EP3870899B1 - Method for checking a gas mixture sensor and ionization sensor in a fuel-gas-powered heating device - Google Patents
Method for checking a gas mixture sensor and ionization sensor in a fuel-gas-powered heating device Download PDFInfo
- Publication number
- EP3870899B1 EP3870899B1 EP20723328.9A EP20723328A EP3870899B1 EP 3870899 B1 EP3870899 B1 EP 3870899B1 EP 20723328 A EP20723328 A EP 20723328A EP 3870899 B1 EP3870899 B1 EP 3870899B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- sensor
- gas
- ionization
- signal
- gas mixture
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000203 mixture Substances 0.000 title claims description 122
- 238000000034 method Methods 0.000 title claims description 47
- 238000010438 heat treatment Methods 0.000 title claims description 8
- 239000007789 gas Substances 0.000 claims description 147
- 239000002737 fuel gas Substances 0.000 claims description 69
- 239000000463 material Substances 0.000 claims description 14
- 230000001419 dependent effect Effects 0.000 claims description 4
- 239000000446 fuel Substances 0.000 description 10
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 10
- 238000002485 combustion reaction Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 239000003345 natural gas Substances 0.000 description 5
- 238000011161 development Methods 0.000 description 4
- 230000018109 developmental process Effects 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 239000007788 liquid Substances 0.000 description 3
- 238000012423 maintenance Methods 0.000 description 3
- GVGLGOZIDCSQPN-PVHGPHFFSA-N Heroin Chemical compound O([C@H]1[C@H](C=C[C@H]23)OC(C)=O)C4=C5[C@@]12CCN(C)[C@@H]3CC5=CC=C4OC(C)=O GVGLGOZIDCSQPN-PVHGPHFFSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 239000001273 butane Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N5/00—Systems for controlling combustion
- F23N5/02—Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
- F23N5/12—Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods
- F23N5/123—Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods using electronic means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N1/00—Regulating fuel supply
- F23N1/02—Regulating fuel supply conjointly with air supply
- F23N1/022—Regulating fuel supply conjointly with air supply using electronic means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N1/00—Regulating fuel supply
- F23N1/02—Regulating fuel supply conjointly with air supply
- F23N1/025—Regulating fuel supply conjointly with air supply using electrical or electromechanical means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N5/00—Systems for controlling combustion
- F23N5/18—Systems for controlling combustion using detectors sensitive to rate of flow of air or fuel
- F23N2005/181—Systems for controlling combustion using detectors sensitive to rate of flow of air or fuel using detectors sensitive to rate of flow of air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N5/00—Systems for controlling combustion
- F23N5/18—Systems for controlling combustion using detectors sensitive to rate of flow of air or fuel
- F23N2005/185—Systems for controlling combustion using detectors sensitive to rate of flow of air or fuel using detectors sensitive to rate of flow of fuel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N2221/00—Pretreatment or prehandling
- F23N2221/10—Analysing fuel properties, e.g. density, calorific
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N2223/00—Signal processing; Details thereof
- F23N2223/10—Correlation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N2227/00—Ignition or checking
- F23N2227/20—Calibrating devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N2229/00—Flame sensors
- F23N2229/12—Flame sensors with flame rectification current detecting means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N2239/00—Fuels
- F23N2239/04—Gaseous fuels
Definitions
- the invention relates to a method for checking a gas mixture sensor and ionization sensor with regard to their error-free function in a fuel gas-operated heater.
- the state of the art is also combustion control according to the so-called SCOT method, in which the amount of air supplied to the burner of the heater is controlled in accordance with the burner output.
- a flame signal measurement is carried out using an ionization sensor and the gas-air mixture is regulated to a target ionization measurement value stored in a characteristic curve.
- the disadvantage of the SCOT process is that at low burner outputs the flame signal drops sharply and the control therefore becomes unreliable.
- the applicant is also responsible for a method for controlling a gas mixture formed from a gas and a fuel gas in a fuel gas-operated heater, in which the gas mixture is generated by providing and mixing a quantity of gas via a first actuator and a quantity of fuel gas via a second actuator.
- a microthermal gas mixture sensor which detects at least one material property of the gas mixture, is exposed to the gas mixture and continuously transmits a sensor signal that is dependent on the respective gas mixture to a control unit.
- the control device compares the detected sensor signal with a target value of the sensor signal and controls at least one of the first and second actuators if the detected sensor signal deviates from the target value of the sensor signal.
- the gas mixture is adjusted by increasing or reducing the amount of gas and/or increasing or decreasing the amount of fuel gas until the setpoint of the sensor signal is reached.
- the material property of the gas mixture detected by the microthermal gas mixture sensor is preferably the thermal conductivity, the thermal conductivity or the speed of sound of the gas mixture. However, several of these material properties can also be recorded, so that a more precise assignment of the majority of the properties to the gas mixture is possible.
- the microthermal gas mixture sensor is designed as a gas mass sensor, which detects both the gas mixture mass supplied to the burner of the heater and other material physical properties.
- calorimetric microsensors known from the prior art are used for this purpose, which, in addition to the thermal conductivity, also measure the thermal conductivity of the gas mixture.
- Another possibility is at least one gas mass sensor based on the functional principle of ultrasonic measurement to determine the gas mixture mass and the specific speed of sound that is present depending on the gas mixture.
- the setpoint of the sensor signal is also adjusted by the control unit depending on a composition of the gas or the fuel gas. If the composition of the fuel gas changes (e.g. from propane to butane), the measured properties of the gas mixture change. In addition, other compositions of fuel gas also require different amounts of air for optimal combustion. A new mixing ratio between gas and fuel gas is therefore also required.
- control unit changes the first actuator of the gas quantity or the second actuator of the fuel gas quantity until the desired result is achieved.
- the original setpoint is replaced by the new measured sensor signal for further mixture control.
- the calibration process is carried out by controlling the ionization current of a flame signal from a burner of the heater until an ionization setpoint is reached.
- stoichiometric combustion of the burner of the heater is first set.
- the flame signal from the burner of the heater and thus a corresponding ionization current are detected via an ionization probe.
- the ionization current is maximum.
- an ionization setpoint is calculated using a laboratory-determined percentage and stored as a future ionization current setpoint that must be achieved during the desired combustion. Subsequently, only the amount of gas is reduced by a predetermined factor in order to operate the burner with the desired gas mixture at the predetermined ionization setpoint.
- the at least one material property becomes of the gas mixture is measured using the gas mixture sensor and stored as a new setpoint of the sensor signal in the control unit.
- the new setpoint is used for further control and replaces the previous setpoint.
- the gas is preferably air
- the fuel gas is preferably liquid gas or natural gas.
- the object of the present invention is to check the measured sensor values of the gas mixture sensor and the ionization sensor for plausibility, i.e. with regard to their error-free function, in order to be able to detect errors in the control process.
