedem Lastwechsel erneut durchgeführt werden muss, kann eine zweite Kennlinie, wie in
Durch die Verwendung der zweiten in
In
Statt einer völligen Neubestimmung der zweiten Kennlinie gemäß
Die Durchführung des Verfahrens führt zu einem Betriebsmodus, bei dem eine hygienisch optimale Verbrennung erreicht wird.The implementation of the method leads to an operating mode in which a hygienically optimal combustion is achieved.
Claims (8)
- A method for setting operating parameters on a firing device, in particular on a gas burner with a fan, with a air mass measurement, wherein the temperature (Tactual) produced by the firing device being dependent upon the value of the air ratio (λ) and having a maximum (Tmax) at the value A1=1, comprising the steps:· controlling a pre-determined air mass flow (mL);· establishing the gas mass flow (mGTmax) corresponding to the temperature (Tmax);· defining a desired value for the air ratio (λhy) for a desired hygienic combustion;· controlling the desired hygienic combustion by increasing the air mass flow (mL) by the factor (λhy) with a constant supply of gas mass flow (mGTmax).
- The method according to Claim 1, characterised in that the air mass flow (mLhy) corresponding to the hygienic desired value (λhy) for the air ratio is controlled by changing the ventilator speed of the fan.
- The method according to either of the preceding claims, characterised in that the air mass flow (mL) and the gas mass flow (mG) are measured respectively by a mass flow sensor.
- The method according to any of the preceding claims, characterised in that the gas mass flow (mGTmax) corresponding to the temperature maximum (Tmax) is established by iterative approximation of the value of the gas mass flow (mG) to the value (mGTmax) corresponding to the temperature maximum.
- The method according to any of the preceding claims, characterised in that the desired value (λhy) for the air ratio is approximately 1.3.
- A firing device, in particular a gas burner, characterised in that the firing device has a temperature sensor (12) in the effective region of the burner flame (13) of the firing device and at least one mass flow sensor (2, 5) for measuring the quantity of air supplied to the firing device per unit of time, so that the firing device is adapted to implement said method according to any of the preceding claims.
- The firing device according to claim 6, characterised in that the firing device has a valve (6) with a correcting element for setting the gas mass flow (mG), in particular with a stepper motor, a pulse width modulated coil or a coil controlled by an electrical value.
- The firing device according to any of the preceding Claims 6 to 7, characterised in that the firing device has at least one mass flow sensor (2, 5) for measuring the quantity of gas supplied per unit of time and/or the quantity of mixture of air and gas supplied.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE202004017850U DE202004017850U1 (en) | 2004-06-23 | 2004-06-23 | Firing equipment as gas burner has means to set a desired target parameter value after determining the parameter value corresponding to the temperature maximum for optimum air-gas ratio |
DE102004030300A DE102004030300A1 (en) | 2004-06-23 | 2004-06-23 | Firing equipment as gas burner has means to set a desired target parameter value after determining the parameter value corresponding to the temperature maximum for optimum air-gas ratio |
DE102004055715.2A DE102004055715C5 (en) | 2004-06-23 | 2004-11-18 | Method for setting operating parameters on a firing device and firing device |
PCT/EP2005/006628 WO2006000367A1 (en) | 2004-06-23 | 2005-06-20 | Method for adjusting the excess air coefficient on a firing apparatus, and firing apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1761728A1 EP1761728A1 (en) | 2007-03-14 |
EP1761728B1 true EP1761728B1 (en) | 2014-11-19 |
Family
ID=34981383
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP05766826.1A Not-in-force EP1761728B1 (en) | 2004-06-23 | 2005-06-20 | Method for adjusting the excess air coefficient on a firing apparatus, and firing apparatus |
Country Status (5)
Country | Link |
---|---|
US (1) | US7922481B2 (en) |
