EP3029375B1 - Heizgerätevorrichtung und verfahren zum betrieb einer heizgerätevorrichtung - Google Patents

Heizgerätevorrichtung und verfahren zum betrieb einer heizgerätevorrichtung Download PDF

Info

Publication number
EP3029375B1
EP3029375B1 EP15192022.0A EP15192022A EP3029375B1 EP 3029375 B1 EP3029375 B1 EP 3029375B1 EP 15192022 A EP15192022 A EP 15192022A EP 3029375 B1 EP3029375 B1 EP 3029375B1
Authority
EP
European Patent Office
Prior art keywords
air
control
fuel ratio
fuel
loop
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15192022.0A
Other languages
English (en)
French (fr)
Other versions
EP3029375A1 (de
Inventor
Martin Kiefer
Gijs Olde Loohuis
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP3029375A1 publication Critical patent/EP3029375A1/de
Application granted granted Critical
Publication of EP3029375B1 publication Critical patent/EP3029375B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/12Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods
    • F23N5/123Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/002Regulating fuel supply using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N3/00Regulating air supply or draught
    • F23N3/002Regulating air supply or draught using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2223/00Signal processing; Details thereof
    • F23N2223/48Learning / Adaptive control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2233/00Ventilators
    • F23N2233/06Ventilators at the air intake
    • F23N2233/08Ventilators at the air intake with variable speed

Definitions

  • the invention relates to a heater device, in particular a gas and / or oil burner device for mixture combustion, in particular for combustion air-fuel mixture combustion, with at least one memory unit in which at least one control characteristic field is stored, with at least one sensor unit for detecting at least a Vietnameseierekennyes, in particular a Heilierekennmothermother the mixture combustion, and with at least one control and / or regulating unit, which is provided to adjust at least in dependence on the air-fuel ratio an air ratio to a desired air ratio.
  • control and / or regulating unit is provided in at least one operating state, in particular different from a starting operating state, the at least one control characteristic field which is provided for controlling at least the air-fuel ratio to a desired air-fuel ratio to adapt and / or update dynamically, in particular during operation of the heater device, in particular to adapt to changing and / or changed operating and / or boundary conditions and / or to changing and / or changed operating and / or boundary conditions and / or or to update.
  • the control and / or regulating unit is provided to recalibrate in the operating state the at least one, in particular calibrated to a start of operation of the heater device, control characteristic field.
  • control and / or regulating unit is provided in particular for the at least one control characteristic field be adapted and / or updated in time-varying, in particular not fixed and in particular only with changing and / or changed operating and / or boundary conditions.
  • the control characteristic field corresponds to an air ratio characteristic-fuel metering signal characteristic field.
  • a "heater device” is to be understood as meaning, in particular, at least one part, in particular a subassembly, of a heating device, in particular of a gas and / or oil burner.
  • the heater device may also include the entire heater, in particular the entire gas and / or oil burner.
  • the heater device can have at least one combustion unit, at least one feed unit, at least one combustion air meter and / or at least one fuel meter.
  • a “combustion unit” should be understood to mean in particular a unit which is intended, in particular, to burn a combustion air / fuel mixture and in particular to generate at least one heating flame.
  • a “supply unit” is to be understood in particular as a unit which is provided in particular for supplying a combustion air flow, a fuel flow and / or a combustion air-fuel mixture flow to the combustion unit.
  • a “combustion air metering device” is to be understood as meaning in particular one, in particular electrical and / or electronic, unit, in particular actuator unit, preferably metering unit, which is intended to influence and in particular adjust a combustion air flow, in particular a quantity of combustion air and / or a combustion air velocity to regulate and / or promote.
  • the combustion air meter is designed as an actuator.
  • the combustion air metering device can be embodied in particular as any unit that appears appropriate to a person skilled in the art, in particular a metering unit, such as, for example, a fan, which is variable in speed, and / or preferably as a fan, in particular a variable-speed fan.
  • a "fuel metering device” is to be understood in particular as meaning a unit, in particular electrical and / or electronic unit, in particular actuator unit, preferably metering unit, which is intended to influence and in particular set a fuel flow, in particular a fuel quantity and / or a fuel quality. to regulate and / or promote.
  • the fuel meter is designed as an actuator.
  • the fuel meter has at least one, advantageously designed as a mass flow sensor, fuel measuring unit, which is intended to to accurately measure the fuel flow.
  • the fuel metering device can be designed, in particular, as any desired unit of a person skilled in the art, in particular a metering unit, such as, for example, a fuel pump which is variable in flow rate and / or preferably as a fuel valve which is variable in particular.
  • the combustion air meter and / or the fuel meter are intended to modulate a heating power of the heater device.
  • an object that "influences" another object should be understood in this context to mean that the further object has and / or assumes a different state, a different course, and / or a different quantity in the absence of the object than if the object were present object.
  • the term "precisely measurable” should be understood in particular to mean that a measured value of the fuel flow deviates from an actual value of the fuel flow by at most 10%, advantageously by at most 5% and particularly preferably by at most 2%.
  • Provided is intended to be understood in particular specially programmed, designed and / or equipped.
  • the fact that an object is intended for a specific function should in particular mean that the object fulfills and / or executes this specific function in at least one application and / or operating state.
  • the sensor unit can be designed as any, in particular electric, optical and / or chemical, detection and / or measuring unit that appears expedient to a person skilled in the art, for example as temperature sensor, thermoelectric sensor, lambda probe, gas sensor, in particular carbon monoxide sensor and / or carbon dioxide sensor , Radiation sensor, in particular infrared radiation sensor and / or ultraviolet radiation sensor, and / or preferably as an ionization sensor, in particular ionization electrode and advantageously flame ionization electrode.
  • the sensor unit can furthermore be arranged in particular inside and / or outside the heater device.
  • the sensor unit could, for example, be arranged inside the feed unit, in particular in a combustion air path, a fuel path and / or a combustion air-fuel mixture flow path.
  • the sensor unit is arranged in a vicinity of the combustion unit, in particular the heating flame of the combustion unit, and in particular in a combustion chamber of the heater device.
  • a “near zone” should be understood to mean, in particular, a spatial area which is formed by points, which each have a distance of at most 50 cm, advantageously of not more than 30 cm, preferably not more than 10 cm and more preferably not more than 5 cm from a reference point and / or a reference component.
  • a "control and / or regulating unit” is to be understood in particular as an electrical and / or electronic unit having at least one control electronics.
  • control electronics is to be understood in particular as meaning a unit having a computing unit and a computer memory unit as well as an operating, control and / or regulating program stored in the computer memory unit, which is provided in particular for execution by the computer.
  • the control and / or regulating unit can advantageously have the memory unit.
  • the control and / or regulating unit and the storage unit are formed separately.
  • the control and / or regulating unit is provided to provide control signals for setting and / or adjusting the combustion air meter and / or the fuel meter.
  • control and / or regulating unit is provided to provide a requested heating power by adjusting and / or adjusting the combustion air meter and thus in particular the combustion air flow and / or the fuel meter and thus in particular the fuel flow.
  • control and / or regulating unit is provided in particular for determining a current operating value.
  • the control and / or regulating unit is provided to detect the current operating value and to close in particular on the basis of the detected current operating value to a current fuel flow and / or a current combustion air flow.
  • the actual fuel flow and / or the current combustion air flow may deviate from an actual fuel flow and / or an actual combustion air flow.
  • an "operating value” should be understood in particular to mean a value of the fuel meter and / or of the combustion air meter.
  • the operating value corresponds to a value of a fuel metering signal and / or a value of a combustion air metering signal.
  • a "fuel metering signal” is to be understood in particular as a signal of the fuel meter, such as a flow rate of the fuel stream, and / or a control signal of the fuel meter, such as a PWM control signal.
  • the fuel metering signal corresponds to a manipulated variable.
  • a "Verbrennungs Kunststoffdosierersignal” in particular a signal of the Verbrennungs Kunststoffdosierers, such as a speed, and / or a control signal of the Verbrennungs Kunststoffdosierers, such as a control voltage to be understood.
  • the combustion air metering signal corresponds to a manipulated variable.