- a method for checking a gas mixture sensor and ionization sensor with regard to their error-free function in a fuel gas-operated heater in which a gas mixture is generated by providing and mixing a quantity of gas via a first actuator and a quantity of fuel gas via a second actuator.
- the gas mixture sensor is positioned in the gas mixture to detect a material property of the gas mixture and continuously transmits a sensor signal that is dependent on the respective gas mixture to a control device.
- a flame signal is detected on a burner of the heater via the ionization sensor, an ionization signal is determined from this and transmitted to the control unit.
- a corresponding ionization signal from the ionization sensor is assigned to the respective sensor signal of the gas mixture sensor.
- the amount of gas or the amount of fuel gas is temporarily changed in a predefined manipulated variable of the first or second actuator, so that the composition of the gas mixture changes.
- the change in the sensor signal of the gas mixture sensor and the ionization signal resulting from the mixture change of the ionization sensor was measured and compared with each other. From the result of the comparison of the respective changes in the sensor values, deviations from target values can be recognized and conclusions can be drawn about a faulty function of the gas mixture sensor or the ionization sensor.
- the amount of fuel gas is temporarily changed in a predefined manipulated variable of the first or second actuator, which can be controlled more precisely than the amount of gas, which is usually provided as air via a fan.
- the gas mixture sensor is functioning incorrectly. If, on the other hand, when the gas mixture is changed, only the sensor signal of the gas mixture sensor delivers adjusted signals as expected, without the corresponding adjustment being detectable in the ionization signal of the ionization sensor, there is a faulty function of the ionization sensor, for example the ionization electrode positioned in the burner of the heater. Depending on which of the two sensors delivers an incorrect result, the heater control process can only be carried out via the other sensor until appropriate maintenance has been carried out.
- the absolute magnitude of the deviation of the ionization signal of the ionization sensor or the sensor signal of the gas mixture sensor can also be detected and compared with variables determined or precalculated in the laboratory in order to determine a degree of deviation of the signals from a target value.
- the method according to the invention is preferably used continuously during mixture control and the sensor signal of the gas mixture sensor is regularly compared or checked for plausibility with the ionization signal of the ionization sensor.
- a further development of the method provides that, in order to check the gas mixture sensor and the ionization sensor, the amount of gas or the amount of fuel gas is changed cyclically in several steps in predefined manipulated variables of the first or second actuator and the resulting change in the sensor signal of the gas mixture sensor and the ionization signal of the ionization sensor in several of the operating points resulting from the steps are measured and compared with each other.
- the calibration process described above by the ionization current control is used in an advantageous embodiment of the method to determine a preliminary assignment of several signal values of the gas mixture sensor and ionization sensor in the different operating points.
- the calibration process is preferably carried out repeatedly, so that sensor signals of the gas mixture sensor corresponding to several different ionization signals are assigned.
- the connection between the ionization signal and the sensor signal at the various operating points results in a target characteristic curve in an ionization signal-sensor signal diagram, which is stored in the control unit.
- At least one tolerance corridor is preferably provided around the target characteristic curve, which characterizes operation outside the normal, so that if the characteristic curve deviates too much from the target characteristic curve, either the mixture control can be calibrated or the heater can even be switched off if necessary.
- a further development of the method is characterized in that an additional gas sensor and/or a fuel gas sensor for detecting at least one of the material property of the gas or the fuel gas is used.
- the material property of the gas is measured via the gas sensor and the material property of the fuel gas is measured via the fuel gas sensor, whereby it is advantageous that the respective end points are determined from the signals from the gas sensor and fuel gas sensor the sensor characteristic curve of the sensor signal of the gas mixture sensor can be determined.
- the first end point is determined by pure fuel gas, the second end point by pure gas, especially air.
- an expected course of the sensor characteristic curve of the gas mixture sensor when changing the amount of fuel gas or gas amount for carrying out the method according to the invention can be predetermined from measurements determined in the laboratory with the comparison of the change in the sensor signal of the gas mixture sensor and the ionization signal of the ionization sensor.
- the characteristic curve and thus the operating points expected on the characteristic can be calculated in advance, so that a target sensor signal is determined for each of the operating points resulting from the steps.
- one embodiment of the method provides that only one additional sensor, ie only the gas sensor or only the fuel gas sensor, is added. This is more cost-effective. At the same time, it offers the advantageous possibility of determining at least one end point of the sensor characteristic curve of the sensor signal of the gas mixture sensor, from which the step-by-step change, for example in the amount of fuel gas, can be predicted more precisely. In addition, taking into account the end point of the sensor characteristic curve, just one step of changing, for example, the amount of fuel gas can be sufficient to detect the deviations in the sensor signal of the gas mixture sensor.
- the gas mixture sensor, the gas sensor and/or the fuel gas sensor are provided redundantly.
- Each of the redundantly provided gas mixture sensors, gas sensors and/or fuel gas sensors conveniently supplies its own signal to the control unit, which is checked for plausibility and therefore the sensors are checked for error-free function.
- the actuator 4 for supplying a controllable amount of air 2 and the actuator 3 for supplying a controllable amount of fuel gas 1 are regulated in their respective opening positions via the control device 11 in order to produce the gas mixture 9 in a specific fuel gas-air mixture ratio.
- the gas mixture sensor 10 is positioned in the area of the gas mixture 9 and is supplied with the gas mixture 9.
- the fuel gas sensor 6 is also positioned in the fuel gas path 5 and the gas sensor 8 is positioned in the gas path 7, which also deliver signals to the control unit 11.
- the control device 11 and the control system are monitored via a process monitoring unit 12.
- FIG 2 shows a specific embodiment of a fuel gas-operated heater 200 with a gas safety valve 101, a gas control valve 102 as an actuator for the amount of fuel gas 103, a mixing fan 107 for sucking in air 104 and mixing it with the fuel gas 103 to generate the gas mixture 105.
- the heater 200 includes the microthermal gas mixture sensor 106, with a second gas mixture sensor 108 being shown as an alternative installation position in the exhaust area of the mixing fan 107. In principle, however, a second gas mixture sensor is not required.
- the mixing fan 107 conveys the gas mixture 105 to the burner 109, on which the ionization sensor 111 with the ionization electrode is installed in order to monitor the burner flame.
- the signal lines to and from the control device 100, which processes the control of the gas mixture 105, are shown via arrows.
- Figure 3 is in a diagram 30 a simplified linear relationship used for the control between the sensor signal 31 detected by the gas mixture sensor 10 for pure air 2 (reference number 34 corresponds to 100% air) and the sensor signal 32 for pure fuel gas 1 (reference number 36 corresponds to 100% fuel gas) shown.
- the sensor signal 33 lies in between.
- the amounts of air 2 and fuel gas 1 are adjusted via the respective actuators 3 and/or 4 until the mixture properties of the desired mixing ratio required by the process are detected by the gas mixture sensor 10.
