EP3870899B1 - Verfahren zur überprüfung eines gasgemischsensors und ionisationssensors bei einem brenngasbetriebenen heizgerät - Google Patents

Verfahren zur überprüfung eines gasgemischsensors und ionisationssensors bei einem brenngasbetriebenen heizgerät Download PDF

Info

Publication number
EP3870899B1
EP3870899B1 EP20723328.9A EP20723328A EP3870899B1 EP 3870899 B1 EP3870899 B1 EP 3870899B1 EP 20723328 A EP20723328 A EP 20723328A EP 3870899 B1 EP3870899 B1 EP 3870899B1
Authority
EP
European Patent Office
Prior art keywords
sensor
gas
ionization
signal
gas mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20723328.9A
Other languages
English (en)
French (fr)
Other versions
EP3870899A1 (de
Inventor
Hartmut Henrich
Stephan Wald
Jens Hermann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebm Papst Landshut GmbH
Original Assignee
Ebm Papst Landshut GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebm Papst Landshut GmbH filed Critical Ebm Papst Landshut GmbH
Publication of EP3870899A1 publication Critical patent/EP3870899A1/de
Application granted granted Critical
Publication of EP3870899B1 publication Critical patent/EP3870899B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/12Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods
    • F23N5/123Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/02Regulating fuel supply conjointly with air supply
    • F23N1/022Regulating fuel supply conjointly with air supply using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/02Regulating fuel supply conjointly with air supply
    • F23N1/025Regulating fuel supply conjointly with air supply using electrical or electromechanical means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/18Systems for controlling combustion using detectors sensitive to rate of flow of air or fuel
    • F23N2005/181Systems for controlling combustion using detectors sensitive to rate of flow of air or fuel using detectors sensitive to rate of flow of air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/18Systems for controlling combustion using detectors sensitive to rate of flow of air or fuel
    • F23N2005/185Systems for controlling combustion using detectors sensitive to rate of flow of air or fuel using detectors sensitive to rate of flow of fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2221/00Pretreatment or prehandling
    • F23N2221/10Analysing fuel properties, e.g. density, calorific
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2223/00Signal processing; Details thereof
    • F23N2223/10Correlation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2227/00Ignition or checking
    • F23N2227/20Calibrating devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2229/00Flame sensors
    • F23N2229/12Flame sensors with flame rectification current detecting means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2239/00Fuels
    • F23N2239/04Gaseous fuels

