EP3751200B1 - Method for controlling a heater powered by combustion gas - Google Patents

Method for controlling a heater powered by combustion gas Download PDF

Info

Publication number
EP3751200B1
EP3751200B1 EP20172720.3A EP20172720A EP3751200B1 EP 3751200 B1 EP3751200 B1 EP 3751200B1 EP 20172720 A EP20172720 A EP 20172720A EP 3751200 B1 EP3751200 B1 EP 3751200B1
Authority
EP
European Patent Office
Prior art keywords
burner
gas
output
control element
gas control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20172720.3A
Other languages
German (de)
French (fr)
Other versions
EP3751200A1 (en
Inventor
Hartmut Henrich
Stephan Wald
Jens Hermann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebm Papst Landshut GmbH
Original Assignee
Ebm Papst Landshut GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebm Papst Landshut GmbH filed Critical Ebm Papst Landshut GmbH
Publication of EP3751200A1 publication Critical patent/EP3751200A1/en
Application granted granted Critical
Publication of EP3751200B1 publication Critical patent/EP3751200B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/12Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods
    • F23N5/123Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/02Regulating fuel supply conjointly with air supply
    • F23N1/022Regulating fuel supply conjointly with air supply using electronic means

Definitions

  • the invention relates to a method for regulating a fuel gas-operated heater.
  • Another problem with the control procedures is that different types of gas, e.g. natural gas or liquefied gas, as well as gas qualities are used for the combustion.
  • the parameters of the control process must be adapted to the type of gas or gas quality, as otherwise the combustion will be unclean.
  • Alternative control methods are based on electronic mixture control using thermal gas mass sensors to record the fuel gas properties via the thermal conductivity of the fuel gas.
  • the air requirement is determined from the type of fuel gas using a reference table and the air volume is calculated and adjusted according to the measured gas volume and the determined air requirement.
  • the method requires that all input variables required for the mixture control must be measured and monitored.
  • the DE10025769A1 discloses a control device for a premix burner in whose flame area an ionization electrode is arranged, which is used to control the burner. In the event of rapid changes in state, the fuel gas valve is controlled as a function of characteristic curves.
  • the invention is based on the object of providing a method, which is independent of the type of fuel gas, for regulating a fuel gas-operated heater over a wide modulation range, which method requires less monitoring effort and hardware use than the known methods. In particular, it should be possible to dispense with the use of a fuel gas mass sensor.
  • a method for regulating a fuel gas-operated heater using an ionization measurement method of a burner flame of the heater in which a fuel gas volume flow controlled by a gas actuator and an air volume flow supplied by a fan are mixed to form a fuel gas-air mixture and with an air ratio ⁇ based on a desired burner output be fed to a burner of the heater.
  • the air ratio ⁇ is monitored by means of the ionization measurement method of the burner flame of the burner.
  • a gas actuator control characteristic curve of the gas actuator is recorded in the laboratory and stored in a control unit.
  • the gas actuator control characteristic here determines a percentage flow rate through the gas actuator depending on the opening position points of the gas actuator, the percentage flow rate through the gas actuator representing a burner output of the burner.
  • the burner output of the burner is regulated in a first output range based on the results of the ionization measurement process and in a second output range based on the gas actuator control characteristic, with certain burner outputs being assigned to certain opening positions of the gas actuator during the regulation of the heater in the first output range.
  • the ratio of the amount of fuel gas to the amount of air is kept constant in the second power range.
  • the first power range preferably corresponds to a control range in which the burner flame supplies the ionization measurement method with sufficiently precise signal data that the control can take place as a pure ionization control. This is the case in particular with a sufficiently large burner flame in which the ionization electrode used for the ionization measurement method supplies exact signals to the control device.
  • the second performance area is in particular a range of low burner output, for example below 50% of the maximum output.
  • the gas actuator control characteristic is predefined in the laboratory.
  • the gas actuator control characteristic includes any number of subdivision points that correspond to the positions of the gas actuator for fixed burner output steps. This also defines the relationship between the amount of fuel gas and the respective opening position of the gas actuator.
  • the same burner output i.e. the heating output of the heater
  • the gas quality changes e.g. B. from liquid gas to natural gas would change due to the changed density of the volume flow.
  • the energy content and thus the amount of fuel gas required to achieve the desired burner output would also be different.
  • the absolute burner output changes, but not the output ratio of the individual opening position points of the gas actuator to one another. If, for example, the actual burner output is halved in one opening position, then the burner output is halved in all other output points along the control characteristic.
  • a gas actuator control characteristic is thus used which determines a percentage flow rate through the gas actuator as a function of the opening position points of the gas actuator.
  • the method provides that the specific outputs of the burner are assigned to the specific opening position points of the gas actuator in that during the regulation of the burner output of the burner in the first output range, at any opening position point, a quantity of air supplied to the burner is measured and a required amount of air is measured Fuel gas quantity is supplied via the gas actuator until a predetermined air ratio ⁇ is reached. Furthermore, the required burner output is changed by adapting the air quantity, with the control unit setting corresponding opening position points of the gas actuator from the gas control characteristic curve of the adjusted burner output.
  • the disclosed method makes use of the fact that the burner output is known during the regulation in the first regulation range using the ionization measurement method, and from this the opening position points of the gas actuator can be determined in advance for all other desired burner outputs.
  • the air volume flow for generating the fuel gas-air mixture is measured during the control in the first control range using the ionization measurement method at any opening position of the gas actuator.
  • the control unit regulates the amount of fuel gas required for clean combustion of a predefined air ratio via the ionization control.
  • the matching opening position of the gas actuator is assigned to the corresponding air volume flow in the control unit.
  • the appropriate fuel gas volume must also be adjusted as a percentage, i.e. also 10% less or more. This adaptation takes place via a change in the opening position of the gas actuator controlled by the control unit.
  • a further development of the method provides that the gas actuator control characteristic is calibrated at time intervals to compensate for a characteristic drift.
  • a characteristic drift is characterized by a change in the amount of fuel gas that occurs over the service life at certain opening positions of the gas actuator.
  • the individual opening position points no longer match the corresponding fuel gas volume flows, but the percentage power differences between the individual opening position points remain constant, since the flow characteristics through the gas actuator do not change due to the characteristic drift. This means that the characteristic curve itself does not change, only the position within the working area.
  • the characteristic drift can be equalized by calibration.
  • the calibration takes place during the control of the burner output of the burner in the first output range based on the results of the ionization measurement process, in that two output points of the burner output are controlled via the control unit and the output values of the burner output stored in the gas actuator control characteristic are compared with the actual output values of the burner output the gas actuator control characteristic is corrected to the actual output values of the burner output.
  • An advantageous embodiment of the method also provides that the gas actuator is controlled by a stepping motor and a defined number of steps of the stepping motor determines a defined change in the opening position points of the gas actuator.
  • FIG 1 is a schematic structure of a heater 100 for carrying out the control method with a modulating premix fan 5, which sucks in ambient air a and mixes it with fuel gas.
  • the fuel gas is fed to the premix fan 5 at the inlet 4 via a gas line in which a gas safety valve 1 and a gas valve 2, which can be controlled, for example, via a motor M, are arranged, which forms the gas actuator.
  • the gas inlet pressure d is adapted to the gas control pressure c.
  • the mixture After mixing with ambient air, the mixture has the mixture pressure b.
  • an optional non-return flap 6 is provided at the blower outlet.
  • the mixture then has the burner pressure e. This is followed by the burner 28 with the ionization electrode 7 arranged in the burner flame.
  • the heat exchanger 18 is arranged around the burner 28. Continued in the direction of flow follows the exhaust system with the exhaust flap 8.
  • the exhaust pressure f prevails in the exhaust system.
  • Figure 2 shows the gas actuator control characteristic used for the method with opening position points p1, p2, p3-p9, which represent a defined opening position of the gas valve 2 and therefore a fixed percentage flow rate F of fuel gas.
  • the control of the burner output of the burner 28 takes place in the output range in which the ionization control is sufficiently exact, based on the results of the ionization measurement method using the ionization electrode 7.
  • the gas actuator control characteristic 82 of the gas valve 2 is recorded in the laboratory and stored in the control unit 9. It is used for the method in a power range in which the ionization control based on the ionization measurement via the ionization electrode 7 is not sufficiently accurate.
  • specific opening position points p of the gas actuator are assigned specific powers of the burner 28.
  • the ratio of the amount of fuel gas to the amount of air remains constant in the control using the gas actuator control characteristic line 82.
  • Certain outputs of the burner 28 are assigned to the opening position points p of the gas valve 2 in that during the control of the burner output of the burner 28 in the output range of the ionization control at any opening position point p of the air volume supplied to the burner 28, the correspondingly required fuel gas volume is supplied via the gas valve 2 until the desired air ratio ⁇ has been reached.
  • the required burner output is changed by adapting the amount of air, with opening position points p of the gas valve 2 corresponding to the adjusted burner output being set via the control device 9 from the gas actuator control characteristic line 82.
  • Figures 3 and 4th show the gas actuator control characteristic Figure 2 for two different types of fuel gas, whereby Figure 3 for example natural gas, Figure 4 Corresponds to liquid gas.
  • a gas volume flow for, for example, 10 kW burner output is achieved in the opening position point p8, which corresponds to 80% of the control characteristic.
  • the control activates position p4, which corresponds to 40% of the control characteristic.
  • the fuel gas changes from natural gas to liquid gas, the same burner output results in a burner output of 10kW at an open position point p6, half the burner output at p3, as in Figure 4 shown.
  • the control device 9 can thus adapt or interpolate the burner output to the corresponding air flow from each burner output established and verified once during the ionization control by adapting the opening position points p of the gas valve 2.
  • FIG. 5 is a characteristic drift of the gas actuator control characteristic 82 shown in the course of the service life of the heater 100.
  • a stepper motor M is preferably used to control the gas valve 2.
  • two power points with, for example, opening position points p9 and p6 controlled in the area of the ionization control, which determine 90% and 60% of the burner output of the burner 28.
  • a difference in the step change of the stepping motor M as well as a possible change in power is determined, which is shown in FIG Figure 6 are shown by way of example as ⁇ 9 and ⁇ 6.
  • a new characteristic curve position is determined from the shifts of the two performance points and all new opening position points p are corrected.
  • Figure 6 shows that with an exemplary power of 10% from the step difference of the stepping motor M between the old power point 60% to 10% stored in the control unit 9, a new step difference, identified as ⁇ 1-6, is calculated. The calibrated characteristic then replaces the previous characteristic in the control unit 9.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Feeding And Controlling Fuel (AREA)
  • Regulation And Control Of Combustion (AREA)