- Figure 3 shows a linear course of the characteristic curve of the sensor signal, but non-linear characteristic curves are also possible, which enable control of the corresponding positions of the actuators 3, 4, for example using value tables.
- the sensor signal decreases the more fuel gas 1 is supplied.
- the sensor signal is shown, for example, as dependent on the thermal conductivity as a material property of the gas mixture 9, the fuel gas being, for example, liquid gas and the thermal conductivity of liquid gas being lower than that of air.
- the fuel gas 1 is natural gas, whose thermal conductivity is higher than that of air.
- diagram 40 according to Figure 4 a simplified linear relationship used for the control between that detected by the gas mixture sensor 10
- Sensor signal 42 for pure air 2 reference number 44 corresponds to 100% air
- the sensor signal 41 for pure fuel gas 1 reference number 46 corresponds to 100% fuel gas/natural gas).
- the sensor signal 43 is in between, but close to the sensor signal 41 of pure fuel gas 1.
- the control unit 11 uses the signal change of the gas mixture sensor 10 at the Increasing the amount of fuel gas determines the direction of action of the control and is used as a basis for further mixture control.
- Figure 5 shows a diagram 20 for calibration by means of ionization current control with a characteristic curve of the ionization signal (Io signal) detected by the ionization electrode in the burner flame versus the fuel gas-air ratio ⁇ . Since the basic structure is according to Figure 1 shows no ionization electrode, the heater 200 is shown below Figure 2 referred.
- the control unit 100 controls the amount of air 104 to a predetermined value during burner operation, measures the ionization signal at the ionization electrode of the ionization sensor 111 on the burner 109 and increases the amount of fuel gas 103 until the ionization signal differs from the originally existing ionization value 21 at a Fuel gas-air ratio 24 has increased to the maximum 22.
- the ionization setpoint 23 is calculated using a laboratory-determined percentage and stored as a future ionization current setpoint, which must achieve the desired fuel gas-air ratio 25 with a higher excess of air.
- a corresponding sensor signal from the gas mixture sensor 108 is stored for each value of the ionization signal.
- the gas control valve 102 is controlled via the control device 100 in such a way that the amount of fuel gas F increases depending on the opening position P of the gas control valve 102.
- the characteristic curve 80 represents a flow characteristic curve of the fuel gas. In the embodiment shown, the increase occurs gradually from points a, b, c, d, e, with the amount of fuel gas F increasing essentially constantly over a fixed amount 81.
- the change in the amount of fuel gas causes a shift in the mixture composition in % of fuel gas and air and thus a changing sensor signal S of the gas mixture sensor 108, as in Figure 7 shown.
- the two end points 61, 65 of the sensor characteristic curve 60 determine the mixture composition in % at reference number 65 pure air or at reference number 66 pure fuel gas.
- the amount of fuel is reduced in partial steps abcd to the test mixture composition 67, marked in Figure 7 with reference number 67, increased, with the sensor signal S changing by a signal difference 72 in error-free operation.
- the target characteristic curve 95 results from each step a, b, c, d, e of the assignment of the respective sensor signal (S) of the gas mixture sensor 108 to the corresponding ionization signal (Io signal) of the ionization sensor 111.
- S sensor signal
- Io signal ionization signal
- T1 tolerance limits in dashed lines and T2 are shown to determine the tolerance corridor. If there is a deviation in the direction of arrow A, this is a function of the gas mixture sensor 108 outside the normal values, as the amount of fuel gas increases Figure 7 the ionization signal increases significantly more than the sensor signal.
- the ionization sensor 111 is functioning outside the normal values, since an increase in the amount of fuel gas occurs according to Figure 7 the sensor signal increases significantly more than the ionization signal.
- a deviation in the direction of arrow A indicates a faulty function of the gas mixture sensor 108
- a deviation in the direction of arrow B indicates a faulty function of the ionization sensor 111.
- the mixture control of the heater 200 by the control device 100 then takes place via the sensor, which is not working incorrectly, until the necessary maintenance has been carried out.
- the error and maintenance requirement is displayed visually on the heater 200, for example via the display, and/or transmitted directly to the manufacturer. If the comparison result of the sensor values is outside the tolerance corridor determined by the tolerance limits T1, T2, the heater 200 is switched off.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
- Regulation And Control Of Combustion (AREA)
Description
Die Erfindung betrifft ein Verfahren zur Überprüfung eines Gasgemischsensors und ionisationssensors bezüglich ihrer fehlerfreien Funktion bei einem brenngasbetriebenen Heizgerät.The invention relates to a method for checking a gas mixture sensor and ionization sensor with regard to their error-free function in a fuel gas-operated heater.
Aus dem Stand der Technik sind verschiedene Regelungsverfahren von Heizgeräten bekannt, beispielsweise aus der Offenbarung gemäß der Druckschrift
Stand der Technik ist zudem eine Verbrennungsregelung nach dem sog. SCOT-Verfahren, bei dem die Steuerung der dem Brenner des Heizgerätes zugeführte Luftmenge entsprechend der Brennerleistung erfolgt. Dabei wird eine Flammensignalmessung mittels eines Ionisationssensors durchgeführt und das Gas-Luftgemisch auf einen in einer Kennlinie hinterlegten Soll-Ionisationsmesswert geregelt. Beim SCOT-Verfahren ist jedoch nachteilig, dass bei kleinen Brennerleistungen das Flammensignal stark absinkt und die Regelung damit unzuverlässig wird.The state of the art is also combustion control according to the so-called SCOT method, in which the amount of air supplied to the burner of the heater is controlled in accordance with the burner output. A flame signal measurement is carried out using an ionization sensor and the gas-air mixture is regulated to a target ionization measurement value stored in a characteristic curve. However, the disadvantage of the SCOT process is that at low burner outputs the flame signal drops sharply and the control therefore becomes unreliable.
Auf die Anmelderin geht zudem ein Verfahren zur Regelung eines Gasgemisches gebildet aus einem Gas und einem Brenngas bei einem brenngasbetriebenen Heizgerät zurück, bei dem das Gasgemisch erzeugt wird, indem über ein erstes Stellglied eine Gasmenge und über ein zweites Stellglied eine Brenngasmenge bereitgestellt und gemischt werden. Ein mikrothermischer Gasgemischsensor, der mindestens eine stoffliche Eigenschaft des Gasgemisches erfasst, wird mit dem Gasgemisch beaufschlagt und übermittelt kontinuierlich ein von dem jeweiligen Gasgemisch abhängiges Sensorsignal an ein Steuergerät. Das Steuergerät vergleicht das erfasste Sensorsignal mit einem Sollwert des Sensorsignals und steuert bei einer Abweichung des erfassten Sensorsignals mit dem Sollwert des Sensorsignals mindestens eines der ersten und zweiten Stellglieder an. Dadurch wird das Gasgemisch durch Erhöhung oder Verringerung der Gasmenge und/oder Erhöhung oder Verringerung der Brenngasmenge angepasst, bis der Sollwert des Sensorsignals erreicht ist.The applicant is also responsible for a method for controlling a gas mixture formed from a gas and a fuel gas in a fuel gas-operated heater, in which the gas mixture is generated by providing and mixing a quantity of gas via a first actuator and a quantity of fuel gas via a second actuator. A microthermal gas mixture sensor, which detects at least one material property of the gas mixture, is exposed to the gas mixture and continuously transmits a sensor signal that is dependent on the respective gas mixture to a control unit. The control device compares the detected sensor signal with a target value of the sensor signal and controls at least one of the first and second actuators if the detected sensor signal deviates from the target value of the sensor signal. As a result, the gas mixture is adjusted by increasing or reducing the amount of gas and/or increasing or decreasing the amount of fuel gas until the setpoint of the sensor signal is reached.