EP (1) | EP1761728B1 (en) |
KR (1) | KR101157652B1 (en) |
CA (1) | CA2571522C (en) |
WO (1) | WO2006000367A1 (en) |
Families Citing this family (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102007022008B4 (en) * | 2007-05-08 | 2009-02-26 | Saia-Burgess Dresden Gmbh | Combined fan / gas valve unit |
US8167610B2 (en) * | 2009-06-03 | 2012-05-01 | Nordyne, LLC | Premix furnace and methods of mixing air and fuel and improving combustion stability |
US9846440B2 (en) | 2011-12-15 | 2017-12-19 | Honeywell International Inc. | Valve controller configured to estimate fuel comsumption |
US9851103B2 (en) | 2011-12-15 | 2017-12-26 | Honeywell International Inc. | Gas valve with overpressure diagnostics |
US8899264B2 (en) | 2011-12-15 | 2014-12-02 | Honeywell International Inc. | Gas valve with electronic proof of closure system |
US8905063B2 (en) | 2011-12-15 | 2014-12-09 | Honeywell International Inc. | Gas valve with fuel rate monitor |
US9835265B2 (en) | 2011-12-15 | 2017-12-05 | Honeywell International Inc. | Valve with actuator diagnostics |
US8947242B2 (en) | 2011-12-15 | 2015-02-03 | Honeywell International Inc. | Gas valve with valve leakage test |
US8839815B2 (en) | 2011-12-15 | 2014-09-23 | Honeywell International Inc. | Gas valve with electronic cycle counter |
US9995486B2 (en) | 2011-12-15 | 2018-06-12 | Honeywell International Inc. | Gas valve with high/low gas pressure detection |
US9074770B2 (en) | 2011-12-15 | 2015-07-07 | Honeywell International Inc. | Gas valve with electronic valve proving system |
US9557059B2 (en) | 2011-12-15 | 2017-01-31 | Honeywell International Inc | Gas valve with communication link |
US9234661B2 (en) | 2012-09-15 | 2016-01-12 | Honeywell International Inc. | Burner control system |
US10422531B2 (en) | 2012-09-15 | 2019-09-24 | Honeywell International Inc. | System and approach for controlling a combustion chamber |
US10317076B2 (en) | 2014-09-12 | 2019-06-11 | Honeywell International Inc. | System and approach for controlling a combustion chamber |
EP2868970B1 (en) | 2013-10-29 | 2020-04-22 | Honeywell Technologies Sarl | Regulating device |
US10024439B2 (en) | 2013-12-16 | 2018-07-17 | Honeywell International Inc. | Valve over-travel mechanism |
US9841122B2 (en) | 2014-09-09 | 2017-12-12 | Honeywell International Inc. | Gas valve with electronic valve proving system |
US9645584B2 (en) | 2014-09-17 | 2017-05-09 | Honeywell International Inc. | Gas valve with electronic health monitoring |
CA2977630C (en) * | 2015-03-17 | 2023-07-25 | Intergas Heating Assets B.V. | Device and method for mixing combustible gas and combustion air, hot water installation provided therewith, corresponding thermal mass flow sensor and method for measuring a mass flow rate of a gas flow |
US10503181B2 (en) | 2016-01-13 | 2019-12-10 | Honeywell International Inc. | Pressure regulator |
US10274195B2 (en) * | 2016-08-31 | 2019-04-30 | Honeywell International Inc. | Air/gas admittance device for a combustion appliance |
US10564062B2 (en) | 2016-10-19 | 2020-02-18 | Honeywell International Inc. | Human-machine interface for gas valve |
US11073281B2 (en) | 2017-12-29 | 2021-07-27 | Honeywell International Inc. | Closed-loop programming and control of a combustion appliance |
US10697815B2 (en) | 2018-06-09 | 2020-06-30 | Honeywell International Inc. | System and methods for mitigating condensation in a sensor module |
DE102020126992A1 (en) * | 2020-10-14 | 2022-05-19 | Vaillant Gmbh | Method and device for the safe operation of a burner operated with a high proportion of hydrogen |
DE102021214839A1 (en) | 2021-03-15 | 2022-09-15 | Siemens Aktiengesellschaft | Flame monitoring with temperature sensor |
PL4060232T3 (en) | 2021-03-16 | 2023-09-11 | Siemens Aktiengesellschaft | Power detection and air/fuel ratio control by means of sensors in the combustion chamber |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1243857A1 (en) * | 2001-03-23 | 2002-09-25 | Motoren Ventilatoren Landshut GmbH | Fan for combustion air |
Family Cites Families (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3277949A (en) * | 1966-10-11 | Apparatus for hydrocarbon ignition and monitoring | ||
