EP4050258B1 - Method for controlling a burner device with power determination based on a fuel parameter - Google Patents
Method for controlling a burner device with power determination based on a fuel parameter Download PDFInfo
- Publication number
- EP4050258B1 EP4050258B1 EP21194083.8A EP21194083A EP4050258B1 EP 4050258 B1 EP4050258 B1 EP 4050258B1 EP 21194083 A EP21194083 A EP 21194083A EP 4050258 B1 EP4050258 B1 EP 4050258B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- value
- air
- fuel
- loop control
- air supply
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000446 fuel Substances 0.000 title claims description 199
- 238000000034 method Methods 0.000 title claims description 32
- 238000002485 combustion reaction Methods 0.000 claims description 35
- 239000000203 mixture Substances 0.000 claims description 21
- 230000006870 function Effects 0.000 claims description 20
- 238000012544 monitoring process Methods 0.000 claims description 18
- 238000005259 measurement Methods 0.000 claims description 14
- 238000012545 processing Methods 0.000 claims description 13
- 230000008569 process Effects 0.000 claims description 9
- 238000004590 computer program Methods 0.000 claims description 3
- 230000005055 memory storage Effects 0.000 claims 1
- 238000011144 upstream manufacturing Methods 0.000 claims 1
- 239000007789 gas Substances 0.000 description 103
- 230000001105 regulatory effect Effects 0.000 description 21
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 20
- 239000002737 fuel gas Substances 0.000 description 14
- 238000012806 monitoring device Methods 0.000 description 11
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 8
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 8
- 239000001257 hydrogen Substances 0.000 description 8
- 229910052739 hydrogen Inorganic materials 0.000 description 8
- 230000008859 change Effects 0.000 description 7
- 238000012937 correction Methods 0.000 description 7
- 238000001514 detection method Methods 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- 230000001276 controlling effect Effects 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 239000001294 propane Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000000567 combustion gas Substances 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 239000003915 liquefied petroleum gas Substances 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 102000016550 Complement Factor H Human genes 0.000 description 1
- 108010053085 Complement Factor H Proteins 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 239000003651 drinking water Substances 0.000 description 1
- 235000020188 drinking water Nutrition 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000010763 heavy fuel oil Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 229910000953 kanthal Inorganic materials 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 description 1
- 229910052808 lithium carbonate Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000007620 mathematical function Methods 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 230000007306 turnover Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N1/00—Regulating fuel supply
- F23N1/02—Regulating fuel supply conjointly with air supply
- F23N1/025—Regulating fuel supply conjointly with air supply using electrical or electromechanical means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N1/00—Regulating fuel supply
- F23N1/02—Regulating fuel supply conjointly with air supply
- F23N1/022—Regulating fuel supply conjointly with air supply using electronic means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N5/00—Systems for controlling combustion
- F23N5/18—Systems for controlling combustion using detectors sensitive to rate of flow of air or fuel
- F23N5/184—Systems for controlling combustion using detectors sensitive to rate of flow of air or fuel using electronic means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D14/00—Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
- F23D14/46—Details, e.g. noise reduction means
- F23D14/60—Devices for simultaneous control of gas and combustion air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N5/00—Systems for controlling combustion
- F23N5/003—Systems for controlling combustion using detectors sensitive to combustion gas properties
- F23N5/006—Systems for controlling combustion using detectors sensitive to combustion gas properties the detector being sensitive to oxygen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N5/00—Systems for controlling combustion
- F23N5/02—Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
- F23N5/12—Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods
- F23N5/126—Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods using electrical or electromechanical means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23K—FEEDING FUEL TO COMBUSTION APPARATUS
- F23K2900/00—Special features of, or arrangements for fuel supplies
- F23K2900/05001—Control or safety devices in gaseous or liquid fuel supply lines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N5/00—Systems for controlling combustion
- F23N5/18—Systems for controlling combustion using detectors sensitive to rate of flow of air or fuel
- F23N2005/181—Systems for controlling combustion using detectors sensitive to rate of flow of air or fuel using detectors sensitive to rate of flow of air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N5/00—Systems for controlling combustion
- F23N5/18—Systems for controlling combustion using detectors sensitive to rate of flow of air or fuel
- F23N2005/185—Systems for controlling combustion using detectors sensitive to rate of flow of air or fuel using detectors sensitive to rate of flow of fuel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N2223/00—Signal processing; Details thereof
- F23N2223/48—Learning / Adaptive control
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N2227/00—Ignition or checking
- F23N2227/20—Calibrating devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N2233/00—Ventilators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N2233/00—Ventilators
- F23N2233/06—Ventilators at the air intake
- F23N2233/08—Ventilators at the air intake with variable speed
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N2235/00—Valves, nozzles or pumps
- F23N2235/02—Air or combustion gas valves or dampers
- F23N2235/06—Air or combustion gas valves or dampers at the air intake
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N2235/00—Valves, nozzles or pumps
- F23N2235/02—Air or combustion gas valves or dampers
- F23N2235/10—Air or combustion gas valves or dampers power assisted, e.g. using electric motors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N2235/00—Valves, nozzles or pumps
- F23N2235/12—Fuel valves
- F23N2235/16—Fuel valves variable flow or proportional valves
Definitions
- the present disclosure relates to a power determination via a fuel parameter on a burner device.
- it concerns a direct determination of a power as a function of an air supply for a given air ratio ⁇ .
- the air actuator characteristic curve and fuel actuator characteristic curve are determined via the power during the adjustment process. For example, the determination can be made from a low power to a maximum power or vice versa.
- the air ratio ⁇ is set for each power point.
- Air supply sensors can also be used to support this. Common air supply sensors are based on speed, mass flow, differential pressure, air volume flow, etc.
- the absolute power is then determined by measuring the fuel supply at at least one point or at several points. Using the calorific value H u of the fuel currently fed in, the burner output is assigned to the respective characteristic curve points.
- the power values of the other characteristic curve points are determined by interpolation, preferably by linear interpolation.
- the air actuator characteristic curve and the fuel actuator characteristic curve are specified.
- the characteristic curves were determined empirically in the laboratory.
- the burner output is specified by a fixed function of one of the two characteristic curves.
- Different characteristic curves and/or sets of characteristic curves, which are also specified, are used for different fuels.
- the air actuator characteristic curve may need to be corrected so that ⁇ remains unchanged.
- the calorific value is the energy content per quantity of fuel.
- the change in fuel composition is detected by means of a ⁇ sensor.
- a ⁇ sensor This can be, for example, an O 2 sensor in the exhaust gas, from which ⁇ is calculated directly.
- an ionization electrode can also be used, the signal of which is evaluated accordingly.
- the air supply can be changed or the fuel supply can be corrected until the ⁇ sensor measures the original value of an air ratio ⁇ again. If at least one air supply signal is adjusted in order to keep the air ratio ⁇ constant, the power at this characteristic point almost always changes with the fuel composition. If the fuel supply signal is adjusted in order to keep the air ratio ⁇ constant, the power changes depending on the fuel. In order to adjust the power, a new characteristic curve of the air actuator must be selected or calculated manually or automatically in the event of a power correction.
- gases in burner systems are those from the E-gas group (according to EN 437:2009-09) and gases from the B/P-gas group (according to EN 437:2009-09).
- gases from the E-gas group contain methane as their main component.
- gases from the B/P-gas group are based on propane gas. The mixtures based on methane gas or propane gas ultimately represent mixtures of different gas sources with which the burner system can be supplied.
- Characteristic curves are usually provided for different types of gas, which are selected on site during commissioning according to the existing gas group.
- the setting is made, for example, by selecting one or more curves stored in the memory of a control unit.
- These characteristic curves show the course of the amount of fuel supplied to the burner in relation to the amount of air supplied. Instead of the amount of air supplied, the speed of a fan in the burner's air supply can be plotted. The position and/or the control signal of an air flap can also be used as a measure of the air supply.
- the characteristic curves can be stored in tabular form with linear interpolation or as a mathematical function using polynomials. This form of characteristic curve assignment is described in the European patent EP3299718B1, which was published on 30 October 2019 An application EP3299718A1 to the European patent EP3299718B1 was published on 21. September 2016 The European patent EP3299718B1 does not claim priority.
- An air volume is suitable as a performance value if the air temperature, air pressure or air humidity only change insignificantly or are recorded by measurement.
- the influences of air temperature and air pressure are taken into account.
- the influence of air humidity plays a minor role, especially at lower temperatures.
- EP2682679A2 was filed on 1 July 2013 by VAILLANT GMBH, DE The application was published on 8 January 2014.
- EP2682679A2 deals with a method for controlling and/or monitoring a fuel gas-operated burner.
- EP2682679A2 takes priority from 4 July 2012 in use.
- EP2682679A2 deals with the approach to operating points below and above a target air ratio.
- DE102013106987A1 was filed on July 3, 2013 by Karl Dungs GmbH & Co. KG , 73660, Urbach. The application was published on January 8, 2015.
- DE102013106987A1 deals with a method and a device for determining a calorific value as well as a gas-operated device with such a device.
- DE102006051883A1 was filed on October 31, 2006 by Gasumble-Institut eV Essen, 45356 Essen. The application was published on 8 May 2008.
- DE102006051883A1 deals with a device and a method for setting, controlling or regulating the fuel/combustion air ratio for operating a burner.
- EP1467149A1 A patent application EP1467149A1 was filed on 1 April 2004 by E ON RUHRGAS AG The application was published on 13 October 2004.
- EP1467149A1 deals with a method for monitoring combustion in a combustion device.
- EP0326494A1 was filed on 27 January 1989 by GAZ DE FRANCE, FR . The application was published on 2.
- DE68909260T2 deals with a device for measuring the heat capacity of a fuel flow.
- DE68909260T2 takes a priority from 29 January 1988 in use.
- DE102013106987A1 was filed on July 3, 2013 by Karl Dungs GmbH & Co. KG The application was published on 8 January 2015.
- DE102013106987A1 deals with a method and device for determining a calorific value as well as gas-operated equipment with such a device.
- DE102006051883A1 Another patent application was filed on October 31, 2006 by a Gasumble-Institut eV from Essen. The application was published on May 8, 2008.
- DE102006051883A1 deals with a device and a method for setting, controlling or regulating the fuel/combustion air ratio for operating a burner.
- EP1467149A1 A European patent application EP1467149A1 was filed on 1 April 2004 by E ON RUHRGAS AG The application was published on 13 October 2004.
- EP1467149A1 deals with a method for monitoring combustion in a combustion device.
- EP1467149A1 claims priority from 11 April 2003 in use.
- the aim of the present disclosure is to achieve the most direct possible power adjustment via an air supply.
- the aim of the present invention is a method with which the actual value P ist of the output of the burner device can be determined directly via the air supply V ⁇ L by determining and/or providing a fuel parameter h.
- An air ratio ⁇ is included in the determination.
- the parameter specific to the fuel can be calculated, for example, from literature values.
- the actual value P ist of the output of the burner device can be given in kilowatts.
- the actual value P ist of the output of the burner device can also be given relative to a reference value, so that the relative actual value P ist of the output of the burner device is given as a percentage of the reference value.
- a typical reference value is the maximum output P max of the burner device.
- the advantage is that only one air supply characteristic curve needs to be present.
- the actual value P is the output of the burner device can be assigned to the air supply V ⁇ L. If the fuel and/or the fuel composition change, the fuel supply characteristic curve is corrected. In a system without ⁇ detection, this is done manually. Otherwise, the correction can be made using a ⁇ control.
- the actual value P is the output of the burner device is calculated from the known air supply V ⁇ L at the characteristic curve point using the known, measured value of the air ratio ⁇ and the individual, scalar fuel parameter.
