EP3870899B1 - Procédé de contrôle d'un capteur de mélange gazeux et d'un capteur d'ionisation dans un appareil de chauffage fonctionnant au gaz combustible - Google Patents

Procédé de contrôle d'un capteur de mélange gazeux et d'un capteur d'ionisation dans un appareil de chauffage fonctionnant au gaz combustible Download PDF

Info

Publication number
EP3870899B1
EP3870899B1 EP20723328.9A EP20723328A EP3870899B1 EP 3870899 B1 EP3870899 B1 EP 3870899B1 EP 20723328 A EP20723328 A EP 20723328A EP 3870899 B1 EP3870899 B1 EP 3870899B1
Authority
EP
European Patent Office
Prior art keywords
sensor
gas
ionization
signal
gas mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20723328.9A
Other languages
German (de)
English (en)
Other versions
EP3870899A1 (fr
Inventor
Hartmut Henrich
Stephan Wald
Jens Hermann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebm Papst Landshut GmbH
Original Assignee
Ebm Papst Landshut GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebm Papst Landshut GmbH filed Critical Ebm Papst Landshut GmbH
Publication of EP3870899A1 publication Critical patent/EP3870899A1/fr
Application granted granted Critical
Publication of EP3870899B1 publication Critical patent/EP3870899B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/12Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods
    • F23N5/123Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/02Regulating fuel supply conjointly with air supply
    • F23N1/022Regulating fuel supply conjointly with air supply using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/02Regulating fuel supply conjointly with air supply
    • F23N1/025Regulating fuel supply conjointly with air supply using electrical or electromechanical means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/18Systems for controlling combustion using detectors sensitive to rate of flow of air or fuel
    • F23N2005/181Systems for controlling combustion using detectors sensitive to rate of flow of air or fuel using detectors sensitive to rate of flow of air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/18Systems for controlling combustion using detectors sensitive to rate of flow of air or fuel
    • F23N2005/185Systems for controlling combustion using detectors sensitive to rate of flow of air or fuel using detectors sensitive to rate of flow of fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2221/00Pretreatment or prehandling
    • F23N2221/10Analysing fuel properties, e.g. density, calorific
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2223/00Signal processing; Details thereof
    • F23N2223/10Correlation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2227/00Ignition or checking
    • F23N2227/20Calibrating devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2229/00Flame sensors
    • F23N2229/12Flame sensors with flame rectification current detecting means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2239/00Fuels
    • F23N2239/04Gaseous fuels