  • an "air number” should be understood to mean in particular a factor which determines a quality of a combustion and / or by means of which a quality of a combustion can be deduced.
  • the air ratio corresponds to a ratio of an amount of combustion air actually contained in a mixture, in particular the combustion air-fuel mixture, to a stoichiometrically required amount of combustion air, which is required in particular for complete combustion.
  • a combustion temperature a combustion temperature
  • a pollutant formation a pollutant formation
  • / or an efficiency of the combustion on the basis of the air ratio.
  • An air ratio which has the value 1 corresponds in particular to a stoichiometric combustion air ratio.
  • An air ratio greater than 1 corresponds in particular to a lean combustion air-fuel mixture and accordingly has, in particular, a combustion air excess.
  • An air ratio less than 1 corresponds in particular to a rich combustion air-fuel mixture and accordingly has, in particular, a lack of combustion air.
  • the air ratio corresponds to one, in particular indirect, control and / or controlled variable.
  • a "desired air ratio" should be understood to mean, in particular, an air number below which combustion is to take place and / or which leads to optimized combustion, advantageously a stable heating flame, a minimum pollutant emission and / or a maximum efficiency.
  • the desired air ratio is in a slightly lean combustion air-fuel mixture range, and in particular between 1.15 and 1.45, preferably between 1.2 and 1.4 and particularly preferably between 1.25 and 1.35.
  • the desired air ratio is constant in an operating state in which a requested heat output is constant and / or unchanged.
  • an "air ratio" is to be understood in particular to mean a parameter which is correlated in particular with an air number, in particular the air ratio of the combustion air / fuel mixture combustion.
  • the control and / or regulating unit can close at least on the basis of the air-fuel ratio to the air-fuel ratio and / or determine the air-fuel ratio.
  • the Luftierekenntul is identical to the air ratio.
  • the air ratio characteristic corresponds to a measured value which represents the air number.
  • the air number characteristic corresponds to a, in particular direct, control and / or controlled variable.
  • the air ratio characteristic is in particular at least partially of the combustion air flow, in particular the amount of combustion air and / or the combustion air velocity, and at least partially dependent on the fuel flow, in particular the fuel quantity and / or the fuel quality.
  • a “desired air-ratio characteristic" is to be understood, in particular, as an air-fuel ratio to which the air-fuel ratio is to be set, so that the air-fuel ratio advantageously corresponds at least substantially to the desired air-fuel ratio.
  • control and / or regulating unit is provided to set the air-number characteristic in at least one operating state, in particular a control operating state, in the manner of a control and in particular based on at least one control characteristic field and advantageous in at least one other, in particular different from the operating state
  • the air ratio and / or the air-fuel ratio in a normal operating state at least substantially corresponds to the desired air-fuel ratio and / or the desired air-fuel-ratio characteristic.
  • the air ratio and / or the Luftierekennies "at least substantially" corresponds to the desired air ratio and / or the Soll Heilierekennsted should be understood in particular that a relative deviation of the air ratio and / or Heilierekennulate of the desired air ratio and / or the desired air ratio is at most 10%, preferably at most 5% and particularly preferably at most 2%.
  • a "normal operating state” should be understood to mean, in particular, an operating state in which, in particular, an advantageous, in particular most efficient and / or constant operation of the heater device is provided.
  • a normal operating state should be understood to mean a control operating state in which the air ratio is regulated in particular to the desired air ratio and, in particular, corresponds at least substantially to the desired air ratio.
  • a "characteristic characteristic curve field” is to be understood in particular to mean a number-of-air-quantity characteristic heating-power characteristic field, wherein the heating power can be mapped via a fuel metering signal and / or via a combustion air metering signal.
  • a control characteristic field in which the heating power is mapped via the fuel metering signal corresponds in particular to an air ratio parameter fuel metering signal characteristic field.
  • a control characteristic field corresponds in which the heating power is mapped via the Verbrennungs Kunststoffdosierersignal, in particular a Lucasierekenn ashamed-Verbrennungs Kunststoffdosierersignal characteristic field.
  • a "control characteristic field” is to be understood as meaning, in particular, a fuel metering signal combustion air metering signal characteristic field.
  • a "characteristic field” should be understood as meaning, in particular, at least one reference curve, preferably a plurality of reference curves, and / or a reference table with reference values.
  • the characteristic field depends on two interdependent physical quantities and is stored in particular in the memory unit, advantageously as a value table.
  • an efficiency can be increased by the design of the heater device.
  • an optimized combustion with a stable heating flame, a minimum pollutant emissions and / or a maximum efficiency can be achieved, whereby in particular an operational safety can be increased.
  • a control and / or regulation of the heater device can take place over a wide range of heating power. In addition, costs can be advantageously kept low.
  • control and / or regulating unit is provided for a dynamic adaptation of the at least one control characteristic field in at least one operating state, in particular control operating state, a deviation of a current operating value from a, in particular the at least one control characteristic field removable reference operating value to investigate.
  • control and / or regulating unit has an evaluation program stored, in particular in the computer memory unit, which is provided for determining a deviation of the current operating value from the reference operating value.
  • a "reference operating value” should be understood to mean, in particular, an operating value which is determined from the, in particular measured, air-figure characteristic and associated reference value, in particular a reference value of the fuel-metering signal and / or a reference value stored in particular in the at least one control characteristic field Reference value of the Verbrennungs Kunststoffdosierersignals results. In this way, in particular a correct operation of the heater device can be monitored and advantageously ensured.
  • control and / or regulating unit in the event of a deviation of the current operating value, which is greater than a predetermined and / or definable, operating value limit deviation stored, in particular, in the memory unit is to determine at least one correction factor, in particular from a comparison and / or preferably a ratio of the current operating value to the reference operating value, and to adjust and / or update the at least one control characteristic field, in particular dynamically, by means of the correction factor.
  • the correction factor corresponds in particular to a combustion air correction factor and / or a fuel correction factor.
  • a "combustion air correction factor” is to be understood in particular as a correction factor, which depends in particular on the combustion air metering signal and / or is correlated with the combustion air flow.
  • a “fuel correction factor” should be understood to mean, in particular, a correction factor, which depends in particular on the fuel metering signal and / or is correlated with the fuel flow.
  • the operating value limit deviation has a relative deviation of at most 30%, advantageously at most 20%, preferably at most 10% and particularly preferably at most 5% from the reference operating value. In this way, in particular, an operation of the heater device can be achieved, which is at least substantially independent of changing operating and / or boundary conditions.
  • a heater device in particular a gas and / or oil burner device, proposed for mixture combustion, with at least one memory unit, in which at least one control characteristic field is stored, with at least one sensor unit for detecting at least one Lucasierekennaki and with at least one control and / or control unit, which is provided to set an air ratio to a desired air ratio at least as a function of the air-fuel ratio, the at least one control characteristic field in a normal operating state corresponding to an air-fuel ratio characteristic fuel metering signal characteristic field.
  • This can be increased particularly advantageous efficiency.
  • advantageously an optimized combustion with a stable heating flame a minimum pollutant emissions and / or a maximum efficiency can be achieved.
  • an advantageously simple, efficient and precise control can be achieved, in particular since a fuel flow, in particular a fuel quantity, in particular when using a fuel meter, in particular with a precise fuel metering unit, can advantageously be set exactly.
  • control and / or regulating unit is provided for controlling at least one further characteristic characteristic field to regulate the air-fuel ratio to the desired air-fuel ratio evaluate.
  • the at least one further control characteristic field corresponds to an air ratio characteristic combustion air metering signal characteristic curve field.
  • the control and / or regulating unit is provided for the purpose of controlling the air-fuel ratio to the desired air-fuel ratio in at least one first operating state, in particular normal operating state, to evaluate the at least one control characteristic field and in at least one second, in particular of the at least one first operating state different, operating state to evaluate the at least one more control characteristic field.
  • the air ratio can advantageously be easily adapted to a value of the desired air ratio and advantageously maintained at the value of the desired air ratio.
  • control and / or regulating unit is provided to determine an actual combustion air flow, in particular an actual amount of combustion air, in at least one operating state and / or at least in phases.