- the minimum air requirement L min is a property of the fuel gas.
- the fuel parameter h is assigned to a fuel.
- the fuel parameter h can also be assigned to a fuel group that is made up of fuels whose fuel parameters h are close to each other.
- the air supply V ⁇ L can also be determined for a specific target value P soll of the burner device's output.
- This also specifies the characteristic curve point, for example as a target value for the air supply V ⁇ L.
- the two parameters L min and H U must be related to the same quantity value. This means that either H U is specified in megajoules/kilomoles and L min in kilomoles/kilomoles or H U in megajoules/cubic meters and L min in cubic meters/cubic meters. These specifications assume the same ambient conditions such as temperature and pressure.
- the actual value P ist of the burner device's output can therefore be set directly using a power controller.
- P soll is calculated.
- the actual air supply V ⁇ List is then adjusted to the setpoint V ⁇ Lsoll using a measured variable.
- the fuel supply V ⁇ B follows the air supply V ⁇ L based on the set ⁇ value.
- a predetermined power value is regulated using the currently determined power via a power control loop.
- the maximum fuel supply V ⁇ B is adjusted as the fuels change so that the power cap is achieved for each fuel.
- the power cap is not exceeded for each fuel.
- the minimum fuel supply V ⁇ B is adjusted as the fuels change, so that the lower power limit is reached for each fuel.
- the lower power limit is not undercut for each fuel.
- the individual, scalar fuel parameter h can be estimated and/or determined by means of the adjustment of the fuel actuator by the ⁇ control.
- the energy conversion and/or the power can be determined with the help of the calculated power value even with changing fuels.
- FIG 1 shows a burner device 1 such as a wall-mounted gas burner and/or an oil burner.
- a flame of a heat generator burns during operation.
- the heat generator exchanges the thermal energy of the hot fuels and/or combustion gases into another fluid such as water.
- the warm water is used, for example, to operate a hot water heating system and/or to heat drinking water.
- the thermal energy of the hot combustion gases can be used to heat a product, for example in an industrial process.
- the heat generator is part of a combined heat and power system, for example an engine of such a system.
- the heat generator is a gas turbine.
- the heat generator can be used to heat water in a system for extracting lithium and/or lithium carbonate.
- the exhaust gases are discharged from the combustion chamber 2, for example via a chimney.
- the supply air 4 for the combustion process is supplied to the burner device 1 via a (motor-driven) fan 3.
- the regulating and/or control and/or monitoring device 13 specifies the air supply V ⁇ L that the fan 3 should deliver via the signal line 15. The fan speed thus becomes a measure of the amount of air delivered.
- the fan speed of the regulating and/or control and/or monitoring device 13 is reported back by the fan 3.
- the air volume is set via an air flap 4 and/or a valve
- the flap and/or valve position and/or the measured value derived from the signal of a mass flow sensor 12 and/or volume flow sensor can be used as a measure of the air volume.
- the sensor is advantageously arranged in the channel 5 for the air supply V ⁇ L.
- the sensor advantageously provides a signal which is converted into a flow measurement value using a suitable signal processing unit.
- a signal processing device ideally comprises at least one analog-digital converter.
- the signal processing device, in particular the analog-digital converter(s) is integrated into the regulating and/or control and/or monitoring device 13.
- the measured value of a pressure sensor and/or a mass flow sensor 12 in a side channel can also be used as a measure for the air supply V ⁇ L.
- a combustion device with a supply channel and a side channel is described, for example, in the European patent EP3301364B1 The European patent EP3301364B1 was published on 7 June 2017 and granted on August 7, 2019.
- a combustion device with a feed channel and a side channel is claimed, with a mass flow sensor protruding into the feed channel.
- the sensor 12 determines a signal which corresponds to the pressure value dependent on the air supply V ⁇ L and/or the air flow (particle and/or mass flow) in the side channel.
- the sensor 12 advantageously provides a signal which is converted into a measured value using a suitable signal processing device.
- the signals from several sensors are converted into a common measured value.
- a suitable signal processing device ideally comprises at least one analog-digital converter.
- the signal processing device, in particular the analog-digital converter(s) is integrated into the regulating and/or control and/or monitoring device 13.
- the air supply V ⁇ L is the value of the current air flow rate.
- the air flow rate can be measured and/or indicated in cubic meters of air per hour.
- the air supply V ⁇ L can be measured and/or indicated in cubic meters of air per hour.
- Mass flow sensors 12 allow measurement at high flow velocities, especially in connection with burner devices in operation. Typical values of such flow velocities are in the range between 0.1 meters per second and 5 meters per second, 10 meters per second, 15 meters per second, 20 meters per second, or even 100 meters per second. Mass flow sensors which are suitable for the present disclosure are, for example, OMRON ® D6F-W or type SENSOR TECHNICS ® WBA sensors. The usable range of these sensors typically begins at velocities between 0.01 meters per second and 0.1 meters per second and ends at a speed such as 5 meters per second, 10 meters per second, 15 meters per second, 20 meters per second, or even 100 meters per second. In other words, lower limits such as 0.1 meters per second can be combined with upper limits such as 5 meters per second, 10 meters per second, 15 meters per second, 20 meters per second, or even 100 meters per second.
- the fuel supply V ⁇ B is set and/or regulated by the control and/or monitoring device 13 with the aid of a fuel actuator and/or a (motor-controlled) adjustable valve.
- the fuel is a fuel gas.
- a burner device 1 can then be connected to various fuel gas sources, for example to sources with a high methane content and/or to sources with high propane content.
- the amount of fuel gas is set by a (motor-) adjustable fuel valve 9 from the regulating and/or control and/or monitoring device 13.
- the control value 19, for example in the case of a pulse-width modulated signal, of the gas valve is a measure of the amount of fuel gas. It is also a value 19 for the fuel supply V ⁇ B .
- the fuel valve 9 is set using a stepper motor.
- the step position of the stepper motor is a measure of the amount of fuel gas.
- the fuel valve 9 can also be integrated in a unit with at least one or both of the safety shut-off valves 7 or 8.
- the fuel valve 9 can be a valve that is internally controlled via a flow sensor, which receives a setpoint 19 and regulates the actual value of the flow sensor to the setpoint 19.
- the flow sensor can be implemented as a volume flow sensor, for example as a turbine wheel meter, bellows meter and/or as a differential pressure sensor.
- the flow sensor can also be designed as a mass flow sensor, for example as a thermal mass flow sensor.
- a gas flap is used as actuator 9, the position of a flap can be used as a measure of the amount of fuel gas.
- the measured value derived from the signal of a mass flow sensor and/or a volume flow sensor can be used as a measure of the amount of fuel gas.
- This sensor is advantageously arranged in the fuel supply channel. This sensor generates a signal which is converted into a flow measurement value (measured value of the particle and/or mass flow and/or volume flow) using a suitable signal processing device.
- a suitable signal processing device ideally comprises at least one analog-digital converter. According to one embodiment, the signal processing device, in particular the analog-digital converter(s), is integrated into the regulating, control and monitoring device 13.
- FIG 2 shows a burner device 1 with an air ratio sensor 20 for detecting the air ratio ⁇ .
- the air ratio sensor 20 for detecting the air ratio ⁇ comprises, for example, an O 2 sensor.
- the Air ratio sensor 20 for detecting the air ratio ⁇ is an Oa sensor.
- the air ratio sensor 20 for detecting the air ratio ⁇ can be arranged, for example, in the combustion chamber 2 and/or in the exhaust gas path.
- the air ratio sensor 20 for detecting the air ratio ⁇ generates a signal 21.
- the signal 21 is read in by the regulating and/or control and/or monitoring device 13 and evaluated appropriately.
- a predetermined air ratio ⁇ can be regulated for each air supply V ⁇ L.
- the measured air supply V ⁇ L is regulated to a predetermined setpoint via the actuator 9 in the fuel supply V ⁇ B and/or via the actuator 3, 4 in the air supply VLauf.
- FIG 3 shows a burner device 1 with an air ratio sensor 20 for detecting the air ratio ⁇ comprising an ionization electrode.
- KANTHAL ® e.g. APM ® or A-1 ®
- Electrodes made of Nikrothal ® are also considered by the expert.
- the ionization electrode can be arranged in the combustion chamber 2, for example.
- the measured value for the air supply V ⁇ L can be given as a direct characteristic curve from air supply V ⁇ L over fan speed or from air supply V ⁇ L over air flap position.
- the air flap position can be given as an angle of adjustment, for example. A combination of speed and angle of adjustment is also possible.
- FIG 4 shows such a direct characteristic curve.
- the air supply V ⁇ L can be determined using an air mass flow sensor.
- a corresponding characteristic curve shows FIG 5
- the air mass flow sensor can, for example, be arranged directly in the air supply duct 11.
- the air mass flow sensor can also be arranged in a bypass on the air supply duct 11 above a cover.
- An arrangement with a bypass is known, for example, from the European patent EP3301362B1
- the air mass flow sensor can also be arranged in a bypass above an air flap that acts as a cover.
- the air supply V ⁇ L is then determined, for example, from a combination of the air mass flow signal and the air flap position or from the air mass flow signal and the fan speed or from all three.
- the air supply V ⁇ L can also be determined using a Differential pressure sensor above a panel or an air flap, also possible in any combination with air mass flow sensor, fan speed and/or air flap position.
- the air supply sensors mentioned provide a different measure for the air supply V ⁇ L .
- the measurement result from the speed and flap position depends on other ambient conditions, such as air pressure, air temperature and exhaust gas path.
- measured values of the ambient conditions such as supply air temperature, air humidity or absolute air pressure can also be included in the determination.
- the air supply V ⁇ L can also be determined without the influence of the ambient conditions.
- the unconsidered influences of the environment as well as the accuracy of the measurement result are reflected in the accuracy of the actual value P is the output of the burner device 1.
- the air supply V ⁇ L and/or the actual value P is the output of the burner device 1 can be calculated absolutely or relative to the maximum value of the characteristic curve and/or another value.
- the same considerations as for measuring the air supply V ⁇ L apply to measuring the fuel supply V ⁇ B .
- the measured value for the fuel supply V ⁇ B can be a direct characteristic curve from the fuel supply V ⁇ B over the fuel valve position.
- the fuel valve position can be specified, for example, as an angle of adjustment.
- FIG 6 shows such a direct characteristic curve.
- the air supply characteristic curve can be preset on a burner device 1 in the factory using, for example, an air mass flow sensor or a speed sensor. Alternatively, it can also be calculated on an individual burner device 1 using a fuel meter and/or fuel gas meter to determine V ⁇ B with known fuel and an air ratio sensor 20 to record the air ratio ⁇ .
- V ⁇ L ⁇ ⁇ L min ⁇ V ⁇ B between air supply V ⁇ L , air ratio ⁇ , known minimum air requirement L min and known fuel supply V ⁇ B is used for the calculation.
- the output P ist can be determined for each fuel after setting the air ratio ⁇ .
- the known parameters are used for this purpose.
- the Burner for any fuel with known parameters H H U L min within a range between a maximum power P soll-m ⁇ x and a minimum power P soll-min .
- V ⁇ B V ⁇ L ⁇ ⁇ L min calculated and set. Often the fuel supply V ⁇ B cannot be entered directly. The fuel supply V ⁇ B can then only be determined via a reference characteristic V ⁇ B 0 depending on the setting angle of a fuel flap or a fuel valve according to FIG 6 for a reference gas with the minimum air requirement L min0 .
- V ⁇ B L m i n 0 L min ⁇ V ⁇ B 0
- V ⁇ B ⁇ 0 ⁇ L min 0 ⁇ ⁇ L min ⁇ V ⁇ B 0 .