Definitions

  • the invention relates to a method for checking a gas mixture sensor and ionization sensor with regard to their error-free function in a fuel gas-operated heater.
  • the state of the art is also combustion control according to the so-called SCOT method, in which the amount of air supplied to the burner of the heater is controlled in accordance with the burner output.
  • a flame signal measurement is carried out using an ionization sensor and the gas-air mixture is regulated to a target ionization measurement value stored in a characteristic curve.
  • the disadvantage of the SCOT process is that at low burner outputs the flame signal drops sharply and the control therefore becomes unreliable.
  • the applicant is also responsible for a method for controlling a gas mixture formed from a gas and a fuel gas in a fuel gas-operated heater, in which the gas mixture is generated by providing and mixing a quantity of gas via a first actuator and a quantity of fuel gas via a second actuator.
  • a microthermal gas mixture sensor which detects at least one material property of the gas mixture, is exposed to the gas mixture and continuously transmits a sensor signal that is dependent on the respective gas mixture to a control unit.
  • the control device compares the detected sensor signal with a target value of the sensor signal and controls at least one of the first and second actuators if the detected sensor signal deviates from the target value of the sensor signal.
  • the gas mixture is adjusted by increasing or reducing the amount of gas and/or increasing or decreasing the amount of fuel gas until the setpoint of the sensor signal is reached.
  • the material property of the gas mixture detected by the microthermal gas mixture sensor is preferably the thermal conductivity, the thermal conductivity or the speed of sound of the gas mixture. However, several of these material properties can also be recorded, so that a more precise assignment of the majority of the properties to the gas mixture is possible.
  • the microthermal gas mixture sensor is designed as a gas mass sensor, which detects both the gas mixture mass supplied to the burner of the heater and other material physical properties.
  • calorimetric microsensors known from the prior art are used for this purpose, which, in addition to the thermal conductivity, also measure the thermal conductivity of the gas mixture.
  • Another possibility is at least one gas mass sensor based on the functional principle of ultrasonic measurement to determine the gas mixture mass and the specific speed of sound that is present depending on the gas mixture.
  • the setpoint of the sensor signal is also adjusted by the control unit depending on a composition of the gas or the fuel gas. If the composition of the fuel gas changes (e.g. from propane to butane), the measured properties of the gas mixture change. In addition, other compositions of fuel gas also require different amounts of air for optimal combustion. A new mixing ratio between gas and fuel gas is therefore also required.
  • control unit changes the first actuator of the gas quantity or the second actuator of the fuel gas quantity until the desired result is achieved.
  • the original setpoint is replaced by the new measured sensor signal for further mixture control.
  • the calibration process is carried out by controlling the ionization current of a flame signal from a burner of the heater until an ionization setpoint is reached.
  • stoichiometric combustion of the burner of the heater is first set.
  • the flame signal from the burner of the heater and thus a corresponding ionization current are detected via an ionization probe.
  • the ionization current is maximum.
  • an ionization setpoint is calculated using a laboratory-determined percentage and stored as a future ionization current setpoint that must be achieved during the desired combustion. Subsequently, only the amount of gas is reduced by a predetermined factor in order to operate the burner with the desired gas mixture at the predetermined ionization setpoint.
  • the at least one material property becomes of the gas mixture is measured using the gas mixture sensor and stored as a new setpoint of the sensor signal in the control unit.
  • the new setpoint is used for further control and replaces the previous setpoint.
  • the gas is preferably air
  • the fuel gas is preferably liquid gas or natural gas.
  • the object of the present invention is to check the measured sensor values of the gas mixture sensor and the ionization sensor for plausibility, i.e. with regard to their error-free function, in order to be able to detect errors in the control process.
  • a method for checking a gas mixture sensor and ionization sensor with regard to their error-free function in a fuel gas-operated heater in which a gas mixture is generated by providing and mixing a quantity of gas via a first actuator and a quantity of fuel gas via a second actuator.
  • the gas mixture sensor is positioned in the gas mixture to detect a material property of the gas mixture and continuously transmits a sensor signal that is dependent on the respective gas mixture to a control device.
  • a flame signal is detected on a burner of the heater via the ionization sensor, an ionization signal is determined from this and transmitted to the control unit.
  • a corresponding ionization signal from the ionization sensor is assigned to the respective sensor signal of the gas mixture sensor.
  • the amount of gas or the amount of fuel gas is temporarily changed in a predefined manipulated variable of the first or second actuator, so that the composition of the gas mixture changes.
  • the change in the sensor signal of the gas mixture sensor and the ionization signal resulting from the mixture change of the ionization sensor was measured and compared with each other. From the result of the comparison of the respective changes in the sensor values, deviations from target values can be recognized and conclusions can be drawn about a faulty function of the gas mixture sensor or the ionization sensor.