  • the heater device in particular apart from the fuel measuring unit and the sensor unit, free of further sensor units, in particular a flow meter.
  • the control and / or regulating unit is provided to determine the actual combustion air flow, in particular the actual amount of combustion air, by imposing a temporary change on the combustion air flow, the fuel flow and / or the combustion air-fuel mixture flow, in particular by means of a Auferiegeü ,
  • the control and / or regulating unit is intended to register, detect and / or measure the temporary change, preferably by means of the sensor unit, and in particular based on a time period between the imprinting and the detection of the change to the actual one Combustion air flow, in particular the actual amount of combustion air to close.
  • the actual combustion air flow, in particular the actual quantity of combustion air can be determined on the basis of the measured time duration and with knowledge of structural dimensions of the supply unit. In this way, in particular a correct operation of the heater device can be checked.
  • control and / or regulating unit is provided to determine a control characteristic field change factor based on a ratio of the actual combustion air flow, in particular the actual amount of combustion air, with a standard combustion air flow.
  • a "Norm combustion air flow” is to be understood in particular as a combustion air flow which is present in the normal operating state, in particular within the supply unit, and / or should be present.
  • the standard combustion air flow corresponds to a standard combustion air quantity.
  • control and / or regulating unit is provided to compare the control characteristic field change factor with the correction factor, and in the case of a deviation of the control characteristic field change factor to the correction factor which is greater than a change-of-excursion deviation is, in particular in a change-over operating state, to be exchanged between the at least one control characteristic field and at least one further control characteristic field, in particular the at least one further control characteristic field.
  • the control and / or regulating unit is provided for at least temporarily to use the at least one further control characteristic field for the regulation.
  • the control and / or regulating unit is provided in this case to dynamically adapt the at least one control characteristic field.
  • control and / or regulating unit is provided to change after the adaptation of the at least one control characteristic field between the at least one further control characteristic field and the at least one control characteristic field and in particular for control, in particular in the normal operating state, the at least one To use the rule characteristic field.
  • the change in the change in the deviation has a relative deviation of at most 30%, advantageously at most 20%, preferably at most 10% and particularly preferably at most 5% from a reference value. In this way, in particular, a deviation of the air ratio, in particular due to changing operating and / or boundary conditions, can be considered and advantageously compensated.
  • the invention is based on a method for operating a heater device, in particular a gas and / or oil burner device for mixture combustion, in particular for combustion air-fuel mixture combustion, with at least one memory unit in which at least one control characteristic field is stored and with at least a sensor unit for detecting at least one Vietnameseierekennerie, wherein an air ratio is set to a desired air ratio as a function of Beerierekennerie and in at least one operating state, the at least one control characteristic field, which for controlling the Beerierekennetz pertain is provided to a desired Heilhoffkenn4,5 is dynamically adjusted.
  • the heater device should not be limited to the above-described application and embodiment.
  • the heater device may have a number different from a number of individual elements, components and units mentioned herein.
  • FIG. 1 shows an exemplary designed as a gas burner heater 20 in a schematic representation.
  • the heater 20 has a heater device.
  • the heater device comprises a combustion air metering device 22.
  • the combustion air metering device 22 is designed as an actuator.
  • the combustion air meter 22 is designed as a variable-speed fan.
  • Combustion air meter 22 is intended to deliver a combustion air stream 24.
  • the combustion air meter 22 is provided to adjust a combustion air amount.
  • the heater device has an embossing unit 26.
  • the embossing unit 26 is intended to impose a temporary change on the combustion air flow 24 in at least one operating state.
  • the heater device comprises a fuel meter 28.
  • the fuel meter 28 is designed as an actuator.
  • the fuel metering device 28 is designed as a throughput variable and in particular electronic fuel valve.
  • the fuel meter 28 is designed as a control valve.
  • the fuel meter 28 is designed to deliver a fuel stream 30.
  • the fuel meter 28 is intended to deliver a gas.
  • the fuel meter 28 is provided to adjust a quantity of fuel.
  • a fuel feeder may include a fuel metering unit, whereby the fuel metering device is provided, in particular, for precisely measuring a fuel quantity.
  • the heater device has a supply unit 32.
  • the supply unit 32 includes a combustion air path.
  • the combustion air path is intended to guide the combustion air flow 24.
  • the supply unit 32 further includes a fuel path.
  • the fuel path is provided to guide the fuel stream 30.
  • the supply unit 32 includes a combustion air-fuel mixture flow path.
  • the combustion air-fuel mixture flow path is intended to mix the combustion air stream 24 with the fuel stream 30.
  • the combustion air-fuel mixture flow path is provided to a Mixed stream 34, in particular a combustion air-fuel mixture stream to lead.
  • the heater apparatus includes a combustion unit 36.
  • the combustion unit 36 is provided to combust a combustion air-fuel mixture of the mixture stream 34.
  • the combustion unit 36 is provided to generate a heating flame 38.
  • the combustion unit 36 is provided to generate the heating flame 38 in a combustion chamber of the heater device.
  • the heater device further comprises a sensor unit 16.
  • the sensor unit 16 has exactly one sensor.
  • the sensor unit 16 is arranged in the combustion chamber of the heater device. In the present case, the sensor unit 16 is arranged in particular in a vicinity of the heating flame 38 of the combustion unit 36.
  • the sensor unit 16 is designed as a flame ionization electrode.
  • the sensor unit 16 is provided in the present case to measure a Lucasierekenneptic the combustion.
  • the air number characteristic corresponds to a control and / or controlled variable. In the present case, the air ratio corresponds to an ionization value of the combustion.
  • the sensor unit 16 makes use of the fact that flames conduct electricity when an electrical voltage is applied. Alternatively, it is conceivable to use a plurality of sensor units and / or sensor units with a plurality of sensors. In this case, the sensor units could in particular be designed differently from a flame ionization electrode and / or arranged in another area of the heater device.
  • the heater device has a control and / or regulating unit 18.
  • the control and / or regulating unit 18 is provided to control an operation of the heater device.
  • the control and / or regulating unit 18 has an arithmetic unit, a computer memory unit and an operating program stored in the computer memory unit, which is intended to be executed by the arithmetic unit.
  • the control and / or regulating unit 18 has a memory unit 10.
  • the control and / or regulating unit 18 is provided to provide a requested heating power.
  • the control and / or regulating unit 18 has an electrical connection with the combustion air metering device 22.
  • the control and / or regulating unit 18 has an electrical connection to the fuel meter 28.
  • control and / or regulating unit 18 has a electrical connection with the sensor unit 16.
  • a control and / or regulating unit has a wireless connection to a combustion air meter, a fuel meter and / or a sensor unit.
  • a control and / or regulating unit and a memory unit could be designed separately.
  • the control and / or regulating unit 18 is provided to provide control signals for adjusting the combustion air meter 22 and the fuel meter 28.
  • the control and / or regulating unit 18 is provided to detect current operating values of the heater device.
  • the control and / or regulating unit 18 is provided to detect a fuel metering signal of the fuel meter 28, a combustion air metering signal of the combustion air metering meter 22 and a sensor signal of the sensor unit 16.
  • the fuel metering signal corresponds to the control signal of the fuel meter 28.
  • the fuel metering signal corresponds to a PWM control signal.
  • the combustion air metering signal corresponds to a signal of the combustion air metering meter 22.
  • the combustion air metering signal corresponds to a rotational speed of the combustion air metering meter 22.
  • the control and / or regulating unit 18 is provided to use the fuel metering signal to indicate a current fuel flow.
  • a control and / or regulating unit is provided to measure a current fuel flow using a fuel measuring unit.
  • the control and / or regulating unit 18 is provided to close on the basis of the Verbrennungs Kunststoffdosierersignals to a current combustion air flow.
  • the current fuel flow and / or the current combustion air flow may deviate from an actual fuel flow and / or an actual combustion air flow, in particular due to changed operating conditions and / or boundary conditions.
  • control and / or regulating unit 18 is provided to set an air ratio to a desired air ratio.
  • control and / or regulating unit 18 is provided to set the air ratio as a function of the air-fuel ratio to the desired air-fuel ratio.