Definitions

  • the invention relates to a method for checking a gas mixture sensor and ionization sensor with regard to their error-free function in a fuel gas-operated heater.
  • the state of the art is also combustion control according to the so-called SCOT method, in which the amount of air supplied to the burner of the heater is controlled in accordance with the burner output.
  • a flame signal measurement is carried out using an ionization sensor and the gas-air mixture is regulated to a target ionization measurement value stored in a characteristic curve.
  • the disadvantage of the SCOT process is that at low burner outputs the flame signal drops sharply and the control therefore becomes unreliable.
  • the applicant is also responsible for a method for controlling a gas mixture formed from a gas and a fuel gas in a fuel gas-operated heater, in which the gas mixture is generated by providing and mixing a quantity of gas via a first actuator and a quantity of fuel gas via a second actuator.
  • a microthermal gas mixture sensor which detects at least one material property of the gas mixture, is exposed to the gas mixture and continuously transmits a sensor signal that is dependent on the respective gas mixture to a control unit.
  • the control device compares the detected sensor signal with a target value of the sensor signal and controls at least one of the first and second actuators if the detected sensor signal deviates from the target value of the sensor signal.
  • the gas mixture is adjusted by increasing or reducing the amount of gas and/or increasing or decreasing the amount of fuel gas until the setpoint of the sensor signal is reached.
  • the material property of the gas mixture detected by the microthermal gas mixture sensor is preferably the thermal conductivity, the thermal conductivity or the speed of sound of the gas mixture. However, several of these material properties can also be recorded, so that a more precise assignment of the majority of the properties to the gas mixture is possible.
  • the microthermal gas mixture sensor is designed as a gas mass sensor, which detects both the gas mixture mass supplied to the burner of the heater and other material physical properties.
  • calorimetric microsensors known from the prior art are used for this purpose, which, in addition to the thermal conductivity, also measure the thermal conductivity of the gas mixture.
  • Another possibility is at least one gas mass sensor based on the functional principle of ultrasonic measurement to determine the gas mixture mass and the specific speed of sound that is present depending on the gas mixture.
  • the setpoint of the sensor signal is also adjusted by the control unit depending on a composition of the gas or the fuel gas. If the composition of the fuel gas changes (e.g. from propane to butane), the measured properties of the gas mixture change. In addition, other compositions of fuel gas also require different amounts of air for optimal combustion. A new mixing ratio between gas and fuel gas is therefore also required.
  • control unit changes the first actuator of the gas quantity or the second actuator of the fuel gas quantity until the desired result is achieved.
  • the original setpoint is replaced by the new measured sensor signal for further mixture control.
  • the calibration process is carried out by controlling the ionization current of a flame signal from a burner of the heater until an ionization setpoint is reached.
  • stoichiometric combustion of the burner of the heater is first set.
  • the flame signal from the burner of the heater and thus a corresponding ionization current are detected via an ionization probe.
  • the ionization current is maximum.
  • an ionization setpoint is calculated using a laboratory-determined percentage and stored as a future ionization current setpoint that must be achieved during the desired combustion. Subsequently, only the amount of gas is reduced by a predetermined factor in order to operate the burner with the desired gas mixture at the predetermined ionization setpoint.
  • the at least one material property becomes of the gas mixture is measured using the gas mixture sensor and stored as a new setpoint of the sensor signal in the control unit.
  • the new setpoint is used for further control and replaces the previous setpoint.
  • the gas is preferably air
  • the fuel gas is preferably liquid gas or natural gas.
  • the object of the present invention is to check the measured sensor values of the gas mixture sensor and the ionization sensor for plausibility, i.e. with regard to their error-free function, in order to be able to detect errors in the control process.
  • a method for checking a gas mixture sensor and ionization sensor with regard to their error-free function in a fuel gas-operated heater in which a gas mixture is generated by providing and mixing a quantity of gas via a first actuator and a quantity of fuel gas via a second actuator.
  • the gas mixture sensor is positioned in the gas mixture to detect a material property of the gas mixture and continuously transmits a sensor signal that is dependent on the respective gas mixture to a control device.
  • a flame signal is detected on a burner of the heater via the ionization sensor, an ionization signal is determined from this and transmitted to the control unit.
  • a corresponding ionization signal from the ionization sensor is assigned to the respective sensor signal of the gas mixture sensor.
  • the amount of gas or the amount of fuel gas is temporarily changed in a predefined manipulated variable of the first or second actuator, so that the composition of the gas mixture changes.
  • the change in the sensor signal of the gas mixture sensor and the ionization signal resulting from the mixture change of the ionization sensor was measured and compared with each other. From the result of the comparison of the respective changes in the sensor values, deviations from target values can be recognized and conclusions can be drawn about a faulty function of the gas mixture sensor or the ionization sensor.
  • the amount of fuel gas is temporarily changed in a predefined manipulated variable of the first or second actuator, which can be controlled more precisely than the amount of gas, which is usually provided as air via a fan.
  • the gas mixture sensor is functioning incorrectly. If, on the other hand, when the gas mixture is changed, only the sensor signal of the gas mixture sensor delivers adjusted signals as expected, without the corresponding adjustment being detectable in the ionization signal of the ionization sensor, there is a faulty function of the ionization sensor, for example the ionization electrode positioned in the burner of the heater. Depending on which of the two sensors delivers an incorrect result, the heater control process can only be carried out via the other sensor until appropriate maintenance has been carried out.
  • the absolute magnitude of the deviation of the ionization signal of the ionization sensor or the sensor signal of the gas mixture sensor can also be detected and compared with variables determined or precalculated in the laboratory in order to determine a degree of deviation of the signals from a target value.
  • the method according to the invention is preferably used continuously during mixture control and the sensor signal of the gas mixture sensor is regularly compared or checked for plausibility with the ionization signal of the ionization sensor.
  • a further development of the method provides that, in order to check the gas mixture sensor and the ionization sensor, the amount of gas or the amount of fuel gas is changed cyclically in several steps in predefined manipulated variables of the first or second actuator and the resulting change in the sensor signal of the gas mixture sensor and the ionization signal of the ionization sensor in several of the operating points resulting from the steps are measured and compared with each other.
  • the calibration process described above by the ionization current control is used in an advantageous embodiment of the method to determine a preliminary assignment of several signal values of the gas mixture sensor and ionization sensor in the different operating points.
  • the calibration process is preferably carried out repeatedly, so that sensor signals of the gas mixture sensor corresponding to several different ionization signals are assigned.