Die von dem mikrothermischen Gasgemischsensor erfasste stoffliche Eigenschaft des Gasgemisches ist vorzugsweise die Wärmeleitfähigkeit, die Temperaturleitfähigkeit oder die Schallgeschwindigkeit des Gasgemisches. Es können jedoch auch mehrere dieser stofflichen Eigenschaften erfasst werden, so dass eine genauere Zuordnung der Mehrzahl der Eigenschaften auf das Gasgemisch möglich ist.The material property of the gas mixture detected by the microthermal gas mixture sensor is preferably the thermal conductivity, the thermal conductivity or the speed of sound of the gas mixture. However, several of these material properties can also be recorded, so that a more precise assignment of the majority of the properties to the gas mixture is possible.
Der mikrothermische Gasgemischsensor ist als Gasmassensensor ausgebildet, der sowohl die an den Brenner des Heizgerätes zugeführte Gasgemischmasse als auch weitere stoffliche physikalische Eigenschaften erfasst. Beispielsweise werden hierfür aus dem Stand der Technik bekannte kalorimetrische Mikrosensoren eingesetzt, die neben der Wärmeleitfähigkeit die Temperaturleitfähigkeit des Gasgemisches erfassen. Eine andere Möglichkeit besteht in wenigstens einem Gasmassensensor basierend auf dem Funktionsprinzip der Ultraschallmessung zur Ermittlung der Gasgemischmasse und der jeweils gasgemischabhängig vorliegenden spezifischen Schallgeschwindigkeit.The microthermal gas mixture sensor is designed as a gas mass sensor, which detects both the gas mixture mass supplied to the burner of the heater and other material physical properties. For example, calorimetric microsensors known from the prior art are used for this purpose, which, in addition to the thermal conductivity, also measure the thermal conductivity of the gas mixture. Another possibility is at least one gas mass sensor based on the functional principle of ultrasonic measurement to determine the gas mixture mass and the specific speed of sound that is present depending on the gas mixture.
Bei dem Verfahren wird ferner der Sollwert des Sensorsignals in Abhängigkeit einer Zusammensetzung des Gases oder des Brenngases durch das Steuergerät angepasst. Ändert sich die Zusammensetzung des Brenngases (z.B. von Propan auf Butan), verändern sich die gemessenen Eigenschaften des Gasgemisches. Zusätzlich benötigen andere Zusammensetzungen an Brenngas für eine optimale Verbrennung auch andere Luftmengen. Es ist somit auch ein neues Mischungsverhältnis zwischen Gas und Brenngas erforderlich.In the method, the setpoint of the sensor signal is also adjusted by the control unit depending on a composition of the gas or the fuel gas. If the composition of the fuel gas changes (e.g. from propane to butane), the measured properties of the gas mixture change. In addition, other compositions of fuel gas also require different amounts of air for optimal combustion. A new mixing ratio between gas and fuel gas is therefore also required.
Eine derartige Anpassung des Sollwerts des Sensorsignals erfolgt durch einen Kalibrierprozess. Hierfür werden vom Steuergerät das erste Stellglied der Gasmenge oder das zweite Stellglied der Brenngasmenge soweit verändert, bis das gewünschte Ergebnis erreicht wird. Der ursprüngliche Sollwert wird für die weitere Gemischregelung durch das neue gemessene Sensorsignal ersetzt.Such an adjustment of the target value of the sensor signal is carried out through a calibration process. For this purpose, the control unit changes the first actuator of the gas quantity or the second actuator of the fuel gas quantity until the desired result is achieved. The original setpoint is replaced by the new measured sensor signal for further mixture control.
Der Kalibrierprozess erfolgt durch eine Ionisationsstromregelung eines Flammensignals eines Brenners des Heizgerätes, bis ein Ionisationssollwert erreicht ist. Hierfür wird zunächst eine stöchiometrische Verbrennung des Brenners des Heizgerätes eingestellt. Über eine Ionisationssonde werden das Flammensignal des Brenners des Heizgerätes und dadurch ein entsprechender Ionisationsstrom erfasst. Bei der stöchiometrischen Verbrennung ist der Ionisationsstrom maximal. Aus diesem Wert des Ionisationsstroms wird mit einer labortechnisch ermittelten Prozentzahl ein lonisationssollwert berechnet und als künftiger lonisationsstromsollwert abgespeichert, der bei der gewünschten Verbrennung erreicht werden muss. Anschließend wird ausschließlich die Gasmenge um einen vorbestimmten Faktor reduziert, um den Brenner mit dem gewünschten Gasgemisch bei dem vorbestimmten Ionisationssollwert zu betreiben.The calibration process is carried out by controlling the ionization current of a flame signal from a burner of the heater until an ionization setpoint is reached. For this purpose, stoichiometric combustion of the burner of the heater is first set. The flame signal from the burner of the heater and thus a corresponding ionization current are detected via an ionization probe. In stoichiometric combustion, the ionization current is maximum. From this value of the ionization current, an ionization setpoint is calculated using a laboratory-determined percentage and stored as a future ionization current setpoint that must be achieved during the desired combustion. Subsequently, only the amount of gas is reduced by a predetermined factor in order to operate the burner with the desired gas mixture at the predetermined ionization setpoint.
Beim Erreichen des Ionisationssollwerts wird die mindestens eine stoffliche Eigenschaft des Gasgemisches mittels des Gasgemischsensors gemessen und als neuer Sollwert des Sensorsignals im Steuergerät hinterlegt. Der neue Sollwert wird für die weitere Regelung verwendet und ersetzt den bisherigen Sollwert.When the ionization setpoint is reached, the at least one material property becomes of the gas mixture is measured using the gas mixture sensor and stored as a new setpoint of the sensor signal in the control unit. The new setpoint is used for further control and replaces the previous setpoint.
Das Gas ist vorzugsweise Luft, das Brenngas vorzugsweise Flüssiggas oder Erdgas.The gas is preferably air, the fuel gas is preferably liquid gas or natural gas.
