EP1248044B1 - Method for starting a heater - Google Patents

Method for starting a heater Download PDF

Info

Publication number
EP1248044B1
EP1248044B1 EP02006591A EP02006591A EP1248044B1 EP 1248044 B1 EP1248044 B1 EP 1248044B1 EP 02006591 A EP02006591 A EP 02006591A EP 02006591 A EP02006591 A EP 02006591A EP 1248044 B1 EP1248044 B1 EP 1248044B1
Authority
EP
European Patent Office
Prior art keywords
heater
modulation
determined
volume
burner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02006591A
Other languages
German (de)
French (fr)
Other versions
EP1248044A2 (en
EP1248044A3 (en
Inventor
Sabine Bielski
Thomas Ernst
Jochen Grabe
Frank Hampicke
Sebastian Radu
Klaus Richter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vaillant GmbH
Original Assignee
Vaillant GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AT0050001A external-priority patent/AT410387B/en
Application filed by Vaillant GmbH filed Critical Vaillant GmbH
Publication of EP1248044A2 publication Critical patent/EP1248044A2/en
Publication of EP1248044A3 publication Critical patent/EP1248044A3/en
Application granted granted Critical
Publication of EP1248044B1 publication Critical patent/EP1248044B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/20Systems for controlling combustion with a time programme acting through electrical means, e.g. using time-delay relays
    • F23N5/203Systems for controlling combustion with a time programme acting through electrical means, e.g. using time-delay relays using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/02Regulating fuel supply conjointly with air supply
    • F23N1/022Regulating fuel supply conjointly with air supply using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/022Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2225/00Measuring
    • F23N2225/08Measuring temperature
    • F23N2225/19Measuring temperature outlet temperature water heat-exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2227/00Ignition or checking
    • F23N2227/02Starting or ignition cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2227/00Ignition or checking
    • F23N2227/20Calibrating devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2227/00Ignition or checking
    • F23N2227/36Spark ignition, e.g. by means of a high voltage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2233/00Ventilators
    • F23N2233/06Ventilators at the air intake
    • F23N2233/08Ventilators at the air intake with variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2241/00Applications
    • F23N2241/02Space-heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/12Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods

Definitions

  • the invention relates to a method for adaptive heater modulation inhibit timing according to the introductory part of the independent claims.
  • Known wall heaters are often operated in the first few minutes with the smallest possible partial load to ensure long periods of operation and to avoid cycling operation. In this so-called heating modulation blocking time, the actual heat requirement is ignored and instead the device is operated with minimum load.
  • the minimum load corresponds to the minimum permissible load, which results from the basic conditions for a stable and low-emission burner operation (avoidance of lift-off and re-ignition when operating with boundary gases). Disadvantage of this method is that at high actual heat demand this is met only with a corresponding time delay, resulting in loss of comfort.
  • the document JP 04198661 mentioned some features.
  • the aim of the invention is to avoid this disadvantage and to ensure an early, needs-based performance adjustment at the same time long operating times.
  • the modulation setpoint MSW is a measure of the required heating power and specifies a corresponding setpoint. The maximum corresponds to the nominal load, the minimum to the minimum load.
  • T setpoint is the setpoint temperature of the heating circuit
  • T is the current temperature of the heating circuit, which can be both a supply and return temperature control.
  • I ⁇ is the sum of the control errors of the PI controller.
  • a change in the clock rate when determining the control deviation causes a corresponding change in the constants.
  • FIG. 1 is a block diagram of a heater, in which the inventive method is applied, shown.
  • the heater 27 has a burner 14 which is connected to a blower 16.
  • On the suction side 29 of the blower 16 are an air inlet 18 and a gas fitting 17, which in turn is connected to a gas port 19.
  • the burner 14 is located in a combustion chamber 28, which is separated by a heat exchanger 15 from an exhaust gas outlet 30.
  • the heat exchanger is connected on one side with a return line 23 and on the other side with a feed line 22.
  • In the flow line 22 is a temperature sensor 24, which in turn is connected to a control device 21.
  • This controller 21 has a memory module 25 and a computing module 26.
  • the controller 21 is connected to a motor 20 which drives the blower 16, an ignition electrode 31 and a monitoring electrode 32 directly to the burner 14.
  • the control unit 21 controls the motor 20 of the fan in such a way that the fan delivers a defined volume flow.
  • the gas fitting 17 adapts a particular fuel gas flow via its integrated gas-air composite to the volume flow that the fan 16 promotes. This fuel gas flow is smaller than the fuel gas flow at rated load and greater than the fuel gas flow at minimum load.
  • the controller 21 causes a spark between the electrodes of the ignition electrode 31 to ignite the fuel gas-air mixture exiting the burner 31. As soon as the monitoring electrode 31 detects the flame, the controller 21 reduces the Blower speed until the gas valve 17 promotes the minimum allowable gas flow. Now the heating modulation blocking time is determined.
  • the temperature sensor 24 detects the flow temperature and transmits its signal to the control.
  • the controller 21 determines the Wienungsmodulationsperrzeit. There are several possibilities for doing this: On the one hand, the modulation setpoint at a certain time or the average modulation setpoint from a series of measurements is determined at specific times. The value thus determined is assigned, by means of a continuous function, a certain heater modulation inhibit time or, according to another assignment method, by comparison with a threshold, allocated a certain short or a certain longer heater modulation disable time. After the determined Buchungsmodulationsperrzeit the controller 21 controls the motor 20 of the blower 16 as needed, whereby the gas valve automatically adapts the necessary fuel gas flow rate. As a result, the device performance of the heat request is adjusted.
  • Fig. 2 shows the modulation setpoint for two different power requirements according to the prior art and the inventive method.
  • the burner is first started with a specific modulation load M Start . If the burner is safely started, which is usually determined by measuring an ionisation current in the flame, then the burner load is then reduced (time t 0 ) to a minimum load M min and during the modulation blocking time 1 (until time t 1 ) Burner operated with this minimum load M min . After that, the load corresponds to the modulation request. If the modulation setpoint is very high (solid line 1), the unit is operated at maximum power; this corresponds to the maximum modulation setpoint M max .
  • the modulation blocking time is terminated after a shorter modulation blocking time 3 (time t 3 ) for the same heat demand and corresponding modulation setpoint and the device is subsequently operated with maximum power and corresponding modulation setpoint M max (dot-dash line 3).
  • the corresponding modulation blocking time 2 is terminated at a time t 2 (t 1 > t 2 > t 3 ) and the device is operated at partial load (modulation setpoint M 2 ) (dashed line 2).
  • Fig. 3 shows the flow chart for a method according to the invention for shortening the heating modulation blocking time.
  • n times the modulation setpoint is determined and detected. From these n values, the average is formed. If the average value is greater than a certain threshold (ie, high heat demand), then a short, predetermined heater modulation inhibit time (in this case 1 minute), otherwise a longer predetermined heater modulation inhibit time, heater modulation inhibit time (in this case, 2 minutes) is used.
  • a certain threshold ie, high heat demand
  • FIG Fig. 4 A further variant according to the invention for determining the heating modulation blocking time is shown in FIG Fig. 4 shown. Again, n values of the modulation setpoint are first recorded at specific times and then the mean value is formed. Based on this mean value, the heating modulation blocking time is determined from a linear relationship (according to function 4).
  • Fig. 5 shows for a variant of the method according to the invention the relationship between the measurements and the modulation.
  • Line 5 corresponds to the respectively calculated modulation setpoint as a function of time.
  • Line 6 corresponds to the modulation default value.
  • the modulation setpoint (7, 8, 9, 10, 11 and 12) determined: From these values, the average value is formed and determines the Schuungsmodulationssperrzeit, so that after the heating modulation blocking time at time t M, the load from the minimum load to the setpoint is increased.

Abstract

The method involves igniting the burner (14) with a medium gas throughput and holding the throughput to a very low level for a specified heating modulation blocking period after ignition. The heating modulation blocking period can be reduced with increasing modulation throughput required to satisfy the heat demand.

Description

Die Erfindung bezieht sich auf ein Verfahren zur adaptiven Heizungsmodulationssperrzeitsteuerung gemäß dem einleitenden Teil der unabhängigen Ansprüche.The invention relates to a method for adaptive heater modulation inhibit timing according to the introductory part of the independent claims.

Bekannte Wandheizgeräte werden häufig in den ersten Minuten mit der kleinsten möglichen Teillast betrieben, um lange Betriebszeiten zu gewährleisten und taktenden Betrieb zu vermeiden. In dieser sogenannten Heizungsmodulationssperrzeit wird der tatsächliche Wärmebedarf ignoriert und stattdessen das Gerät mit Minimallast betrieben. Die Minimallast entspricht der minimal zulässigen Belastung, die sich aus den Rahmenbedingungen für einen stabilen und schadstoffarmen Brennerbetrieb (Vermeidung von Abheben und Rückzünden beim Betrieb mit Grenzgasen) ergeben. Nachteil dieses Verfahren ist, dass bei hohem tatsächlichem Wärmebedarf diesem erst mit entsprechender zeitlicher Verzögerung entsprochen wird, was zu Komforteinbußen führt. Das Dokument JP 04198661 erwähnt hierzu einige Merkmale.Known wall heaters are often operated in the first few minutes with the smallest possible partial load to ensure long periods of operation and to avoid cycling operation. In this so-called heating modulation blocking time, the actual heat requirement is ignored and instead the device is operated with minimum load. The minimum load corresponds to the minimum permissible load, which results from the basic conditions for a stable and low-emission burner operation (avoidance of lift-off and re-ignition when operating with boundary gases). Disadvantage of this method is that at high actual heat demand this is met only with a corresponding time delay, resulting in loss of comfort. The document JP 04198661 mentioned some features.