  • the connection between the ionization signal and the sensor signal at the various operating points results in a target characteristic curve in an ionization signal-sensor signal diagram, which is stored in the control unit.
  • At least one tolerance corridor is preferably provided around the target characteristic curve, which characterizes operation outside the normal, so that if the characteristic curve deviates too much from the target characteristic curve, either the mixture control can be calibrated or the heater can even be switched off if necessary.
  • a further development of the method is characterized in that an additional gas sensor and/or a fuel gas sensor for detecting at least one of the material property of the gas or the fuel gas is used.
  • the material property of the gas is measured via the gas sensor and the material property of the fuel gas is measured via the fuel gas sensor, whereby it is advantageous that the respective end points are determined from the signals from the gas sensor and fuel gas sensor the sensor characteristic curve of the sensor signal of the gas mixture sensor can be determined.
  • the first end point is determined by pure fuel gas, the second end point by pure gas, especially air.
  • an expected course of the sensor characteristic curve of the gas mixture sensor when changing the amount of fuel gas or gas amount for carrying out the method according to the invention can be predetermined from measurements determined in the laboratory with the comparison of the change in the sensor signal of the gas mixture sensor and the ionization signal of the ionization sensor.
  • the characteristic curve and thus the operating points expected on the characteristic can be calculated in advance, so that a target sensor signal is determined for each of the operating points resulting from the steps.
  • one embodiment of the method provides that only one additional sensor, ie only the gas sensor or only the fuel gas sensor, is added. This is more cost-effective. At the same time, it offers the advantageous possibility of determining at least one end point of the sensor characteristic curve of the sensor signal of the gas mixture sensor, from which the step-by-step change, for example in the amount of fuel gas, can be predicted more precisely. In addition, taking into account the end point of the sensor characteristic curve, just one step of changing, for example, the amount of fuel gas can be sufficient to detect the deviations in the sensor signal of the gas mixture sensor.
  • the gas mixture sensor, the gas sensor and/or the fuel gas sensor are provided redundantly.
  • Each of the redundantly provided gas mixture sensors, gas sensors and/or fuel gas sensors conveniently supplies its own signal to the control unit, which is checked for plausibility and therefore the sensors are checked for error-free function.
  • the actuator 4 for supplying a controllable amount of air 2 and the actuator 3 for supplying a controllable amount of fuel gas 1 are regulated in their respective opening positions via the control device 11 in order to produce the gas mixture 9 in a specific fuel gas-air mixture ratio.
  • the gas mixture sensor 10 is positioned in the area of the gas mixture 9 and is supplied with the gas mixture 9.
  • the fuel gas sensor 6 is also positioned in the fuel gas path 5 and the gas sensor 8 is positioned in the gas path 7, which also deliver signals to the control unit 11.
  • the control device 11 and the control system are monitored via a process monitoring unit 12.
  • FIG 2 shows a specific embodiment of a fuel gas-operated heater 200 with a gas safety valve 101, a gas control valve 102 as an actuator for the amount of fuel gas 103, a mixing fan 107 for sucking in air 104 and mixing it with the fuel gas 103 to generate the gas mixture 105.
  • the heater 200 includes the microthermal gas mixture sensor 106, with a second gas mixture sensor 108 being shown as an alternative installation position in the exhaust area of the mixing fan 107. In principle, however, a second gas mixture sensor is not required.
  • the mixing fan 107 conveys the gas mixture 105 to the burner 109, on which the ionization sensor 111 with the ionization electrode is installed in order to monitor the burner flame.
  • the signal lines to and from the control device 100, which processes the control of the gas mixture 105, are shown via arrows.
  • Figure 3 is in a diagram 30 a simplified linear relationship used for the control between the sensor signal 31 detected by the gas mixture sensor 10 for pure air 2 (reference number 34 corresponds to 100% air) and the sensor signal 32 for pure fuel gas 1 (reference number 36 corresponds to 100% fuel gas) shown.
  • the sensor signal 33 lies in between.
  • the amounts of air 2 and fuel gas 1 are adjusted via the respective actuators 3 and/or 4 until the mixture properties of the desired mixing ratio required by the process are detected by the gas mixture sensor 10.
  • Figure 3 shows a linear course of the characteristic curve of the sensor signal, but non-linear characteristic curves are also possible, which enable control of the corresponding positions of the actuators 3, 4, for example using value tables.
  • the sensor signal decreases the more fuel gas 1 is supplied.
  • the sensor signal is shown, for example, as dependent on the thermal conductivity as a material property of the gas mixture 9, the fuel gas being, for example, liquid gas and the thermal conductivity of liquid gas being lower than that of air.
  • the fuel gas 1 is natural gas, whose thermal conductivity is higher than that of air.
  • diagram 40 according to Figure 4 a simplified linear relationship used for the control between that detected by the gas mixture sensor 10
  • Sensor signal 42 for pure air 2 reference number 44 corresponds to 100% air
  • the sensor signal 41 for pure fuel gas 1 reference number 46 corresponds to 100% fuel gas/natural gas).
  • the sensor signal 43 is in between, but close to the sensor signal 41 of pure fuel gas 1.
  • the control unit 11 uses the signal change of the gas mixture sensor 10 at the Increasing the amount of fuel gas determines the direction of action of the control and is used as a basis for further mixture control.
  • Figure 5 shows a diagram 20 for calibration by means of ionization current control with a characteristic curve of the ionization signal (Io signal) detected by the ionization electrode in the burner flame versus the fuel gas-air ratio ⁇ . Since the basic structure is according to Figure 1 shows no ionization electrode, the heater 200 is shown below Figure 2 referred.
  • the control unit 100 controls the amount of air 104 to a predetermined value during burner operation, measures the ionization signal at the ionization electrode of the ionization sensor 111 on the burner 109 and increases the amount of fuel gas 103 until the ionization signal differs from the originally existing ionization value 21 at a Fuel gas-air ratio 24 has increased to the maximum 22.
  • the ionization setpoint 23 is calculated using a laboratory-determined percentage and stored as a future ionization current setpoint, which must achieve the desired fuel gas-air ratio 25 with a higher excess of air.
  • a corresponding sensor signal from the gas mixture sensor 108 is stored for each value of the ionization signal.
  • the gas control valve 102 is controlled via the control device 100 in such a way that the amount of fuel gas F increases depending on the opening position P of the gas control valve 102.
  • the characteristic curve 80 represents a flow characteristic curve of the fuel gas. In the embodiment shown, the increase occurs gradually from points a, b, c, d, e, with the amount of fuel gas F increasing essentially constantly over a fixed amount 81.
  • the change in the amount of fuel gas causes a shift in the mixture composition in % of fuel gas and air and thus a changing sensor signal S of the gas mixture sensor 108, as in Figure 7 shown.
  • the two end points 61, 65 of the sensor characteristic curve 60 determine the mixture composition in % at reference number 65 pure air or at reference number 66 pure fuel gas.
  • the amount of fuel is reduced in partial steps abcd to the test mixture composition 67, marked in Figure 7 with reference number 67, increased, with the sensor signal S changing by a signal difference 72 in error-free operation.