US3185203A (en) * | 1965-05-25 | Fully automatic flame protection device | ||
US3374950A (en) * | 1965-04-12 | 1968-03-26 | Exxon Research Engineering Co | Photo-pyrometric control system for efficient combustion in multiple-burner, residual-fuel-fired furnaces |
US3280884A (en) * | 1966-02-03 | 1966-10-25 | Honeywell Inc | Burner control apparatus |
US3388862A (en) * | 1965-12-01 | 1968-06-18 | Exxon Research Engineering Co | Pneumatic control of furnaces |
US3285320A (en) * | 1965-12-10 | 1966-11-15 | Standard Oil Co | Method and apparatus for controlling flow of fuel gas |
US3369749A (en) * | 1967-02-17 | 1968-02-20 | Exxon Research Engineering Co | Low excess air operation of multipleburner residual-fuel-fired furnaces |
US4118172A (en) * | 1976-10-20 | 1978-10-03 | Battelle Development Corporation | Method and apparatus for controlling burner stoichiometry |
US4348169A (en) * | 1978-05-24 | 1982-09-07 | Land Combustion Limited | Control of burners |
US4435149A (en) * | 1981-12-07 | 1984-03-06 | Barnes Engineering Company | Method and apparatus for monitoring the burning efficiency of a furnace |
US4588372A (en) * | 1982-09-23 | 1986-05-13 | Honeywell Inc. | Flame ionization control of a partially premixed gas burner with regulated secondary air |
US4568266A (en) * | 1983-10-14 | 1986-02-04 | Honeywell Inc. | Fuel-to-air ratio control for combustion systems |
US4645450A (en) * | 1984-08-29 | 1987-02-24 | Control Techtronics, Inc. | System and process for controlling the flow of air and fuel to a burner |
DE3701798A1 (en) * | 1987-01-22 | 1988-08-04 | Siemens Ag | Steam-raising plant with a coal-fired steam generator |
DE3807388A1 (en) * | 1988-03-07 | 1989-09-21 | Webasto Ag Fahrzeugtechnik | METHOD FOR OPERATING A HEATING DEVICE AND HEATING DEVICE |
JPH01244214A (en) * | 1988-03-25 | 1989-09-28 | Agency Of Ind Science & Technol | Method and device for monitoring and controlling air ratio of burner in operation |
JPH06103092B2 (en) * | 1988-08-04 | 1994-12-14 | 松下電器産業株式会社 | Catalytic combustion device |
US5049063A (en) * | 1988-12-29 | 1991-09-17 | Toyota Jidosha Kabushiki Kaisha | Combustion control apparatus for burner |
ATE114367T1 (en) * | 1989-10-30 | 1994-12-15 | Honeywell Inc | COMBUSTION CONTROL WITH MICRO LIQUID BRIDGE. |
US5037291A (en) * | 1990-07-25 | 1991-08-06 | Carrier Corporation | Method and apparatus for optimizing fuel-to-air ratio in the combustible gas supply of a radiant burner |
US5112217A (en) * | 1990-08-20 | 1992-05-12 | Carrier Corporation | Method and apparatus for controlling fuel-to-air ratio of the combustible gas supply of a radiant burner |
ATE189301T1 (en) * | 1995-10-25 | 2000-02-15 | Stiebel Eltron Gmbh & Co Kg | METHOD AND CIRCUIT FOR CONTROLLING A GAS BURNER |
WO1997018417A1 (en) * | 1995-11-13 | 1997-05-22 | Gas Research Institute, Inc. | Flame ionization control apparatus and method |
US5997280A (en) * | 1997-11-07 | 1999-12-07 | Maxon Corporation | Intelligent burner control system |
DE19934612A1 (en) * | 1999-07-23 | 2001-01-25 | Abb Alstom Power Ch Ag | Method for actively suppressing fluid mechanical instabilities in a combustion system and combustion system for carrying out the method |
US6299433B1 (en) * | 1999-11-05 | 2001-10-09 | Gas Research Institute | Burner control |
US6213758B1 (en) * | 1999-11-09 | 2001-04-10 | Megtec Systems, Inc. | Burner air/fuel ratio regulation method and apparatus |
US6571817B1 (en) * | 2000-02-28 | 2003-06-03 | Honeywell International Inc. | Pressure proving gas valve |
DE10045270C2 (en) * | 2000-08-31 | 2002-11-21 | Heatec Thermotechnik Gmbh | Furnace and method for regulating the same |
DE10113468A1 (en) * | 2000-09-05 | 2002-03-14 | Siemens Building Tech Ag | Burner control unit employs sensor for comparative measurement during control interval and produces alarm signal as function of difference |
DE10104150A1 (en) * | 2001-01-30 | 2002-09-05 | Alstom Switzerland Ltd | Burner system and method for its operation |
US6537060B2 (en) * | 2001-03-09 | 2003-03-25 | Honeywell International Inc. | Regulating system for gas burners |
EP1370806B1 (en) * | 2001-03-23 | 2010-08-04 | GVP Gesellschaft zur Vermarktung der Porenbrennertechnik mbH | Method and device for adjusting air/fuel ratio |