Ziel der Erfindung ist es, diesen Nachteil zu vermeiden und eine frühzeitige, bedarfsgerechte Leistungsanpassung bei gleichzeitig langen Betriebszeiten zu gewährleisten.The aim of the invention is to avoid this disadvantage and to ensure an early, needs-based performance adjustment at the same time long operating times.

Erfindungsgemäß wird dies durch ein Verfahren zur Inbetriebnahme eines Heizgeräts gemäß den Merkmalen der unabhängigen Ansprüche erreicht. Durch die vorgeschlagenen Maßnahmen wird eine wärmebedarfsgerechte Heizungsmodulationssperrzeit ermöglicht.According to the invention this is achieved by a method for starting a heater according to the features of the independent claims. The proposed measures enable a heat-demand-appropriate heating modulation blocking time.

Durch die Merkmale des Anspruches 2 ergibt sich der Vorteil, dass der Aufheizvorgang und die damit verbundene Veränderung der Temperatur des Heizsystems während der Startphase bei der Festlegung der Heizungsmodulationssperrzeit berücksichtigt wird.Due to the features of claim 2, there is the advantage that the heating process and the associated change in the temperature of the heating system during the starting phase in the determination of the Heizungsmodulationsperrzeit is taken into account.

Durch die Merkmale des Anspruches 3 ergibt sich der Vorteil, dass lediglich eine Messung während der Startphase zur Festlegung der Heizungsmodulationssperrzeit notwendig ist.Due to the features of claim 3, there is the advantage that only one measurement during the starting phase for determining the Heizungsmodulationsperrzeit is necessary.

Gemäß den Merkmalen des Anspruchs 4 ergibt sich in eigenständig erfinderischen Weise ein vereinfachtes Verfahren, bei dem die Heizungsmodulationssperrzeit nicht kontinuierlich, sondern schrittweise verändert wird.According to the features of claim 4 results in a self-inventive way a simplified method in which the Heizungsmodulationsperrzeit is not continuously, but gradually changed.

Durch die Merkmale des Anspruches 5 ergibt sich der Vorteil, dass bei dem vereinfachten Verfahren gemäß Anspruch 4 der Aufheizvorgang und die damit verbundene Veränderung der Temperatur des Heizsystems während der Startphase bei der Festlegung der Heizungsmodulationssperrzeit berücksichtigt wird.Due to the features of claim 5, there is the advantage that in the simplified method according to claim 4, the heating process and the associated change in the temperature of the heating system during the starting phase in the determination of Heizungsmodulationsperrzeit is taken into account.

Durch die Merkmale des Anspruches 6 ergibt sich der Vorteil, dass bei dem vereinfachten Verfahren gemäß Anspruch 4 lediglich eine Messung während der Startphase zur Festlegung der Heizungsmodulationssperrzeit notwendig ist.Due to the features of claim 6, there is the advantage that in the simplified method according to claim 4, only a measurement during the startup phase for determining the Heizungsmodulationsperrzeit is necessary.

Der Modulationssollwert MSW ist ein Maß für die erforderliche Heizleistung und gibt einen entsprechenden Sollwert vor. Das Maximum entspricht der Nennlast, das Minimum der Minimallast. Der Modulationssollwert MSW errechnet sich wie folgt: MSW = C 1 T Soll - T lst + I Σ C 2 + C 3