  • the target characteristic curve 95 results from each step a, b, c, d, e of the assignment of the respective sensor signal (S) of the gas mixture sensor 108 to the corresponding ionization signal (Io signal) of the ionization sensor 111.
  • S sensor signal
  • Io signal ionization signal
  • T1 tolerance limits in dashed lines and T2 are shown to determine the tolerance corridor. If there is a deviation in the direction of arrow A, this is a function of the gas mixture sensor 108 outside the normal values, as the amount of fuel gas increases Figure 7 the ionization signal increases significantly more than the sensor signal.
  • the ionization sensor 111 is functioning outside the normal values, since an increase in the amount of fuel gas occurs according to Figure 7 the sensor signal increases significantly more than the ionization signal.
  • a deviation in the direction of arrow A indicates a faulty function of the gas mixture sensor 108
  • a deviation in the direction of arrow B indicates a faulty function of the ionization sensor 111.
  • the mixture control of the heater 200 by the control device 100 then takes place via the sensor, which is not working incorrectly, until the necessary maintenance has been carried out.
  • the error and maintenance requirement is displayed visually on the heater 200, for example via the display, and/or transmitted directly to the manufacturer. If the comparison result of the sensor values is outside the tolerance corridor determined by the tolerance limits T1, T2, the heater 200 is switched off.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Regulation And Control Of Combustion (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zur Überprüfung eines Gasgemischsensors und ionisationssensors bezüglich ihrer fehlerfreien Funktion bei einem brenngasbetriebenen Heizgerät.
  • Aus dem Stand der Technik sind verschiedene Regelungsverfahren von Heizgeräten bekannt, beispielsweise aus der Offenbarung gemäß der Druckschrift WO2006/000366A1 . Weiterer druckschriftlicher Stand der Technik im vorliegenden technischen Gebiet ist in den Dokumenten DE 20 2019 100 261 U1 und DE 10 2010 046 954 A1 offenbart.
  • Stand der Technik ist zudem eine Verbrennungsregelung nach dem sog. SCOT-Verfahren, bei dem die Steuerung der dem Brenner des Heizgerätes zugeführte Luftmenge entsprechend der Brennerleistung erfolgt. Dabei wird eine Flammensignalmessung mittels eines Ionisationssensors durchgeführt und das Gas-Luftgemisch auf einen in einer Kennlinie hinterlegten Soll-Ionisationsmesswert geregelt. Beim SCOT-Verfahren ist jedoch nachteilig, dass bei kleinen Brennerleistungen das Flammensignal stark absinkt und die Regelung damit unzuverlässig wird.
  • Auf die Anmelderin geht zudem ein Verfahren zur Regelung eines Gasgemisches gebildet aus einem Gas und einem Brenngas bei einem brenngasbetriebenen Heizgerät zurück, bei dem das Gasgemisch erzeugt wird, indem über ein erstes Stellglied eine Gasmenge und über ein zweites Stellglied eine Brenngasmenge bereitgestellt und gemischt werden. Ein mikrothermischer Gasgemischsensor, der mindestens eine stoffliche Eigenschaft des Gasgemisches erfasst, wird mit dem Gasgemisch beaufschlagt und übermittelt kontinuierlich ein von dem jeweiligen Gasgemisch abhängiges Sensorsignal an ein Steuergerät. Das Steuergerät vergleicht das erfasste Sensorsignal mit einem Sollwert des Sensorsignals und steuert bei einer Abweichung des erfassten Sensorsignals mit dem Sollwert des Sensorsignals mindestens eines der ersten und zweiten Stellglieder an. Dadurch wird das Gasgemisch durch Erhöhung oder Verringerung der Gasmenge und/oder Erhöhung oder Verringerung der Brenngasmenge angepasst, bis der Sollwert des Sensorsignals erreicht ist.
  • Die von dem mikrothermischen Gasgemischsensor erfasste stoffliche Eigenschaft des Gasgemisches ist vorzugsweise die Wärmeleitfähigkeit, die Temperaturleitfähigkeit oder die Schallgeschwindigkeit des Gasgemisches. Es können jedoch auch mehrere dieser stofflichen Eigenschaften erfasst werden, so dass eine genauere Zuordnung der Mehrzahl der Eigenschaften auf das Gasgemisch möglich ist.
  • Der mikrothermische Gasgemischsensor ist als Gasmassensensor ausgebildet, der sowohl die an den Brenner des Heizgerätes zugeführte Gasgemischmasse als auch weitere stoffliche physikalische Eigenschaften erfasst. Beispielsweise werden hierfür aus dem Stand der Technik bekannte kalorimetrische Mikrosensoren eingesetzt, die neben der Wärmeleitfähigkeit die Temperaturleitfähigkeit des Gasgemisches erfassen. Eine andere Möglichkeit besteht in wenigstens einem Gasmassensensor basierend auf dem Funktionsprinzip der Ultraschallmessung zur Ermittlung der Gasgemischmasse und der jeweils gasgemischabhängig vorliegenden spezifischen Schallgeschwindigkeit.
  • Bei dem Verfahren wird ferner der Sollwert des Sensorsignals in Abhängigkeit einer Zusammensetzung des Gases oder des Brenngases durch das Steuergerät angepasst. Ändert sich die Zusammensetzung des Brenngases (z.B. von Propan auf Butan), verändern sich die gemessenen Eigenschaften des Gasgemisches. Zusätzlich benötigen andere Zusammensetzungen an Brenngas für eine optimale Verbrennung auch andere Luftmengen. Es ist somit auch ein neues Mischungsverhältnis zwischen Gas und Brenngas erforderlich.
  • Eine derartige Anpassung des Sollwerts des Sensorsignals erfolgt durch einen Kalibrierprozess. Hierfür werden vom Steuergerät das erste Stellglied der Gasmenge oder das zweite Stellglied der Brenngasmenge soweit verändert, bis das gewünschte Ergebnis erreicht wird. Der ursprüngliche Sollwert wird für die weitere Gemischregelung durch das neue gemessene Sensorsignal ersetzt.
  • Der Kalibrierprozess erfolgt durch eine Ionisationsstromregelung eines Flammensignals eines Brenners des Heizgerätes, bis ein Ionisationssollwert erreicht ist. Hierfür wird zunächst eine stöchiometrische Verbrennung des Brenners des Heizgerätes eingestellt. Über eine Ionisationssonde werden das Flammensignal des Brenners des Heizgerätes und dadurch ein entsprechender Ionisationsstrom erfasst. Bei der stöchiometrischen Verbrennung ist der Ionisationsstrom maximal. Aus diesem Wert des Ionisationsstroms wird mit einer labortechnisch ermittelten Prozentzahl ein lonisationssollwert berechnet und als künftiger lonisationsstromsollwert abgespeichert, der bei der gewünschten Verbrennung erreicht werden muss. Anschließend wird ausschließlich die Gasmenge um einen vorbestimmten Faktor reduziert, um den Brenner mit dem gewünschten Gasgemisch bei dem vorbestimmten Ionisationssollwert zu betreiben.
  • Beim Erreichen des Ionisationssollwerts wird die mindestens eine stoffliche Eigenschaft des Gasgemisches mittels des Gasgemischsensors gemessen und als neuer Sollwert des Sensorsignals im Steuergerät hinterlegt. Der neue Sollwert wird für die weitere Regelung verwendet und ersetzt den bisherigen Sollwert.
  • Das Gas ist vorzugsweise Luft, das Brenngas vorzugsweise Flüssiggas oder Erdgas.
  • Bei derartigen Regelungsverfahren sollen nun als Aufgabe der vorliegenden Erfindung die gemessenen Sensorwerte des Gasgemischsensors und des lonisationssensors auf Plausibilität, d.h. bezüglich ihrer fehlerfreien Funktion überprüft werden, um Fehler im Regelungsverfahren erkennen zu können.
  • Diese Aufgabe wird durch die Merkmalskombination gemäß Anspruch 1 gelöst.
  • Erfindungsgemäß wird ein Verfahren zur Überprüfung eines Gasgemischsensors und Ionisationssensors bezüglich ihrer fehlerfreien Funktion bei einem brenngasbetriebenen Heizgerät vorgeschlagen, bei dem ein Gasgemisch erzeugt wird, indem über ein erstes Stellglied eine Gasmenge und über ein zweites Stellglied eine Brenngasmenge bereitgestellt und gemischt werden. Der Gasgemischsensor ist in dem Gasgemisch zur Erfassung einer stofflichen Eigenschaft des Gasgemisches positioniert und übermittelt kontinuierlich ein von dem jeweiligen Gasgemisch abhängiges Sensorsignal an ein Steuergerät. An einem Brenner des Heizgerätes wird über den Ionisationssensor ein Flammensignal erfasst, daraus ein Ionisationssignal bestimmt und an das Steuergerät übermittelt. Dem jeweiligen Sensorsignal des Gasgemischsensors wird ein korrespondierendes Ionisationssignal des lonisationssensors zugeordnet. Zur Überprüfung des Gasgemischsensors und des Ionisationssensors wird die Gasmenge oder die Brenngasmenge temporär in einer vordefinierten Stellgröße des ersten oder zweiten Stellglieds verändert, so dass sich hierdurch das Gasgemisch in seiner Zusammensetzung verändert. Gleichzeitig werden die jeweilig aus der Gemischveränderung resultierende Veränderung des Sensorsignals des Gasgemischsensors und des lonisationssignals des Ionisationssensors gemessen und miteinander verglichen. Aus dem Ergebnis des Vergleichs der jeweiligen Veränderung der Sensorwerte können Abweichungen von Sollwerten erkannt und auf eine fehlerhafte Funktion des Gasgemischsensors oder des Ionisationssensors geschlossen werden.