  • the control and / or regulating unit 18 is provided to control and / or regulate the air-fuel ratio to a desired air-fuel ratio so that the air-fuel ratio corresponds to the desired air-fuel ratio. Accordingly, the control and / or regulating unit 18 is intended to directly control and / or regulate the air-fuel ratio and the air-fuel ratio indirectly.
  • control and / or regulating unit 18 provided to adjust the air ratio in the manner of a control to the desired air ratio in a control operating state and adjust the air ratio in the manner of a control to the desired air ratio in a control operating condition and / or a normal operating condition.
  • the control and / or regulating unit 18 is provided to set the air ratio based on characteristic fields to the desired air ratio.
  • the characteristic curves are stored as value tables in the memory unit 10.
  • FIG. 2 shows a designed as a control characteristic field 40 first characteristic field of the heater device.
  • the control characteristic field 40 is designed as a fuel metering signal combustion air meter signal characteristic field. On an ordinate axis 42, the fuel metering signal is shown.
  • the combustion air metering signal is shown on an abscissa axis 44.
  • the curve 46 shows an exemplary course of the air ratio.
  • the control and / or regulating unit 18 is provided to vary the fuel metering signal and the combustion air metering signal on the basis of the control characteristic field 40, and thereby in particular to control the air ratio to a desired air ratio.
  • FIG. 3 shows a designed as a control characteristic field 12 second characteristic field of the heater device.
  • the control characteristics map 12 is designed as Heilierekenniere quite-Brennstoffdosierersignal characteristic field.
  • On an ordinate axis 48 the air ratio is shown.
  • On an abscissa axis 50 the fuel metering signal is shown.
  • the curves 52, 54 show exemplary courses for different air numbers.
  • An uppermost curve 52 corresponds to an air ratio of 1.1.
  • a lowest curve 54 corresponds to an air ratio of 1.45.
  • the control and / or regulating unit 18 is provided to vary the Verbrennungs Kunststoffdosierersignal based on the control characteristic field 12 and thereby in particular to regulate the Heilierekennyes to a desired Heilierekenniere.
  • FIG. 4 shows a designed as another rule characteristic field 14 second characteristic field of the heater device.
  • the further control characteristic field 14 is designed as Heilierekenniere,Verbrennungs Kunststoffdosierersignal characteristic field.
  • On an ordinate axis 56 the air ratio is shown.
  • On a abscissa axis 58 the Verbrennungs Kunststoffdosierersignal is shown.
  • the curves 60, 62 show exemplary courses for different air numbers.
  • An uppermost curve 60 corresponds to an air ratio of 1.1.
  • a lowest curve 62 corresponds to an air ratio of 1.45.
  • the control and / or regulating unit 18 is provided for this purpose on the basis of the further control characteristic field 14 to vary the fuel metering signal and thereby in particular to regulate the air-fuel ratio to a desired Heilierekenniere.
  • FIG. 5 shows an exemplary flowchart for operation of the heater device.
  • the control and / or regulating unit 18 is provided for controlling the air-fuel ratio to the desired air-fuel ratio in at least one operating state, in particular the normal operating state, the control characteristic field 12 and in at least one further operating state the further control characteristic field 14 evaluate.
  • an operating step 70 the heater 20 is started and / or changed by a user requested heating power.
  • a requested heat output corresponds to a defined target air ratio.
  • An operation 72 corresponds to a control operation state.
  • the control and / or regulating unit 18 is provided to set the air ratio characteristic in the manner of a control and based on the control characteristic field 40 to the required target Heilhoffkennaki.
  • the control and / or regulating unit 18 is provided to control the air ratio whenever a heating power and / or a desired air ratio vary greatly, such as when changing the requested heating power. If the air ratio at least substantially corresponds to the desired air ratio, an operating step 74 follows.
  • the operating step 74 corresponds to a control operating state.
  • the control and / or regulating unit 18 is provided to set the air-fuel ratio in the manner of a control and on the basis of the control characteristic field 12 or the further control characteristic field 14 to the required target shipsierekennaise, so that the air ratio in particular the desired air ratio ,
  • the operating step 74 corresponds to a normal operating state.
  • the control and / or regulating unit 18 is provided to use the control characteristic field 12 for setting the air ratio.
  • the control characteristic field 12 corresponds to the air ratio characteristic-fuel metering signal characteristic field.
  • the air-number characteristic-fuel metering signal characteristic field is used to adjust the air ratio, in contrast to the prior art, because an adjustment accuracy of the fuel meter 28 is higher compared to an adjustment accuracy of the combustion air meter 22.
  • the combustion air metering signal is varied.
  • the control and / or regulating unit 18 is provided to determine a deviation of a current operating value from a reference operating value.
  • the control and / or regulating unit 18 is provided for determining a deviation of a current combustion air metering signal, in particular a current rotational speed of the combustion air meter, from a reference value of the combustion air metering signal, in particular a reference rotational speed, stored in the memory unit 10. If the deviation of the current operating value is smaller than an operating value limit deviation, the control and / or regulating unit 18 is provided to execute the operating step 74 again. However, if the deviation of the current operating value is greater than the operating value limit deviation, the control and / or regulating unit 18 is provided to determine a correction factor.
  • the correction factor in the present case corresponds to a combustion air correction factor, in particular a speed correction factor.
  • an operating step 78 follows in this case.
  • control and / or regulating unit 18 is provided to determine an actual combustion air flow.
  • control and / or regulating unit 18 is provided to determine an actual amount of combustion air.
  • control and / or regulating unit 18 is provided to determine the actual quantity of combustion air by imposing a temporary change on the combustion air flow 24 by means of the impressing unit 26.
  • control and / or regulating unit 18 is provided to detect the temporary change by means of the sensor unit 16 and to deduce the actual quantity of combustion air on the basis of a time period between the application and the detection of the change and taking into account constructive dimensions of the supply unit 32 ,
  • an actual combustion air flow can also be ascertained in any other manner that appears appropriate to a person skilled in the art, for example by means of a further sensor unit, in particular a flow meter.
  • control and / or regulating unit 18 is provided, on the basis of a ratio of the actual combustion air flow with a Norm combustion air flow to determine a control characteristic field change factor.
  • control and / or regulating unit 18 is provided to compare the control characteristic field change factor with the correction factor. If a deviation of the control characteristic change factor to the correction factor is smaller than an alternating limit deviation, the control and / or regulating unit 18 is provided to execute the operating step 74 again. In this case, there is a deviation and / or a fluctuation in the combustion air flow 24, so that further regulation by means of the control characteristic field 12 makes sense, in particular since in this case an adaptation of the combustion air meter 22 takes place.
  • the control and / or regulating unit 18 is provided to prepare a change between the control characteristic field 12 and the further control characteristic field 14. In this case, there is a deviation and / or a fluctuation in the fuel flow 30, so that a regulation on the basis of the further control characteristic field 14 makes sense, in particular since an adaptation of the fuel meter 28 takes place in this case.
  • the control and / or regulating unit 18 is provided in an operating step 84 for dynamically adapting the further control characteristic field 14. In this case, the control and / or regulating unit 18 is provided to adapt the further control characteristic field 14 by means of the correction factor (cf. FIG. 8 ).
  • control and / or regulating unit 18 is provided in an operating step 86 to switch between the control characteristic field 12 and the further control characteristic field 14.
  • the control and / or regulating unit 18 is thus provided to use the further control characteristic field 14 for setting the air ratio.
  • the further control characteristic field 14 corresponds to the Lucasbaumkenn Anlagenn-Verbrennungs Kunststoffdosierersignal characteristic field.
  • the control and / or regulating unit 18 is provided to determine a deviation of a further current operating value from a further reference operating value.
  • the control and / or regulating unit 18 is provided for determining a deviation of a current fuel metering signal, in particular of a current PWM control signal, from a reference value of the fuel metering signal stored in the storage unit 10, in particular a reference PWM control signal.
  • the control and / or regulating unit 18 is provided to determine a further correction factor.
  • the further Correction factor in the present case corresponds to a fuel correction factor, in particular a PWM control signal correction factor.
  • control and / or regulating unit 18 is provided to dynamically adapt the control characteristic field 12.