- the fuel actuator 9 When changing to the new fuel, the fuel actuator 9 is adjusted so that the fuel supply 6 assigned to each air supply point is increased by the factor ⁇ 0 ⁇ L min 0 ⁇ ⁇ L min and/or with the same value of ⁇ by the factor L min 0 L min is changed.
- the new control values and/or setting angles 19 for the changed fuel composition can be calculated directly.
- the characteristic curve can be given, for example, in the form of a table whose intermediate values are linearly interpolated.
- the characteristic curve can also be given as a mathematical formula and/or as a mathematical relationship.
- the power P 1 ⁇ P 0 if h 1 ⁇ h 0 .
- a device can be directly and easily adjusted to a new fuel. New characteristics do not have to be determined empirically.
- the respective output P is also adjusted to the new fuel.
- the correct air supply V ⁇ L and/or the correct fuel supply V ⁇ B can be determined for a setpoint P for the output of the burner device 1.
- the air ratio ⁇ can be kept constant via a control loop when the fuel composition changes.
- the air ratio ⁇ is calculated directly from the sensor's result value according to the state of the art.
- the air ratio ⁇ can be calculated from the oxygen content O 2 using the relationship ⁇ ⁇ 20.9 20.9 ⁇ O 2 calculate.
- the fuel supply V ⁇ B is then regulated so that the setpoint value of ⁇ is reached.
- the setpoint value of ⁇ can depend on the air supply V ⁇ L.
- the measured ionization current is regulated to a setpoint value that depends on the air supply V ⁇ L by changing the fuel supply V ⁇ B.
- V ⁇ B k ⁇ V ⁇ B 0
- V ⁇ B k ⁇ V ⁇ B 0
- the actuator is set accordingly so that V ⁇ B 1 is shifted by a factor of k compared to V ⁇ B 0 over the entire modulation range.
- the changed fuel therefore only needs to be regulated at one power point so that the factor k is known.
- the changed fuel actuator positions are known over the entire power range and thus the changed modulation characteristic is determined.
- L min L min 0 ⁇ L min 0 ⁇ ⁇ k
- the new actual value P actual can be calculated for the output of the burner device 1 even if the fuel composition changes as described above.
- P H ⁇ ⁇ V ⁇ L for each air supply point.
- the fuel gases can be grouped together.
- the groups are determined by the fact that for the current air supply V ⁇ L, when the gas changes and the gas supply is adjusted with an unchanged air ratio ⁇ , the actual value P ist of the output of the burner device 1 also remains within the specified limits.
- the individual, scalar fuel parameter h is then within the specified limits. The limits are determined from the permissible error for the actual value P ist of the output of the burner device 1.
- the error compared to the gases marked 24 is less than 8 percent. If this error is taken into account, then between the
- Gases designated 25, 27, 28 and 29 form further special gas groups (Sardinia gas, process gases). It is known when these gases are present and the respective values of the fuel parameter h can be entered directly so that the performance correction can be made. The errors are then less than 5.1 percent, for example.
- the different gases or gases from gas groups come from different fuel supply lines and the shut-off valves of the respective fuel supply lines are switched on and off. Then the gas parameter can also be changed by switching the fuel supply V ⁇ B. The power or the burner modulation can therefore be adjusted.
- the individual scalar fuel parameter h is also known.
- the new minimum air requirement is calculated using the factor k determined by the control system.
- L min L min 0 k compared to a reference gas.
- the gas supply V ⁇ G 0 for a reference gas (with L min0 ) depending on the position of at least one fuel actuator 9 or a linear equivalent to V ⁇ G 0 must be known. This is shown in FIG 6
- the factor k can be determined by a control with an O 2 sensor, an ionization sensor or another equivalent sensor. To illustrate this procedure, FIG 8 .
- the gas can be interpreted as methane gas with admixtures. This applies essentially to the gases of the second gas family from the supply network.
- the value H 3.55 MJ m 3
- the gas is interpreted as a hydrogen-methane gas mixture.
- the mixing ratio in FIG 8 changes there according to a characteristic curve along the points marked with 30 with the composition and thus with L min . With the mixing ratio of the gases and/or fuels, the function of the fuel parameter h over L min can be specified.
- both the air ratio and the output of a burner unit can be determined automatically for a given air ratio ⁇ for hydrogen and, for example, methane and made available to the control units.
- a power controller can be operated directly in a closed control loop.
- the actual value P is the output of the burner device 1
- the output of the burner device 1 can be regulated to a predetermined setpoint P soll .
- the power setpoint can be generated by a higher-level temperature control unit. It can also be specified directly to the power controller as a setpoint by an operating unit and/or a unit for heating a product and/or when burning residual fuel from a chemical process.
- V ⁇ Bmax is implicitly adjusted for the maximum output P max of the burner device 1 and the minimum fuel supply V ⁇ Bmin is implicitly adjusted for the minimum output P min of the burner device 1.
- V ⁇ Bmax and/or V ⁇ Bmin can be calculated and limited (directly) to these calculated values for the respective fuel, upwards and/or downwards. In any case, this ensures that the burner device is not operated outside the intended output range.
- the energy conversion can easily be calculated from the determined actual value P of the output of the burner device 1 by integrating the actual value P of the output of the burner device 1 over time. In this way, the energy conversion can also be calculated with changing fuels.
- the energy conversion for the individual fuels can be calculated. If the fuel parameter h is automatically recognized, the switchover can be detected via the change in h.
- the energy costs can be determined directly, provided the costs per unit of energy are known. If the costs for individual fuels are different, this can be detected as described above. The costs for the consumption of the individual fuels can therefore be calculated.
- Parts of a control unit and/or a method according to the present disclosure can be implemented as hardware and/or as a software module, which is executed by a computing unit, possibly with the addition of container virtualization, and/or using a cloud computer and/or using a combination of the aforementioned possibilities.
- the software may be a firmware and/or a Hardware driver that runs within an operating system and/or a container virtualization and/or an application program.
- the present disclosure thus also relates to a computer program product that includes the features of this disclosure and/or performs the required steps.
- the described functions can be stored as one or more instructions on a computer-readable medium.
- RAM random access memory
- MRAM magnetic random access memory
- ROM read-only memory
- EPROM electronically programmable ROM
- EEPROM electronically programmable and erasable ROM
- the present invention teaches a method for controlling a burner device according to claim 1. Preferred embodiments are defined in the dependent claims.
- the present invention also teaches a corresponding computer program product according to claim 6 and a corresponding non-volatile computer-readable storage medium according to claim 7.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Regulation And Control Of Combustion (AREA)
Description
Die vorliegende Offenbarung befasst sich mit einer Leistungsermittlung über einen Brennstoffparameter an einer Brennereinrichtung. Insbesondere geht es um eine direkte Bestimmung einer Leistung als Funktion einer Luftzufuhr für eine gegebene Luftzahl λ.The present disclosure relates to a power determination via a fuel parameter on a burner device. In particular, it concerns a direct determination of a power as a function of an air supply for a given air ratio λ.
Im Betrieb einer Brennereinrichtung ist das Verhältnis von Brennstoff zu Luft einzustellen. Dabei sind folgende Varianten der Einstellung bekannt.When operating a burner, the ratio of fuel to air must be adjusted. The following adjustment options are known.
Gemäss einer ersten Variante werden die Luftaktor-Kennlinie und Brennstoffaktor-Kennlinie über die Leistung während des Einstellvorganges ermittelt. Beispielsweise kann die Ermittlung von einer kleinen Leistung zu einer maximalen Leistung oder auch umgekehrt erfolgen. Dabei wird die Luftzahl λ für jeden Leistungspunkt eingestellt. Es können unterstützend auch Luftzufuhrsensoren verwendet werden. Gängige Luftzufuhrsensoren basieren auf Drehzahl, Massenstrom, Differenzdruck, Luft-Volumenstrom, etc. Die absolute Leistung wird dann über eine Messung der Brennstoffzufuhr an zumindest einem Punkt oder an mehreren Punkten bestimmt. Mit Hilfe des Heizwertes Hu des aktuell eingespeisten Brennstoffes wird die Brennerleistung den jeweiligen Kennlinienpunkten zugeordnet. Die Leistungswerte der anderen Kennlinienpunkte werden durch Interpolation, vorzugsweise durch lineare Interpolation bestimmt.According to a first variant, the air actuator characteristic curve and fuel actuator characteristic curve are determined via the power during the adjustment process. For example, the determination can be made from a low power to a maximum power or vice versa. The air ratio λ is set for each power point. Air supply sensors can also be used to support this. Common air supply sensors are based on speed, mass flow, differential pressure, air volume flow, etc. The absolute power is then determined by measuring the fuel supply at at least one point or at several points. Using the calorific value H u of the fuel currently fed in, the burner output is assigned to the respective characteristic curve points. The power values of the other characteristic curve points are determined by interpolation, preferably by linear interpolation.
Gemäss einer zweiten Variante sind die Luftaktor-Kennlinie und die Brennstoffaktor-Kennlinie vorgegeben. Zumeist wurden die Kennlinien empirisch im Labor ermittelt. Die Brennerleistung ist durch eine feste Funktion aus einer der beiden Kennlinien fest vorgegeben. Für unterschiedliche Brennstoffe werden unterschiedliche Kennlinien und/oder Kennliniensätze, welche ebenfalls fest vorgegeben sind, verwendet. Grundsätzlich kann eine neue Kennlinie für einen Brennstoff mit dem Heizwert Hu gegenüber einer Referenz-Kennlinie für einen Brennstoff mit dem Heizwert Hu0 durch Multiplikation mit dem Faktor
Gemäss einer dritten Variante wird die Änderung einer Brennstoffzusammensetzung mittels eines λ-Sensors aufgedeckt. Dies kann beispielsweise eine O2-Sonde im Abgas sein, aus der λ direkt berechnet wird. Es kann beispielsweise auch eine Ionisationselektrode, deren Signal entsprechend ausgewertet wird, eingesetzt werden. Um die Luftzahl λ konstant zu halten, kann entweder die Luftzufuhr verändert werden oder aber die Brennstoffzufuhr korrigiert werden, bis der λ-Sensor wieder den ursprünglichen Wert einer Luftzahl λ misst. Wird das mindestens eine Luftzufuhrsignal nachgestellt, um die Luftzahl λ konstant zu halten, so ändert sich mit der Brennstoffzusammensetzung fast immer auch die Leistung an diesem Kennlinienpunkt. Wird das Brennstoffzufuhrsignal nachgestellt, um die Luftzahl λ konstant zu halten, so ändert sich die Leistung brennstoffabhängig. Um die Leistung anzupassen, muss für den Fall einer Leistungskorrektur eine neue Kennlinie des Luftaktors manuell oder automatisch ausgewählt oder berechnet werden.According to a third variant, the change in fuel composition is detected by means of a λ sensor. This can be, for example, an O 2 sensor in the exhaust gas, from which λ is calculated directly. For example, an ionization electrode can also be used, the signal of which is evaluated accordingly. In order to keep the air ratio λ constant, either the air supply can be changed or the fuel supply can be corrected until the λ sensor measures the original value of an air ratio λ again. If at least one air supply signal is adjusted in order to keep the air ratio λ constant, the power at this characteristic point almost always changes with the fuel composition. If the fuel supply signal is adjusted in order to keep the air ratio λ constant, the power changes depending on the fuel. In order to adjust the power, a new characteristic curve of the air actuator must be selected or calculated manually or automatically in the event of a power correction.