Figure imgb0001
Hierbei sind C1, C2, und C3 Konstanten, die zumeist im Laborbetrieb für den vorteilhaften Betrieb ermittelt werden müssen. TSoll ist die Solltemperatur des Heizkreislaufs, TIst die momentane Temperatur des Heizkreislaufs, wobei es sich sowohl um eine Vorlauf-, als auch Rücklauftemperaturregelung handeln kann. IΣ ist die Summe der Regelabweichungen des PI-Reglers. I Σ , t = i = 0 l T Soll - T lst , i
Figure imgb0002
The modulation setpoint MSW is a measure of the required heating power and specifies a corresponding setpoint. The maximum corresponds to the nominal load, the minimum to the minimum load. The modulation setpoint MSW is calculated as follows: MSW = C 1 T Should - T lst + I Σ C 2 + C 3
Figure imgb0001
Here are C 1 , C 2 , and C 3 constants, which usually have to be determined in laboratory operation for advantageous operation. T setpoint is the setpoint temperature of the heating circuit, T is the current temperature of the heating circuit, which can be both a supply and return temperature control. I Σ is the sum of the control errors of the PI controller. I Σ . t = Σ i = 0 l T Should - T lst . i
Figure imgb0002

Eine Veränderung der Taktrate beim Ermitteln der Regelabweichung bedingt eine entsprechende Veränderung der Konstanten.A change in the clock rate when determining the control deviation causes a corresponding change in the constants.

Die Erfindung wird nun anhand der Zeichnungen näher erläutert.

  • Dabei zeigt Fig. 1 ein Blockschaltbild eines Heizgerätes, mit dem das erfindungsgemäße Verfahren durchgeführt werden kann,
  • Fig. 2 den Verlauf des Modulationswertes,
  • Fig. 3 ein Flußdiagramm für ein erfindungsgemäßes Verfahren,
  • Fig. 4 einen möglichen Zusammenhang zwischen dem durchschnittlichen Modualtionssollwert und der Heizungsmodualtionssperrzeit,
  • Fig. 5 beispielhaft den zeitlichen Verlauf des Modulationssollwertes und des Modulationsvorgabewertes sowie die Messpunkte zur Bestimmung der Heizungsmodualtionssperrzeit und
  • Fig. 6 ein weiteres Flußdiagramm für ein erfindungsgemäßes Verfahren.
The invention will now be explained in more detail with reference to the drawings.
  • It shows Fig. 1 a block diagram of a heater with which the inventive method can be performed
  • Fig. 2 the course of the modulation value,
  • Fig. 3 a flow chart for a method according to the invention,
  • Fig. 4 a possible relationship between the average module setpoint and the heater module lockout time,
  • Fig. 5 for example, the time profile of the modulation setpoint and the modulation default value and the measuring points for determining the Heizungsmodualtionssperrzeit and
  • Fig. 6 another flow diagram for a method according to the invention.

In Fig. 1 ist ein Blockschaltbild eines Heizgerätes, bei dem das erfindungsgemäße Verfahren angewendet wird, dargestellt. Das Heizgerät 27 verfügt über einen Brenner 14, der mit einem Gebläse 16 verbunden ist. Auf der Saugseite 29 des Gebläses 16 befinden sich ein Lufteinlaß 18 und eine Gasarmatur 17, die wiederum an einen Gasanschluß 19 angeschlossen ist. Der Brenner 14 befindet sich in einem Brennraum 28, der durch einen Wärmeaustauscher 15 von einem Abgasaustritt 30 getrennt ist. Der Wärmeaustauscher ist auf der einen Seite mit einer Rücklaufleitung 23 und auf der anderen Seite mit einer Vorlaufleitung 22 verbunden. In der Vorlaufleitung 22 befindet sich ein Temperatursensor 24, der wiederum mit einem Regelgerät 21 verbunden ist. Dieses Regelgerät 21 verfügt über ein Speichermodul 25 und ein Rechenmodul 26. Die Regelung 21 ist mit einem Motor 20, der das Gebläse 16 antreibt, einer Zündelektrode 31 und einer Überwachungselektrode 32 unmittelbar am Brenner 14 verbunden.In Fig. 1 is a block diagram of a heater, in which the inventive method is applied, shown. The heater 27 has a burner 14 which is connected to a blower 16. On the suction side 29 of the blower 16 are an air inlet 18 and a gas fitting 17, which in turn is connected to a gas port 19. The burner 14 is located in a combustion chamber 28, which is separated by a heat exchanger 15 from an exhaust gas outlet 30. The heat exchanger is connected on one side with a return line 23 and on the other side with a feed line 22. In the flow line 22 is a temperature sensor 24, which in turn is connected to a control device 21. This controller 21 has a memory module 25 and a computing module 26. The controller 21 is connected to a motor 20 which drives the blower 16, an ignition electrode 31 and a monitoring electrode 32 directly to the burner 14.