  • the control and / or regulating unit 18 is provided to adapt the control characteristic field 12 by means of the further correction factor (cf. FIG. 7 ).
  • the control and / or regulating unit 18 is further provided to dynamically adapt the control characteristic field 40.
  • the control and / or regulating unit 18 is provided to adapt the control characteristic field 40 by means of the correction factor and the further correction factor (cf. FIG. 6 ).
  • control and / or regulating unit 18 is provided to change to a normal operating state.
  • the control and / or regulating unit 18 is provided to execute the operating step 74 again.
  • the control and / or regulating unit 18 is provided to switch between the further control characteristic field 14 and the control characteristic field 12.
  • the control and / or regulating unit 18 is thus provided to use the control characteristic field 12 for setting the air ratio. In this way, it can be achieved that an air ratio in each operating state corresponds at least substantially to the desired air ratio, whereby, in particular, optimized combustion with a stable heating flame, a minimum pollutant emission and / or a maximum efficiency can be achieved.
  • the exemplary flowchart in FIG. 5 is intended to describe in particular only by way of example an operation of the heater device.
  • individual operating steps and / or a sequence of operating steps may vary.
  • a dynamic adaptation of a control characteristic field and / or at least one control characteristic field could take place at a different time and / or in a different operating step.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Regulation And Control Of Combustion (AREA)

Description

    Stand der Technik
  • Aus der DE 10 2011 111 453 A1 ist bereits ein Verfahren mit einer Heizgerätevorrichtung zum Einstellen einer Luftzahl eines Verbrennungsluft-Brennstoff-Gemischs auf eine Soll-Luftzahl bekannt, wobei die Luftzahl in zumindest einem Betriebszustand gesteuert und in zumindest einem weiteren Betriebszustand geregelt wird. Dieses Dokument offenbart den Oberbegriff des Anspruchs 1.
  • Offenbarung der Erfindung
  • Die Erfindung geht aus von einer Heizgerätevorrichtung, insbesondere einer Gas- und/oder Ölbrennervorrichtung, zur Gemischverbrennung, insbesondere zur Verbrennungsluft-Brennstoff-Gemischverbrennung, mit zumindest einer Speichereinheit, in der zumindest ein Regel-Kennlinienfeld abgelegt ist, mit zumindest einer Sensoreinheit zur Erfassung wenigstens einer Luftzahlkenngröße, insbesondere einer Luftzahlkenngröße der Gemischverbrennung, und mit zumindest einer Steuer- und/oder Regeleinheit, welche dazu vorgesehen ist, zumindest in Abhängigkeit der Luftzahlkenngröße eine Luftzahl auf eine Soll-Luftzahl einzustellen.
  • Es wird vorgeschlagen, dass die Steuer- und/oder Regeleinheit, dazu vorgesehen ist, in zumindest einem, insbesondere von einem Start-Betriebszustand verschiedenen, Betriebszustand das zumindest eine Regel-Kennlinienfeld, welches zur Regelung zumindest der Luftzahlkenngröße auf eine Soll-Luftzahlkenngröße vorgesehen ist, dynamisch, insbesondere während eines Betriebs der Heizgerätevorrichtung, anzupassen und/oder zu aktualisieren, insbesondere an sich ändernde und/oder geänderte Betriebs- und/oder Randbedingungen und/oder anhand sich ändernder und/oder geänderter Betriebs- und/oder Randbedingungen anzupassen und/oder zu aktualisieren. Insbesondere ist die Steuer- und/oder Regeleinheit dazu vorgesehen, in dem Betriebszustand das zumindest eine, insbesondere zu einem Betriebsbeginn der Heizgerätevorrichtung kalibrierte, Regel-Kennlinienfeld neu zu kalibrieren. Ferner ist die Steuer- und/oder Regeleinheit insbesondere dazu vorgesehen, das zumindest eine Regel-Kennlinienfeld in zeitlich variierenden, insbesondere nicht festen und insbesondere lediglich bei sich ändernden und/oder geänderten Betriebs- und/oder Randbedingungen, anzupassen und/oder zu aktualisieren. Des Weiteren entspricht das Regel-Kennlinienfeld in einem Normalbetriebszustand einem Luftzahlkenngrößen-Brennstoffdosierersignal-Kennlinienfeld. Unter einer "Heizgerätevorrichtung" soll in diesem Zusammenhang insbesondere zumindest ein Teil, insbesondere eine Unterbaugruppe, eines Heizgeräts, insbesondere eines Gas- und/oder Ölbrenners, verstanden werden. Insbesondere kann die Heizgerätevorrichtung auch das gesamte Heizgerät, insbesondere den gesamten Gas- und/oder Ölbrenner, umfassen. Insbesondere kann die Heizgerätevorrichtung zumindest eine Verbrennungseinheit, zumindest eine Zufuhreinheit, zumindest einen Verbrennungsluftdosierer und/oder zumindest einen Brennstoffdosierer aufweisen.
  • In diesem Zusammenhang soll unter einer "Verbrennungseinheit" insbesondere eine Einheit verstanden werden, welche insbesondere dazu vorgesehen ist, ein Verbrennungsluft-Brennstoff-Gemisch zu verbrennen und dabei insbesondere zumindest eine Heizflamme zu erzeugen. Unter einer "Zufuhreinheit" soll insbesondere eine Einheit verstanden werden, welche insbesondere dazu vorgesehen ist, einen Verbrennungsluftstrom, einen Brennstoffstrom und/oder einen Verbrennungsluft-Brennstoff-Gemischstrom der Verbrennungseinheit zuzuführen. Ferner soll unter einem "Verbrennungsluftdosierer" insbesondere eine, insbesondere elektrische und/oder elektronische, Einheit, insbesondere Aktoreinheit, vorzugsweise Dosiereinheit, verstanden werden, welche dazu vorgesehen ist, einen Verbrennungsluftstrom, insbesondere eine Verbrennungsluftmenge und/oder eine Verbrennungsluftgeschwindigkeit, zu beeinflussen und insbesondere einzustellen, zu regulieren und/oder zu fördern. Vorzugsweise ist der Verbrennungsluftdosierer als Stellglied ausgebildet. Der Verbrennungsluftdosierer kann dabei insbesondere als eine beliebige, einem Fachmann als sinnvoll erscheinende, Einheit, insbesondere Dosiereinheit, ausgebildet sein, wie beispielsweise als, insbesondere drehzahlvariabler, Ventilator und/oder vorzugsweise als, insbesondere drehzahlvariables, Gebläse. Unter einem "Brennstoffdosierer" soll insbesondere eine, insbesondere elektrische und/oder elektronische, Einheit, insbesondere Aktoreinheit, vorzugsweise Dosiereinheit, verstanden werden, welche dazu vorgesehen ist, einen Brennstoffstrom, insbesondere eine Brennstoffmenge und/oder eine Brennstoffqualität, zu beeinflussen und insbesondere einzustellen, zu regulieren und/oder zu fördern. Vorzugsweise ist der Brennstoffdosierer als Stellglied ausgebildet. Besonders bevorzugt weist der Brennstoffdosierer zumindest eine, vorteilhaft als Massenstromsensor ausgebildete, Brennstoffmesseinheit auf, welche dazu vorgesehen ist, den Brennstoffstrom präzise zu messen. Der Brennstoffdosierer kann dabei insbesondere als eine beliebige, einem Fachmann als sinnvoll erscheinende, Einheit, insbesondere Dosiereinheit, ausgebildet sein, wie beispielsweise als, insbesondere durchsatzvariable, Brennstoffpumpe und/oder vorzugsweise als, insbesondere durchsatzvariables, Brennstoffventil. Insbesondere sind der Verbrennungsluftdosierer und/oder der Brennstoffdosierer dazu vorgesehen, eine Heizleistung der Heizgerätevorrichtung zu modulieren. Darunter das ein Objekt ein weiteres Objekt "beeinflusst" soll in diesem Zusammenhang insbesondere verstanden werden, dass das weitere Objekt bei einer Abwesenheit des Objekts einen anderen Zustand, einen anderen Verlauf und/oder eine andere Quantität aufweist und/oder annimmt als bei einer Anwesenheit des Objekts. Unter dem Ausdruck "präzise zu messen" soll in diesem Zusammenhang insbesondere verstanden werden, dass ein gemessener Wert des Brennstoffstroms von einem tatsächlichen Wert des Brennstoffstroms um höchstens 10 %, vorteilhaft um höchstens 5 % und besonders bevorzugt um höchstens 2 % abweicht. Unter "vorgesehen" soll insbesondere speziell programmiert, ausgelegt und/oder ausgestattet verstanden werden. Darunter, dass ein Objekt zu einer bestimmten Funktion vorgesehen ist, soll insbesondere verstanden werden, dass das Objekt diese bestimmte Funktion in zumindest einem Anwendungs- und/oder Betriebszustand erfüllt und/oder ausführt.