FR2830606B1 (en) * | 2001-10-05 | 2004-02-27 | Air Liquide | BURNER ADAPTABLE TO DIFFERENT OPERATING POWERS |
US6745708B2 (en) * | 2001-12-19 | 2004-06-08 | Conocophillips Company | Method and apparatus for improving the efficiency of a combustion device |
AT411189B (en) * | 2002-01-17 | 2003-10-27 | Vaillant Gmbh | METHOD FOR CONTROLLING A GAS BURNER |
DE10243307B4 (en) * | 2002-09-13 | 2006-06-08 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Apparatus and method for the controlled production of nano soot particles |
US7241134B2 (en) * | 2003-06-16 | 2007-07-10 | Spartan Controls Ltd. | Enhancing combustion with variable composition process gas |
EP1510758A1 (en) * | 2003-08-29 | 2005-03-02 | Siemens Building Technologies AG | Method for regulating and/or controlling a burner |
US7216019B2 (en) * | 2004-07-08 | 2007-05-08 | Celerity, Inc. | Method and system for a mass flow controller with reduced pressure sensitivity |
US7469647B2 (en) * | 2005-11-30 | 2008-12-30 | General Electric Company | System, method, and article of manufacture for adjusting temperature levels at predetermined locations in a boiler system |
-
2005
- 2005-06-20 US US11/630,563 patent/US7922481B2/en not_active Expired - Fee Related
- 2005-06-20 KR KR1020067027826A patent/KR101157652B1/en active IP Right Grant
- 2005-06-20 CA CA2571522A patent/CA2571522C/en not_active Expired - Fee Related
- 2005-06-20 WO PCT/EP2005/006628 patent/WO2006000367A1/en active Application Filing
- 2005-06-20 EP EP05766826.1A patent/EP1761728B1/en not_active Not-in-force
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1243857A1 (en) * | 2001-03-23 | 2002-09-25 | Motoren Ventilatoren Landshut GmbH | Fan for combustion air |
Also Published As
Publication number | Publication date |
---|---|
EP1761728A1 (en) | 2007-03-14 |
KR101157652B1 (en) | 2012-06-18 |
CA2571522A1 (en) | 2006-01-05 |
US7922481B2 (en) | 2011-04-12 |
WO2006000367A1 (en) | 2006-01-05 |
KR20070043727A (en) | 2007-04-25 |
US20090017403A1 (en) | 2009-01-15 |
CA2571522C (en) | 2013-11-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1761728B1 (en) | Method for adjusting the excess air coefficient on a firing apparatus, and firing apparatus | |
DE102004055716B4 (en) | Method for controlling a firing device and firing device (electronic composite I) | |
DE3888327T2 (en) | Fuel burner device and a control method. | |
DE3937290A1 (en) | METHOD AND DEVICE FOR PRODUCING A FUEL-COMBUSTION AIR MIXTURE TO BE COMBUSED FOR COMBUSTION | |
EP3824366B1 (en) | Method for the closed-loop control of a gas mixture using a gas sensor, a combustion-gas sensor and a gas-mixture sensor | |
EP0833106B1 (en) | Method and device for operation optimisation of a gas burner | |
EP1002999A2 (en) | Control of the burner heating power with a gas fuelled range or stove | |
DE2822770A1 (en) | CONTROL SYSTEM FOR ONE BURNER | |
EP3499124A1 (en) | Heating device components and method for adjusting a fuel flow | |
DE19635974A1 (en) | Gas-air mixture system for gas heating apparatus | |
DE102004055715C5 (en) | Method for setting operating parameters on a firing device and firing device | |
DE19627857C2 (en) | Process for operating a gas fan burner | |
DE10045270A1 (en) | Gas burner for heating and/or hot water boiler incorporates flame temperature sensor for feedback regulation of air/fuel ratio and/or volumetric flow | |
EP0505714A2 (en) | Control device for a gas burner with a fan for supplying combustion air | |
DE19734574B4 (en) | Method and device for controlling a burner, in particular a fully premixing gas burner | |
EP1236957A2 (en) | Process and device for adapting a burner-activated heating apparatus to an air-flue gas system | |
EP0733859A2 (en) | Method and device for controlling a heating apparatus | |
EP4060233B1 (en) | Power detection and air/fuel ratio control by means of sensors in the combustion chamber | |
DE102004063992B4 (en) | Regulating and controlling process for firing apparatus involves using characteristic curve showing value range for setpoint temperature in accordance with two parameters | |
DE102004030300A1 (en) | Firing equipment as gas burner has means to set a desired target parameter value after determining the parameter value corresponding to the temperature maximum for optimum air-gas ratio | |