Gängige Gasarten in Brennereinrichtungen sind solche aus der E-Gas Gruppe (gemäss EN 437:2009-09) sowie Gase aus der B/P-Gas Gruppe (gemäss EN 437:2009-09). Gase aus der E-Gas Gruppe enthalten wie fast alle Gase aus der zweiten Gasfamilie (gemäss EN 437:2009-09) Methan als Hauptbestandteil. Gase aus der B/P-Gas Gruppe haben wie alle Gase aus der dritten Gasfamilie (gemäss EN 437:2009-09) Propangas als Grundlage. Die Mischungen auf Grundlage von Methangas oder Propangas repräsentieren letztlich Mischungen aus unterschiedlichen Gasquellen, mit denen die Brennereinrichtung versorgt werden kann.Common types of gas in burner systems are those from the E-gas group (according to EN 437:2009-09) and gases from the B/P-gas group (according to EN 437:2009-09). Like almost all gases from the second gas family (according to EN 437:2009-09), gases from the E-gas group contain methane as their main component. Like all gases from the third gas family (according to EN 437:2009-09), gases from the B/P-gas group are based on propane gas. The mixtures based on methane gas or propane gas ultimately represent mixtures of different gas sources with which the burner system can be supplied.
Für verschiedene Gasarten werden in der Regel Kennlinien bereitgestellt, die vor Ort bei der Inbetriebsetzung entsprechend der vorhandenen Gasgruppe ausgewählt werden. Die Einstellung erfolgt beispielsweise durch Wahl einer oder mehrerer im Speicher einer Regeleinheit hinterlegten Kurven. Jene Kennlinien geben den Verlauf der dem Brenner zugeführten Brennstoffmenge in Bezug auf die zugeführte Menge an Luft wieder. Es kann anstelle der Menge an zugeführter Luft die Drehzahl eines Gebläses in der Luftzufuhr des Brenners aufgetragen sein. Ferner kommen als Mass für die Luftzufuhr die Stellung und/oder das Stellsignal einer Luftklappe infrage.Characteristic curves are usually provided for different types of gas, which are selected on site during commissioning according to the existing gas group. The setting is made, for example, by selecting one or more curves stored in the memory of a control unit. These characteristic curves show the course of the amount of fuel supplied to the burner in relation to the amount of air supplied. Instead of the amount of air supplied, the speed of a fan in the burner's air supply can be plotted. The position and/or the control signal of an air flap can also be used as a measure of the air supply.
Die Kennlinien können beispielsweise tabellarisch mit linearer Interpolation oder aber auch mit Hilfe von Polynomen als mathematische Funktion hinterlegt sein. Diese Form der Kennlinien-Zuordnung ist im europäischen Patent
Eine Luftmenge eignet sich als Leistungswert, wenn sich Lufttemperatur, Luftdruck oder Luftfeuchte nur unwesentlich verändern oder messtechnisch erfasst werden. Bei Messung der Luftmenge mit einem Luftmassenstromsensor werden die Einflüsse von Lufttemperatur und Luftdruck berücksichtigt. Der Einfluss der Luftfeuchte spielt vor allem bei tieferen Temperaturen eine untergeordnete Rolle.An air volume is suitable as a performance value if the air temperature, air pressure or air humidity only change insignificantly or are recorded by measurement. When measuring the air volume with an air mass flow sensor, the influences of air temperature and air pressure are taken into account. The influence of air humidity plays a minor role, especially at lower temperatures.
Eine Patentanmeldung
Eine Patentanmeldung
Eine Patentanmeldung
Eine Patentanmeldung
Eine europäische Patentanmeldung
August 1989. Am 27. September 1993 wurde ein europäisches Patent
Eine Patentanmeldung
Eine weitere Patentanmeldung
Eine europäische Patentanmeldung
Ziel der vorliegenden Offenbarung ist eine möglichst direkte Leistungseinstellung über einer Luftzufuhr.The aim of the present disclosure is to achieve the most direct possible power adjustment via an air supply.
Ziel der vorliegenden Erfindung ist ein Verfahren, mit dem durch Ermittlung und/oder Bereitstellung eines Brennstoffparameters h der Ist-Wert Pist der Leistung der Brennereinrichtung über der Luftzufuhr V̇L direkt bestimmt werden kann. In die Bestimmung geht eine Luftzahl λ ein. Der für den Brennstoff spezifische Parameter kann beispielsweise aus Literaturwerten errechnet werden. Der Ist-Wert Pist der Leistung der Brennereinrichtung kann in Kilowatt angegeben sein. Der Ist-Wert Pist der Leistung der Brennereinrichtung kann auch relativ zu einem Referenzwert angegeben werden, so dass der relative Ist-Wert Pist der Leistung der Brennereinrichtung in Prozent vom Referenzwert angegeben wird. Ein typischer Referenzwert ist dabei die maximale Leistung Pmax der Brennereinrichtung.The aim of the present invention is a method with which the actual value P ist of the output of the burner device can be determined directly via the air supply V̇ L by determining and/or providing a fuel parameter h. An air ratio λ is included in the determination. The parameter specific to the fuel can be calculated, for example, from literature values. The actual value P ist of the output of the burner device can be given in kilowatts. The actual value P ist of the output of the burner device can also be given relative to a reference value, so that the relative actual value P ist of the output of the burner device is given as a percentage of the reference value. A typical reference value is the maximum output P max of the burner device.
Der Vorteil besteht darin, dass nur eine Luftzufuhrkennlinie vorhanden sein muss. Der Ist-Wert Pist der Leistung der Brennereinrichtung kann der Luftzufuhr V̇L zugeordnet werden. Bei einer Änderung des Brennstoffes und/oder der Brennstoffzusammensetzung wird die Brennstoffzufuhr-Kennlinie korrigiert. An einer Anlage ohne λ-Erfassung erfolgt dies manuell. Andernfalls kann die Korrektur mit Hilfe einer λ-Regelung erfolgen. Der Ist-Wert Pist der Leistung der Brennereinrichtung wird aus der bekannten Luftzufuhr V̇L am Kennlinienpunkt mit Hilfe des bekannten, gemessenen Wertes der Luftzahl λ und dem einzelnen, skalaren Brennstoffparameter
Umgekehrt kann so auch die Luftzufuhr V̇L für einen bestimmten Soll-Wert Psoll der Leistung der Brennereinrichtung bestimmt werden. Damit wird ebenfalls der Kennlinienpunkt beispielsweise als Zielvorgabe für die Luftzufuhr V̇L vorgegeben. Für den brennstoffspezifischen Wert h müssen die beiden Parameter Lmin und HU auf den gleichen Mengenwert bezogen sein. Das heisst, dass entweder HU in Megajoule/Kilomol und Lmin in Kilomol/Kilomol oder HU in Megajoule/Kubikmeter und Lmin in Kubikmeter/Kubikmeter angegeben sind. Jene Angaben setzen gleiche Umgebungsbedingungen wie Temperatur und Druck voraus. Mithin kann der Ist-Wert Pist der Leistung der Brennereinrichtung über einen Leistungsregler direkt eingestellt werden. Dazu wird die Soll-Luftzufuhr V̇Lsoll aus dem Soll-Leistungswert Psoll mit Hilfe von λ und h zu
Es ist ein weiteres verwandtes Ziel der vorliegenden Offenbarung, ein Verfahren bereitzustellen, welches die Bestimmung des Ist-Wertes Pist der Leistung der Brennereinrichtung mit Hilfe der Luftzufuhr V̇L ermöglicht.It is a further related object of the present disclosure to provide a method which enables the determination of the actual value P actual of the power of the burner device by means of the air supply V̇ L.
Es ist ein weiteres verwandtes Ziel der vorliegenden Offenbarung mit der ermittelten korrekten Brennstoffzufuhr V̇B als Ist-Wert und dem Sollwert, der aus einer über eine O2-Regelung ermittelten Sollwert-Kennlinie stammt, die Luftzahl λ anhand des O2-Regelkreises auszuregeln. Dabei erfolgen schnelle Leistungsänderungen anhand der hinterlegten Kennlinien. Es wird insbesondere auch bei sich ändernden Brennstoffen mit Hilfe des durch Messung des O2-Wertes bestimmten λ-Wertes und/oder des Sollwertes von λ stets die aktuelle Leistung bestimmt.It is a further related object of the present disclosure with the determined correct fuel supply V̇ B as the actual value and the setpoint value, which comes from a setpoint characteristic curve determined via an O 2 control, to regulate the air ratio λ using the O 2 control loop. Rapid performance changes are made using the stored characteristics. The current performance is always determined, particularly with changing fuels, using the λ value determined by measuring the O 2 value and/or the target value of λ.
Es ist ein weiteres verwandtes Ziel der vorliegenden Offenbarung, dass mit Hilfe der aktuell ermittelten Leistung über einen Leistungsregelkreis ein vorgegebener Leistungswert ausgeregelt wird.It is a further related object of the present disclosure that a predetermined power value is regulated using the currently determined power via a power control loop.
Es ist ein weiteres Ziel der vorliegenden Offenbarung, dass mit Hilfe einer vorgegebenen Leistungsobergrenze bei sich ändernden Brennstoffen die maximale Brennstoffzufuhr V̇B angepasst wird, so dass die Leistungsobergrenze für jeden Brennstoff erreicht wird. Vorzugsweise wird die Leistungsobergrenze für jeden Brennstoff nicht überschritten.It is a further object of the present disclosure that, with the aid of a predetermined power cap, the maximum fuel supply V̇ B is adjusted as the fuels change so that the power cap is achieved for each fuel. Preferably, the power cap is not exceeded for each fuel.
Es ist ein weiteres Ziel der vorliegenden Offenbarung, dass mit Hilfe einer vorgegebenen Leistungsuntergrenze bei sich ändernden Brennstoffen die minimale Brennstoffzufuhr V̇B angepasst wird, so dass die Leistungsuntergrenze für jeden Brennstoff erreicht wird. Vorzugsweise wird die Leistungsuntergrenze für jeden Brennstoff nicht unterschritten.It is a further aim of the present disclosure that, with the aid of a predetermined lower power limit, the minimum fuel supply V̇ B is adjusted as the fuels change, so that the lower power limit is reached for each fuel. Preferably, the lower power limit is not undercut for each fuel.
Es ferner ein Ziel der vorliegenden Offenbarung, dass mit Hilfe der Verstellung des Brennstoffaktors durch die λ-Regelung der einzelne, skalare Brennstoffparameter h abgeschätzt und/oder ermittelt werden kann.It is a further aim of the present disclosure that the individual, scalar fuel parameter h can be estimated and/or determined by means of the adjustment of the fuel actuator by the λ control.
Es ist ausserdem ein Ziel der vorliegenden Offenbarung, dass mit Hilfe des berechneten Leistungswertes der Energieumsatz und/oder die Leistung auch bei wechselnden Brennstoffen ermittelt werden kann.It is also an aim of the present disclosure that the energy conversion and/or the power can be determined with the help of the calculated power value even with changing fuels.
Es ist ein weiteres Ziel der vorliegenden Offenbarung, dass auch bei wechselnden Brennstoffen mit Hilfe des berechneten Leistungswertes und/oder mit Hilfe des berechneten Energiewertes Kosten für den Brennstoff ermittelt werden.It is a further object of the present disclosure that, even when fuels are changed, costs for the fuel are determined using the calculated power value and/or the calculated energy value.
Es ist darüber hinaus ein Ziel der vorliegenden Offenbarung, eine Brennereinrichtung mit einer Regel- und/oder Steuer- und/oder Überwachungseinrichtung bereitzustellen mit Instruktionen im Speicher zur Ausführung eines hier offenbarten Verfahrens.It is further an object of the present disclosure to provide a burner device with a regulating and/or control and/or monitoring device with instructions in the memory for carrying out a method disclosed here.