Bei derartigen Regelungsverfahren sollen nun als Aufgabe der vorliegenden Erfindung die gemessenen Sensorwerte des Gasgemischsensors und des lonisationssensors auf Plausibilität, d.h. bezüglich ihrer fehlerfreien Funktion überprüft werden, um Fehler im Regelungsverfahren erkennen zu können.In such control methods, the object of the present invention is to check the measured sensor values of the gas mixture sensor and the ionization sensor for plausibility, i.e. with regard to their error-free function, in order to be able to detect errors in the control process.
Diese Aufgabe wird durch die Merkmalskombination gemäß Anspruch 1 gelöst.This task is solved by the combination of features according to
Erfindungsgemäß wird ein Verfahren zur Überprüfung eines Gasgemischsensors und Ionisationssensors bezüglich ihrer fehlerfreien Funktion bei einem brenngasbetriebenen Heizgerät vorgeschlagen, bei dem ein Gasgemisch erzeugt wird, indem über ein erstes Stellglied eine Gasmenge und über ein zweites Stellglied eine Brenngasmenge bereitgestellt und gemischt werden. Der Gasgemischsensor ist in dem Gasgemisch zur Erfassung einer stofflichen Eigenschaft des Gasgemisches positioniert und übermittelt kontinuierlich ein von dem jeweiligen Gasgemisch abhängiges Sensorsignal an ein Steuergerät. An einem Brenner des Heizgerätes wird über den Ionisationssensor ein Flammensignal erfasst, daraus ein Ionisationssignal bestimmt und an das Steuergerät übermittelt. Dem jeweiligen Sensorsignal des Gasgemischsensors wird ein korrespondierendes Ionisationssignal des lonisationssensors zugeordnet. Zur Überprüfung des Gasgemischsensors und des Ionisationssensors wird die Gasmenge oder die Brenngasmenge temporär in einer vordefinierten Stellgröße des ersten oder zweiten Stellglieds verändert, so dass sich hierdurch das Gasgemisch in seiner Zusammensetzung verändert. Gleichzeitig werden die jeweilig aus der Gemischveränderung resultierende Veränderung des Sensorsignals des Gasgemischsensors und des lonisationssignals des Ionisationssensors gemessen und miteinander verglichen. Aus dem Ergebnis des Vergleichs der jeweiligen Veränderung der Sensorwerte können Abweichungen von Sollwerten erkannt und auf eine fehlerhafte Funktion des Gasgemischsensors oder des Ionisationssensors geschlossen werden.According to the invention, a method for checking a gas mixture sensor and ionization sensor with regard to their error-free function in a fuel gas-operated heater is proposed, in which a gas mixture is generated by providing and mixing a quantity of gas via a first actuator and a quantity of fuel gas via a second actuator. The gas mixture sensor is positioned in the gas mixture to detect a material property of the gas mixture and continuously transmits a sensor signal that is dependent on the respective gas mixture to a control device. A flame signal is detected on a burner of the heater via the ionization sensor, an ionization signal is determined from this and transmitted to the control unit. A corresponding ionization signal from the ionization sensor is assigned to the respective sensor signal of the gas mixture sensor. To check the gas mixture sensor and the ionization sensor, the amount of gas or the amount of fuel gas is temporarily changed in a predefined manipulated variable of the first or second actuator, so that the composition of the gas mixture changes. At the same time, the change in the sensor signal of the gas mixture sensor and the ionization signal resulting from the mixture change of the ionization sensor was measured and compared with each other. From the result of the comparison of the respective changes in the sensor values, deviations from target values can be recognized and conclusions can be drawn about a faulty function of the gas mixture sensor or the ionization sensor.
Vorzugsweise wird bei dem Verfahren die Brenngasmenge temporär in einer vordefinierten Stellgröße des ersten oder zweiten Stellglieds verändert, die diese exakter steuerbar ist als die Gasmenge, die üblicherweise als Luft über ein Gebläse bereitgestellt wird.Preferably, in the method, the amount of fuel gas is temporarily changed in a predefined manipulated variable of the first or second actuator, which can be controlled more precisely than the amount of gas, which is usually provided as air via a fan.
Wenn für den Vergleich beispielsweise der Anteil der Brenngasmenge am Gasgemisch vergrößert wird und erhöht sich dabei erwartungsgemäß das Ionisationssignal des Ionisationssensors, ohne dass das gleichzeitig das Sensorsignal des Gasgemischsensors ansteigt, liegt eine fehlerhafte Funktion des Gasgemischsensors vor. Liefert hingegen bei der Veränderung des Gasgemisches nur das Sensorsignal des Gasgemischsensors erwartungsgemäß angepasste Signale, ohne dass die entsprechende Anpassung auch bei dem Ionisationssignal des Ionisationssensors feststellbar wäre, liegt eine fehlerhafte Funktion des Ionisationssensors, beispielsweise der im Brenner des Heizgeräts positionierten Ionisationselektrode, vor. Das Reglungsverfahren des Heizgerätes kann je nachdem welcher der beiden Sensoren ein fehlerhaftes Ergebnis liefert, ausschließlich über den jeweils anderen Sensor erfolgen, bis eine entsprechende Wartung erfolgt ist.If, for example, the proportion of the amount of fuel gas in the gas mixture is increased for the comparison and the ionization signal of the ionization sensor increases as expected without the sensor signal of the gas mixture sensor increasing at the same time, the gas mixture sensor is functioning incorrectly. If, on the other hand, when the gas mixture is changed, only the sensor signal of the gas mixture sensor delivers adjusted signals as expected, without the corresponding adjustment being detectable in the ionization signal of the ionization sensor, there is a faulty function of the ionization sensor, for example the ionization electrode positioned in the burner of the heater. Depending on which of the two sensors delivers an incorrect result, the heater control process can only be carried out via the other sensor until appropriate maintenance has been carried out.
Bei dem Verfahren ist auch die absolute Größe der Abweichung des Ionisationssignals des Ionisationssensors oder des Sensorsignals des Gasgemischsensors erfassbar und mit labortechnisch ermittelten oder vorausberechneten Größen vergleichbar, um einen Grad der Abweichung der Signale von einem Sollwert zu bestimmen. Dies ermöglicht es, einen Toleranzbereich für die Signale festzulegen, welche für den regulären Betrieb als normal gelten. Bei einer zu großen Abweichung außerhalb des Toleranzbereichs kann beispielsweise in einem Display des Heizgeräts eine Fehlerdiagnose angezeigt werden.With the method, the absolute magnitude of the deviation of the ionization signal of the ionization sensor or the sensor signal of the gas mixture sensor can also be detected and compared with variables determined or precalculated in the laboratory in order to determine a degree of deviation of the signals from a target value. This makes it possible to set a tolerance range for the signals that are considered normal for regular operation. If the deviation is too large outside the tolerance range, an error diagnosis can be shown on a display of the heater, for example become.