Description

Die Erfindung betrifft ein Verfahren zur Regelung eines brenngasbetriebenen Heizgerätes.The invention relates to a method for regulating a fuel gas-operated heater.

Gattungsbildende Verfahren sind aus dem Stand der Technik bekannt, beispielsweise aus der Offenbarung gemäß der Druckschrift WO2006/000366A1 . Auch kennt der Fachmann eine Verbrennungsregelung nach dem sog. SCOT-Verfahren, bei dem die Steuerung der dem Brenner des Heizgerätes zugeführte Luftmenge entsprechend der Brennerleistung erfolgt. Dabei wird eine Flammensignalmessung mittels eines lonisationssensors durchgeführt und das Gas-Luftgemisch auf einen in einer Kennlinie hinterlegten Soll-Ionisationsmesswert geregelt. Beim SCOT-Verfahren ist jedoch nachteilig, dass bei kleinen Brennerleistungen das Flammensignal stark absinkt und die Regelung damit unzuverlässig wird. Zudem ist der Adaptionsaufwand, insbesondere zur Anpassung der Brennergeometrie hoch und die Brennerleistung kann nur ungenau über die Gebläsedrehzahl eines den Luftvolumenstrom für das Gas-Luft-Gemisch liefernden Gebläses bestimmt werden.Generic methods are known from the prior art, for example from the disclosure according to the publication WO2006 / 000366A1 . The person skilled in the art is also familiar with combustion control based on the so-called SCOT method, in which the amount of air supplied to the burner of the heater is controlled in accordance with the burner output. A flame signal measurement is thereby carried out by means of an ionization sensor and the gas-air mixture is regulated to a target ionization measurement value stored in a characteristic curve. The disadvantage of the SCOT process, however, is that the flame signal drops sharply at low burner outputs, making the control unreliable. In addition, the adaptation effort, in particular for adapting the burner geometry, is high and the burner output can only be determined imprecisely via the fan speed of a fan supplying the air volume flow for the gas-air mixture.