DE202004017850U1 (en) | Firing equipment as gas burner has means to set a desired target parameter value after determining the parameter value corresponding to the temperature maximum for optimum air-gas ratio | |
DE10045272A1 (en) | Firing device with flame length monitoring has temperature sensor connected to control device, heated less by flame at first service point than at second one | |
DE10220774B4 (en) | Burner control device | |
DE202004017851U1 (en) | Firing equipment for gas burners has means for determining value dependent on measured temperature and means for regulating generated temperature using characteristic line representing value range corresponding to ideal temperature | |
DE102004030299A1 (en) | Firing equipment for gas burners has means for determining value dependent on measured temperature and means for regulating generated temperature using characteristic line representing value range corresponding to ideal temperature |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20070119 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20081222 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20140630 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 697260 Country of ref document: AT Kind code of ref document: T Effective date: 20141215 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502005014601 Country of ref document: DE Effective date: 20141231 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: T3 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141119 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141119 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150319 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150319 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141119 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150220 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141119 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141119 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141119 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141119 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141119 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141119 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141119 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141119 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502005014601 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20150820 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141119 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141119 Ref country code: LU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150620 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20160229 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150630 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150620 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150630 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 697260 Country of ref document: AT Kind code of ref document: T Effective date: 20150620 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150620 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20050620 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141119 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150630 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20190619 Year of fee payment: 15 Ref country code: IT Payment date: 20190619 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20190617 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20190624 Year of fee payment: 15 Ref country code: GB Payment date: 20190624 Year of fee payment: 15 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502005014601 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MM Effective date: 20200701 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20200620 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200620 Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200701 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210101 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200620 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200620 |