Es ist auch ein Ziel der vorliegenden Offenbarung, ein Verfahren und/oder eine Vorrichtung zur Bestimmung einer Brennerleistung bereitzustellen, welches in einer Brennereinrichtung wie beispielsweise einer industriellen Feuerungsanlage und/oder einer Heizanlage zum Einsatz kommt.It is also an object of the present disclosure to provide a method and/or a device for determining a burner output, which is used in a burner device such as an industrial combustion plant and/or a heating system.
Verschiedene Details werden dem Fachmann anhand der folgenden detaillierten Beschreibung zugänglich. Die einzelnen Ausführungsformen sind dabei nicht einschränkend. Die Zeichnungen, welche der Beschreibung beigefügt sind, lassen sich wie folgt beschreiben:
-
FIG 1 zeigt schematisch eine Brennereinrichtung ohne λ-Erfassung. -
FIG 2 zeigt eine Brennereinrichtung mit O2-Sensor zur λ-Erfassung im Abgas. -
FIG 3 zeigt eine Brennereinrichtung mit Ionisationselektrode zur λ-Erfassung. -
FIG 4 veranschaulicht eine Kennlinie von Luftzufuhr über Luftklappen-Position. -
FIG 5 veranschaulicht eine Kennlinie von Luftzufuhr über gemessenem Luftmassenstrom, wobei die Messung des Luftmassenstromes im Bypass angeordnet sein kann. -
FIG 6 veranschaulicht eine Kennlinie von Brennstoffzufuhr über Brennstoffklappenposition. -
FIG 7 zeigt Werte h = HU /Lmin für verschiedene Gase in Gruppen zusammengefasst. -
FIG 8 zeigt Werte h = HU /Lmin für Gasgruppen ohne Spezialgase in Abhängigleit von Lmin mit Detektionsgrenzen.
-
FIG 1 shows schematically a burner device without λ detection. -
FIG 2 shows a burner device with O 2 sensor for λ detection in the exhaust gas. -
FIG 3 shows a burner device with ionization electrode for λ detection. -
FIG 4 illustrates a characteristic curve of air supply versus air flap position. -
FIG 5 illustrates a characteristic curve of air supply over measured air mass flow, whereby the measurement of the air mass flow can be arranged in the bypass. -
FIG 6 illustrates a characteristic curve of fuel supply versus fuel flap position. -
FIG 7 shows values h = H U / L min for different gases grouped together. -
FIG 8 shows values h = H U / L min for gas groups without special gases as a function of L min with detection limits.
Die Zuluft 4 für den Verbrennungsprozess wird über ein (motorisch) angetriebenes Gebläse 3 der Brennereinrichtung 1 zugeführt. Über die Signalleitung 15 gibt die Regel- und/oder Steuer- und/oder Überwachungseinrichtung 13 dem Gebläse 3 die Luftzufuhr V̇L vor, die es fördern soll. Damit wird die Gebläsedrehzahl ein Mass für die geförderte Luftmenge.The supply air 4 for the combustion process is supplied to the
Gemäss einer Ausführungsform wird die Gebläsedrehzahl der Regel- und/oder Steuer- und/oder Überwachungseinrichtung 13 vom Gebläse 3 zurückgemeldet. Wird die Luftmenge über eine Luftklappe 4 und/oder ein Ventil eingestellt, kann als Mass für die Luftmenge die Klappen- und/oder Ventilstellung und/oder der aus dem Signal eines Massenstromsensors 12 und/oder Volumenstromsensors abgeleitete Messwert verwendet werden. Der Sensor ist vorteilhaft im Kanal 5 für die Luftzufuhr V̇L angeordnet. Vorteilhaft stellt der Sensor ein Signal bereit, welches anhand einer geeigneten Signalverarbeitungseinheit in einen Strömungsmesswert gewandelt wird. Eine Signalverarbeitungseinrichtung umfasst idealerweise mindestens einen Analog-Digital-Wandler. Gemäss einer Ausführungsform ist die Signalverarbeitungseinrichtung, insbesondere der oder die Analog-Digital-Wandler, integriert in die Regel- und/oder Steuer- und/oder Überwachungseinrichtung 13.According to one embodiment, the fan speed of the regulating and/or control and/or
Als Mass für die Luftzufuhr V̇L kann auch der Messwert eines Drucksensors und/oder eines Massenstromsensors 12 in einem Seitenkanal verwendet werden. Eine Verbrennungseinrichtung mit Zufuhrkanal und Seitenkanal ist beispielsweise im europäischen Patent
Der Sensor 12 ermittelt ein Signal, welches der von der Luftzufuhr V̇L abhängigen Druckwert und/oder dem Luftstrom (Teilchen- und/oder Massenstrom) im Seitenkanal entspricht. Vorteilhaft stellt der Sensor 12 ein Signal bereit, welches anhand einer geeigneten Signalverarbeitungseinrichtung in einen Messwert gewandelt wird. Gemäss einer weiteren vorteilhaften Ausführungsform werden die Signale mehrerer Sensoren in einen gemeinsamen Messwert gewandelt. Eine geeignete Signalverarbeitungseinrichtung umfasst idealerweise mindestens einen Analog-Digital-Wandler. Gemäss einer Ausführungsform ist die Signalverarbeitungseinrichtung, insbesondere der oder die Analog-Digital-Wandler, integriert in die Regel- und/oder Steuer- und/oder Überwachungseinrichtung 13.The
Gemäss einer Ausführungsform ist die Luftzufuhr V̇L der Wert der aktuellen Luftdurchflussrate. Die Luftdurchflussrate kann in Kubikmeter Luft pro Stunde gemessen und/oder angegeben sein. Die Luftzufuhr V̇L kann in Kubikmeter Luft pro Stunde gemessen und/oder angegeben sein.According to one embodiment, the air supply V̇ L is the value of the current air flow rate. The air flow rate can be measured and/or indicated in cubic meters of air per hour. The air supply V̇ L can be measured and/or indicated in cubic meters of air per hour.
Massenstromsensoren 12 erlauben die Messung bei grossen Flussgeschwindigkeiten speziell in Verbindung mit Brennereinrichtungen im Betrieb. Typische Werte solcher Flussgeschwindigkeiten liegen den Bereichen zwischen 0.1 Meter pro Sekunde und 5 Meter pro Sekunde, 10 Meter pro Sekunde, 15 Meter pro Sekunde, 20 Meter pro Sekunde, oder sogar 100 Meter pro Sekunde. Massenstromsensoren, welche sich für die vorliegende Offenbarung eignen, sind beispielsweise OMRON® D6F-W oder Typ SENSOR TECHNICS® WBA Sensoren. Der nutzbare Bereich dieser Sensoren beginnt typisch bei Geschwindigkeiten zwischen 0.01 Meter pro Sekunde und 0.1 Meter pro Sekunde und endet bei einer Geschwindigkeit wie beispielsweise 5 Meter pro Sekunde, 10 Meter pro Sekunde, 15 Meter pro Sekunde, 20 Meter pro Sekunde, oder sogar 100 Meter pro Sekunde. Mit anderen Worten, es können untere Grenzen wie 0.1 Meter pro Sekunde kombiniert werden mit oberen Grenzen wie 5 Meter pro Sekunde, 10 Meter pro Sekunde, 15 Meter pro Sekunde, 20 Meter pro Sekunde, oder sogar 100 Meter pro Sekunde.
Die Brennstoffzufuhr V̇B wird durch die Regel- und/oder Steuer- und/oder Überwachungseinrichtung 13 mit Hilfe eines Brennstoffaktors und/oder eines (motorisch) einstellbaren Ventils eingestellt und/oder ausgeregelt. In der Ausführung in
Wird als Aktor 9 eine Gasklappe verwendet, so kann als Mass für die Menge an Brenngas die Position einer Klappe verwendet werden. Alternativ kann als Mass für die Menge an Brenngas der aus dem Signal eines Massenstromsensors und/oder eines Volumenstromsensors abgeleitete Messwert verwendet werden. Jener Sensor ist vorteilhaft im Zufuhrkanal für Brennstoff angeordnet. Jener Sensor erzeugt ein Signal, welches anhand einer geeigneten Signalverarbeitungseinrichtung in einen Strömungsmesswert (Messwert des Teilchen- und/oder Massenstromes und/oder Volumenstromes) gewandelt wird. Eine geeignete Signalverarbeitungseinrichtung umfasst idealerweise mindestens einen Analog-Digital-Wandler. Gemäss einer Ausführungsform ist die Signalverarbeitungseinrichtung, insbesondere der oder die Analog-Digital-Wandler, integriert in die Regel-, Steuer- und Überwachungseinrichtung 13.If a gas flap is used as
Der Fachmann erkennt, dass die oben genannten Werte auch aus einer Kombination von durch Sensoren ermittelten Grössen berechnet werden können. Jene Werte sind dann Masse für die Zufuhr (Teilchen- und/oder Massenstrom und/oder Volumenstrom) an Brenngas. Der Fachmann erkennt weiterhin, dass auf ähnliche Art und Weise die Zufuhr an Brennstoff eines flüssigen Brennstoffes ermittelt werden kann.The person skilled in the art will recognize that the above-mentioned values can also be calculated from a combination of variables determined by sensors. These values are then masses for the supply (particle and/or mass flow and/or volume flow) of fuel gas. The person skilled in the art will also recognize that the supply of fuel of a liquid fuel can be determined in a similar manner.
Der Luftzahlsensor 20 zur Erfassung der Luftzahl λ erzeugt ein Signal 21. Das Signal 21 wird von der Regel- und/oder Steuer- und/oder Überwachungseinrichtung 13 eingelesen und geeignet ausgewertet. Mit Hilfe des Signales 21 kann für jede Luftzufuhr V̇L eine vorgegebene Luftzahl λ ausgeregelt werden. Dabei wird die gemessene Luftzufuhr V̇L über den Aktor 9 in der Brennstoffzufuhr V̇B und/oder über den Aktor 3, 4 in der Luftzufuhr VLauf einen vorgegebenen Sollwert ausgeregelt.The
Die Messgrösse für die Luftzufuhr V̇L kann als eine direkte Kennlinie aus Luftzufuhr V̇L über Gebläsedrehzahl oder aus Luftzufuhr V̇L über Luftklappenstellung gegeben sein. Die Luftklappenstellung kann beispielsweise als Stellwinkel angegeben sein. Es ist auch eine Kombination aus Drehzahl und Stellwinkel möglich.
Idealerweise kann die Luftzufuhr V̇L mit einem Luftmassenstromsensor ermittelt werden. Eine entsprechende Kennlinie zeigt
Der Luftmassenstromsensor kann auch in einem Bypass am Luftzufuhrkanal 11 über einer Blende angeordnet sein. Eine Anordnung mit Bypass ist beispielsweise bekannt aus dem europäischen Patent
Die Luftzufuhr V̇L wird dann beispielsweise aus einer Kombination des Luftmassenstromsignales und der Luftklappenposition oder aber aus dem Luftmassenstromsignal und der Gebläsedrehzahl oder aus allen dreien ermittelt. Prinzipiell ist auch die Ermittlung der Luftzufuhr V̇L mit Hilfe eines Differenzdrucksensors über einer Blende oder einer Luftklappe, auch in beliebiger Kombination mit Luftmassenstromsensor, Gebläsedrehzahl und/oder Luftklappenstellung möglich.The air supply V̇ L is then determined, for example, from a combination of the air mass flow signal and the air flap position or from the air mass flow signal and the fan speed or from all three. In principle, the air supply V̇ L can also be determined using a Differential pressure sensor above a panel or an air flap, also possible in any combination with air mass flow sensor, fan speed and/or air flap position.