Eine Problematik der Regelungsverfahren liegt zudem darin, dass für die Verbrennung unterschiedliche Gasarten, z.B. Erdgas oder Flüssiggas, sowie Gasqualitäten zum Einsatz kommen. Die Parameter des Regelungsverfahrens müssen auf die Gasart bzw. Gasqualität angepasst werden, da die Verbrennung andernfalls unsauber abläuft.Another problem with the control procedures is that different types of gas, e.g. natural gas or liquefied gas, as well as gas qualities are used for the combustion. The parameters of the control process must be adapted to the type of gas or gas quality, as otherwise the combustion will be unclean.

Alternative Regelungsverfahren basieren auf einer elektronischen Gemischregelung unter Nutzung von thermischen Gasmassensensoren zur Erfassung der Brenngaseigenschaften über die thermische Leitfähigkeit des Brenngases. Aus der Brenngasart wird der Luftbedarf über eine Referenztabelle ermittelt und die Luftmenge entsprechend der gemessenen Gasmenge und dem ermittelten Luftbedarf errechnet und eingeregelt. Das Verfahren erfordert jedoch, dass alle für die Gemischregelung benötigten Eingangsgrößen gemessen und überwacht werden müssen. Die DE10025769A1 offenbart eine Regeleinrichtung für einen Vormischbrenner in dessen Flammbereich eine Ionisationselektrode angeordnet ist, welche zur Regelung des Brenners genutzt wird. Bei schnellen Zustandsänderungen wird das Brenngasventil in Abhängigkeit von Kennlinien gesteuert.Alternative control methods are based on electronic mixture control using thermal gas mass sensors to record the fuel gas properties via the thermal conductivity of the fuel gas. The air requirement is determined from the type of fuel gas using a reference table and the air volume is calculated and adjusted according to the measured gas volume and the determined air requirement. However, the method requires that all input variables required for the mixture control must be measured and monitored. the DE10025769A1 discloses a control device for a premix burner in whose flame area an ionization electrode is arranged, which is used to control the burner. In the event of rapid changes in state, the fuel gas valve is controlled as a function of characteristic curves.

Der Erfindung liegt die Aufgabe zugrunde, ein brenngasartenunabhängiges Verfahren zur Regelung eines brenngasbetriebenen Heizgerätes über einen breiten Modulationsbereich bereitzustellen, das einen gegenüber den bekannten Verfahren geringeren Überwachungsaufwand und Hardwareeinsatz erfordert. Insbesondere soll auf die Verwendung eines Brenngasmassensensors verzichtet werden können.The invention is based on the object of providing a method, which is independent of the type of fuel gas, for regulating a fuel gas-operated heater over a wide modulation range, which method requires less monitoring effort and hardware use than the known methods. In particular, it should be possible to dispense with the use of a fuel gas mass sensor.

Diese Aufgabe wird durch die Merkmalskombination gemäß Patentanspruch 1 gelöst.This object is achieved by the combination of features according to patent claim 1 solved.

Erfindungsgemäß wird ein Verfahren zur Regelung eines brenngasbetriebenen Heizgerätes unter Nutzung eines lonisationsmessverfahrens einer Brennerflamme des Heizgerätes vorgeschlagen, bei dem ein über ein Gasstellglied gesteuerter Brenngasvolumenstrom und ein über ein Gebläse gelieferter Luftvolumenstrom zu einem Brenngas-Luftgemisch gemischt und mit einer auf einer gewünschten Brennerleistung basierenden Luftzahl λ einem Brenner des Heizgerätes zugeführt werden. Die Luftzahl λ wird mittels des lonisationsmessverfahrens der Brennerflamme des Brenners überwacht. Zudem wird eine Gasstellglied-Regelungskennlinie des Gasstellglieds labortechnisch erfasst und in einem Steuergerät hinterlegt. Die Gasstellglied-Regelungskennlinie bestimmt hierbei eine prozentuale Durchflussmenge durch das Gasstellglied in Abhängigkeit von Öffnungsstellungspunkten des Gasstellglieds, wobei die prozentuale Durchflussmenge durch das Gasstellglied eine Brennerleistung des Brenners repräsentiert. Die Regelung der Brennerleistung des Brenners erfolgt in einem ersten Leistungsbereich basierend auf den Ergebnissen des lonisationsmessverfahrens und in einem zweiten Leistungsbereich basierend auf der Gasstellglied-Regelungskennlinie, wobei während der Regelung des Heizgerätes in dem ersten Leistungsbereich bestimmten Öffnungsstellungspunkten des Gasstellglieds bestimmte Leistungen des Brenners zugeordnet werden. Das Verhältnis der Brenngasmenge zur Luftmenge wird dabei im zweiten Leistungsbereich konstant gehalten.According to the invention, a method for regulating a fuel gas-operated heater using an ionization measurement method of a burner flame of the heater is proposed, in which a fuel gas volume flow controlled by a gas actuator and an air volume flow supplied by a fan are mixed to form a fuel gas-air mixture and with an air ratio λ based on a desired burner output be fed to a burner of the heater. The air ratio λ is monitored by means of the ionization measurement method of the burner flame of the burner. In addition, a gas actuator control characteristic curve of the gas actuator is recorded in the laboratory and stored in a control unit. The gas actuator control characteristic here determines a percentage flow rate through the gas actuator depending on the opening position points of the gas actuator, the percentage flow rate through the gas actuator representing a burner output of the burner. The burner output of the burner is regulated in a first output range based on the results of the ionization measurement process and in a second output range based on the gas actuator control characteristic, with certain burner outputs being assigned to certain opening positions of the gas actuator during the regulation of the heater in the first output range. The ratio of the amount of fuel gas to the amount of air is kept constant in the second power range.