  • Ferner kann die Sensoreinheit als beliebige, einem Fachmann als sinnvoll erscheinende, insbesondere elektrische, optische und/oder chemische, Detektions- und/oder Messeinheit, ausgebildet sein, wie beispielsweise als Temperatursensor, thermoelektrischer Sensor, Lambdasonde, Gassensor, insbesondere Kohlenmonoxidsensor und/oder Kohlendioxidsensor, Strahlungssensor, insbesondere Infrarotstrahlungssensor und/oder Ultraviolettstrahlungssensor, und/oder vorzugsweise als Ionisationssensor, insbesondere lonisationselektrode und vorteilhaft Flammenionisationselektrode. Die Sensoreinheit kann ferner insbesondere innerhalb und/oder außerhalb der Heizgerätevorrichtung angeordnet sein. Die Sensoreinheit könnte beispielsweise innerhalb der Zufuhreinheit, insbesondere in einem Verbrennungsluftweg, einem Brennstoffweg und/oder einem Verbrennungsluft-Brennstoff-Gemischstromweg, angeordnet sein. Vorzugsweise ist die Sensoreinheit jedoch in einem Nahbereich der Verbrennungseinheit, insbesondere der Heizflamme der Verbrennungseinheit, und insbesondere in einem Brennraum der Heizgerätevorrichtung angeordnet. In diesem Zusammenhang soll unter einem "Nahbereich" insbesondere ein räumlicher Bereich verstanden werden, welcher aus Punkten gebildet ist, die jeweils einen Abstand von höchstens 50 cm, vorteilhaft von höchstens 30 cm, vorzugsweise von höchstens 10 cm und besonderes bevorzugt von höchstens 5 cm von einem Referenzpunkt und/oder einem Referenzbauteil aufweisen. Unter einer "Steuer- und/oder Regeleinheit" soll insbesondere eine elektrische und/oder elektronische Einheit mit zumindest einer Steuerelektronik verstanden werden. Unter einer "Steuerelektronik" soll insbesondere eine Einheit mit einer Recheneinheit und mit einer Rechenspeichereinheit sowie mit einem in der Rechenspeichereinheit gespeicherten Betriebs-, Steuer- und/oder Regelprogramm, welches insbesondere dazu vorgesehen ist, von der Recheneinheit ausgeführt zu werden, verstanden werden. Vorteilhaft kann die Steuer- und/oder Regeleinheit die Speichereinheit aufweisen. Alternativ ist denkbar, dass die Steuer- und/oder Regeleinheit und die Speichereinheit getrennt ausgebildet sind. Insbesondere ist die Steuer- und/oder Regeleinheit dazu vorgesehen, Steuersignale zu einer Einstellung und/oder Verstellung des Verbrennungsluftdosierers und/oder des Brennstoffdosierers bereitzustellen. Ferner ist die Steuer- und/oder Regeleinheit dazu vorgesehen, durch Einstellen und/oder Verstellen des Verbrennungsluftdosierers und damit insbesondere des Verbrennungsluftstroms und/oder des Brennstoffdosierers und damit insbesondere des Brennstoffstroms eine angeforderte Heizleistung bereitzustellen. Des Weiteren ist die Steuer- und/oder Regeleinheit insbesondere dazu vorgesehen, einen aktuellen Betriebswert zu ermitteln. Vorzugsweise ist die Steuer- und/oder Regeleinheit dazu vorgesehen, den aktuellen Betriebswert zu erfassen und insbesondere anhand des erfassten aktuellen Betriebswerts auf einen aktuellen Brennstoffstrom und/oder einen aktuellen Verbrennungsluftstrom zu schließen. Insbesondere kann der aktuelle Brennstoffstrom und/oder der aktuelle Verbrennungsluftstrom von einem tatsächlichen Brennstoffstrom und/oder einem tatsächlichen Verbrennungsluftstrom abweichen. In diesem Zusammenhang soll unter einem "Betriebswert" insbesondere ein Wert des Brennstoffdosierers und/oder des Verbrennungsluftdosierers verstanden werden. Vorteilhaft entspricht der Betriebswert einem Wert eines Brennstoffdosierersignals und/oder einem Wert eines Verbrennungsluftdosierersignals. Dabei soll unter einem "Brennstoffdosierersignal" insbesondere ein Signal des Brennstoffdosierers, wie beispielsweise eine Flussrate des Brennstoffstroms, und/oder ein Steuersignal des Brennstoffdosierers, wie beispielsweise ein PWM-Steuersignal, verstanden werden. Vorteilhaft entspricht das Brennstoffdosierersignal einer Stellgröße. Ferner soll unter einem "Verbrennungsluftdosierersignal" insbesondere ein Signal des Verbrennungsluftdosierers, wie beispielsweise eine Drehzahl, und/oder ein Steuersignal des Verbrennungsluftdosierers, wie beispielsweise eine Steuerspannung, verstanden werden. Vorteilhaft entspricht das Verbrennungsluftdosierersignal einer Stellgröße. Ferner soll unter einer "Luftzahl" insbesondere ein Faktor verstanden werden, welcher eine Güte einer Verbrennung festlegt und/oder anhand dessen auf eine Güte einer Verbrennung geschlossen werden kann. Insbesondere entspricht die Luftzahl einem Verhältnis von einer tatsächlich in einem Gemisch, insbesondere dem Verbrennungsluft-Brennstoff-Gemisch, enthaltenen Verbrennungsluftmenge zu einer stöchiometrisch erforderlichen Verbrennungsluftmenge, die insbesondere für eine vollständige Verbrennung benötigt ist. Insbesondere lassen sich anhand der Luftzahl Rückschlüsse auf einen Verbrennungsverlauf, eine Verbrennungstemperatur, einer Schadstoffentstehung und/oder einen Wirkungsgrad der Verbrennung ziehen. Eine Luftzahl, welche den Wert 1 aufweist, entspricht dabei insbesondere einem stöchiometrischen Verbrennungsluftverhältnis. Eine Luftzahl größer 1 entspricht insbesondere einem mageren Verbrennungsluft-Brennstoff-Gemisch und weist demnach insbesondere einen Verbrennungsluftüberschuss auf. Eine Luftzahl kleiner 1 entspricht insbesondere einem fetten Verbrennungsluft-Brennstoff-Gemisch und weist demnach insbesondere einen Verbrennungsluftmangel auf. Insbesondere entspricht die Luftzahl einer, insbesondere indirekten, Steuer- und/oder Regelgröße. Ferner soll unter einer "Soll-Luftzahl" insbesondere eine Luftzahl verstanden werden, unter welcher eine Verbrennung stattfinden soll und/oder welche zu einer optimierten Verbrennung, vorteilhaft einer stabilen Heizflamme, einem minimalen Schadstoffausstoß und/oder einem maximalen Wirkungsgrad, führt. Vorteilhaft liegt die Soll-Luftzahl dabei in einem leicht mageren Verbrennungsluft-Brennstoff-Gemischbereich und insbesondere zwischen 1,15 und 1,45, vorzugsweise zwischen 1,2 und 1,4 und besonders bevorzugt zwischen 1,25 und 1,35. Insbesondere ist die Soll-Luftzahl in einem Betriebszustand, in welchem eine angeforderte Heizleistung gleich bleibend und/oder unverändert ist, konstant. Des Weiteren soll unter einer "Luftzahlkenngröße" insbesondere eine Kenngröße verstanden werden, welche insbesondere mit einer Luftzahl, insbesondere der Luftzahl der Verbrennungsluft-Brennstoff-Gemischverbrennung, korreliert ist. Insbesondere kann die Steuer- und/oder Regeleinheit wenigstens anhand der Luftzahlkenngröße auf die Luftzahl schließen und/oder die Luftzahl ermitteln. Insbesondere ist denkbar, dass die Luftzahlkenngröße mit der Luftzahl identisch ist. Vorteilhaft entspricht die Luftzahlkenngröße jedoch einem die Luftzahl abbildenden Messwert. Insbesondere entspricht die Luftzahlkenngröße einer, insbesondere direkten, Steuer- und/oder Regelgröße. Ferner ist die Luftzahlkenngröße insbesondere zumindest teilweise von dem Verbrennungsluftstrom, insbesondere der Verbrennungsluftmenge und/oder der Verbrennungsluftgeschwindigkeit, und zumindest teilweise von dem Brennstoffstrom, insbesondere der Brennstoffmenge und/oder der Brennstoffqualität, abhängig. Unter einer "Soll-Luftzahlkenngröße" soll insbesondere eine Luftzahlkenngröße verstanden werden, auf welche die Luftzahlkenngröße eingestellt werden soll, sodass die Luftzahl vorteilhaft zumindest im Wesentlichen der Soll-Luftzahl entspricht.