Beim Start des Heizgerätes steuert zunächst das Regelgerät 21 den Motor 20 des Gebläses so an, dass das Gebläse einen definierten Volumenstrom fördert. Die Gasarmatur 17 paßt einen bestimmten Brenngasstrom über ihren integrierten Gas-Luft-Verbund an den Volumenstrom, den das Gebläse 16 fördert, an. Dieser Brenngasstrom ist kleiner als der Brenngasstrom bei Nennlast und größer als der Brenngasstrom bei Minimallast. Die Regelung 21 veranlaßt, dass ein Funken zwischen den Elektroden der Zündelektrode 31 das Brenngas-Luft-Gemisch, das aus dem Brenner 31 austritt, zündet. Sobald die Überwachungselektrode 31 die Flamme erkennt, reduziert die Regelung 21 die Gebläsedrehzahl soweit, bis die Gasarmatur 17 den minimal zulässigen Gasdurchsatz fördert. Nun wird die Heizungsmodulationssperrzeit ermittelt. Hierzu erfaßt der Temperatursensor 24 die Vorlauftemperatur und gibt sein Signal an die Regelung weiter. Mittels des Speichermoduls 25 und des Rechenmoduls 26 ermittelt die Regelung 21 die Heizungsmodulationssperrzeit. Hierzu gibt es mehrere Möglichkeiten: So wird einerseits der Modulationssollwert zu einem bestimmten Zeitpunkt oder der durchschnittliche Modulationssollwert aus einer Reihe von Messungen zu bestimmten Zeitpunkten ermittelt. Dem so ermittelte Wert wird mittels einer stetigen Funktion eine bestimmte Heizungsmodulationssperrzeit zugewiesen oder ― gemäß eines anderen Zuweisungsverfahrens - durch einen Vergleich mit einem Grenzwert eine bestimmte kurze oder eine bestimmte längere Heizungsmodulationssperrzeit zugeteilt. Nach Ablauf der ermittelten Heizungsmodulationssperrzeit steuert die Regelung 21 den Motor 20 des Gebläses 16 bedarfsgerecht an, wodurch die Gasarmatur selbsttätig den notwendigen Brenngasdurchsatz anpaßt. Hierdurch wird die Geräteleistung der Wärmeanforderung angepaßt.When the heater is started, first the control unit 21 controls the motor 20 of the fan in such a way that the fan delivers a defined volume flow. The gas fitting 17 adapts a particular fuel gas flow via its integrated gas-air composite to the volume flow that the fan 16 promotes. This fuel gas flow is smaller than the fuel gas flow at rated load and greater than the fuel gas flow at minimum load. The controller 21 causes a spark between the electrodes of the ignition electrode 31 to ignite the fuel gas-air mixture exiting the burner 31. As soon as the monitoring electrode 31 detects the flame, the controller 21 reduces the Blower speed until the gas valve 17 promotes the minimum allowable gas flow. Now the heating modulation blocking time is determined. For this purpose, the temperature sensor 24 detects the flow temperature and transmits its signal to the control. By means of the memory module 25 and the computing module 26, the controller 21 determines the Heizungsmodulationsperrzeit. There are several possibilities for doing this: On the one hand, the modulation setpoint at a certain time or the average modulation setpoint from a series of measurements is determined at specific times. The value thus determined is assigned, by means of a continuous function, a certain heater modulation inhibit time or, according to another assignment method, by comparison with a threshold, allocated a certain short or a certain longer heater modulation disable time. After the determined Heizungsmodulationsperrzeit the controller 21 controls the motor 20 of the blower 16 as needed, whereby the gas valve automatically adapts the necessary fuel gas flow rate. As a result, the device performance of the heat request is adjusted.

Fig. 2 zeigt den Modulationssollwert für zwei verschiedene Leistungsanforderungen gemäß dem Stand der Technik bzw. dem erfindungsgemäßen Verfahren. Bei einer Leistungsanforderung wird gemäß dem Stand der Technik zunächst der Brenner mit einer bestimmten Modulationslast MStart gestartet. Ist der Brenner sicher gestartet, was in der Regel durch die Messung eines lonisationsstroms in der Flamme festgestellt wird, so wird die Brennerbelastung anschließend (Zeitpunkt t0) auf eine Minimallast Mmin reduziert und während der Modulationssperrzeit 1 (bis zum Zeitpunkt t1) der Brenner mit dieser Minimallast Mmin betrieben. Danach entspricht die Last der Modulationsanforderung. Bei sehr hohem Modulationssollwert (durchgezogene Linie 1) wird das Gerät mit maximaler Leistung betrieben; dies entspricht dem maximalen Modulationssollwert Mmax. Fig. 2 shows the modulation setpoint for two different power requirements according to the prior art and the inventive method. In the case of a power requirement, according to the prior art, the burner is first started with a specific modulation load M Start . If the burner is safely started, which is usually determined by measuring an ionisation current in the flame, then the burner load is then reduced (time t 0 ) to a minimum load M min and during the modulation blocking time 1 (until time t 1 ) Burner operated with this minimum load M min . After that, the load corresponds to the modulation request. If the modulation setpoint is very high (solid line 1), the unit is operated at maximum power; this corresponds to the maximum modulation setpoint M max .