Der erste Leistungsbereich entspricht vorzugsweise einem Regelbereich, in dem die Brennerflamme dem lonisationsmessverfahren ausreichend genaue Signaldaten liefert, dass die Regelung als reine Ionisationsregelung erfolgen kann. Die ist insbesondere bei ausreichend großer Brennerflamme der Fall, bei der die für das lonisationsmessverfahren verwendete Ionisationselektrode exakte Signale an das Steuergerät liefert. Der zweite Leistungsbereich ist insbesondere ein Bereich geringer Brennerleistung, beispielsweise unterhalb von 50% der Maximalleistung.The first power range preferably corresponds to a control range in which the burner flame supplies the ionization measurement method with sufficiently precise signal data that the control can take place as a pure ionization control. This is the case in particular with a sufficiently large burner flame in which the ionization electrode used for the ionization measurement method supplies exact signals to the control device. The second performance area is in particular a range of low burner output, for example below 50% of the maximum output.

Die Gasstellglied-Regelungskennlinie wird labortechnisch vordefiniert. Die Gasstellglied-Regelungskennlinie umfasst beliebig viele Untergliederungspunkte, die den Positionen des Gasstellglieds bei festen Brennerleistungsschritten entspricht. Damit ist auch festgelegt, in welchem Verhältnis die Brenngasmenge zu dem jeweiligen Öffnungsstellungspunkt des Gasstellglieds steht. Bei einer gleichen Brennerleistung, d.h. Wärmeleistung des Heizgerätes ergeben sich je nach Brenngasart aufgrund der unterschiedlichen Dichte des Brenngases, des unterschiedlichen Energieinhaltes und Luftbedarfes unterschiedliche Arbeitsbereiche im Kennlinienfeld. Bei einer Änderung der Gasbeschaffenheit, z. B. von Flüssiggas auf Erdgas würde sich aufgrund der geänderten Dichte der Volumenstrom ändern. Auch der Energieinhalt und somit die erforderliche Brenngasmenge zu Erreichung der gewünschten Brennerleistung wären unterschiedlich. Da diese Zusammenhänge aber für jede der angesteuerten Position gelten, ändert sich zwar die absolute Brennerleistung, nicht aber das Leistungsverhältnis der einzelnen Öffnungsstellungspunkte des Gasstellglieds zueinander. Wenn sich somit die tatsächliche Brennerleistung in einem Öffnungsstellungspunkt beispielsweise halbiert, dann halbiert sich die Brennerleistung auch auf in allen anderen Leistungspunkten entlang der Regelungskennlinie. Erfindungsgemäß wird somit eine Gasstellglied-Regelungskennlinie verwendet, welche eine prozentuale Durchflussmenge durch das Gasstellglied in Abhängigkeit von Öffnungsstellungspunkten des Gasstellglieds bestimmt.The gas actuator control characteristic is predefined in the laboratory. The gas actuator control characteristic includes any number of subdivision points that correspond to the positions of the gas actuator for fixed burner output steps. This also defines the relationship between the amount of fuel gas and the respective opening position of the gas actuator. With the same burner output, i.e. the heating output of the heater, there are different working ranges in the characteristic curve depending on the type of fuel gas due to the different density of the fuel gas, the different energy content and air requirement. When the gas quality changes, e.g. B. from liquid gas to natural gas would change due to the changed density of the volume flow. The energy content and thus the amount of fuel gas required to achieve the desired burner output would also be different. However, since these relationships apply to each of the controlled positions, the absolute burner output changes, but not the output ratio of the individual opening position points of the gas actuator to one another. If, for example, the actual burner output is halved in one opening position, then the burner output is halved in all other output points along the control characteristic. According to the invention, a gas actuator control characteristic is thus used which determines a percentage flow rate through the gas actuator as a function of the opening position points of the gas actuator.

Das Verfahren sieht vor, dass den bestimmten Öffnungsstellungspunkten des Gasstellglieds die bestimmten Leistungen des Brenners dadurch zugeordnet werden, dass während der Regelung der Brennerleistung des Brenners in dem ersten Leistungsbereich bei einem beliebigen Öffnungsstellungspunkt eine dem Brenner zugeführte Luftmenge gemessen und eine erforderliche Brenngasmenge über das Gasstellglied zugeführt wird, bis eine vorbestimmte Luftzahl λ erreicht ist. Ferner erfolgt eine Änderung der benötigten Brennerleistung durch eine Anpassung der Luftmenge, wobei über das Steuergerät aus der Gasstellglied-Regelungskennlinie der angepassten Brennerleistung korrespondierende Öffnungsstellungspunkte des Gasstellglieds eingestellt werden.The method provides that the specific outputs of the burner are assigned to the specific opening position points of the gas actuator in that during the regulation of the burner output of the burner in the first output range, at any opening position point, a quantity of air supplied to the burner is measured and a required amount of air is measured Fuel gas quantity is supplied via the gas actuator until a predetermined air ratio λ is reached. Furthermore, the required burner output is changed by adapting the air quantity, with the control unit setting corresponding opening position points of the gas actuator from the gas control characteristic curve of the adjusted burner output.