  • Vorzugsweise wird bei dem Verfahren die Brenngasmenge temporär in einer vordefinierten Stellgröße des ersten oder zweiten Stellglieds verändert, die diese exakter steuerbar ist als die Gasmenge, die üblicherweise als Luft über ein Gebläse bereitgestellt wird.
  • Wenn für den Vergleich beispielsweise der Anteil der Brenngasmenge am Gasgemisch vergrößert wird und erhöht sich dabei erwartungsgemäß das Ionisationssignal des Ionisationssensors, ohne dass das gleichzeitig das Sensorsignal des Gasgemischsensors ansteigt, liegt eine fehlerhafte Funktion des Gasgemischsensors vor. Liefert hingegen bei der Veränderung des Gasgemisches nur das Sensorsignal des Gasgemischsensors erwartungsgemäß angepasste Signale, ohne dass die entsprechende Anpassung auch bei dem Ionisationssignal des Ionisationssensors feststellbar wäre, liegt eine fehlerhafte Funktion des Ionisationssensors, beispielsweise der im Brenner des Heizgeräts positionierten Ionisationselektrode, vor. Das Reglungsverfahren des Heizgerätes kann je nachdem welcher der beiden Sensoren ein fehlerhaftes Ergebnis liefert, ausschließlich über den jeweils anderen Sensor erfolgen, bis eine entsprechende Wartung erfolgt ist.
  • Bei dem Verfahren ist auch die absolute Größe der Abweichung des Ionisationssignals des Ionisationssensors oder des Sensorsignals des Gasgemischsensors erfassbar und mit labortechnisch ermittelten oder vorausberechneten Größen vergleichbar, um einen Grad der Abweichung der Signale von einem Sollwert zu bestimmen. Dies ermöglicht es, einen Toleranzbereich für die Signale festzulegen, welche für den regulären Betrieb als normal gelten. Bei einer zu großen Abweichung außerhalb des Toleranzbereichs kann beispielsweise in einem Display des Heizgeräts eine Fehlerdiagnose angezeigt werden.
  • Das erfindungsgemäße Verfahren wird vorzugsweise kontinuierlich während der Gemischregelung angewandt und das Sensorsignal des Gasgemischsensors mit dem Ionisationssignal des Ionisationssensors regelmäßig verglichen bzw. plausibilisiert.
  • Eine Weiterbildung des Verfahrens sieht vor, dass zur Überprüfung des Gasgemischsensors und des Ionisationssensors die Gasmenge oder die Brenngasmenge zyklisch in mehreren Schritten in vordefinierten Stellgrößen des ersten oder zweiten Stellglieds verändert wird und die sich jeweils einstellende Veränderung des Sensorsignals des Gasgemischsensors und des Ionisationssignals des Ionisationssensors in mehren der sich aus den Schritten ergebenden Betriebspunkten gemessenen und miteinander verglichen werden.
  • Der vorstehend beschriebene Kalibrierprozess durch die Ionisationsstromregelung wird in einer vorteilhaften Ausführung des Verfahrens genutzt, um eine Vorab-Zuordnung von mehreren Signalwerten des Gasgemischsensors und Ionisationssensors in den verschiedenen Betriebspunkten festzulegen. Der Kalibrierprozess wird vorzugsweise wiederholt ausgeführt, so dass mehreren unterschiedlichen Ionisationssignalen korrespondierende Sensorsignale des Gasgemischsensors zugeordnet sind. Aus dem Zusammenhang zwischen dem Ionisationssignal und dem Sensorsignals in den verschiedenen Betriebspunkten ergibt sich eine Soll-Kennlinie in einem Diagramm lonisationssignal-Sensorsignal, die im Steuergerät hinterlegt wird. Um die Soll-Kennlinie wird vorzugsweise mindestens ein Toleranzkorridor vorgesehen, der einen Betrieb außerhalb des Normalen kennzeichnet, so dass bei einer zu starken Abweichung des Kennlinienverlaufs von der Soll-Kennlinie entweder eine Kalibrierung der Gemischregelung erfolgen kann oder das Heizgerät notfalls sogar abgeschaltet wird.
  • Eine Weiterbildung des Verfahrens ist dadurch gekennzeichnet, dass zusätzlich ein Gassensor und/oder ein Brenngassensor zur Erfassung zumindest einer der stofflichen Eigenschaft des Gases oder des Brenngases verwendet wird. Bei einer Lösung mit beiden zusätzlichen Sensoren, d.h. Gassensor und Brenngassensor, wird über den Gassensor die stoffliche Eigenschaft des Gases und über den Brenngassensor die die stoffliche Eigenschaft des Brenngases gemessen, wobei hierbei vorteilhaft ist, dass aus den Signalen von Gassensor und Brenngassensor die jeweiligen Endpunkte der Sensorkennlinie des Sensorsignals des Gasgemischsensors bestimmt werden. Der erste Endpunkt ist bestimmt durch reines Brenngas, der zweite Endpunkt durch reines Gas, insbesondere Luft. Somit kann ein aus labortechnisch ermittelten Messungen ein zu erwartender Verlauf der Sensorkennlinie des Gasgemischsensor bei der Veränderung der Brenngasmenge oder Gasmenge zur Durchführung des erfindungsgemäßen Verfahrens mit dem Vergleich der Veränderung des Sensorsignals des Gasgemischsensors und des Ionisationssignals des Ionisationssensors vorausbestimmt werden.
  • Auch bei einer schrittweisen Veränderung zur Erreichung und Messung in mehreren bestimmten Betriebspunkten sind der Kennlinienverlauf und somit die auf der Kennlinie erwarteten Betriebspunkte vorausberechenbar, so dass ein Ziel-Sensorsignal zu jedem der sich aus den Schritten ergebenden Betriebspunkte bestimmt wird.
  • Eine Ausführung des Verfahrens sieht alternativ vor, dass nur ein zusätzlicher Sensor, d.h. nur der Gassensor oder nur der Brenngassensor ergänzt wird. Dies ist kostengünstiger. Gleichzeitig bietet es die vorteilhafte Möglichkeit, zumindest einen Endpunkt der Sensorkennlinie des Sensorsignals des Gasgemischsensors zu bestimmen, ausgehend von dem die schrittweise Veränderung beispielsweise der Brenngasmenge genauer vorausberechenbar ist. Zudem kann unter Berücksichtigung des Endpunkts der Sensorkennlinie bereits ein Schritt der Veränderung beispielsweise der Brenngasmenge ausreichen, um die Abweichungen im Sensorsignal des Gasgemischsensors zu erkennen. Hierbei ist vorteilhaft, dass die Überprüfung des Gasgemischsensors und des Ionisationssensors nicht im Bereich des Maximums des Ionisationssignals mit vergleichsweise hohen Abgaswerten erfolgen muss, sondern bereits bei einer ersten Erhöhung beispielsweise der Brenngasmenge die Plausibilitätsprüfung durchführbar ist.
  • In einer Weiterbildung des Verfahrens werden der Gasgemischsensor, der Gassensor und/oder der Brenngassensor redundant vorgesehen. Jeder der redundant vorgesehenen Gasgemischsensoren, Gassensoren und/oder Brenngassensoren liefert dabei günstigerweise ein eigenes Signal an das Steuergerät, die auf Plausibilität und mithin die Sensoren bezüglich ihrer fehlerfreien Funktion überprüft werden.
  • Andere vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen gekennzeichnet bzw. werden nachstehend zusammen mit der Beschreibung der bevorzugten Ausführung der Erfindung anhand der Figuren näher dargestellt. Es zeigen:
  • Fig. 1
    ein prinzipieller Aufbau zur Durchführung der Gemischregelung,
    Fig. 2
    einen Aufbau eines Heizgerätes zur Durchführung des Verfahrens,
    Fig. 3
    eine Regelungskennlinie des Sensorsignals des Gasgem ischsensors,
    Fig. 4
    eine Regelungskennlinie des Sensorsignals des Gasgem ischsensors,
    Fig. 5
    eine Kennlinie der Ionisationsstromregelung,
    Fig. 6
    eine Kennlinie zur Brenngasmengenerhöhung zur Durchführung des Verfahrens,
    Fig. 7
    eine resultierende Kennlinie des Sensorsignals des Gasgemischsensors bei der Brenngasmengenerhöhung gemäß Fig. 6,
    Fig. 8
    eine resultierende Kennlinie des Ionisationssignals des Ionisationssensors bei der Brenngasmengenerhöhung gemäß Fig. 6,
    Fig. 9
    eine Kennlinie im Diagramm lonisationssignal-Sensorsignal mit Toleranzkorridor.
  • In den Figur 1 ist ein prinzipieller Aufbau zur Durchführung der Gemischregelung aufgezeigt. In der nachfolgenden Figurenbeschreibung wird als Gas stets Luft angenommen, auch wenn theoretisch auch andere Gase verwendet werden können.
  • In Figur 1 werden über das Steuergerät 11 das Stellglied 4 zur Zuführung einer steuerbaren Menge an Luft 2 und das Stellglied 3 zur Zuführung einer steuerbaren Menge an Brenngas 1 in ihren jeweiligen Öffnungsstellungen geregelt, um das Gasgemisch 9 in einem bestimmten Brenngas-Luftgemisch-Verhältnis zu erzeugen. Im Bereich des Gasgemisches 9 ist der Gasgemischsensor 10 positioniert und wird mit dem Gasgemisch 9 beaufschlagt. Im Brenngasweg 5 sind zusätzlich der Brenngassensor 6, im Gasweg 7 der Gassensor 8 positioniert, die ebenfalls Signale an das Steuergerät 11 liefern. Über eine Prozessüberwachungseinheit 12 werden das Steuergerät 11 und die Regelung überwacht.