  • Insbesondere ist die Steuer- und/oder Regeleinheit dazu vorgesehen, die Luftzahlkenngröße in zumindest einem Betriebszustand, insbesondere einem Regel-Betriebszustand, nach Art einer Regelung und insbesondere anhand zumindest eines Regel-Kennlinienfelds einzustellen und vorteilhaft in zumindest einem weiteren, insbesondere von dem Betriebszustand verschiedenen, Betriebszustand, insbesondere einem Steuer-Betriebszustand, nach Art einer Steuerung und insbesondere anhand eines Steuer-Kennlinienfelds einzustellen, insbesondere derart, dass die Luftzahlkenngröße zumindest im Wesentlichen der Soll-Luftzahlkenngröße entspricht und hierdurch insbesondere die Luftzahl zumindest im Wesentlichen der Soll-Luftzahl entspricht. Vorzugsweise entspricht die Luftzahl und/oder die Luftzahlkenngröße in einem Normalbetriebszustand zumindest im Wesentlichen der Soll-Luftzahl und/oder der Soll-Luftzahlkenngröße. Darunter, dass die Luftzahl und/oder die Luftzahlkenngröße "zumindest im Wesentlichen" der Soll-Luftzahl und/oder der Soll-Luftzahlkenngröße entspricht soll insbesondere verstanden werden, dass eine relative Abweichung der Luftzahl und/oder der Luftzahlkenngröße von der Soll-Luftzahl und/oder der Soll-Luftzahlkenngröße höchstens 10 %, vorzugsweise höchstens 5 % und besonders bevorzugt höchstens 2 % entspricht. Ferner soll unter einem "Normalbetriebszustand" insbesondere ein Betriebszustand verstanden werden, in welchem insbesondere ein vorteilhafter, insbesondere eine möglichst effizienter und/oder gleichbleibender, Betrieb der Heizgerätevorrichtung gegeben ist. Vorteilhaft soll unter einem Normalbetriebszustand ein Regel-Betriebszustand verstanden werden, bei welchem die Luftzahl insbesondere auf die Soll-Luftzahl geregelt wird und insbesondere zumindest im Wesentlichen der Soll-Luftzahl entspricht.
  • Ferner soll unter einem "Regel-Kennlinienfeld" insbesondere ein Luftzahlkenngröße-Heizleistungs-Kennlinienfeld verstanden werden, wobei die Heizleistung über ein Brennstoffdosierersignal und/oder über ein Verbrennungsluftdosierersignal abgebildet werden kann. Ein Regel-Kennlinienfeld bei welchem die Heizleistung über das Brennstoffdosierersignal abgebildet ist, entspricht dabei insbesondere einem Luftzahlkenngröße-Brennstoffdosierersignal-Kennlinienfeld. Ferner entspricht ein Regel-Kennlinienfeld bei welchem die Heizleistung über das Verbrennungsluftdosierersignal abgebildet ist, insbesondere einem Luftzahlkenngröße-Verbrennungsluftdosierersignal-Kennlinienfeld. Ferner soll unter einem "Steuer-Kennlinienfeld" insbesondere ein Brennstoffdosierersignal-Verbrennungsluftdosierersignal-Kennlinienfeld verstanden werden. Unter einem "Kennlinienfeld" soll in diesem Zusammenhang insbesondere zumindest eine Referenzkurve, vorzugsweise mehrere Referenzkurven, und/oder eine Referenztabelle mit Referenzwerten verstanden werden. Insbesondere hängt das Kennlinienfeld von zwei voneinander abhängigen physikalischen Größen ab und ist insbesondere in der Speichereinheit, vorteilhaft als Wertetabelle, hinterlegt. Durch die Ausgestaltung der Heizgerätevorrichtung kann insbesondere eine Effizienz gesteigert werden. Zudem kann vorteilhaft eine optimierte Verbrennung mit einer stabilen Heizflamme, einem minimalen Schadstoffausstoß und/oder einem maximalen Wirkungsgrad, erreicht werden, wodurch insbesondere eine Betriebssicherheit erhöht werden kann. Ferner kann eine Steuerung und/oder Regelung der Heizgerätevorrichtung über einen weiten Heizleistungsbereich erfolgen. Zudem können Kosten vorteilhaft gering gehalten werden.
  • Vorzugsweise ist die Steuer- und/oder Regeleinheit zu einer dynamischen Anpassung des zumindest einen Regel-Kennlinienfelds dazu vorgesehen, in zumindest einem Betriebszustand, insbesondere Regel-Betriebszustand, eine Abweichung eines aktuellen Betriebswerts von einem, insbesondere dem zumindest einen Regel-Kennlinienfeld entnehmbaren, Referenzbetriebswert zu ermitteln. Insbesondere weist die Steuer- und/oder Regeleinheit ein, insbesondere in der Rechenspeichereinheit hinterlegtes, Auswerteprogramm auf, welches dazu vorgesehen ist, eine Abweichung des aktuellen Betriebswerts von dem Referenzbetriebswert zu ermitteln. In diesem Zusammenhang soll unter einem "Referenzbetriebswert" insbesondere ein Betriebswert verstanden werden, welcher sich aus der, insbesondere gemessenen, Luftzahlkenngröße und einem damit verbundenen, insbesondere in dem zumindest einen Regel-Kennlinienfeld, hinterlegten Referenzwert, insbesondere einem Referenzwert des Brennstoffdosierersignals und/oder einem Referenzwert des Verbrennungsluftdosierersignals, ergibt. Hierdurch kann insbesondere ein korrekter Betrieb der Heizgerätevorrichtung überwacht und vorteilhaft sichergestellt werden.
  • Ferner wird vorgeschlagen, dass die Steuer- und/oder Regeleinheit dazu vorgesehen ist, bei einer Abweichung des aktuellen Betriebswerts, die größer als eine, insbesondere in der Speichereinheit gespeicherte, festgelegte und/oder festlegbare, Betriebswertgrenzabweichung ist, zumindest einen Korrekturfaktor, insbesondere aus einem Vergleich und/oder vorzugsweise einem Verhältnis des aktuellen Betriebswerts mit dem Referenzbetriebswert, zu bestimmen und mittels des Korrekturfaktors das zumindest eine Regel-Kennlinienfeld, insbesondere dynamisch, anzupassen und/oder zu aktualisieren. Der Korrekturfaktor entspricht dabei insbesondere einem Verbrennungsluft-Korrekturfaktor und/oder einem Brennstoff-Korrekturfaktor. In diesem Zusammenhang soll unter einem "Verbrennungsluft-Korrekturfaktor" insbesondere ein Korrekturfaktor verstanden werden, welcher insbesondere von dem Verbrennungsluftdosierersignal abhängt und/oder mit dem Verbrennungsluftstrom korreliert ist. Ferner soll unter einem "Brennstoff-Korrekturfaktor" insbesondere ein Korrekturfaktor verstanden werden, welcher insbesondere von dem Brennstoffdosierersignal abhängt und/oder mit dem Brennstoffstrom korreliert ist. Vorteilhaft weist die Betriebswertgrenzabweichung eine relative Abweichung von höchstens 30 %, vorteilhaft höchstens 20 %, vorzugsweise von höchstens 10 % und besonders bevorzugt von höchstens 5 % von dem Referenzbetriebswert auf. Hierdurch kann insbesondere ein Betrieb der Heizgerätevorrichtung erreicht werden, welcher zumindest im Wesentlichen unabhängig von sich ändernden Betriebs- und/oder Randbedingungen ist.