Das offenbarte Verfahren nutzt, dass die Brennerleistung während der Regelung im ersten Regelungsbereich unter Nutzung des lonisationsmessverfahrens bekannt ist und daraus für alle anderen gewünschten Brennerleistungen die Öffnungsstellungspunkte des Gasstellglieds vorherbestimmt werden können. Dazu wird während der Regelung im ersten Regelungsbereich unter Nutzung des lonisationsmessverfahrens in einem beliebigen Öffnungsstellungspunkt des Gasstellglieds der Luftvolumenstrom zur Erzeugung des Brenngas-Luftgemisches gemessen. Über die Ionisationsregelung wird über das Steuergerät die für eine saubere Verbrennung einer vordefinierten Luftzahl erforderliche Brenngasmenge dazu geregelt. Der dazu passende Öffnungsstellungspunkt des Gasstellglieds wird im Steuergerät dem entsprechenden Luftvolumenstrom zugeordnet. Sinkt oder steigt der Wärmebedarf, wird über das Steuergerät über das Gebläse eine neue Luftmenge eingestellt, beispielsweise 10% weniger oder mehr, dann muss die dazu passende Brenngasmenge ebenfalls prozentual angepasst werden, d.h. ebenfalls 10% weniger oder mehr. Diese Anpassung erfolgt über eine Änderung des Öffnungsstellungspunktes des Gasstellglieds gesteuert durch das Steuergerät.The disclosed method makes use of the fact that the burner output is known during the regulation in the first regulation range using the ionization measurement method, and from this the opening position points of the gas actuator can be determined in advance for all other desired burner outputs. For this purpose, the air volume flow for generating the fuel gas-air mixture is measured during the control in the first control range using the ionization measurement method at any opening position of the gas actuator. The control unit regulates the amount of fuel gas required for clean combustion of a predefined air ratio via the ionization control. The matching opening position of the gas actuator is assigned to the corresponding air volume flow in the control unit. If the heat requirement falls or increases, if a new air volume is set via the control unit via the fan, for example 10% less or more, then the appropriate fuel gas volume must also be adjusted as a percentage, i.e. also 10% less or more. This adaptation takes place via a change in the opening position of the gas actuator controlled by the control unit.

Eine Weiterbildung des Verfahrens sieht vor, dass die Gasstellglied-Regelungskennlinie in zeitlichen Abständen zum Ausgleich eines Kennliniendrifts kalibriert wird. Ein Kennliniendrift ist durch eine sich über die Lebensdauer ergebende Änderung der Brenngasmenge bei bestimmten Öffnungsstellungspunkten des Gasstellglieds gekennzeichnet.A further development of the method provides that the gas actuator control characteristic is calibrated at time intervals to compensate for a characteristic drift. A characteristic drift is characterized by a change in the amount of fuel gas that occurs over the service life at certain opening positions of the gas actuator.

Bei einer Kennliniendrift stimmen zwar die einzelnen Öffnungsstellungspunkte mit den entsprechenden Brenngasvolumenströmen nicht mehr überein, die prozentualen Leistungsdifferenzen zwischen den einzelnen Öffnungsstellungspunkte bleiben jedoch konstant, da sich die Durchflusscharakteristik durch das Gasstellglied durch den Kennliniendrift nicht verändert. Das heißt, es verändert sich nicht die Kennlinie selbst, sondern nur die Lage innerhalb des Arbeitsbereiches. Durch eine Kalibrierung kann der Kennliniendrift egalisiert werden.In the case of a characteristic drift, the individual opening position points no longer match the corresponding fuel gas volume flows, but the percentage power differences between the individual opening position points remain constant, since the flow characteristics through the gas actuator do not change due to the characteristic drift. This means that the characteristic curve itself does not change, only the position within the working area. The characteristic drift can be equalized by calibration.

In einer Ausgestaltung erfolgt die Kalibrierung während der Regelung der Brennerleistung des Brenners im ersten Leistungsbereich basierend auf den Ergebnissen des lonisationsmessverfahrens, indem über das Steuergerät zwei Leistungspunkte der Brennerleistung angesteuert werden und die der Gasstellglied-Regelungskennlinie hinterlegten Leistungswerte der Brennerleistung mit den tatsächlichen Leistungswerten der Brennerleistung verglichen werden, wobei die Gasstellglied-Regelungskennlinie zu den tatsächlichen Leistungswerten der Brennerleistung korrigiert wird.In one embodiment, the calibration takes place during the control of the burner output of the burner in the first output range based on the results of the ionization measurement process, in that two output points of the burner output are controlled via the control unit and the output values of the burner output stored in the gas actuator control characteristic are compared with the actual output values of the burner output the gas actuator control characteristic is corrected to the actual output values of the burner output.

Eine vorteilhafte Ausgestaltung des Verfahrens sieht ferner vor, dass das Gasstellglied über einen Schrittmotor gesteuert wird und eine definierte Schrittzahl des Schrittmotors eine definierte Änderung der Öffnungsstellungspunkte des Gasstellglieds bestimmt.An advantageous embodiment of the method also provides that the gas actuator is controlled by a stepping motor and a defined number of steps of the stepping motor determines a defined change in the opening position points of the gas actuator.

Andere vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen gekennzeichnet bzw. werden nachstehend zusammen mit der Beschreibung der bevorzugten Ausführung der Erfindung anhand der Figuren näher dargestellt. Es zeigen:

Fig. 1
einen schematischen Aufbau eines Heizgerätes;
Fig. 2
eine im Verfahren genutzte Gasstellglied-Regelungskennlinie,
Fig. 3
die Gasstellglied-Regelungskennlinie aus Figur 2 für Erdgas,
Fig. 4
die Gasstellglied-Regelungskennlinie aus Figur 2 für Flüssiggas,
Fig. 5
einen Kennliniendrift der Gasstellglied-Regelungskennlinie aus Figur 2, und
Fig. 6
eine Kalibrierung des Kennliniendrifts der GasstellgliedRegelungskennlinie aus Figur 2.
Other advantageous developments of the invention are characterized in the subclaims or are shown in more detail below together with the description of the preferred embodiment of the invention with reference to the figures. Show it:
Fig. 1
a schematic structure of a heater;
Fig. 2
a gas actuator control characteristic used in the process,
Fig. 3
the gas actuator control characteristic Figure 2 for natural gas,
Fig. 4
the gas actuator control characteristic Figure 2 for liquid gas,
Fig. 5
a characteristic drift of the gas actuator control characteristic Figure 2 , and
Fig. 6
a calibration of the characteristic drift of the gas actuator control characteristic Figure 2 .