Die genannten Luftzufuhrsensoren bilden dabei ein unterschiedliches Mass für die Luftzufuhr V̇L . So ist das Messergebnis aus Drehzahl und Klappenstellung abhängig von weiteren Umgebungsbedingungen, wie Luftdruck, Lufttemperatur und Abgasweg. Um die Messgenauigkeit von V̇L . zu erhöhen, können in die Ermittlung auch Messwerte der Umgebungsbedingungen wie Zulufttemperatur, Luftfeuchte oder absoluter Luftdruck einfliessen. Wird ein Luftmassenstromsensor oder ein Differenzdrucksensor verwendet, so kann die Luftzufuhr V̇L auch ohne Einflüsse der Umgebungsbedingung bestimmt werden. Je nach Messgrösse bilden sich die nicht berücksichtigten Einflüsse der Umgebung wie auch die Genauigkeit des Messergebnisses in der Genauigkeit des Ist-Wertes Pist der Leistung der Brennerreinrichtung 1 ab. Die Luftzufuhr V̇L und/oder der Ist-Wert Pist der Leistung der Brennereinrichtung 1 können dabei absolut oder relativ zum Maximalwert der Kennlinie und/oder einem anderen Wert berechnet werden.The air supply sensors mentioned provide a different measure for the air supply V̇ L . The measurement result from the speed and flap position depends on other ambient conditions, such as air pressure, air temperature and exhaust gas path. In order to increase the measurement accuracy of V̇ L ., measured values of the ambient conditions such as supply air temperature, air humidity or absolute air pressure can also be included in the determination. If an air mass flow sensor or a differential pressure sensor is used, the air supply V̇ L can also be determined without the influence of the ambient conditions. Depending on the measured variable, the unconsidered influences of the environment as well as the accuracy of the measurement result are reflected in the accuracy of the actual value P is the output of the
Entsprechende Überlegungen wie für die Messung der Luftzufuhr V̇L gelten für die Messung der Brennstoffzufuhr V̇B. Die Messgrösse für die Brennstoffzufuhr V̇B kann eine direkte Kennlinie aus Brennstoffzufuhr V̇B über Brennstoffventilstellung gegeben sein. Die Brennstoffventilstellung kann beispielsweise als Stellwinkel angegeben sein.
Idealerweise kann die Luftzufuhrkennlinie an einer Brennereinrichtung 1 im Werk mit beispielsweise einem Luftmassenstromsensor oder einem Drehzahlgeber voreingestellt sein. Alternativ kann sie auch an einer einzelnen Brennereinrichtung 1 über einen Brennstoffzähler und/oder Brenngaszähler zur Ermittlung von V̇B mit bekanntem Brennstoff und einem Luftzahlsensor 20 zur Erfassung der Luftzahl λ berechnet werden. Zur Berechnung dient die Beziehung über V̇L = λ · Lmin · V̇B zwischen Luftzufuhr V̇L, Luftzahl λ, bekanntem Mindestluftbedarf Lmin und bekannter Brennstoffzufuhr V̇B. Ideally, the air supply characteristic curve can be preset on a
Wurde die Luftzufuhr V̇L, wie oben dargestellt, im Werk oder an der Brennereinrichtung 1 vor Ort eingestellt, so kann nach Einstellung der Luftzahl λ die Leistung Pist für jeden Brennstoff bestimmt werden. Dazu werden die bekannten Parameter herangezogen. Mit nur einer Luftzufuhrkennlinie kann der Brenner für jeden Brennstoff mit bekanntem Parameter
Für eine manuelle Anpassung der Leistung an einen Brennstoff müssen Mindestluftbedarf Lmin , Brennstoffparameter
Die Leistung kann bei der gleichen Luftzufuhr V̇L gemäss den Berechnungen oben für eine unveränderte Luftzahl λ zu
Wird die Luftzahl λ mit Hilfe eines O2-Sensors oder mit Hilfe einer Ionisationselektrode ermittelt, kann die Luftzahl λ bei einer Änderung der Brennstoffzusammensetzung über einen Regelkreis konstant gehalten werden. Beim O2-Sensor wird die Luftzahl λ direkt aus dem Ergebniswert des Sensors gemäss dem Stand der Technik berechnet. Beispielsweise lässt sich die Luftzahl λ aus dem Sauerstoffgehalt O2 anhand der Beziehung
Gegenüber einer Referenz- Brennstoffzufuhr V̇ B0 , die an einer Brennereinrichtung 1 eingestellt wurde, berechnet sich die neue Brennstoffzufuhr zu V̇B = k · V̇ B0 , über der gesamten Modulationskennlinie des Brennstoffes über der Leistung. Dabei wird eine gleiche Luftzahl λ angenommen. Der Stellaktor wird dabei entsprechend so eingestellt, dass über dem gesamten Modulationsbereich V̇ B1 gegenüber V̇ B0 um den Faktor k verschoben ist. Mithin braucht der geänderte Brennstoff nur an einem Leistungspunkt ausgeregelt zu sein, damit der Faktor k bekannt ist. Mit Hilfe dieses Faktors k sind die geänderten Brennstoffaktorstellungen über dem gesamten Leistungsbereich bekannt und damit die geänderte Modulationskennlinie festgelegt. Der ausgeregelte Faktor k ist gemäss den Berechnungen oben für unverändertes λ als
Gibt man für einen anderen Brennstoff beispielsweise im Rahmen einer Brennstoffumschaltung andere Luftzahlsollwerte vor, so wird der Faktor k zu k =
Hat man für ein Referenzgas mit bekanntem Mindestluftbedarf Lmin0 die Brennstoffmodulationskennlinie eingestellt, so kann nach dem Ausregeln von λ mit dem ermittelten Faktor k der für den aktuell vorliegenden Brennstoff notwendigen Mindestluftbedarf zu
Ist die Brennstoff-Zusammensetzung bekannt, so kann der neue Ist-Wert Pist der Leistung der Brennereinrichtung 1 auch bei sich ändernder Brennstoffzusammensetzung wie oben beschrieben zu
So sind in
Die in
Gasgruppe 24 und der Gasgruppe 26 keine Leistungskorrektur vorgenommen zu werden. Da aber normalerweise bekannt ist, ob Flüssiggas (= Gase der dritten Familie) anliegt, kann die Korrektur manuell vorgenommen werden, indem der einzelne, skalare Brennstoffparameter
Die in
Bei dem in
Wie schon oben erwähnt, muss bei Wechsel innerhalb einer Gasgruppe im Rahmen der angegebenen Genauigkeit keine Leistungskorrektur vorgenommen werden. Bei Wechsel von Gasgruppe zu Gasgruppe ist bekannt, welche Gasgruppe anliegt. Die Korrektur kann über Änderung von h manuell erfolgen.As already mentioned above, when changing within a gas group, no power correction is required within the specified accuracy. When changing from gas group to gas group, it is known which gas group is present. The correction can be made manually by changing h.
Bisweilen kommen die verschiedenen Gase oder Gase aus Gasgruppen aus verschiedenen Brennstoffzufuhrleitungen und die Absperrventile der jeweiligen Brennstoffzufuhrleitungen werden ab und zugeschaltet. Dann kann mit dem Umschalten der Brennstoffzufuhr V̇B auch der Gasparameter gewechselt werden. Mithin kann die Leistung oder die Brennermodulation angepasst werden.Sometimes the different gases or gases from gas groups come from different fuel supply lines and the shut-off valves of the respective fuel supply lines are switched on and off. Then the gas parameter can also be changed by switching the fuel supply V̇ B. The power or the burner modulation can therefore be adjusted.
Als Brennstoffe sind beispielsweise bekannt:
- Erdgas aus dem Versorgungsnetz,
- Flüssiggas,
- Gas auf Sardinien,
- Prozessgase mit bekannter Zusammensetzung (erste Gasfamilie),
- Flüssige Brennstoffe, wie Heizöl EL etc.,
- Mischungen umfassend Wasserstoff und
- reiner Wasserstoff.
- Natural gas from the supply network,
- LPG,
- Gas in Sardinia,
- Process gases with known composition (first gas family),
- Liquid fuels, such as heating oil EL etc.,
- Mixtures comprising hydrogen and
- pure hydrogen.
Weil die Zusammensetzungen jeweils bekannt sind, ist auch jeweils der einzelne, skalare Brennstoffparameter h bekannt.Because the compositions are known, the individual scalar fuel parameter h is also known.
Wenn man die Sondergasgruppen 15, 27, 28, 29 ausnimmt, bei denen bekannt ist, wann sie anliegen, kann man die Leistungskorrektur auch weiter automatisieren. Dazu berechnet man mit dem durch die Regelung ermittelten Faktor k den neuen Mindestluftbedarf
Ist der Wert 22 von Lmin grösser als die Schwelle 31, so handelt es sich um Flüssiggas mit dem Wert
Für die bekannten Prozessgase und auch andere, beispielsweise flüssige, Brennstoffe wird angenommen, dass diese nicht im allgemeinen Versorgungsnetz auftreten können. Für sie wird der einzelne, skalare Brennstoffparameter h direkt und/oder manuell in die Regel- und/oder Steuer- und/oder Überwachungseinrichtung 13 eingegeben, wenn die jeweiligen Brennstoffe eingespeist werden.For the known process gases and also other fuels, such as liquid fuels, it is assumed that these cannot occur in the general supply network. For them, the individual, scalar fuel parameter h is entered directly and/or manually into the regulating and/or control and/or
Mit dem aktuell bestimmten Ist-Wert Pist der Leistung der Brennereinrichtung 1 kann ein Leistungsregler direkt in einem geschlossenen Regelkreis betrieben werden. Der Ist-Wert Pist der Leistung der Brennereinrichtung 1 kann auf einen vorgegebenen Sollwert Psoll der Leistung der Brennereinrichtung 1 ausgeregelt werden.With the currently determined actual value P is the output of the
Der Leistungssollwert kann von einer übergeordneten Temperaturregeleinheit erzeugt werden. Er kann auch direkt als Sollwert von einer Bedieneinheit und/oder einer Einheit zur Erwärmung eines Gutes und/oder bei Verbrennung eines anliegenden Restbrennstoffs aus einem chemischen Prozess dem Leistungsregler vorgegeben werden.The power setpoint can be generated by a higher-level temperature control unit. It can also be specified directly to the power controller as a setpoint by an operating unit and/or a unit for heating a product and/or when burning residual fuel from a chemical process.
Wegen
Aus dem ermittelten Ist-Wert Pist der Leistung der Brennereinrichtung 1 kann leicht der Energieumsatz berechnet werden, indem der Ist-Wert Pist der Leistung der Brennereinrichtung 1 über die Zeit integriert wird. So kann auch bei wechselnden Brennstoffen der Energieumsatz berechnet werden.The energy conversion can easily be calculated from the determined actual value P of the output of the
Wenn bekannt ist, wann der Brennstoff umgeschaltet wird, kann der Energieumsatz für die einzelnen Brennstoffe berechnet werden. Bei automatischer Erkennung des Brennstoffparameters h kann über den Wechsel von h die Umschaltung detektiert werden.If it is known when the fuel is switched, the energy conversion for the individual fuels can be calculated. If the fuel parameter h is automatically recognized, the switchover can be detected via the change in h.
Ist der Energieumsatz bekannt, so können die Energiekosten direkt ermittelt werden, sofern die Kosten pro Energieeinheit bekannt sind. Sind die Kosten für einzelne Brennstoffe unterschiedlich, so kann dies wie oben beschrieben detektiert werden. Mithin können die Kosten für den Verbrauch der einzelnen Brennstoffe berechnet werden.If the energy turnover is known, the energy costs can be determined directly, provided the costs per unit of energy are known. If the costs for individual fuels are different, this can be detected as described above. The costs for the consumption of the individual fuels can therefore be calculated.