  • Figur 2 zeigt eine konkrete Ausführungsform eines brenngasbetriebenen Heizgerätes 200 mit einem Gassicherheitsventil 101, einem Gasregelventil 102 als Stellglied der Menge an Brenngas 103, einem Mischgebläse 107 zur Ansaugung von Luft 104 und Mischung mit dem Brenngas 103 zur Erzeugung des Gasgemisches 105. Über die Drehzahl des Mischgebläses 107 ist die Luftmenge anpassbar; es stellt mithin das Stellglied für die Luftzufuhr. Das Heizgerät 200 umfasst den mikrothermischen Gasgemischsensor 106, wobei ein zweiter Gasgemischsensor 108 als alternative Einbauposition im Ausblasbereich des Mischgebläses 107 dargestellt ist. Grundsätzlich wird jedoch kein zweiter Gasgemischsensor benötigt. Das Mischgebläse 107 fördert das Gasgemisch 105 zum Brenner 109, an dem der Ionisationssensor 111 mit der lonisationselektrode verbaut ist, um die Brennerflamme zu überwachen. Zudem sind über Pfeile die Signalleitungen zu dem und von dem Steuergerät 100 gezeigt, welches die Regelung des Gasgemisches 105 verarbeitet.
  • Im Folgenden wird auf die Bauteile des prinzipiellen Aufbaus gemäß Figur 1 Bezug genommen, die jedoch unmittelbar auf das Heizgerät 200 gemäß Figur 2 übertragbar sind.
  • In Figur 3 ist in einem Diagramm 30 ein für die Regelung verwendeter vereinfachter linearer Zusammenhang zwischen dem von dem Gasgemischsensor 10 erfassten Sensorsignal 31 bei reiner Luft 2 (Bezugszeichen 34 entspricht 100% Luft) und dem Sensorsignal 32 bei reinem Brenngas 1 (Bezugszeichen 36 entspricht 100% Brenngas) dargestellt. Für das Gasgemisch 9 (Bezugszeichen 35 entspricht 40% Luft und 60% Brenngas) liegt das Sensorsignal 33 dazwischen. Die Mengen an Luft 2 und Brenngas 1 werden über die jeweiligen Stellglieder 3 und/oder 4 solange angepasst, bis die vom Prozess erforderlichen Gemischeigenschaften des gewünschten Mischungsverhältnisses vom Gasgemischsensor 10 detektiert werden. Figur 3 zeigt einen linearen Verlauf der Kennlinie des Sensorsignals, es sind jedoch auch nicht-lineare Kennlinien möglich, die beispielsweise über Wertetabellen eine Regelung zu den entsprechenden Positionen der Stellglieder 3, 4 ermöglichen.
  • Gemäß Figur 3 sinkt das Sensorsignal, je mehr Brenngas 1 zugeführt wird. Das Sensorsignal wird beispielhaft als abhängig von der Wärmeleitfähigkeit als stoffliche Eigenschaft des Gasgemisches 9 dargestellt, wobei das Brenngas beispielsweise Flüssiggas ist und die Wärmeleitfähigkeit von Flüssiggas niedriger ist als diejenige von Luft. Es gibt jedoch auch Gasarten, bei denen die Wirkrichtung der Regelung umgekehrt ist, wie in Figur 4 gezeigt. Hier ist das Brenngas 1 Erdgas, dessen Wärmeleitfähigkeit höher ist als diejenige von Luft. Im Diagramm 40 gemäß Figur 4 ein für die Regelung verwendeter vereinfachter linearer Zusammenhang zwischen dem von dem Gasgemischsensor 10 erfassten Sensorsignal 42 bei reiner Luft 2 (Bezugszeichen 44 entspricht 100% Luft) und dem Sensorsignal 41 bei reinem Brenngas 1 (Bezugszeichen 46 entspricht 100% Brenngas/Erdgas) dargestellt. Für das Gasgemisch 9 (Bezugszeichen 45 entspricht 75% Luft und 25% Brenngas/Erdgas) liegt das Sensorsignal 43 dazwischen, jedoch nahe dem Sensorsignal 41 reinen Brenngases 1. Für eine Regelung mit Erdgas wird vom Steuergerät 11 aus der Signaländerung des Gasgemischsensors 10 bei der Erhöhung der Brenngasmenge die Wirkungsrichtung der Regelung bestimmt und für die weitere Gemischregelung zu Grunde gelegt.
  • Figur 5 zeigt ein Diagramm 20 zur Kalibrierung mittels Ionisationsstromregelung mit einer Kennlinie des von der Ionisationselektrode in der Brennerflamme erfassten Ionisationssignals (Io-Signal) gegenüber dem Brenngas-Luftverhältnis λ. Da der prinzipielle Aufbau gemäß Figur 1 keine Ionisationselektrode zeigt, wird nachfolgend auf das Heizgerät 200 gemäß Figur 2 verwiesen. Vom Steuergerät 100 wird während des Brennerbetriebes die Menge an Luft 104 auf einen vorgegebenen Wert gesteuert, das Ionisationssignal an der Ionisationselektrode des Ionisationssensor 111 am Brenner 109 gemessen und die Menge an Brenngas 103 soweit erhöht, bis das Ionisationssignal von dem ursprünglich vorhandenen lonisationswert 21 bei einem Brenngas-Luftverhältnis 24 auf das Maximum 22 angestiegen ist. Aus diesem Wert wird mit einer labortechnisch ermittelten Prozentzahl der Ionisationssollwert 23 berechnet und als künftiger lonisationsstrom-Sollwert abgespeichert, der das gewünschte Brenngas-Luftverhältnis 25 mit höherem Luftüberschuss erreicht werden muss. Gleichzeitig wird zu jedem Wert des Ionisationssignals ein korrespondierendes Sensorsignal des Gasgemischsensors 108 gespeichert.
  • In den Figuren 6-9 sind Kennlinien in Diagrammen dargestellt, welche ein Ausführungsbeispiel für das Verfahren zur Überprüfung des Gasgemischsensors 108 und Ionisationssensors 111 bezüglich ihrer fehlerfreien Funktion bei dem brenngasbetriebenen Heizgerät 200 vermitteln. Dabei wird die Brenngasmenge als Parameter erhöht. Alternativ ist das Verfahren in gleicher Weise durch eine Änderung der Luftmenge ausführbar.
  • Gemäß Figur 6 wird zur Durchführung des Verfahrens über das Steuergerät 100 das Gasregelventil 102 derart angesteuert, dass sich die Brenngasmenge F in Abhängigkeit der Öffnungsstellung P des Gasregelventils 102 erhöht. Die Kennlinie 80 stellt dabei ein Durchflusskennlinie des Brenngases dar. Die Erhöhung erfolgt in der gezeigten Ausführung schrittweise von den Punkten a, b, c, d, e, wobei die Brenngasmenge F im Wesentlichen konstant über einen festgelegten Betrag 81 ansteigt.
  • Die Veränderung der Brenngasmenge verursacht bei unveränderter Luftmenge eine Verschiebung der Gemischzusammensetzung in % aus Brenngas und Luft und mithin ein sich änderndes Sensorsignal S des Gasgemischsensors 108, wie in Figur 7 gezeigt. Die beiden Endpunkte 61, 65 der Sensorkennlinie 60 bestimmen bei der Gemischzusammensetzung in % bei Bezugszeichen 65 reine Luft bzw. bei Bezugszeichen 66 reines Brenngas. Ausgehend von der Soll-Gemischzusammensetzung bei Punkt a aus Figur 6, gekennzeichnet in Figur 7 mit Bezugszeichen 69 wird in Teilschritten a-b-c-d die Brennstoffmenge auf die Prüf-Gemischzusammensetzung 67, gekennzeichnet in Figur 7 mit Bezugszeichen 67, erhöht, wobei sich das Sensorsignal S im fehlerfreien Betrieb um eine Signaldifferenz 72 verändert. Gleichzeitig erhöht sich, wie in Figur 8 gezeigt, das Ionisationssignal von einem Wert, der beim Bezugszeichen 23 bei Punkt a auf einen Maximalwert der stöchiometrischen Verbrennung, der beim Bezugszeichen 22 bei Punkt d gekennzeichnet ist. Bei einer weiteren Anfettung des Gasgemisches auf den Punkt e sinkt das Ionisationssignal wieder ab.
  • Bezugnehmend auf Figur 9 ergibt sich aus jedem Schritt a, b, c, d, e der Zuordnung des jeweiligen Sensorsignals (S) des Gasgemischsensors 108 des korrespondierenden Ionisationssignals (Io-Signal) des Ionisationssensors 111 die Soll-Kennlinie 95. Zudem sind in gestrichelten Linien zwei Toleranzgrenzen T1 und T2 zur Festlegung des Toleranzkorridors eingezeichnet. Bei einer Abweichung in Richtung des Pfeils A liegt eine Funktion des Gasgemischsensors 108 außerhalb der Normalwerte vor, da sich bei einer Erhöhung der Brenngasmenge gemäß Figur 7 das Ionisationssignal deutlich stärker erhöht als das Sensorsignal. Bei einer Abweichung in Richtung des Pfeils B liegt eine Funktion des Ionisationssensors 111 außerhalb der Normalwerte vor, da sich bei einer Erhöhung der Brenngasmenge gemäß Figur 7 das Sensorsignal deutlich stärker erhöht als das Ionisationssignal. Eine Abweichung in Richtung des Pfeils A weist auf eine fehlerhafte Funktion des Gasgemischsensors 108, eine Abweichung in Richtung des Pfeils B auf eine fehlerhafte Funktion des Ionisationssensors 111 hin. Die Gemischregelung des Heizgeräts 200 durch das Steuergerät 100 erfolgt dann über den jeweils nicht fehlerhaft arbeitenden Sensor, bis die nötige Wartung erfolgt ist. Der Fehler und Wartungsbedarf wird am Heizgerät 200 visuell beispielsweise über das Anzeigedisplay angezeigt und/oder unmittelbar an den Hersteller übermittelt. Bei einem Vergleichsergebnis der Sensorwerte außerhalb des durch die Toleranzgrenzen T1, T2 bestimmten Toleranzkorridors wird das Heizgerät 200 abgeschaltet.
  • Auch wenn in Figur 1 und Figur 2 jeweils eigene Brenngassensoren 6, 103 und Gassensoren 8, 106 vorgesehen sind, umfasst das Verfahren auch Ausführungen ohne diese zusätzlichen Sensoren oder mit nur einem Brenngassensor oder Gassensor.