In Figur 1 ist ein schematischer Aufbau eines Heizgerätes 100 zur Durchführung des Regelungsverfahrens mit einem modulierenden Vormischgebläse 5, das Umgebungsluft a ansaugt und mit Brenngas mischt. Das Brenngas wird dem Vormischgebläse 5 am Eingang 4 über eine Gasleitung zugeführt, in der ein Gassicherheitsventil 1 und ein beispielhaft über einen Motor M steuerbares Gasventil 2 angeordnet sind, welches das Gasstellglied bildet. Der Gaseingangsdruck d wird auf den Gasregeldruck c angepasst. Nach der Mischung mit Umgebungsluft weist das Gemisch den Gemischdruck b auf. Am Gebläseausgang ist in der gezeigten Ausführung eine optionale Rückschlagklappe 6 vorgesehen. Das Gemisch hat dann den Brennerdruck e. Daran schließt sich der Brenner 28 mit der in der Brennerflamme angeordneten Ionisationselektrode 7. Um den Brenner 28 ist der Wärmetauscher 18 angeordnet. In Strömungsrichtung fortgesetzt folgt das Abgassystem mit der Abgasklappe 8. Im Abgassystem herrscht der Abgasdruck f. Die Regelung der Brenngasmenge sowie der Gebläsedrehzahl und mithin der Luftzahl erfolgt über das Steuergerät 9, in dem die Regelungskennlinien hinterlegt sind.In Figure 1 is a schematic structure of a heater 100 for carrying out the control method with a modulating premix fan 5, which sucks in ambient air a and mixes it with fuel gas. The fuel gas is fed to the premix fan 5 at the inlet 4 via a gas line in which a gas safety valve 1 and a gas valve 2, which can be controlled, for example, via a motor M, are arranged, which forms the gas actuator. The gas inlet pressure d is adapted to the gas control pressure c. After mixing with ambient air, the mixture has the mixture pressure b. In the embodiment shown, an optional non-return flap 6 is provided at the blower outlet. The mixture then has the burner pressure e. This is followed by the burner 28 with the ionization electrode 7 arranged in the burner flame. The heat exchanger 18 is arranged around the burner 28. Continued in the direction of flow follows the exhaust system with the exhaust flap 8. The exhaust pressure f prevails in the exhaust system.

Figur 2 zeigt die für das Verfahren genutzte Gasstellglied-Regelungskennlinie 82 mit Öffnungsstellungspunkten p1, p2, p3-p9, welche eine definierte Öffnungsstellung des Gasventils 2 und mithin eine festgelegte prozentuale Durchflussmenge F an Brenngas repräsentieren. Figure 2 shows the gas actuator control characteristic used for the method with opening position points p1, p2, p3-p9, which represent a defined opening position of the gas valve 2 and therefore a fixed percentage flow rate F of fuel gas.

Die Regelung der Brennerleistung des Brenners 28 erfolgt im Leistungsbereich, in dem die Ionisationsregelung ausreichend exakt ist, basierend auf den Ergebnissen des lonisationsmessverfahrens unter Nutzung der Ionisationselektrode 7. Die Gasstellglied-Regelungskennlinie 82 des Gasventils 2 wird labortechnisch erfasst und im Steuergerät 9 hinterlegt. Sie wird für das Verfahren in einem Leistungsbereich genutzt, in dem die Ionisationsregelung basierend auf der Ionisationsmessung über die Ionisationselektrode 7 nicht ausreichend genau ist. Dabei werden während der Regelung des Heizgerätes 100 in dem Leistungsbereich der Ionisationsregelung bestimmten Öffnungsstellungspunkten p des Gasstellglieds bestimmte Leistungen des Brenners 28 zugeordnet. Das Verhältnis der Brenngasmenge zur Luftmenge bleibt bei der Regelung unter Nutzung der Gasstellglied-Regelungskennlinie 82 konstant. Den Öffnungsstellungspunkten p des Gasventils 2 werden bestimmte Leistungen des Brenners 28 zugeordnet, indem während der Regelung der Brennerleistung des Brenners 28 im Leistungsbereich der Ionisationsregelung bei einem beliebigen Öffnungsstellungspunkt p der dem Brenner 28 zugeführte Luftmenge die entsprechend erforderliche Brenngasmenge über das Gasventil 2 zugeführt wird, bis die gewünschte Luftzahl λ erreicht ist. Die Änderung der benötigten Brennerleistung erfolgt durch die Anpassung der Luftmenge, wobei über das Steuergerät 9 aus der Gasstellglied-Regelungskennlinie 82 der angepassten Brennerleistung korrespondierende Öffnungsstellungspunkte p des Gasventils 2 eingestellt werden.The control of the burner output of the burner 28 takes place in the output range in which the ionization control is sufficiently exact, based on the results of the ionization measurement method using the ionization electrode 7. The gas actuator control characteristic 82 of the gas valve 2 is recorded in the laboratory and stored in the control unit 9. It is used for the method in a power range in which the ionization control based on the ionization measurement via the ionization electrode 7 is not sufficiently accurate. During the regulation of the heater 100 in the power range of the ionization control, specific opening position points p of the gas actuator are assigned specific powers of the burner 28. The ratio of the amount of fuel gas to the amount of air remains constant in the control using the gas actuator control characteristic line 82. Certain outputs of the burner 28 are assigned to the opening position points p of the gas valve 2 in that during the control of the burner output of the burner 28 in the output range of the ionization control at any opening position point p of the air volume supplied to the burner 28, the correspondingly required fuel gas volume is supplied via the gas valve 2 until the desired air ratio λ has been reached. The required burner output is changed by adapting the amount of air, with opening position points p of the gas valve 2 corresponding to the adjusted burner output being set via the control device 9 from the gas actuator control characteristic line 82.