Das erfindungsgemäße Verfahren wird vorzugsweise kontinuierlich während der Gemischregelung angewandt und das Sensorsignal des Gasgemischsensors mit dem Ionisationssignal des Ionisationssensors regelmäßig verglichen bzw. plausibilisiert.The method according to the invention is preferably used continuously during mixture control and the sensor signal of the gas mixture sensor is regularly compared or checked for plausibility with the ionization signal of the ionization sensor.
Eine Weiterbildung des Verfahrens sieht vor, dass zur Überprüfung des Gasgemischsensors und des Ionisationssensors die Gasmenge oder die Brenngasmenge zyklisch in mehreren Schritten in vordefinierten Stellgrößen des ersten oder zweiten Stellglieds verändert wird und die sich jeweils einstellende Veränderung des Sensorsignals des Gasgemischsensors und des Ionisationssignals des Ionisationssensors in mehren der sich aus den Schritten ergebenden Betriebspunkten gemessenen und miteinander verglichen werden.A further development of the method provides that, in order to check the gas mixture sensor and the ionization sensor, the amount of gas or the amount of fuel gas is changed cyclically in several steps in predefined manipulated variables of the first or second actuator and the resulting change in the sensor signal of the gas mixture sensor and the ionization signal of the ionization sensor in several of the operating points resulting from the steps are measured and compared with each other.
Der vorstehend beschriebene Kalibrierprozess durch die Ionisationsstromregelung wird in einer vorteilhaften Ausführung des Verfahrens genutzt, um eine Vorab-Zuordnung von mehreren Signalwerten des Gasgemischsensors und Ionisationssensors in den verschiedenen Betriebspunkten festzulegen. Der Kalibrierprozess wird vorzugsweise wiederholt ausgeführt, so dass mehreren unterschiedlichen Ionisationssignalen korrespondierende Sensorsignale des Gasgemischsensors zugeordnet sind. Aus dem Zusammenhang zwischen dem Ionisationssignal und dem Sensorsignals in den verschiedenen Betriebspunkten ergibt sich eine Soll-Kennlinie in einem Diagramm lonisationssignal-Sensorsignal, die im Steuergerät hinterlegt wird. Um die Soll-Kennlinie wird vorzugsweise mindestens ein Toleranzkorridor vorgesehen, der einen Betrieb außerhalb des Normalen kennzeichnet, so dass bei einer zu starken Abweichung des Kennlinienverlaufs von der Soll-Kennlinie entweder eine Kalibrierung der Gemischregelung erfolgen kann oder das Heizgerät notfalls sogar abgeschaltet wird.The calibration process described above by the ionization current control is used in an advantageous embodiment of the method to determine a preliminary assignment of several signal values of the gas mixture sensor and ionization sensor in the different operating points. The calibration process is preferably carried out repeatedly, so that sensor signals of the gas mixture sensor corresponding to several different ionization signals are assigned. The connection between the ionization signal and the sensor signal at the various operating points results in a target characteristic curve in an ionization signal-sensor signal diagram, which is stored in the control unit. At least one tolerance corridor is preferably provided around the target characteristic curve, which characterizes operation outside the normal, so that if the characteristic curve deviates too much from the target characteristic curve, either the mixture control can be calibrated or the heater can even be switched off if necessary.
Eine Weiterbildung des Verfahrens ist dadurch gekennzeichnet, dass zusätzlich ein Gassensor und/oder ein Brenngassensor zur Erfassung zumindest einer der stofflichen Eigenschaft des Gases oder des Brenngases verwendet wird. Bei einer Lösung mit beiden zusätzlichen Sensoren, d.h. Gassensor und Brenngassensor, wird über den Gassensor die stoffliche Eigenschaft des Gases und über den Brenngassensor die die stoffliche Eigenschaft des Brenngases gemessen, wobei hierbei vorteilhaft ist, dass aus den Signalen von Gassensor und Brenngassensor die jeweiligen Endpunkte der Sensorkennlinie des Sensorsignals des Gasgemischsensors bestimmt werden. Der erste Endpunkt ist bestimmt durch reines Brenngas, der zweite Endpunkt durch reines Gas, insbesondere Luft. Somit kann ein aus labortechnisch ermittelten Messungen ein zu erwartender Verlauf der Sensorkennlinie des Gasgemischsensor bei der Veränderung der Brenngasmenge oder Gasmenge zur Durchführung des erfindungsgemäßen Verfahrens mit dem Vergleich der Veränderung des Sensorsignals des Gasgemischsensors und des Ionisationssignals des Ionisationssensors vorausbestimmt werden.A further development of the method is characterized in that an additional gas sensor and/or a fuel gas sensor for detecting at least one of the material property of the gas or the fuel gas is used. In a solution with both additional sensors, ie gas sensor and fuel gas sensor, the material property of the gas is measured via the gas sensor and the material property of the fuel gas is measured via the fuel gas sensor, whereby it is advantageous that the respective end points are determined from the signals from the gas sensor and fuel gas sensor the sensor characteristic curve of the sensor signal of the gas mixture sensor can be determined. The first end point is determined by pure fuel gas, the second end point by pure gas, especially air. Thus, an expected course of the sensor characteristic curve of the gas mixture sensor when changing the amount of fuel gas or gas amount for carrying out the method according to the invention can be predetermined from measurements determined in the laboratory with the comparison of the change in the sensor signal of the gas mixture sensor and the ionization signal of the ionization sensor.
Auch bei einer schrittweisen Veränderung zur Erreichung und Messung in mehreren bestimmten Betriebspunkten sind der Kennlinienverlauf und somit die auf der Kennlinie erwarteten Betriebspunkte vorausberechenbar, so dass ein Ziel-Sensorsignal zu jedem der sich aus den Schritten ergebenden Betriebspunkte bestimmt wird.Even with a step-by-step change to achieve and measure several specific operating points, the characteristic curve and thus the operating points expected on the characteristic can be calculated in advance, so that a target sensor signal is determined for each of the operating points resulting from the steps.
Eine Ausführung des Verfahrens sieht alternativ vor, dass nur ein zusätzlicher Sensor, d.h. nur der Gassensor oder nur der Brenngassensor ergänzt wird. Dies ist kostengünstiger. Gleichzeitig bietet es die vorteilhafte Möglichkeit, zumindest einen Endpunkt der Sensorkennlinie des Sensorsignals des Gasgemischsensors zu bestimmen, ausgehend von dem die schrittweise Veränderung beispielsweise der Brenngasmenge genauer vorausberechenbar ist. Zudem kann unter Berücksichtigung des Endpunkts der Sensorkennlinie bereits ein Schritt der Veränderung beispielsweise der Brenngasmenge ausreichen, um die Abweichungen im Sensorsignal des Gasgemischsensors zu erkennen. Hierbei ist vorteilhaft, dass die Überprüfung des Gasgemischsensors und des Ionisationssensors nicht im Bereich des Maximums des Ionisationssignals mit vergleichsweise hohen Abgaswerten erfolgen muss, sondern bereits bei einer ersten Erhöhung beispielsweise der Brenngasmenge die Plausibilitätsprüfung durchführbar ist.Alternatively, one embodiment of the method provides that only one additional sensor, ie only the gas sensor or only the fuel gas sensor, is added. This is more cost-effective. At the same time, it offers the advantageous possibility of determining at least one end point of the sensor characteristic curve of the sensor signal of the gas mixture sensor, from which the step-by-step change, for example in the amount of fuel gas, can be predicted more precisely. In addition, taking into account the end point of the sensor characteristic curve, just one step of changing, for example, the amount of fuel gas can be sufficient to detect the deviations in the sensor signal of the gas mixture sensor. It is advantageous here that the checking of the gas mixture sensor and the ionization sensor does not take place in the area of the maximum of the ionization signal comparatively high exhaust gas values must be carried out, but rather the plausibility test can be carried out with a first increase, for example in the amount of fuel gas.