  • the amount of fuel gas is temporarily changed in a predefined manipulated variable of the first or second actuator, which can be controlled more precisely than the amount of gas, which is usually provided as air via a fan.
  • the gas mixture sensor is functioning incorrectly. If, on the other hand, when the gas mixture is changed, only the sensor signal of the gas mixture sensor delivers adjusted signals as expected, without the corresponding adjustment being detectable in the ionization signal of the ionization sensor, there is a faulty function of the ionization sensor, for example the ionization electrode positioned in the burner of the heater. Depending on which of the two sensors delivers an incorrect result, the heater control process can only be carried out via the other sensor until appropriate maintenance has been carried out.
  • the absolute magnitude of the deviation of the ionization signal of the ionization sensor or the sensor signal of the gas mixture sensor can also be detected and compared with variables determined or precalculated in the laboratory in order to determine a degree of deviation of the signals from a target value.
  • the method according to the invention is preferably used continuously during mixture control and the sensor signal of the gas mixture sensor is regularly compared or checked for plausibility with the ionization signal of the ionization sensor.
  • a further development of the method provides that, in order to check the gas mixture sensor and the ionization sensor, the amount of gas or the amount of fuel gas is changed cyclically in several steps in predefined manipulated variables of the first or second actuator and the resulting change in the sensor signal of the gas mixture sensor and the ionization signal of the ionization sensor in several of the operating points resulting from the steps are measured and compared with each other.
  • the calibration process described above by the ionization current control is used in an advantageous embodiment of the method to determine a preliminary assignment of several signal values of the gas mixture sensor and ionization sensor in the different operating points.
  • the calibration process is preferably carried out repeatedly, so that sensor signals of the gas mixture sensor corresponding to several different ionization signals are assigned.
  • the connection between the ionization signal and the sensor signal at the various operating points results in a target characteristic curve in an ionization signal-sensor signal diagram, which is stored in the control unit.
  • At least one tolerance corridor is preferably provided around the target characteristic curve, which characterizes operation outside the normal, so that if the characteristic curve deviates too much from the target characteristic curve, either the mixture control can be calibrated or the heater can even be switched off if necessary.
  • a further development of the method is characterized in that an additional gas sensor and/or a fuel gas sensor for detecting at least one of the material property of the gas or the fuel gas is used.
  • the material property of the gas is measured via the gas sensor and the material property of the fuel gas is measured via the fuel gas sensor, whereby it is advantageous that the respective end points are determined from the signals from the gas sensor and fuel gas sensor the sensor characteristic curve of the sensor signal of the gas mixture sensor can be determined.
  • the first end point is determined by pure fuel gas, the second end point by pure gas, especially air.
  • an expected course of the sensor characteristic curve of the gas mixture sensor when changing the amount of fuel gas or gas amount for carrying out the method according to the invention can be predetermined from measurements determined in the laboratory with the comparison of the change in the sensor signal of the gas mixture sensor and the ionization signal of the ionization sensor.
  • the characteristic curve and thus the operating points expected on the characteristic can be calculated in advance, so that a target sensor signal is determined for each of the operating points resulting from the steps.
  • one embodiment of the method provides that only one additional sensor, ie only the gas sensor or only the fuel gas sensor, is added. This is more cost-effective. At the same time, it offers the advantageous possibility of determining at least one end point of the sensor characteristic curve of the sensor signal of the gas mixture sensor, from which the step-by-step change, for example in the amount of fuel gas, can be predicted more precisely. In addition, taking into account the end point of the sensor characteristic curve, just one step of changing, for example, the amount of fuel gas can be sufficient to detect the deviations in the sensor signal of the gas mixture sensor.
  • the gas mixture sensor, the gas sensor and/or the fuel gas sensor are provided redundantly.
  • Each of the redundantly provided gas mixture sensors, gas sensors and/or fuel gas sensors conveniently supplies its own signal to the control unit, which is checked for plausibility and therefore the sensors are checked for error-free function.
  • the actuator 4 for supplying a controllable amount of air 2 and the actuator 3 for supplying a controllable amount of fuel gas 1 are regulated in their respective opening positions via the control device 11 in order to produce the gas mixture 9 in a specific fuel gas-air mixture ratio.
  • the gas mixture sensor 10 is positioned in the area of the gas mixture 9 and is supplied with the gas mixture 9.
  • the fuel gas sensor 6 is also positioned in the fuel gas path 5 and the gas sensor 8 is positioned in the gas path 7, which also deliver signals to the control unit 11.
  • the control device 11 and the control system are monitored via a process monitoring unit 12.
  • FIG 2 shows a specific embodiment of a fuel gas-operated heater 200 with a gas safety valve 101, a gas control valve 102 as an actuator for the amount of fuel gas 103, a mixing fan 107 for sucking in air 104 and mixing it with the fuel gas 103 to generate the gas mixture 105.