Claims (12)

  1. Verfahren zur Überprüfung eines Gasgemischsensors und Ionisationssensors bezüglich ihrer fehlerfreien Funktion bei einem brenngasbetriebenen Heizgerät,
    wobei ein Gasgemisch erzeugt wird, indem über ein erstes Stellglied (4, 107) eine Gasmenge und über ein zweites Stellglied (3, 102) eine Brenngasmenge bereitgestellt und gemischt werden,
    wobei der Gasgemischsensor (10, 106) in dem Gasgemisch zur Erfassung einer stofflichen Eigenschaft des Gasgemisches (5, 105) positioniert ist und kontinuierlich ein von dem jeweiligen Gasgemisch abhängiges Sensorsignal an ein Steuergerät (7, 100) übermittelt,
    wobei an einem Brenner (109) des Heizgerätes (200) über den lonisationssensor (111) ein Flammensignal erfasst und daraus ein Ionisationssignal bestimmt und an das Steuergerät (11, 100) übermittelt wird, wobei dem jeweiligen Sensorsignal des Gasgemischsensors (10, 106) ein korrespondierendes lonisationssignal des Ionisationssensors (111) zugeordnet wird,
    und wobei zur Überprüfung des Gasgemischsensors und des lonisationssensors die Gasmenge oder die Brenngasmenge temporär in einer vordefinierten Stellgröße des ersten oder zweiten Stellglieds verändert wird, so dass sich das Gasgemisch verändert, und gleichzeitig die jeweilig resultierende Veränderung des Sensorsignals des Gasgemischsensors und des lonisationssignals des ionisationssensors gemessen und miteinander verglichen werden.
  2. Verfahren nach Anspruch 1, wobei zur Überprüfung des Gasgemischsensors (10, 106) und des ionisationssensors (111) die Gasmenge oder die Brenngasmenge zyklisch in mehreren Schritten in vordefinierten Stellgrößen des ersten oder zweiten Stellglieds verändert wird und die sich jeweils einstellende Veränderung des Sensorsignals des Gasgemischsensors und des lonisationssignals des Ionisationssensors in mehreren der sich aus den Schritten ergebenden Betriebspunkten gemessenen und miteinander verglichen werden.
  3. Verfahren nach Anspruch 1 oder 2, ferner umfassend einen Kalibrierprozess erfolgend durch eine Ionisationsstromregelung des Flammensignals des Brenners (109) des Heizgerätes (200), bis ein Sollwert des lonisationssignals erreicht ist.
  4. Verfahren nach Anspruch 3, wobei bei Erreichen des Sollwerts des lonisationssignals ein korrespondierendes Sensorsignal des Gasgemischsensors zugeordnet wird.
  5. Verfahren nach Anspruch 4, wobei der Kalibrierprozess im Betrieb des Heizgerätes wiederholt ausgeführt wird und jeweils bei Erreichen des Sollwerts des lonisationssignals das Sensorsignal des Gasgemischsensors (10, 106) zugeordnet wird, so dass mehreren unterschiedlichen lonisationssignalen korrespondierende Sensorsignale des Gasgemischsensors zugeordnet sind.
  6. Verfahren nach einem der Ansprüche 2-5, wobei aus dem Zusammenhang zwischen dem Ionisationssignal und dem Sensorsignal in den verschiedenen Betriebspunkten eine Kennlinie mit einem die Kennlinie umgebenden Toleranzkorridor gebildet.
  7. Verfahren nach einem der vorigen Ansprüche, dass wobei ein Gassensor (8) und/oder ein Brenngassensor (6) zur Erfassung zumindest einer der stofflichen Eigenschaft des Gases oder des Brenngases vorgesehen ist.
  8. Verfahren nach einem der vorigen Ansprüche 1 - 6, wobei ein Gassensor (8) die stoffliche Eigenschaft des Gases und ein Brenngassensor (6) die stoffliche Eigenschaft des Brenngases erfassen und daraus Endpunkte einer Sensorkennlinie des Sensorsignals des Gasgemischsensors (10, 106) bestimmt werden.
  9. Verfahren nach dem vorigen Anspruch, wobei aus dem Verlauf der Sensorkennlinie des Sensorsignals des Gasgemischsensors ein Ziel-Sensorsignal zu jedem der sich aus den Schritten ergebenden Betriebspunkte bestimmt wird.
  10. Verfahren nach einem der vorigen Ansprüche 6 bis 9, wobei das Heizgerät (200) abgeschaltet wird, wenn der Toleranzkorridor verlassen wird.
  11. Verfahren nach einem der vorigen Ansprüche 7 bis 10, wobei der Gasgemischsensor, der Gassensor und/oder der Brenngassensor redundant vorgesehen sind.
  12. Verfahren nach dem vorigen Anspruch, wobei jeder der redundant vorgesehenen Gasgemischsensoren, Gassensoren und/oder Brenngassensoren ein eigenes Signal an das Steuergerät liefert und bezüglich ihrer fehlerfreien Funktion überprüft wird.
EP20723328.9A 2019-04-29 2020-04-28 Verfahren zur überprüfung eines gasgemischsensors und ionisationssensors bei einem brenngasbetriebenen heizgerät Active EP3870899B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019110976.0A DE102019110976A1 (de) 2019-04-29 2019-04-29 Verfahren zur Überprüfung eines Gasgemischsensors und Ionisationssensors bei einem brenngasbetriebenen Heizgerät
PCT/EP2020/061784 WO2020221758A1 (de) 2019-04-29 2020-04-28 Verfahren zur überprüfung eines gasgemischsensors und ionisationssensors bei einem brenngasbetriebenen heizgerät