Teile einer Regeleinheit und/oder eines Verfahrens gemäss der vorliegenden Offenbarung können als Hardware und/oder als Softwaremodul, welches von einer Recheneinheit gegebenenfalls unter Hinzunahme von Containervirtualisierung ausgeführt wird, und/oder anhand eines Cloud-Rechners und/oder anhand einer Kombination der vorgenannten Möglichkeiten realisiert werden. Die Software mag eine Firmware und/oder einen Hardware-Treiber, der innerhalb eines Betriebssystems ausgeführt wird und/oder eine Container-Virtualisierung und/oder ein Anwendungsprogramm umfassen. Die vorliegende Offenbarung bezieht sich also auch auf ein Rechnerprogrammprodukt, welches die Merkmale dieser Offenbarung enthält und/oder die erforderlichen Schritte ausführt. Bei Realisierung als Software können die beschriebenen Funktionen gespeichert werden als eine oder mehrere Befehle auf einem Rechner-lesbaren Medium. Einige Beispiele Rechner-lesbarer Medien schliessen Arbeitsspeicher (RAM) und/oder magnetischen Arbeitsspeicher (MRAM) und/oder ausschliesslich lesbaren Speicher (ROM) und/oder Flash-Speicher und/oder elektronisch programmierbares ROM (EPROM) und/oder elektronisch programmierbares und löschbares ROM (EEPROM) und/oder Register einer Recheneinheit und/oder eine Festplatte und/oder eine auswechselbare Speichereinheit und/oder einen optischen Speicher und/oder jegliches geeignete Medium ein, auf welches durch einen Rechner oder durch andere IT-Vorrichtungen und Anwendungen zugegriffen werden kann.Parts of a control unit and/or a method according to the present disclosure can be implemented as hardware and/or as a software module, which is executed by a computing unit, possibly with the addition of container virtualization, and/or using a cloud computer and/or using a combination of the aforementioned possibilities. The software may be a firmware and/or a Hardware driver that runs within an operating system and/or a container virtualization and/or an application program. The present disclosure thus also relates to a computer program product that includes the features of this disclosure and/or performs the required steps. When implemented as software, the described functions can be stored as one or more instructions on a computer-readable medium. Some examples of computer-readable media include random access memory (RAM) and/or magnetic random access memory (MRAM) and/or read-only memory (ROM) and/or flash memory and/or electronically programmable ROM (EPROM) and/or electronically programmable and erasable ROM (EEPROM) and/or registers of a computing unit and/or a hard disk and/or a removable storage unit and/or an optical storage and/or any suitable medium that can be accessed by a computer or by other IT devices and applications.
Mit anderen Worten, die vorliegende Erfindung lehrt ein Verfahren zur Regelung einer Brennereinrichtung nach Anspruch 1. Bevorzugte Ausführungsbeispiele sind in den abhängigen Ansprüchen definiert. Die vorliegende Erfindung lehrt zudem ein entsprechendes Computerprogrammprodukt nach Anspruch 6 und ein entsprechendes nicht-flüchtiges computerlesbares Speichermedium nach Anspruch 7.In other words, the present invention teaches a method for controlling a burner device according to
Das Genannte bezieht sich auf einzelne Ausführungsformen der Offenbarung. Verschiedene Änderungen an den Ausführungsformen können vorgenommen werden, ohne von der zu Grunde liegenden Idee abzuweichen und ohne den Rahmen dieser Offenbarung zu verlassen. Der Gegenstand der vorliegenden Erfindung ist definiert über deren Ansprüche. Es können verschiedenste Änderungen vorgenommen werden, ohne den Schutzbereich der folgenden Ansprüche zu verlassen.The above relates to individual embodiments of the disclosure. Various changes can be made to the embodiments without departing from the underlying idea and without departing from the scope of this disclosure. The subject matter of the present invention is defined by its claims. Various changes can be made without departing from the scope of the following claims.
- 1: Brennereinrichtung1: Burner device
- 2: Feuerraum2: Firebox
- 3: Gebläse mit (optional) veränderlicher Drehzahl3: Fan with (optional) variable speed
- 4: Luftklappe mit Stell-Antrieb4: Air damper with actuator
- 5: Verbrennungsluft5: Combustion air
- 6: Brennstoff für Verbrennung bzw. Brennstoffzufuhrkanal6: Fuel for combustion or fuel supply channel
- 7: Sicherheitsabsperrventil7: Safety shut-off valve
- 8: Sicherheitsabsperrventil8: Safety shut-off valve
- 9: Brennstoffaktor mit Stellantrieb zur Veränderung der Brennstoffzufuhr9: Fuel actuator with actuator for changing the fuel supply
- 10: Abgas10: Exhaust
- 11: Luftzufuhrkanal11: Air supply duct
- 12: Sensor zur Erfassung der Luftzufuhr (Luftmassenstrom / Drehzahl etc.)12: Sensor for detecting the air supply (air mass flow / speed etc.)
- 13: Regel- und/oder Steuer- und/oder Überwachungseinrichtung13: Control and/or monitoring device
- 14: Steuersignal für Luftklappe (Stellwinkel)14: Control signal for air flap (setting angle)
- 15: Ansteuersignal für Gebläsedrehzahl (optional)15: Control signal for fan speed (optional)
- 16: Messsignal vom Luftzufuhrsensor16: Measuring signal from the air supply sensor
- 17: Auf-/Zu-Signal für Sicherheitsabsperrventil17: Open/close signal for safety shut-off valve
- 18: Auf-/Zu-Signal für Sicherheitsabsperrventil18: Open/close signal for safety shut-off valve
- 19: Steuersignal für Brennstoffaktor (beispielsweise Stellwinkel / SchrittStellung)19: Control signal for fuel actuator (e.g. setting angle / step position)
- 20: Sensor zur Erfassung der Luftzahl λ (O2-Sensor / Ionisationselektrode etc.)20: Sensor for measuring the air ratio λ (O 2 sensor / ionization electrode etc.)
- 21: Messignal vom Luftzahlsensor zur Erfassung der Luftzahl21: Measuring signal from the air ratio sensor for recording the air ratio
- 22: Mindestluft-Bedarf für jeweiligen Brennstoff22: Minimum air requirement for each fuel
- 23: einzelner, skalarer Brennstoffparameter h = Hu /Lmin 23: single, scalar fuel parameter h = H u / L min
- 24: verschiedene Gase der zweiten Gasfamilie einschliesslich von Sondergasen (Gasmischungen mit Methan als Basis-Gas)24: various gases of the second gas family including special gases (gas mixtures with methane as base gas)
- 25: spezielles Sondergas der zweiten Gasfamilie (hier Propan-Luft-Gemisch)25: special gas of the second gas family (here propane-air mixture)
- 26: verschiedene Gase der dritten Gasfamilie (Propan-Mischungen)26: various gases of the third gas family (propane mixtures)
- 27: spezielles Sondergas der ersten Gasfamilie27: special gas of the first gas family
- 28: spezielles Sondergas der ersten Gasfamilie28: special gas of the first gas family
- 29: spezielles Sondergas der ersten Gasfamilie29: special gas of the first gas family
- 30: Wasserstoff und Methan-Wasserstoff-Mischungen30: Hydrogen and methane-hydrogen mixtures
- 31: Grenzwert des Mindestluftbedarfes Lmin der Gase zwischen zweiter und dritter Gasfamilie31: Limit value of the minimum air requirement L min of the gases between the second and third gas families
- 32: Grenzwert des Mindestluftbedarfes Lmin der Gase zwischen zweiter Gasfamilie und Methan-Wasserstoff-Mischungen32: Limit value of the minimum air requirement L min of the gases between the second gas family and methane-hydrogen mixtures
Claims (7)
- Method for controlling a burner facility (1), the burner facility (1) comprising a combustion chamber (2), an air supply duct (11) that leads to the combustion chamber (2) and comprises at least one air actuator (3, 4) that is embodied so as to adjust a value of an air supply V̇L through the air supply duct (11), and a fuel supply duct (6) that leads to the combustion chamber (2) and comprises at least one fuel actuator (9) that is embodied so as to adjust a value of a fuel supply V̇B through the fuel supply duct (6), the burner facility (1) comprising at least one air ratio sensor (20) and a open-loop control and/or closed-loop control and/or monitoring unit (13) comprising a memory in which is stored at least one characteristic value (31, 32) comprising a minimum air requirement, the method comprising the steps:recording at least one air ratio signal (21) by way of the at least one air ratio sensor (20) and processing the at least one air ratio signal (21) to form a value of an air ratio λ;recording at least one air supply signal (14 - 16) that is a measurement for a value of the air supply V̇L through the air supply duct (11) to the combustion chamber (2), said value being adjusted with the aid of the at least one air actuator (3, 4), and processing the at least one air supply signal (14 - 16) to form a value of an air supply V̇L ;recording at least one fuel supply signal (17 - 19) that is a measurement for a value of a fuel supply V̇B through the fuel supply duct (6) to the combustion chamber (2), said value being adjusted with the aid of the at least one fuel actuator (9), and processing the at least one fuel supply signal (17 - 19) to form a value of a fuel supply V̇B ;calculating a minimum air requirement (22) as a function of the value of the air supply V̇L and as a function of the value of the fuel supply V̇B and as a function of the value of the air ratio λ;comparing the calculated minimum air requirement (22) with the minimum air requirement of the at least one characteristic value (31, 32) that is stored in the memory of the open-loop control and/or closed-loop control and/or monitoring unit (13);allocating a fuel group from the comparison of the calculated minimum air requirement (22) with the minimum air requirement of the at least one characteristic value (31, 32) that is stored in the memory of the open-loop control and/or closed-loop control and/or monitoring unit (13);providing the individual scalar fuel parameter h as a function of the allocated fuel group;measuring and/or predetermining a value of an air supply V̇L through the air supply duct (11);measuring and/or predetermining a value of an air ratio λ;calculating an actual value Pactual of a power output of the burner facility (1) from the measured and/or predetermined value of the air supply V̇L, the measured and/or predetermined value of the air ratio λ and the individual scalar fuel parameter h in accordance withcontrolling the burner facility (1) with the aid of the at least one fuel actuator (9) and preferably of the at least one air actuator (3, 4) in dependence upon the actual value Pactual of the power output of the burner facility (1) and in dependence upon a target value Ptarget of the power output of the burner facility (1) until the target value Ptarget of the power output of the burner facility (1) is achieved.
- The method according to claim 1, wherein the air supply duct (11) leads directly to the combustion chamber (2) and the fuel supply duct (6) leads directly to the combustion chamber (2) .
- The method according to claim 1, wherein the air supply duct (11) and the fuel supply duct (6) issue upstream of the combustion chamber (2) into a common mixture feed that leads to the combustion chamber (2).
- The method according to one of claims 1 to 3,wherein the at least one characteristic value (31, 32) that is stored in the memory of the open-loop control and/or closed-loop control and/or monitoring unit (13) comprises the minimum air requirement in the form of a limit value (31, 32);wherein the limit value (31, 32) delimits values of the minimum air requirement of a first and a second fuel group from one another; andwherein the method comprises the step:
allocating the calculated minimum air requirement (22) to the first or to the second fuel group with the aid of the limit value (31, 32) of the at least one characteristic value (31, 32) that is stored in the open-loop control and/or closed-loop control and/or monitoring unit (13). - The method according to one of claims 1 to 4,wherein the step of calculating the minimum air requirement as a function of the value of the air supply V̇L and as a function of the value of the fuel supply V̇B and as a function of the value of the air ratio λ comprises the step;calculating the minimum air requirement as a quotient from the value of the air supply V̇L and a product from the value of the fuel supply V̇B and from the value of the air ratio λ.