Bei einem erfindungsgemäßen Verfahren zur Anpassung der Heizungsmodulationssperrzeit wird bei der gleichen Wärmeanforderung und entsprechendem Modulationssollwert die Modulationssperrzeit bereits nach einer kürzeren Modulationssperrzeit 3 (Zeitpunkt t3) beendet und das Gerät anschließend mit maximaler Leistung und entsprechendem Modulationssollwert Mmax betrieben (strich-punktierte Linie 3). Bei einem etwas geringeren Modulationssollwert wird die entsprechende Modulationssperrzeit 2 zu einem Zeitpunkt t2 (t1 > t2 > t3) beendet und das Gerät mit Teillast (Modulationssollwert M2) betrieben (gestrichelte Linie 2).In a method according to the invention for adapting the heating modulation blocking time, the modulation blocking time is terminated after a shorter modulation blocking time 3 (time t 3 ) for the same heat demand and corresponding modulation setpoint and the device is subsequently operated with maximum power and corresponding modulation setpoint M max (dot-dash line 3). , At a slightly lower modulation setpoint, the corresponding modulation blocking time 2 is terminated at a time t 2 (t 1 > t 2 > t 3 ) and the device is operated at partial load (modulation setpoint M 2 ) (dashed line 2).

Fig. 3 zeigt das Flußdiagramm für ein erfindungsgemäßes Verfahren zur Verkürzung der Heizungsmodulationssperrzeit. Hierbei werden zu bestimmten, vorgegebenen Zeitpunkten n mal der Modulationssollwert bestimmt und erfaßt. Aus diesen n Werten wird der Durchschnitt gebildet. Ist der Mittelwert größer als ein bestimmter Schwellwert (d.h. große Wärmeanforderung), so wird eine kurze, vorgegebene Heizungsmodulationssperrzeit (in diesem Fall 1 Minute), ansonsten eine längere, vorgegebene Heizungsmodulationssperrzeit Heizungsmodulationssperrzeit (in diesem Fall 2 Minuten) verwendet. Fig. 3 shows the flow chart for a method according to the invention for shortening the heating modulation blocking time. Here, at certain predetermined times n times the modulation setpoint is determined and detected. From these n values, the average is formed. If the average value is greater than a certain threshold (ie, high heat demand), then a short, predetermined heater modulation inhibit time (in this case 1 minute), otherwise a longer predetermined heater modulation inhibit time, heater modulation inhibit time (in this case, 2 minutes) is used.

Eine weitere erfindungsgemäße Variante zur Bestimmung der Heizungsmodulationssperrzeit ist in Fig. 4 dargestellt. Auch hier werden zunächst n Werte des Modulationssollwerts zu bestimmten Zeitpunkten aufgenommen und anschließend der Mittelwert gebildet. Anhand diese Mittelwertes wird aus einem linearen Zusammenhang (gemäß Funktion 4) die Heizungsmodulationssperrzeit bestimmt.A further variant according to the invention for determining the heating modulation blocking time is shown in FIG Fig. 4 shown. Again, n values of the modulation setpoint are first recorded at specific times and then the mean value is formed. Based on this mean value, the heating modulation blocking time is determined from a linear relationship (according to function 4).

Fig. 5 zeigt für eine Variante des erfindungsgemäßen Verfahrens den Zusammenhang zwischen den Messungen und der Modulation. Die Linie 5 entspricht dem jeweils errechneten Modulationssollwert in Abhängigkeit von der Zeit. Die Linie 6 entspricht dem Modulationsvorgabewert. Zu den Zeitpunkten t7 bis t12 wird jeweils der Modulationssollwert (7, 8, 9, 10, 11 und 12) bestimmt: Aus diesen Werten wird der Mittelwert gebildet und entsprechend die Heizungsmodulationssperrzeit bestimmt, so dass nach Ablauf der Heizungsmodulationssperrzeit zum Zeitpunkt tM die Belastung von der Minimallast auf den Sollwert gesteigert wird. Fig. 5 shows for a variant of the method according to the invention the relationship between the measurements and the modulation. Line 5 corresponds to the respectively calculated modulation setpoint as a function of time. Line 6 corresponds to the modulation default value. At the times t 7 to t 12 in each case the modulation setpoint (7, 8, 9, 10, 11 and 12) determined: From these values, the average value is formed and determines the Heizungsmodulationssperrzeit, so that after the heating modulation blocking time at time t M, the load from the minimum load to the setpoint is increased.