In einer Weiterbildung des Verfahrens werden der Gasgemischsensor, der Gassensor und/oder der Brenngassensor redundant vorgesehen. Jeder der redundant vorgesehenen Gasgemischsensoren, Gassensoren und/oder Brenngassensoren liefert dabei günstigerweise ein eigenes Signal an das Steuergerät, die auf Plausibilität und mithin die Sensoren bezüglich ihrer fehlerfreien Funktion überprüft werden.In a further development of the method, the gas mixture sensor, the gas sensor and/or the fuel gas sensor are provided redundantly. Each of the redundantly provided gas mixture sensors, gas sensors and/or fuel gas sensors conveniently supplies its own signal to the control unit, which is checked for plausibility and therefore the sensors are checked for error-free function.
Andere vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen gekennzeichnet bzw. werden nachstehend zusammen mit der Beschreibung der bevorzugten Ausführung der Erfindung anhand der Figuren näher dargestellt. Es zeigen:
- Fig. 1
- ein prinzipieller Aufbau zur Durchführung der Gemischregelung,
- Fig. 2
- einen Aufbau eines Heizgerätes zur Durchführung des Verfahrens,
- Fig. 3
- eine Regelungskennlinie des Sensorsignals des Gasgem ischsensors,
- Fig. 4
- eine Regelungskennlinie des Sensorsignals des Gasgem ischsensors,
- Fig. 5
- eine Kennlinie der Ionisationsstromregelung,
- Fig. 6
- eine Kennlinie zur Brenngasmengenerhöhung zur Durchführung des Verfahrens,
- Fig. 7
- eine resultierende Kennlinie des Sensorsignals des Gasgemischsensors bei der Brenngasmengenerhöhung gemäß
Fig. 6 , - Fig. 8
- eine resultierende Kennlinie des Ionisationssignals des Ionisationssensors bei der Brenngasmengenerhöhung gemäß
Fig. 6 , - Fig. 9
- eine Kennlinie im Diagramm lonisationssignal-Sensorsignal mit Toleranzkorridor.
- Fig. 1
- a basic structure for carrying out the mixture control,
- Fig. 2
- a structure of a heating device for carrying out the process,
- Fig. 3
- a control characteristic curve of the sensor signal of the gas mixture sensor,
- Fig. 4
- a control characteristic curve of the sensor signal of the gas mixture sensor,
- Fig. 5
- a characteristic curve of the ionization current control,
- Fig. 6
- a characteristic curve for increasing the amount of fuel gas to carry out the process,
- Fig. 7
- a resulting characteristic curve of the sensor signal of the gas mixture sensor when the fuel gas quantity is increased
Fig. 6 , - Fig. 8
- a resulting characteristic curve of the ionization signal of the ionization sensor when increasing the amount of fuel gas
Fig. 6 , - Fig. 9
- a characteristic curve in the ionization signal-sensor signal diagram with tolerance corridor.
In den
In
Im Folgenden wird auf die Bauteile des prinzipiellen Aufbaus gemäß
In
Gemäß
In den
Gemäß
Die Veränderung der Brenngasmenge verursacht bei unveränderter Luftmenge eine Verschiebung der Gemischzusammensetzung in % aus Brenngas und Luft und mithin ein sich änderndes Sensorsignal S des Gasgemischsensors 108, wie in
Bezugnehmend auf
Auch wenn in
Claims (12)
- A method for checking a gas mixture sensor and ionization sensor regarding their error-free functioning in a fuel-gas-powered heating device,wherein a gas mixture is created by providing a gas amount via a first actuator (4, 107) and a fuel gas amount via a second actuator (3, 102) and mixing them,wherein the gas mixture sensor (10, 106) is positioned in the gas mixture for detecting a material characteristic of the gas mixture (5, 105) and continuously transmits a sensor signal which is dependent from the respective gas mixture to a control device (7, 100),wherein a flame signal is detected at a burner (109) of the heating device (200) via the ionization sensor (111) and an ionization signal is determined therefrom and transmitted to the control device (11, 100),wherein a corresponding ionization signal of the ionization sensor (111) is assigned to the respective sensor signal of the gas mixture sensor (10, 106),and wherein for checking the gas mixture sensor and the ionization sensor the gas amount or the fuel gas amount is temporarily changed in a pre-defined actuating variable of the first or the second actuator so that the gas mixture changes, and at the same time the respective resulting change of the sensor signal of the gas mixture sensor and of the ionization signal of the ionization sensor are measured and compared to one another.
- The method according to claim 1, wherein for checking the gas mixture sensor (10, 106) and the ionization sensor (111) the gas amount or the fuel gas amount is cyclically changed in several steps in pre-defined actuating variables of the first or the second actuator and the respective setting change of the sensor signal of the gas mixture sensor and of the ionization signal of the ionization sensor is measured in several ones of the operating points resulting from the steps and compared to one another.
- The method according to claim 1 or 2, further comprising a calibration process occurring through an ionization current regulation of the flame signal of the burner (109) of the heating device (200) until a nominal value of the ionization signal is reached.
- The method according to claim 3, wherein, when reaching the nominal value of the ionization signal, a corresponding sensor signal of the gas mixture sensor is assigned.
- The method according to claim 4, wherein the calibration process is repeatedly executed during operation of the heating device and the sensor signal of the gas mixture sensor (10, 106) is assigned when the respective nominal value of the ionization signal is reached so that corresponding sensor signals of the gas mixture sensor are assigned to several different ionization signals.
- The method according to any one of claims 2 to 5, wherein a characteristic curve with a tolerance corridor surrounding the characteristic curve is formed from the connection between the ionization signal and the sensor signal in the different operating points.
- The method according to any one of the preceding claims, wherein a gas sensor (8) and/or a fuel gas sensor (6) for detecting at least one of the material characteristics of the gas or of the fuel gas is provided.