  • the heater 200 includes the microthermal gas mixture sensor 106, with a second gas mixture sensor 108 being shown as an alternative installation position in the exhaust area of the mixing fan 107. In principle, however, a second gas mixture sensor is not required.
  • the mixing fan 107 conveys the gas mixture 105 to the burner 109, on which the ionization sensor 111 with the ionization electrode is installed in order to monitor the burner flame.
  • the signal lines to and from the control device 100, which processes the control of the gas mixture 105, are shown via arrows.
  • Figure 3 is in a diagram 30 a simplified linear relationship used for the control between the sensor signal 31 detected by the gas mixture sensor 10 for pure air 2 (reference number 34 corresponds to 100% air) and the sensor signal 32 for pure fuel gas 1 (reference number 36 corresponds to 100% fuel gas) shown.
  • the sensor signal 33 lies in between.
  • the amounts of air 2 and fuel gas 1 are adjusted via the respective actuators 3 and/or 4 until the mixture properties of the desired mixing ratio required by the process are detected by the gas mixture sensor 10.
  • Figure 3 shows a linear course of the characteristic curve of the sensor signal, but non-linear characteristic curves are also possible, which enable control of the corresponding positions of the actuators 3, 4, for example using value tables.
  • the sensor signal decreases the more fuel gas 1 is supplied.
  • the sensor signal is shown, for example, as dependent on the thermal conductivity as a material property of the gas mixture 9, the fuel gas being, for example, liquid gas and the thermal conductivity of liquid gas being lower than that of air.
  • the fuel gas 1 is natural gas, whose thermal conductivity is higher than that of air.
  • diagram 40 according to Figure 4 a simplified linear relationship used for the control between that detected by the gas mixture sensor 10
  • Sensor signal 42 for pure air 2 reference number 44 corresponds to 100% air
  • the sensor signal 41 for pure fuel gas 1 reference number 46 corresponds to 100% fuel gas/natural gas).
  • the sensor signal 43 is in between, but close to the sensor signal 41 of pure fuel gas 1.
  • the control unit 11 uses the signal change of the gas mixture sensor 10 at the Increasing the amount of fuel gas determines the direction of action of the control and is used as a basis for further mixture control.
  • Figure 5 shows a diagram 20 for calibration by means of ionization current control with a characteristic curve of the ionization signal (Io signal) detected by the ionization electrode in the burner flame versus the fuel gas-air ratio ⁇ . Since the basic structure is according to Figure 1 shows no ionization electrode, the heater 200 is shown below Figure 2 referred.
  • the control unit 100 controls the amount of air 104 to a predetermined value during burner operation, measures the ionization signal at the ionization electrode of the ionization sensor 111 on the burner 109 and increases the amount of fuel gas 103 until the ionization signal differs from the originally existing ionization value 21 at a Fuel gas-air ratio 24 has increased to the maximum 22.
  • the ionization setpoint 23 is calculated using a laboratory-determined percentage and stored as a future ionization current setpoint, which must achieve the desired fuel gas-air ratio 25 with a higher excess of air.
  • a corresponding sensor signal from the gas mixture sensor 108 is stored for each value of the ionization signal.
  • the gas control valve 102 is controlled via the control device 100 in such a way that the amount of fuel gas F increases depending on the opening position P of the gas control valve 102.
  • the characteristic curve 80 represents a flow characteristic curve of the fuel gas. In the embodiment shown, the increase occurs gradually from points a, b, c, d, e, with the amount of fuel gas F increasing essentially constantly over a fixed amount 81.
  • the change in the amount of fuel gas causes a shift in the mixture composition in % of fuel gas and air and thus a changing sensor signal S of the gas mixture sensor 108, as in Figure 7 shown.
  • the two end points 61, 65 of the sensor characteristic curve 60 determine the mixture composition in % at reference number 65 pure air or at reference number 66 pure fuel gas.
  • the amount of fuel is reduced in partial steps abcd to the test mixture composition 67, marked in Figure 7 with reference number 67, increased, with the sensor signal S changing by a signal difference 72 in error-free operation.
  • the target characteristic curve 95 results from each step a, b, c, d, e of the assignment of the respective sensor signal (S) of the gas mixture sensor 108 to the corresponding ionization signal (Io signal) of the ionization sensor 111.
  • S sensor signal
  • Io signal ionization signal
  • T1 tolerance limits in dashed lines and T2 are shown to determine the tolerance corridor. If there is a deviation in the direction of arrow A, this is a function of the gas mixture sensor 108 outside the normal values, as the amount of fuel gas increases Figure 7 the ionization signal increases significantly more than the sensor signal.
  • the ionization sensor 111 is functioning outside the normal values, since an increase in the amount of fuel gas occurs according to Figure 7 the sensor signal increases significantly more than the ionization signal.
  • a deviation in the direction of arrow A indicates a faulty function of the gas mixture sensor 108
  • a deviation in the direction of arrow B indicates a faulty function of the ionization sensor 111.
  • the mixture control of the heater 200 by the control device 100 then takes place via the sensor, which is not working incorrectly, until the necessary maintenance has been carried out.
  • the error and maintenance requirement is displayed visually on the heater 200, for example via the display, and/or transmitted directly to the manufacturer. If the comparison result of the sensor values is outside the tolerance corridor determined by the tolerance limits T1, T2, the heater 200 is switched off.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Regulation And Control Of Combustion (AREA)