Es besteht gemäß Fig. 5 jedoch auch die Möglichkeit, nur zu einem bestimmten Zeitpunkt t13 einen bestimmten Modulationssollwert 13 zu bestimmen und hieraus die Heizungsmodulationssperrzeit zu bestimmen. Das Flußdiagramm hierzu ist in Fig. 6 dargestellt.It exists according to Fig. 5 however, it is also possible to determine a specific modulation target value 13 only at a specific time t 13 and to determine the heating modulation blocking time from this. The flowchart for this is in Fig. 6 shown.

Claims (6)

  1. A process for starting up a heater (27) comprising a heat exchanger (15) which is heated by a burner (14) whose fuel throughput is variable, characterised in that the burner (14), when the heater (27) is started, is ignited with a medium volume of gas supply and that subsequently, after the ignition has been effected, this volume of gas supply is kept at a minimum for a determinable heater modulation blocking time, which latter is variable in such a way that it is the more reduced the higher the modulated volume of gas flow necessary for meeting the required heat demand is in relation to the minimum volume of gas flow.
  2. A process for starting up a heater (27) as claimed in Claim 1, characterised in that, after the ignition of the burner (14) has been effected, the modulated volume of gas flow necessary for meeting the required heat demand is determined at several defined points of time and therefrom, in turn, a mean value is determined and, on the basis of such mean value and a continuous function, the heater modulation blocking time is determined.
  3. A process for starting up a heater (27) as claimed in Claim 1, characterised in that, after the ignition of the burner (14) has been effected, the modulated volume of gas flow necessary for meeting the required heat demand is determined at a certain defined point of time and therefrom, with the aid of a continuous function, the heater modulation blocking time is determined.
  4. A process for starting up a heater (27) comprising a heat exchanger (15) which is heated by a burner (14) whose fuel throughput is variable characterised in that the burner (14), when the heater (27) is started, is ignited with a medium volume of gas supply and that subsequently, after the ignition has been effected, this volume of gas supply is kept at a minimum for a determinable heater modulation blocking time, which latter is variable in such a way that, when a certain modulation volume of gas flow is exceeded, it corresponds to a certain, defined heater modulation blocking time, and when it falls short of such predetermined modulation volume of gas flow, it corresponds to a certain longer defined heater modulation blocking time.
  5. A process for starting up a heater (27) as claimed in Claim 4, characterised in that, after the ignition of the burner (14) has been effected, the modulated volume of gas flow necessary for meeting the required heat demand is determined at several defined points of time and therefrom, in turn, a mean value is determined and, on the basis of such mean value, the heater modulation blocking time is determined.
  6. A process for starting up a heater (27) as claimed in Claim 4, characterised in that, after the ignition of the burner (14) has been effected, the modulated volume of gas flow necessary for meeting the required heat demand is determined at a certain defined point of time and therefrom the heater modulation blocking time is determined.
EP02006591A 2001-03-26 2002-03-22 Method for starting a heater Expired - Lifetime EP1248044B1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE10114794 2001-03-26
DE10114794 2001-03-26
AT5002001 2001-03-28
AT0050001A AT410387B (en) 2001-03-28 2001-03-28 Start-up procedure for heating device with heat exchanger heated by variable throughput burner involves reducing blocking period with increasing modulation throughput needed to satisfy demand

Publications (3)

Publication Number Publication Date
EP1248044A2 EP1248044A2 (en) 2002-10-09
EP1248044A3 EP1248044A3 (en) 2005-02-02
EP1248044B1 true EP1248044B1 (en) 2008-05-28

Family

ID=25608345

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02006591A Expired - Lifetime EP1248044B1 (en) 2001-03-26 2002-03-22 Method for starting a heater

Country Status (4)

Country Link
EP (1) EP1248044B1 (en)
AT (1) ATE397191T1 (en)
DE (2) DE10214212A1 (en)
ES (1) ES2305146T3 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4155609A1 (en) 2021-09-24 2023-03-29 Pittway Sarl Method and controller for operating a gas burner appliance

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT502405B1 (en) 2005-10-24 2007-03-15 Vaillant Austria Gmbh METHOD FOR PARTIAL LOOM SETTING ON HEATING SYSTEMS
DE102007060073B3 (en) * 2007-12-13 2009-08-20 Robert Bosch Gmbh Gas burner starting method for heating device, involves obtaining reduced degree of modulation in stages during extended time period, and extending retention time at one of stages of degree of modulation
DE102008047070A1 (en) * 2008-09-11 2010-03-25 Viessmann Werke Gmbh & Co Kg Method of operating a burner-equipped boiler