- The method according to any one of the preceding claims 1 to 6, wherein a gas sensor (8) detects the material characteristic of the gas and a fuel gas sensor (6) detects the material characteristic of the fuel gas and end points of a characteristic sensor curve of the sensor signal of the gas mixture sensor (10, 106) are determined therefrom.
- The method according to the preceding claim, wherein a target sensor signal for each of the operating points resulting from the steps is determined from the course of the characteristic sensor curve of the sensor signal of the gas mixture sensor.
- The method according to any one the preceding claims 6 to 9, wherein the heating device (200) is switched off when the tolerance corridor is left.
- The method according to any one the preceding claims 7 to 10, wherein the gas mixture sensor, the gas sensor and/or the fuel gas sensor are redundantly provided.
- The method according to the preceding claim, wherein each of the redundantly provided gas mixture sensors, gas sensors and/or fuel gas sensors delivers their own signal to the control device and is checked regarding their error-free functioning.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102019110976.0A DE102019110976A1 (en) | 2019-04-29 | 2019-04-29 | Method for checking a gas mixture sensor and ionization sensor in a fuel gas operated heater |
PCT/EP2020/061784 WO2020221758A1 (en) | 2019-04-29 | 2020-04-28 | Method for checking a gas mixture sensor and ionization sensor in a fuel-gas-powered heating device |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3870899A1 EP3870899A1 (en) | 2021-09-01 |
EP3870899B1 true EP3870899B1 (en) | 2023-11-01 |
Family
ID=70482627
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20723328.9A Active EP3870899B1 (en) | 2019-04-29 | 2020-04-28 | Method for checking a gas mixture sensor and ionization sensor in a fuel-gas-powered heating device |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP3870899B1 (en) |
DE (1) | DE102019110976A1 (en) |
WO (1) | WO2020221758A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102021113220A1 (en) | 2021-05-21 | 2022-11-24 | Vaillant Gmbh | Method for monitoring the operation of a heater, heater and computer program and computer-readable medium |
DE102022112785A1 (en) | 2022-05-20 | 2023-11-23 | Vaillant Gmbh | Method for operating a heater, computer program, control and control device and heater |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0498809B2 (en) * | 1989-10-30 | 1997-10-29 | Honeywell Inc. | combustion control |
DE10113468A1 (en) * | 2000-09-05 | 2002-03-14 | Siemens Building Tech Ag | Burner control unit employs sensor for comparative measurement during control interval and produces alarm signal as function of difference |
DE102004055716C5 (en) * | 2004-06-23 | 2010-02-11 | Ebm-Papst Landshut Gmbh | Method for controlling a firing device and firing device (electronic composite I) |
DE102010046954B4 (en) * | 2010-09-29 | 2012-04-12 | Robert Bosch Gmbh | Method for calibration, validation and adjustment of a lambda probe |
DE102011079325B4 (en) * | 2011-07-18 | 2017-01-26 | Viessmann Werke Gmbh & Co Kg | Method for controlling the air number of a burner |
DE202019100261U1 (en) * | 2019-01-17 | 2019-02-04 | Ebm-Papst Landshut Gmbh | Heater with regulation of a gas mixture |
DE202019100263U1 (en) * | 2019-01-17 | 2019-02-04 | Ebm-Papst Landshut Gmbh | Heater with control of a gas mixture using a gas sensor, a fuel gas sensor and a gas mixture sensor |
-
2019
- 2019-04-29 DE DE102019110976.0A patent/DE102019110976A1/en active Pending
-
2020
- 2020-04-28 EP EP20723328.9A patent/EP3870899B1/en active Active
- 2020-04-28 WO PCT/EP2020/061784 patent/WO2020221758A1/en unknown
Also Published As
Publication number | Publication date |
---|---|
EP3870899A1 (en) | 2021-09-01 |
DE102019110976A1 (en) | 2020-10-29 |
WO2020221758A1 (en) | 2020-11-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3683500B1 (en) | Method for regulating a gas mixture using a gas sensor and a gas mixture sensor | |
EP2466204B1 (en) | Regulating device for a burner assembly | |
EP2594848B1 (en) | Method for controlling a firing device and firing device | |
EP3824366B1 (en) | Method for the closed-loop control of a gas mixture using a gas sensor, a combustion-gas sensor and a gas-mixture sensor | |
EP3870899B1 (en) | Method for checking a gas mixture sensor and ionization sensor in a fuel-gas-powered heating device | |
DE202019100263U1 (en) | Heater with control of a gas mixture using a gas sensor, a fuel gas sensor and a gas mixture sensor | |
EP2014985A2 (en) | Method of adjusting the air/fuel ratio for a gas fired burner | |
AT505244B1 (en) | METHOD FOR CHECKING IONIZATION ELECTRODE SIGNAL IN BURNERS | |
DE102019119186A1 (en) | Method and device for controlling a fuel gas-air mixture in a heater | |
EP3734159A1 (en) | Method for checking a gas mixture sensor in a combustion gas operated heater | |
EP3690318A2 (en) | Method and device for regulating a fuel-air mixture in a heating device | |
EP2405198B1 (en) | Method for the calibration of the regulation of the fuel-air ratio of a gaseous fuel burner | |
EP3029375B1 (en) | Heater appliance and method for operating a heater appliance | |
DE202019100261U1 (en) | Heater with regulation of a gas mixture | |
EP3746705A1 (en) | Method for controlling a gas mixture using a gas mixture sensor | |
EP3182007B1 (en) | Heating device system and method with a heating device system | |
DE19854824C1 (en) | Process and circuit for control of a gas burner uses a lambda sensor to control gas supply | |
EP3746706B1 (en) | Method for controlling a mixing ratio of fuel gas and air for a heating appliance | |
EP3767174B1 (en) | Method and device for recalibrating a measuring system for regulating a fuel-air mixture in a heating device | |
EP3751200B1 (en) | Method for controlling a heater powered by combustion gas | |
EP4023941B1 (en) | Assemblies and method for measuring ionization in a combustion chamber of a premix burner | |
EP2354657B1 (en) | Method for operating a gas burner | |
DE10220773A1 (en) | Gas burner regulation method in which a signal from an ionization sensor is subject to spectral frequency analysis to set a fuel-air ratio for regulation of the burner | |
DE202019100264U1 (en) | Heater with control of a gas mixture using a gas sensor and a gas mixture sensor | |
WO2018054582A1 (en) | Gas processing device and method for providing a fuel gas mixture |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20210526 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: HERMANN, JENS Inventor name: WALD, STEPHAN Inventor name: HENRICH, HARTMUT |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20230526 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230830 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502020005856 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20231101 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240202 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240301 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231101 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231101 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231101 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231101 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231101 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240301 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240202 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231101 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240201 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240301 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231101 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231101 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231101 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240201 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231101 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231101 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240419 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240624 Year of fee payment: 5 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231101 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231101 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231101 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231101 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231101 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231101 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231101 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231101 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231101 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240425 Year of fee payment: 5 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502020005856 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20240802 |