Claims (12)

  1. Procédé permettant de contrôler un capteur de mélange gazeux et d'un capteur d'ionisation quant à leur fonctionnement sans défaut dans un appareil de chauffage fonctionnant au gaz combustible,
    dans lequel un mélange gazeux est produit en fournissant et en mélangeant une quantité de gaz par l'intermédiaire d'un premier actionneur (4, 107) et une quantité de gaz combustible par l'intermédiaire d'un deuxième actionneur (3, 102),
    dans lequel le capteur de mélange gazeux (10, 106) est positionné dans le mélange gazeux pour détecter une propriété matérielle du mélange gazeux (5, 105) et transmet en continu un signal de capteur dépendant du mélange gazeux respectif à un appareil de commande (7, 100),
    dans lequel un capteur d'ionisation (111) détecte un signal de flamme au niveau d'un brûleur (109) de l'appareil de chauffage (200) et détermine à partir de celui-ci un signal d'ionisation qui est transmis à l'appareil de commande (11, 100),
    dans lequel un signal d'ionisation correspondant du capteur d'ionisation (111) est attribué au signal de capteur respectif du capteur de mélange gazeux (10, 106),
    et dans lequel pour le contrôle du capteur de mélange gazeux et du capteur d'ionisation, la quantité de gaz ou la quantité de gaz combustible est modifiée temporairement dans une grandeur de réglage prédéfinie du premier ou du deuxième actionneur de sorte que le mélange gazeux varie, et qu'en même temps, la variation respectivement résultante du signal de capteur du capteur de mélange gazeux et celle du capteur d'ionisation sont mesurées et comparées l'une avec l'autre.
  2. Procédé selon la revendication 1, dans lequel pour le contrôle du capteur de mélange gazeux (10, 106) et du capteur d'ionisation (111), la quantité de gaz ou la quantité de gaz combustible est modifiée de manière cyclique en plusieurs étapes dans des grandeurs de réglage prédéfinies du premier ou du deuxième actionneur, et la variation apparaissant respectivement du signal de capteur du capteur de mélange gazeux et celle du signal d'ionisation du capteur d'ionisation sont mesurées et comparées l'une avec l'autre en plusieurs points de fonctionnement résultant des étapes.
  3. Procédé selon la revendication 1 ou 2, comprenant en outre un processus d'étalonnage qui est effectué par une régulation du courant d'ionisation du signal de flamme du brûleur (109) de l'appareil de chauffage (200) jusqu'à ce qu'une valeur de consigne du signal d'ionisation soit atteinte.
  4. Procédé selon la revendication 3, dans lequel, lorsque la valeur de consigne du signal d'ionisation est atteinte, un signal de capteur correspondant du capteur de mélange gazeux est attribué.
  5. Procédé selon la revendication 4, dans lequel le processus d'étalonnage est effectué de manière répétée lors du fonctionnement de l'appareil de chauffage, et respectivement lorsque la valeur de consigne du signal d'ionisation est atteinte, le signal de capteur du capteur de mélange gazeux (10, 106) est attribué de sorte que plusieurs signaux de capteur du capteur de mélange gazeux sont attribués à plusieurs signaux d'ionisation différents.
  6. Procédé selon l'une quelconque des revendications 2 à 5, dans lequel une courbe caractéristique munie d'une plage de tolérance autour de la courbe caractéristique est formée à partir de la relation entre le signal d'ionisation et le signal de capteur dans les différents points de fonctionnement.
  7. Procédé selon l'une quelconque des revendications précédentes, dans lequel un capteur de gaz (8) et/ou un capteur de gaz combustible (6) sont prévus pour détecter au moins l'une des propriétés matérielles du gaz ou du gaz combustible.
  8. Procédé selon l'une quelconque des revendications précédentes 1 à 6, dans lequel un capteur de gaz (8) détecte la propriété matérielle du gaz et un capteur de gaz combustible (6) détecte la propriété matérielle du gaz combustible, et des points d'extrémité d'une courbe caractéristique de capteur du signal de capteur du capteur de mélange gazeux (10, 106) sont déterminés sur cette base.
  9. Procédé selon la revendication précédente, dans lequel un signal de capteur cible est déterminé à partir du tracé de la courbe caractéristique de capteur du signal de capteur du capteur de mélange gazeux pour chacun des points de fonctionnement résultant des étapes.
  10. Procédé selon l'une quelconque des revendications précédentes 6 à 9, dans lequel l'appareil de chauffage (200) est arrêté en cas de sortie de la plage de tolérance.
  11. Procédé selon l'une quelconque des revendications précédentes 7 à 10, dans lequel le capteur de mélange gazeux, le capteur de gaz et/ou le capteur de gaz combustible sont prévus de manière redondante.
  12. Procédé selon la revendication précédente, dans lequel chacun des capteurs de mélange gazeux, des capteurs de gaz et/ou des capteurs de gaz combustible prévus de manière redondante fournit son propre signal à l'appareil de commande et est contrôlé quant son fonctionnement sans défaut.
EP20723328.9A 2019-04-29 2020-04-28 Procédé de contrôle d'un capteur de mélange gazeux et d'un capteur d'ionisation dans un appareil de chauffage fonctionnant au gaz combustible Active EP3870899B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019110976.0A DE102019110976A1 (de) 2019-04-29 2019-04-29 Verfahren zur Überprüfung eines Gasgemischsensors und Ionisationssensors bei einem brenngasbetriebenen Heizgerät
PCT/EP2020/061784 WO2020221758A1 (fr) 2019-04-29 2020-04-28 Procédé de contrôle d'un capteur de mélange gazeux et d'un capteur d'ionisation dans un appareil de chauffage fonctionnant au gaz combustible