Die Figuren 3 und 4 zeigen die Gasstellglied-Regelungskennlinie aus Figur 2 für zwei unterschiedliche Brenngasarten, wobei Figur 3 beispielhaft Erdgas, Figur 4 Flüssiggas entspricht. Gemäß Figur 3 wird in dem Öffnungsstellungspunkt p8, der 80% der Regelungskennlinie entspricht, ein Gasvolumenstrom für beispielsweise 10 kW Brennerleistung erreicht. Wird von der Steuerung des Heizgeräts 100 beispielsweise die halbe Leistung von 5 kW gefordert, wird von der Steuerung die Position p4 angesteuert, welche 40% der Regelungskennlinie entspricht. Ändert sich das Brenngas von Erdgas auf Flüssiggas ergibt sich bei identischer Brennerleistung eine Brennerleistung von 10kW bei einem Öffnungsstellungpunkt p6, die halbe Brennerleistung bei p3, wie in Figur 4 dargestellt. Das Steuergerät 9 kann somit aus jeder einmal während der Ionisationsregelung festgelegten und verifizierten Brennerleistung durch Anpassung der Öffnungsstellungspunkte p des Gasventils 2 die Brennerleistung dem entsprechenden Luftstrom anpassen bzw. interpolieren.the Figures 3 and 4th show the gas actuator control characteristic Figure 2 for two different types of fuel gas, whereby Figure 3 for example natural gas, Figure 4 Corresponds to liquid gas. According to Figure 3 a gas volume flow for, for example, 10 kW burner output is achieved in the opening position point p8, which corresponds to 80% of the control characteristic. If, for example, half the power of 5 kW is required by the control of the heater 100, the control activates position p4, which corresponds to 40% of the control characteristic. If the fuel gas changes from natural gas to liquid gas, the same burner output results in a burner output of 10kW at an open position point p6, half the burner output at p3, as in Figure 4 shown. The control device 9 can thus adapt or interpolate the burner output to the corresponding air flow from each burner output established and verified once during the ionization control by adapting the opening position points p of the gas valve 2.

In Figur 5 ist ein Kennliniendrift der Gasstellglied-Regelungskennlinie 82 im Laufe der Lebensdauer des Heizgeräts 100 dargestellt. Vorzugsweise wird für die Steuerung des Gasventils 2 ein Schrittmotor M verwendet. Im Laufe der Lebensdauer ergeben sich bei gleicher Schrittzahl des Schrittmotors M unterschiedliche Brenngas-Volumenströme. Für die Regelung bedeutet dies eine Verschiebung des Regelbereiches und der Öffnungsstellungspunkte p für das Gasventil 2 von dem ursprünglichen Leistungsbereich 86 auf einen neuen Leistungsbereich 83, wie in Figur 5 dargestellt. Zur Kalibrierung der Gasstellglied-Regelungskennlinie 82 und Egalisierung des Kennliniendrifts werden gemäß der Offenbarung der Figur 6 im Bereich der Ionisationsregelung zwei Leistungspunkte mit beispielsweise Öffnungsstellungspunkten p9 und p6 angesteuert, welche 90 % und 60 % der Brennerleistung des Brenners 28 bestimmen. Aus einem Vergleich der angesteuerten Positionen mit den im Steuergerät 9 hinterlegten Positionen wird eine Differenz der Schrittänderung des Schrittmotors M wie auch eine mögliche Leistungsänderung ermittelt, welche in Figur 6 beispielhaft als Δ9 und Δ6 eingezeichnet sind. Aus den Verschiebungen der zwei Leistungspunkte werden eine neue Kennlinienlage bestimmt und alle neuen Öffnungsstellungspunkte p korrigiert. Figur 6 zeigt, dass bei einer beispielhaften Leistung von 10% aus der Schrittdifferenz des Schrittmotors M zwischen dem alten im Steuergerät 9 hinterlegten Leistungspunkt 60% zu 10 % einen neue Schrittdifferenz, als Δ1-6 gekennzeichnet, berechnet wird. Die kalibrierte Kennlinie ersetzt anschließend im Steuergerät 9 die bisherige Kennlinie.In Figure 5 is a characteristic drift of the gas actuator control characteristic 82 shown in the course of the service life of the heater 100. A stepper motor M is preferably used to control the gas valve 2. In the course of the service life, with the same number of steps of the stepper motor M, different fuel gas volume flows result. For the control, this means a shift in the control range and the opening position points p for the gas valve 2 from the original power range 86 to a new power range 83, as in FIG Figure 5 shown. To calibrate the gas actuator control characteristic 82 and equalize the characteristic drift, according to the disclosure of FIG Figure 6 two power points with, for example, opening position points p9 and p6 controlled in the area of the ionization control, which determine 90% and 60% of the burner output of the burner 28. From a comparison of the activated positions with the positions stored in the control unit 9, a difference in the step change of the stepping motor M as well as a possible change in power is determined, which is shown in FIG Figure 6 are shown by way of example as Δ9 and Δ6. A new characteristic curve position is determined from the shifts of the two performance points and all new opening position points p are corrected. Figure 6 shows that with an exemplary power of 10% from the step difference of the stepping motor M between the old power point 60% to 10% stored in the control unit 9, a new step difference, identified as Δ1-6, is calculated. The calibrated characteristic then replaces the previous characteristic in the control unit 9.

Claims (6)

  1. A method for regulating a fuel-gas-operated heating device (100) using an ionization method for measuring a burner flame of the heating device, wherein
    a. a fuel gas volume flow controlled by a gas control element and an air volume flow supplied by a fan are mixed to form a fuel-gas-air mixture and fed to a burner (28) of the heating device with an air ratio λ based on a desired burner output,
    b. the air ratio A is monitored by means of the ionization method for measuring the burner flame of the burner (28),
    c. a gas control element control characteristic (82) of the gas control element is ascertained in the laboratory and stored in a control unit (9), the gas control element control characteristic (82) determining a percentual flow rate through the gas control element as a function of an opening position points (P) of the gas control element, the percentual flow rate through the gas control element representing a burner output of the burner,
    d. the burner output of the burner is regulated in a first output range based on the results of the ionization measurement method and in a second output range based on the gas control element control characteristic (82), with specific burner outputs being correlated with specific opening position points (P) of the gas control element during the regulation of the heating device in the first output range, and with the ratio of the amount of fuel gas to the amount of air being kept constant in the second output range.
  2. The method as set forth in claim 1, characterized in that the specific burner outputs are correlated with the specific opening position points (P) of the gas control element by supplying, via the gas control element, an amount of air fed to the burner (28) and a required amount of fuel gas at any opening position point (P) during the regulation of the burner output of the burner in the first output range until a predetermined air ratio A is reached.
  3. The method as set forth in claim 1 or 2, characterized in that the required burner output is changed by adjusting the amount of air, and opening position points (P) of the gas control element corresponding to the adjusted burner output are set via the control unit (9) from the gas control element control characteristic (82).
  4. The method as set forth in one of the preceding claims, characterized in that the gas control element control characteristic (82) is calibrated at time intervals in order to compensate for a characteristic drift.
  5. The method as set forth in the preceding claim, characterized in that the calibration takes place during the regulation of the burner output of the burner (28) in the first output range based on the results of the ionization measurement method in that two output points of the burner output and those of the gas control element are controlled via the control device (9), and the output values of the burner output saved in the gas control element control characteristic (82) are compared with the actual output values of the burner output, the gas control element control characteristic (82) being corrected to the actual output values of the burner output.
  6. The method as set forth in one of the preceding claims, characterized in that the gas control element is controlled by a stepping motor (M), and a defined number of steps of the stepping motor (M) determines a defined change in the opening position points (P) of the gas control element.
EP20172720.3A 2019-06-04 2020-05-04 Method for controlling a heater powered by combustion gas Active EP3751200B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102019114919.3A DE102019114919A1 (en) 2019-06-04 2019-06-04 Method for regulating a fuel gas operated heater