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59145429A (en) * 1983-02-08 1984-08-20 Omron Tateisi Electronics Co Combustion control device
JPH0244122A (en) * 1988-08-03 1990-02-14 Rinnai Corp Combustion controller
JPH0713547B2 (en) * 1990-11-29 1995-02-15 株式会社ノーリツ Heating control method
AT406514B (en) * 1997-04-28 2000-06-26 Vaillant Gmbh METHOD FOR IGNITING A GAS-HEATED BURNER

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4155609A1 (en) 2021-09-24 2023-03-29 Pittway Sarl Method and controller for operating a gas burner appliance
WO2023046466A1 (en) 2021-09-24 2023-03-30 Pittway Sarl Method and controller for operating a gas burner appliance

Also Published As

Publication number Publication date
DE50212308D1 (en) 2008-07-10
DE10214212A1 (en) 2002-11-07
ES2305146T3 (en) 2008-11-01
ATE397191T1 (en) 2008-06-15
EP1248044A2 (en) 2002-10-09
EP1248044A3 (en) 2005-02-02

Similar Documents

Publication Publication Date Title
EP1331444B1 (en) Method for regulating a gas burner
EP0614046A1 (en) Control device for gas burner automats of heating installations
EP0346829B1 (en) Motor car heating device with several output stages
EP1522790B1 (en) Method for Controlling a Gas Burner, in particular in Heating Installations with Blower
EP3301365A1 (en) Method for controlling an ignition of a heating system and a control unit and a heating system
EP1248044B1 (en) Method for starting a heater
EP1923634B1 (en) Adjustment of fuel gas/air mixture via the burner or flame temperature of a heating device
DE4312801A1 (en) Method of controlling a gas forced draft burner
EP3680553B1 (en) Method for regulating the combustion air ratio of a burner of a heater
AT410387B (en) Start-up procedure for heating device with heat exchanger heated by variable throughput burner involves reducing blocking period with increasing modulation throughput needed to satisfy demand
AT505064B1 (en) REGULATION OF THE FUEL GAS AIR MIXTURE ON THE BURNER OR FLAME TEMPERATURE OF A HEATER
DE102008006120B4 (en) Method for detecting a flow restriction in the combustion air flow path and / or in the exhaust gas flow path of a fuel-operated heater, in particular for a vehicle
DE19548226A1 (en) Fuel-burning heater e.g. for motor vehicle, with fuel metering pump and combustion air blower
EP3707433A1 (en) Method for controlling a combustion-gas operated heating device
EP1992877A2 (en) Method for monitoring flames in a fuel-powered heating device
DE102006047990B4 (en) Control of heating power of a heater
EP1777466B1 (en) Method for setting the partial load operation of heating systems
EP4345378A1 (en) Method for starting up a heating device, control and control device, heating device and computer program
DE102022122811A1 (en) Method for operating a heater, computer program, control and control device, fuel flow regulator and heater
EP1260766B1 (en) Method for adapting a fired heater to the air/flue gas stack
EP3163169B1 (en) Heater appliance and method for operating a heater appliance
DE102007060073B3 (en) Gas burner starting method for heating device, involves obtaining reduced degree of modulation in stages during extended time period, and extending retention time at one of stages of degree of modulation
DE102007029971A1 (en) Boiler, for heating and hot water, has a control which switches off the burner when the sensor registers a higher temperature during and/or after the calibration stage following burner ignition
EP3631298A1 (en) Heating device and method for operating a heating device
DE10319835A1 (en) Control method for fuel-driven burner, involves performing calibrating procedure during start of burner operation by increasing the fuel-air mixture until an exhaust sensor outputs a signal equivalent to an established threshold value

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20050708

AKX Designation fees paid

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 50212308

Country of ref document: DE

Date of ref document: 20080710

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080528

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2305146

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080528

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080828

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081028

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080528

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20090303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080528

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080528

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20160304

Year of fee payment: 15

Ref country code: ES

Payment date: 20160119

Year of fee payment: 15

Ref country code: NL

Payment date: 20160302

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20160307

Year of fee payment: 15

Ref country code: AT

Payment date: 20160302

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20170401

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 397191

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170401

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170331

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170331

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170331

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20180629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170323

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20210323

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210301

Year of fee payment: 20

Ref country code: GB

Payment date: 20210302

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20210331

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50212308

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20220321

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20220321