Publications (2)

Publication Number Publication Date
EP3870899A1 EP3870899A1 (de) 2021-09-01
EP3870899B1 true EP3870899B1 (de) 2023-11-01

Family

ID=70482627

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20723328.9A Active EP3870899B1 (de) 2019-04-29 2020-04-28 Verfahren zur überprüfung eines gasgemischsensors und ionisationssensors bei einem brenngasbetriebenen heizgerät

Country Status (3)

Country Link
EP (1) EP3870899B1 (de)
DE (1) DE102019110976A1 (de)
WO (1) WO2020221758A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021113220A1 (de) 2021-05-21 2022-11-24 Vaillant Gmbh Verfahren zur Überwachung des Betriebes eines Heizgerätes, Heizgerät sowie Computerprogramm und computerlesbares Medium
DE102022112785A1 (de) 2022-05-20 2023-11-23 Vaillant Gmbh Verfahren zum Betreiben eines Heizgerätes, Computerprogramm, Regel- und Steuergerät und Heizgerät

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2072122A1 (en) * 1989-10-30 1991-05-01 Ulrich Bonne Microbridge-based combustion control
DE10113468A1 (de) * 2000-09-05 2002-03-14 Siemens Building Tech Ag Regeleinrichtung für einen Luftzahlgeregelten Brenner
DE102004055716C5 (de) * 2004-06-23 2010-02-11 Ebm-Papst Landshut Gmbh Verfahren zur Regelung einer Feuerungseinrichtung und Feuerungseinrichtung (Elektronischer Verbund I)
DE102010046954B4 (de) * 2010-09-29 2012-04-12 Robert Bosch Gmbh Verfahren zur Kalibrierung, Validierung und Justierung einer Lambdasonde
DE102011079325B4 (de) * 2011-07-18 2017-01-26 Viessmann Werke Gmbh & Co Kg Verfahren zur Luftzahlregelung eines Brenners
DE202019100261U1 (de) * 2019-01-17 2019-02-04 Ebm-Papst Landshut Gmbh Heizgerät mit Regelung eines Gasgemisches
DE202019100263U1 (de) * 2019-01-17 2019-02-04 Ebm-Papst Landshut Gmbh Heizgerät mit Regelung eines Gasgemisches unter Nutzung eines Gassensors, eines Brenngassensors und eines Gasgemischsensors

Also Published As

Publication number Publication date
EP3870899A1 (de) 2021-09-01
WO2020221758A1 (de) 2020-11-05
DE102019110976A1 (de) 2020-10-29

Similar Documents

Publication Publication Date Title
EP2466204B1 (de) Regeleinrichtung für eine Brenneranlage
EP3683500B1 (de) Verfahren zur regelung eines gasgemisches unter nutzung eines gassensors und eines gasgemischsensors
EP2594848B1 (de) Verfahren zur Steuerung einer Feuerungseinrichtung und Feuerungseinrichtung
EP3824366B1 (de) Verfahren zur regelung eines gasgemisches unter nutzung eines gassensors, eines brenngassensors und eines gasgemischsensors
EP3870899B1 (de) Verfahren zur überprüfung eines gasgemischsensors und ionisationssensors bei einem brenngasbetriebenen heizgerät
DE202019100263U1 (de) Heizgerät mit Regelung eines Gasgemisches unter Nutzung eines Gassensors, eines Brenngassensors und eines Gasgemischsensors
EP2014985A2 (de) Verfahren zur Brenngas-Luft-Einstellung für einen brenngasbetriebenen Brenner
AT505244B1 (de) Verfahren zur überprüfung des ionisationselektrodensignals bei brennern
DE102019119186A1 (de) Verfahren und Vorrichtung zur Regelung eines Brenngas-Luft-Gemisches in einem Heizgerät
EP2405198B1 (de) Verfahren zur Kalibrierung der Regelung des Brenngas-Luft-Verhältnisses eines brenngasbetriebenen Brenners
EP3029375B1 (de) Heizgerätevorrichtung und verfahren zum betrieb einer heizgerätevorrichtung
DE202019100261U1 (de) Heizgerät mit Regelung eines Gasgemisches
EP3746705A1 (de) Verfahren zur regelung eines gasgemisches unter nutzung eines gasgemischsensors
EP3734159A1 (de) Verfahren zur überprüfung eines gasgemischsensors bei einem brenngasbetriebenen heizgerät
EP3182007B1 (de) Heizgerätesystem und verfahren mit einem heizgerätesystem
DE19854824C1 (de) Verfahren und Schaltung zur Regelung eines Gasbrenners
EP3746706B1 (de) Verfahren zur regelung eines mischungsverhältnisses von brenngas und luft für ein heizgerät
EP3767174B1 (de) Verfahren und vorrichtung zur nachkalibrierung eines messsystems zur regelung eines brenngas-luft-gemisches in einem heizgerät
EP3751200B1 (de) Verfahren zur regelung eines brenngasbetriebenen heizgerätes
EP2354657B1 (de) Verfahren zum Betreiben eines Gasbrenners
EP3173699B1 (de) Heizgerätevorrichtung, insbesondere gas und/oder ölbrennervorrichtung, und verfahren zum betrieb einer heizgerätevorrichtung
DE10220773A1 (de) Verfahren und Einrichtung zur Regelung eines Verbrennungsprozesses, insbesondere eines Brenners
DE202019100264U1 (de) Heizgerät mit Regelung eines Gasgemisches unter Nutzung eines Gassensors und eines Gasgemischsensors
WO2018054582A1 (de) Gasbereitungsvorrichtung und verfahren zur bereitstellung eines brenngasgemischs
DE10056064A1 (de) Verfahren zum Regeln eines Gasbrenners

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210526

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: HERMANN, JENS

Inventor name: WALD, STEPHAN

Inventor name: HENRICH, HARTMUT

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230526

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230830

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502020005856

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20231101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231101

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231101

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240301

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240202

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231101

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240201

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240301