- Computer program product comprising commands that in the case of implementing the program by a open-loop control and/or closed-loop control and/or monitoring unit (13) for a burner facility (1), the burner facility (1) comprising a combustion chamber (2), an air supply duct (11) that leads to the combustion chamber (2) and comprises at least one air actuator (3, 4) that is embodied so as to adjust a value of an air supply V̇L through the air supply duct (11), and a fuel supply duct (6) that leads to the combustion chamber (2) and comprises at least one fuel actuator (9) that is embodied so as to adjust a value of a fuel supply V̇B through the fuel supply duct (6), the burner facility (1) comprising at least one air ratio sensor (20) and a open-loop control and/or closed-loop control and/or monitoring unit (13) comprising a memory in which is stored at least one characteristic value (31, 32) comprising a minimum air requirement, cause the open-loop control and/or closed-loop control and/or monitoring unit (13):to record at least one air ratio signal (21) by way of the at least one air ratio sensor (20) and processing the at least one air ratio signal (21) to form a value of an air ratio λ;to record at least one air supply signal (14 - 16) that is a measurement for a value of the air supply V̇L through the air supply duct (11) to the combustion chamber (2), said value being adjusted with the aid of the at least one air actuator (3, 4), and to process the at least one air supply signal (14 - 16) to form a value of an air supply V̇L ;to record at least one fuel supply signal (17 - 19) that is a measurement for a value of a fuel supply V̇B through the fuel supply duct (6) to the combustion chamber (2), said value being adjusted with the aid of the at least one fuel actuator (9), and to process the at least one fuel supply signal (17 - 19) to form a value of a fuel supply V̇B ;to calculate a minimum air requirement (22) as a function of the value of the air supply V̇L and as a function of the value of the fuel supply V̇B and as a function of the value of the air ratio λ;to compare the calculated minimum air requirement (22) with the minimum air requirement of the at least one characteristic value (31, 32) that is stored in the memory of the open-loop control and/or closed-loop control and/or monitoring unit (13);to allocate a fuel group from the comparison of the calculated minimum air requirement (22) with the minimum air requirement of the at least one characteristic value (31, 32) that is stored in the memory of the open-loop control and/or closed-loop control and/or monitoring unit (13); andto provide the individual scalar fuel parameter h as a function of the allocated fuel group;to calculate an actual value Pactual of a power output of the burner facility (1) from a measured and/or predetermined value of the air supply VL, a measured and/or predetermined value of the air ratio λ and an individual scalar fuel parameter h in accordance withto control the burner facility (1) with the aid of the at least one fuel actuator (9) and preferably of the at least one air actuator (3, 4) in dependence upon the actual value Pactual of the power output of the burner facility (1) and in dependence upon a target value Ptarget of the power output of the burner facility (1) until the target value Ptarget of the power output of the burner facility (1) is achieved.
- Non-volatile computer-readable memory storage medium that stores a set of commands for implementation by at least one open-loop control and/or closed-loop control and/or monitoring unit (13) for a burner facility (1), the burner facility (1) comprising a combustion chamber (2), an air supply duct (11) that leads to the combustion chamber (2) and comprises at least one air actuator (3, 4) that is embodied so as to adjust a value of an air supply V̇L through the air supply duct (11), and a fuel supply duct (6) that leads to the combustion chamber (2) and comprises at least one fuel actuator (9) that is embodied so as to adjust a value of a fuel supply V̇B through the fuel supply duct (6), the burner facility (1) comprising at least one air ratio sensor (20) and a open-loop control and/or closed-loop control and/or monitoring unit (13) comprising a memory in which is stored at least one characteristic value (31, 32) comprising a minimum air requirement, wherein the set of commands, if it is implemented by the open-loop control and/or closed-loop control and/or monitoring unit (13):records at least one air ratio signal (21) by way of the at least one air ratio sensor (20) and processes the at least one air ratio signal (21) to form a value of an air ratio λ;records at least one air supply signal (14 - 16) that is a measurement for a value of the air supply V̇L through the air supply duct (11) to the combustion chamber (2), said value being adjusted with the aid of the at least one air actuator (3, 4), and processes the at least one air supply signal (14 - 16) to form a value of an air supply V̇L ;records at least one fuel supply signal (17 - 19) that is a measurement for a value of a fuel supply V̇B through the fuel supply duct (6) to the combustion chamber (2), said value being adjusted with the aid of the at least one fuel actuator (9), and to process the at least one fuel supply signal (17 - 19) to form a value of a fuel supply V̇B ;calculates a minimum air requirement (22) as a function of the value of the air supply V̇L and as a function of the value of the fuel supply V̇B and as a function of the value of the air ratio λ;compares the calculated minimum air requirement (22) with the minimum air requirement of the at least one characteristic value (31, 32) that is stored in the memory of the open-loop control and/or closed-loop control and/or monitoring unit (13);allocates a fuel group from the comparison of the calculated minimum air requirement (22) with the minimum air requirement of the at least one characteristic value (31, 32) that is stored in the memory of the open-loop control and/or closed-loop control and/or monitoring unit (13); andprovides an individual scalar fuel parameter h as a function of the allocated fuel group;calculates an actual value Pactual of a power output of the burner facility (1) from a measured and/or predetermined value of the air supply V̇L, a measured and/or predetermined value of the air ratio λ and an individual scalar fuel parameter h in accordance withcontrols the burner facility (1) with the aid of the at least one fuel actuator (9) and preferably of the at least one air actuator (3, 4) in dependence upon the actual value Pactual of the power output of the burner facility (1) and in dependence upon a target value Ptarget of the power output of the burner facility (1) until the target value Ptarget of the power output of the burner facility (1) is achieved.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210178562.XA CN114963230A (en) | 2021-02-26 | 2022-02-25 | Power output determination by fuel parameter |
US17/682,006 US20220282866A1 (en) | 2021-02-26 | 2022-02-28 | Power Output Determination by Way of a Fuel Parameter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP21159771 | 2021-02-26 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP4050258A1 EP4050258A1 (en) | 2022-08-31 |
EP4050258C0 EP4050258C0 (en) | 2024-06-05 |
EP4050258B1 true EP4050258B1 (en) | 2024-06-05 |
Family
ID=74844728
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP21194083.8A Active EP4050258B1 (en) | 2021-02-26 | 2021-08-31 | Method for controlling a burner device with power determination based on a fuel parameter |
Country Status (4)
Country | Link |
---|---|
US (1) | US20220282866A1 (en) |
EP (1) | EP4050258B1 (en) |
CN (1) | CN114963230A (en) |
PL (1) | PL4050258T3 (en) |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2626673B1 (en) * | 1988-01-29 | 1994-06-10 | Gaz De France | METHOD AND DEVICE FOR MEASURING THE HEAT POWER OF A VEHICLE BY A FUEL CURRENT |
DE10316994A1 (en) | 2003-04-11 | 2004-10-28 | E.On Ruhrgas Ag | Method of monitoring combustion in an incinerator |
DE102006051883B4 (en) | 2006-10-31 | 2015-02-12 | Gas- und Wärme-Institut Essen e.V. | Apparatus and method for adjusting, controlling or regulating the fuel / combustion air ratio for operating a burner |
EP2682679B1 (en) | 2012-07-04 | 2017-08-30 | Vaillant GmbH | Method for monitoring a gas fuelled burner |
DE102013106987A1 (en) | 2013-07-03 | 2015-01-08 | Karl Dungs Gmbh & Co. Kg | Method and device for determining a calorific value and gas-powered device with such a device |
EP2899548B1 (en) | 2014-01-27 | 2023-06-21 | Siemens Schweiz AG | Versatile detection circuit |
EP3299718B1 (en) | 2016-09-21 | 2019-10-30 | Siemens Aktiengesellschaft | Gas type detection |
EP3301362B1 (en) | 2016-09-30 | 2020-03-25 | Siemens Aktiengesellschaft | Method of controlling turbulent flows |
HUE046690T2 (en) | 2016-09-30 | 2020-03-30 | Siemens Ag | Combustion unit with a burner and flow measurement of turbulent flows |
-
2021
- 2021-08-31 EP EP21194083.8A patent/EP4050258B1/en active Active
- 2021-08-31 PL PL21194083.8T patent/PL4050258T3/en unknown
-
2022
- 2022-02-25 CN CN202210178562.XA patent/CN114963230A/en active Pending
- 2022-02-28 US US17/682,006 patent/US20220282866A1/en active Pending
Also Published As
Publication number | Publication date |
---|---|
EP4050258C0 (en) | 2024-06-05 |
EP4050258A1 (en) | 2022-08-31 |
US20220282866A1 (en) | 2022-09-08 |
PL4050258T3 (en) | 2024-10-07 |
CN114963230A (en) | 2022-08-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0259382B1 (en) | Device for regulating the proportion of combustion air to gaz | |
EP2005066B1 (en) | Method for starting a firing device in unknown general conditions | |
DE3888327T2 (en) | Fuel burner device and a control method. | |
EP3301362A1 (en) | Control of turbulent flows | |
DE102017103056A1 (en) | Fuel cell system and control method for the same | |
EP3596391B1 (en) | Method for controlling a combustion-gas operated heating device | |
DE102017204021A1 (en) | Method for updating a characteristic curve in a heating system as well as a control unit and a heating system | |
EP4050258B1 (en) | Method for controlling a burner device with power determination based on a fuel parameter | |
EP3299718B1 (en) | Gas type detection | |
AT413738B (en) | METHOD FOR REGULATING A COMBUSTION ENGINE | |
DE102011111453A1 (en) | Method for adjusting air ratio of combustion air-fuel mixture to desired air speed in air-fuel mixture combustion, involves controlling air ratio, when variation of combustion air flow or fuel quantity is less than or equal to variation | |
EP2843214A1 (en) | Method, sensor and control device for controlling gas-powered energy conversion systems | |
EP4194749A1 (en) | Control and/or regulation of a combustion device | |
DE102019101189A1 (en) | Process for regulating a gas mixture | |
EP3751200B1 (en) | Method for controlling a heater powered by combustion gas | |
EP4060233B1 (en) | Power detection and air/fuel ratio control by means of sensors in the combustion chamber | |
EP3896339B1 (en) | Method for adjusting a control of a heater | |
EP2848934A1 (en) | Method and sensor for determining fuel characteristics of gas mixtures | |
EP4435322A1 (en) | Control of a combustion apparatus | |
EP3290800B1 (en) | Method for updating a characteristic curve in a heating system and a control unit and a heating system | |
EP4119847A1 (en) | Combustion device comprising a control device | |
DE102008016047B4 (en) | Procedure for level monitoring | |
DE102017126138A1 (en) | Method for controlling a fuel gas operated heater | |
DE102004063992B4 (en) | Regulating and controlling process for firing apparatus involves using characteristic curve showing value range for setpoint temperature in accordance with two parameters | |
DE3203675A1 (en) | METHOD FOR REGULATING THE AIR SURCHARGE ON FIREPLACES AND CONTROL DEVICE FOR IMPLEMENTING THE METHOD |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20220303 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20230809 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20240318 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502021003908 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
U01 | Request for unitary effect filed |
Effective date: 20240605 |
|
U07 | Unitary effect registered |
Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI Effective date: 20240614 |
|
U20 | Renewal fee paid [unitary effect] |
Year of fee payment: 4 Effective date: 20240819 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240605 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240906 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PL Payment date: 20240822 Year of fee payment: 4 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240905 |