Publications (2)

Publication Number Publication Date
EP3870899A1 EP3870899A1 (fr) 2021-09-01
EP3870899B1 true EP3870899B1 (fr) 2023-11-01

Family

ID=70482627

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20723328.9A Active EP3870899B1 (fr) 2019-04-29 2020-04-28 Procédé de contrôle d'un capteur de mélange gazeux et d'un capteur d'ionisation dans un appareil de chauffage fonctionnant au gaz combustible

Country Status (3)

Country Link
EP (1) EP3870899B1 (fr)
DE (1) DE102019110976A1 (fr)
WO (1) WO2020221758A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021113220A1 (de) 2021-05-21 2022-11-24 Vaillant Gmbh Verfahren zur Überwachung des Betriebes eines Heizgerätes, Heizgerät sowie Computerprogramm und computerlesbares Medium
DE102022112785A1 (de) 2022-05-20 2023-11-23 Vaillant Gmbh Verfahren zum Betreiben eines Heizgerätes, Computerprogramm, Regel- und Steuergerät und Heizgerät

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE114367T1 (de) * 1989-10-30 1994-12-15 Honeywell Inc Verbrennungsregelung mit mikromessbrücke.
DE10113468A1 (de) * 2000-09-05 2002-03-14 Siemens Building Tech Ag Regeleinrichtung für einen Luftzahlgeregelten Brenner
DE102004055716C5 (de) * 2004-06-23 2010-02-11 Ebm-Papst Landshut Gmbh Verfahren zur Regelung einer Feuerungseinrichtung und Feuerungseinrichtung (Elektronischer Verbund I)
DE102010046954B4 (de) * 2010-09-29 2012-04-12 Robert Bosch Gmbh Verfahren zur Kalibrierung, Validierung und Justierung einer Lambdasonde
DE102011079325B4 (de) * 2011-07-18 2017-01-26 Viessmann Werke Gmbh & Co Kg Verfahren zur Luftzahlregelung eines Brenners
DE202019100263U1 (de) * 2019-01-17 2019-02-04 Ebm-Papst Landshut Gmbh Heizgerät mit Regelung eines Gasgemisches unter Nutzung eines Gassensors, eines Brenngassensors und eines Gasgemischsensors
DE202019100261U1 (de) * 2019-01-17 2019-02-04 Ebm-Papst Landshut Gmbh Heizgerät mit Regelung eines Gasgemisches