Publications (2)

Publication Number Publication Date
EP3751200A1 EP3751200A1 (en) 2020-12-16
EP3751200B1 true EP3751200B1 (en) 2021-11-03

Family

ID=70613571

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20172720.3A Active EP3751200B1 (en) 2019-06-04 2020-05-04 Method for controlling a heater powered by combustion gas

Country Status (2)

Country Link
EP (1) EP3751200B1 (en)
DE (1) DE102019114919A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT202100032360A1 (en) 2021-12-23 2023-06-23 Sit Spa METHOD AND APPARATUS FOR MONITORING AND CONTROL OF COMBUSTION IN FUEL GAS BURNERS

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19831648B4 (en) * 1998-07-15 2004-12-23 Stiebel Eltron Gmbh & Co. Kg Process for the functional adaptation of control electronics to a gas heater
DE10025769A1 (en) * 2000-05-12 2001-11-15 Siemens Building Tech Ag Control device for a burner
DE102004030299A1 (en) * 2004-06-23 2006-01-12 Ebm-Papst Landshut Gmbh Firing equipment for gas burners has means for determining value dependent on measured temperature and means for regulating generated temperature using characteristic line representing value range corresponding to ideal temperature
DE102004055716C5 (en) * 2004-06-23 2010-02-11 Ebm-Papst Landshut Gmbh Method for controlling a firing device and firing device (electronic composite I)
DE102011102575A1 (en) * 2011-05-26 2012-11-29 Robert Bosch Gmbh Method for calibrating air ratio regulation of burner with modulated burner output, involves adjusting blower to predetermined calibration speed, where calibration flow rate of air or fuel or fuel-air-mixture is determined

Also Published As

Publication number Publication date
EP3751200A1 (en) 2020-12-16
DE102019114919A1 (en) 2020-12-10

Similar Documents

Publication Publication Date Title
EP3683500B1 (en) Method for regulating a gas mixture using a gas sensor and a gas mixture sensor
EP2594848B1 (en) Method for controlling a firing device and firing device
EP3824366B1 (en) Method for the closed-loop control of a gas mixture using a gas sensor, a combustion-gas sensor and a gas-mixture sensor
EP3596391B1 (en) Method for controlling a combustion-gas operated heating device
DE202019100263U1 (en) Heater with control of a gas mixture using a gas sensor, a fuel gas sensor and a gas mixture sensor
DE3638410A1 (en) METHOD AND DEVICE FOR CONTROLLING THE AIR AND FUEL SUPPLY TO A VARIETY OF BURNERS
EP3029375B1 (en) Heater appliance and method for operating a heater appliance
EP3751200B1 (en) Method for controlling a heater powered by combustion gas
DE202019100261U1 (en) Heater with regulation of a gas mixture
DE102017222437A1 (en) Heater component and method for adjusting a fuel flow rate
EP3870899B1 (en) Method for checking a gas mixture sensor and ionization sensor in a fuel-gas-powered heating device
EP2405198A1 (en) Method for the calibration of the regulation of the fuel-air ratio of a gaseous fuel burner
EP3734159A1 (en) Method for checking a gas mixture sensor in a combustion gas operated heater
EP3746705A1 (en) Method for controlling a gas mixture using a gas mixture sensor
EP3746706B1 (en) Method for controlling a mixing ratio of fuel gas and air for a heating appliance
DE10127289A1 (en) Fuel supply system derives second desired fuel flow rate value from first desired determined by control unit and selected so burner system is essentially supplied with first desired value
EP3680553A1 (en) Method for regulating the combustion air ratio of a burner of a heater
DE102015225886A1 (en) Heater system and method with a heater system
DE202019100264U1 (en) Heater with control of a gas mixture using a gas sensor and a gas mixture sensor
WO2019091619A1 (en) Method for controlling a combustion-gas operated heating device
EP3859210B1 (en) Method for optimizing a tolerance range of a control characteristic of an electronic mixture control in a gas heater
DE102004063992B4 (en) Regulating and controlling process for firing apparatus involves using characteristic curve showing value range for setpoint temperature in accordance with two parameters
EP4435322A1 (en) Control of a combustion apparatus
DE10056064A1 (en) Process for regulating a gas burner
DE102022122820A1 (en) Method for evaluating an installation of a gas-air system of a heater, gas-air system and computer program

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210311

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: F23N 1/02 20060101AFI20210519BHEP

Ipc: F23N 5/12 20060101ALI20210519BHEP

INTG Intention to grant announced

Effective date: 20210621

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1444274

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211115

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502020000318

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R083

Ref document number: 502020000318

Country of ref document: DE

Ref country code: CH

Ref legal event code: PK

Free format text: BERICHTIGUNGEN

RIN2 Information on inventor provided after grant (corrected)

Inventor name: HERMANN, JENS

Inventor name: WALD, STEPHAN

Inventor name: HENRICH, HARTMUT

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211103

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211103

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211103

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220303

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211103

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220303

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211103

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220203

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211103

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211103

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220204

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211103

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211103

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211103

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211103

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211103

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211103

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502020000318

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20220804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211103

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211103

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220504

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220531

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230521

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211103

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20200504

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240522

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240522

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240517

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211103

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240531

Year of fee payment: 5