Also Published As

Publication number Publication date
WO2020221758A1 (fr) 2020-11-05
EP3870899A1 (fr) 2021-09-01
DE102019110976A1 (de) 2020-10-29

Similar Documents

Publication Publication Date Title
EP2466204B1 (fr) Dispositif de réglage pour une installation de brûleur
EP3683500B1 (fr) Procédé de régulation d'un mélange gazeux à l'aide d'un capteur de gaz et d'un capteur de mélange gazeux
EP2594848B1 (fr) Procédé de commande d'un appareil à combustion et appareil à combustion
EP3824366B1 (fr) Dispositif de réglage d'un mélange gazeux au moyen d'un capteur de gaz, d'un capteur de gaz combustible et d'un capteur de mélange gazeux
EP3870899B1 (fr) Procédé de contrôle d'un capteur de mélange gazeux et d'un capteur d'ionisation dans un appareil de chauffage fonctionnant au gaz combustible
DE202019100263U1 (de) Heizgerät mit Regelung eines Gasgemisches unter Nutzung eines Gassensors, eines Brenngassensors und eines Gasgemischsensors
EP2014985A2 (fr) Procédé de réglage du rapport air/carburant d'un brûleur fonctionnant au gaz
AT505244B1 (de) Verfahren zur überprüfung des ionisationselektrodensignals bei brennern
DE102019119186A1 (de) Verfahren und Vorrichtung zur Regelung eines Brenngas-Luft-Gemisches in einem Heizgerät
EP3690318A2 (fr) Procédé et dispositif de régulation d'un mélange air-gaz de combustion dans un appareil de chauffage
EP2405198B1 (fr) Procédé de calibration de régulation du rapport gaz combustible-air d'un brûleur à gaz combustible
EP3029375B1 (fr) Dispositif d'appareil de chauffage et procédé de fonctionnement d'un dispositif d'appareil de chauffage
DE202019100261U1 (de) Heizgerät mit Regelung eines Gasgemisches
EP3746705A1 (fr) Procédé de réglage d'un mélange gazeux au moyen d'un capteur de mélange gazeux
EP3734159A1 (fr) Procédé de vérification d'un capteur de mélange gazeux dans un appareil chauffant fonctionnant au gaz combustible
EP3182007B1 (fr) Système d'appareil de chauffage et procédé faisant appel à un système d'appareil de chauffage
DE19854824C1 (de) Verfahren und Schaltung zur Regelung eines Gasbrenners
EP3746706B1 (fr) Procédé pour la régulation d'un rapport de mélange de gaz combustible et d'air pour un appareil de chauffage
DE19839160A1 (de) Verfahren und Schaltung zur Regelung eines Gasbrenners
EP3767174B1 (fr) Procédé et dispositif d'étalonnage ultérieur d'un système de mesure permettant de réguler un mélange gaz-air de combustion dans un appareil de chauffage
EP3751200B1 (fr) Procédé de régulation d'un appareil chauffant à gaz combustible
EP2354657B1 (fr) Procédé destiné au fonctionnement d'un brûleur à gaz
DE10220773A1 (de) Verfahren und Einrichtung zur Regelung eines Verbrennungsprozesses, insbesondere eines Brenners
DE202019100264U1 (de) Heizgerät mit Regelung eines Gasgemisches unter Nutzung eines Gassensors und eines Gasgemischsensors
WO2018054582A1 (fr) Dispositif de préparation de gaz et procédé pour préparer un mélange de gaz combustible

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210526

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: HERMANN, JENS

Inventor name: WALD, STEPHAN

Inventor name: HENRICH, HARTMUT

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230526

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230830

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502020005856

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20231101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231101

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231101

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240301

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240202

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231101

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240201

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231101

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231101

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231101

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240201

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231101

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231101