  • Zudem wird eine Heizgerätevorrichtung, insbesondere eine Gas- und/oder Ölbrennervorrichtung, zur Gemischverbrennung vorgeschlagen, mit zumindest einer Speichereinheit, in der zumindest ein Regel-Kennlinienfeld abgelegt ist, mit zumindest einer Sensoreinheit zur Erfassung wenigstens einer Luftzahlkenngröße und mit zumindest einer Steuer- und/oder Regeleinheit, welche dazu vorgesehen ist, zumindest in Abhängigkeit der Luftzahlkenngröße eine Luftzahl auf eine Soll-Luftzahl einzustellen, wobei das zumindest eine Regel-Kennlinienfeld in einem Normalbetriebszustand einem Luftzahlkenngröße-Brennstoffdosierersignal-Kennlinienfeld entspricht. Hierdurch kann besonders vorteilhaft Effizienz gesteigert werden. Zudem kann vorteilhaft eine optimierte Verbrennung mit einer stabilen Heizflamme, einem minimalen Schadstoffausstoß und/oder einem maximalen Wirkungsgrad, erreicht werden. Ferner kann insbesondere eine vorteilhaft einfache, effiziente und präzise Regelung erreicht werden, insbesondere da ein Brennstoffstrom, insbesondere eine Brennstoffmenge, insbesondere bei Verwendung eines Brennstoffdosierers, insbesondere mit einer präzisen Brennstoffmesseinheit, vorteilhaft exakt eingestellt werden kann.
  • Vorzugsweise ist die Steuer- und/oder Regeleinheit dazu vorgesehen, zur Regelung der Luftzahlkenngröße auf die Soll-Luftzahlkenngröße zumindest ein weiteres Regel-Kennlinienfeld auszuwerten. Vorteilhaft entspricht das zumindest eine weitere Regel-Kennlinienfeld einem Luftzahlkenngröße-Verbrennungsluftdosierersignal-Kennlinienfeld. Insbesondere ist die Steuer- und/oder Regeleinheit dazu vorgesehen, zur Regelung der Luftzahlkenngröße auf die Soll-Luftzahlkenngröße in zumindest einem ersten Betriebszustand, insbesondere Normalbetriebszustand, das zumindest eine Regel-Kennlinienfeld auszuwerten und in zumindest einem zweiten, insbesondere von dem zumindest einen ersten Betriebszustand verschiedenen, Betriebszustand das zumindest eine weitere Regel-Kennlinienfeld auszuwerten. Hierdurch kann die Luftzahl vorteilhaft einfach an einen Wert der Soll-Luftzahl angepasst und vorteilhaft auf dem Wert der Soll-Luftzahl gehalten werden.
  • In einer Ausgestaltung der Erfindung wird vorgeschlagen, dass die Steuer- und/oder Regeleinheit dazu vorgesehen ist, in zumindest einem Betriebszustand und/oder zumindest phasenweise einen tatsächlichen Verbrennungsluftstrom, insbesondere eine tatsächliche Verbrennungsluftmenge, zu bestimmen. Vorteilhaft ist die Heizgerätevorrichtung, insbesondere abgesehen von der Brennstoffmesseinheit und der Sensoreinheit, frei von weiteren Sensoreinheiten, insbesondere einem Durchflussmesser. Vorzugsweise ist die Steuer- und/oder Regeleinheit dazu vorgesehen, den tatsächlichen Verbrennungsluftstrom, insbesondere die tatsächliche Verbrennungsluftmenge, durch ein Aufprägen einer temporären Veränderung auf den Verbrennungsluftstrom, den Brennstoffstrom und/oder den Verbrennungsluft-Brennstoff-Gemischstrom, insbesondere mittels einer Aufprägeeinheit, zu bestimmen. Insbesondere ist die Steuer- und/oder Regeleinheit in diesem Fall dazu vorgesehen, die temporäre Veränderung, vorzugsweise mittels der Sensoreinheit, zu registrieren, zu detektieren und/oder zu messen und insbesondere anhand einer Zeitdauer zwischen dem Aufprägen und dem Detektieren der Veränderung auf den tatsächlichen Verbrennungsluftstrom, insbesondere die tatsächliche Verbrennungsluftmenge, zu schließen. Insbesondere kann dabei anhand der gemessenen Zeitdauer und bei Kenntnis konstruktiver Abmessungen der Zufuhreinheit der tatsächliche Verbrennungsluftstrom, insbesondere die tatsächliche Verbrennungsluftmenge, bestimmt werden. Hierdurch kann insbesondere ein korrekter Betrieb der Heizgerätevorrichtung geprüft werden.
  • Des Weiteren wird vorgeschlagen, dass die Steuer- und/oder Regeleinheit dazu vorgesehen ist, anhand eines Verhältnisses des tatsächlichen Verbrennungsluftstroms, insbesondere der tatsächlichen Verbrennungsluftmenge, mit einem Normverbrennungsluftstrom einen Regel-Kennlinienfeld-Wechselfaktor zu bestimmen. Unter einem "Normverbrennungsluftstrom" soll dabei insbesondere ein Verbrennungsluftstrom verstanden werden, welcher in dem Normalbetriebszustand, insbesondere innerhalb der Zufuhreinheit, vorliegt und/oder vorliegen sollte. Vorteilhaft entspricht der Normverbrennungsluftstrom einer Normverbrennungsluftmenge. Hierdurch kann vorteilhaft einfach ein Betrieb der Heizgerätevorrichtung angepasst werden.
  • In einer bevorzugten Ausgestaltung der Erfindung wird vorgeschlagen, dass die Steuer- und/oder Regeleinheit dazu vorgesehen ist, den Regel-Kennlinienfeld-Wechselfaktor mit dem Korrekturfaktor zu vergleichen, und bei einer Abweichung des Regel-Kennlinienfeld-Wechselfaktors zu dem Korrekturfaktor, die größer als eine Wechselgrenzabweichung ist, insbesondere in einem Wechselbetriebszustand, zwischen dem zumindest einem Regel-Kennlinienfeld und zumindest einem weiteren Regel-Kennlinienfeld, insbesondere dem zumindest einen weiteren Regel-Kennlinienfeld, zu wechseln. Vorzugsweise ist die Steuer- und/oder Regeleinheit dazu vorgesehen, zur Regelung zumindest temporär das zumindest eine weitere Regel-Kennlinienfeld zu verwenden. Vorteilhaft ist die Steuer- und/oder Regeleinheit in diesem Fall dazu vorgesehen, das zumindest eine Regel-Kennlinienfeld dynamisch anzupassen. Insbesondere ist die Steuer- und/oder Regeleinheit dazu vorgesehen, nach der Anpassung des zumindest einen Regel-Kennlinienfelds zwischen dem zumindest einen weiteren Regel-Kennlinienfeld und dem zumindest einen Regel-Kennlinienfeld zu wechseln und insbesondere zur Regelung, insbesondere im Normalbetriebszustand, das zumindest eine Regel-Kennlinienfeld zu verwenden. Vorteilhaft weist die Wechselgrenzabweichung eine relative Abweichung von höchstens 30 %, vorteilhaft höchstens 20 %, vorzugsweise von höchstens 10 % und besonders bevorzugt von höchstens 5 % von einem Referenzwert auf. Hierdurch kann insbesondere eine Abweichung der Luftzahl, insbesondere aufgrund sich ändernder Betriebs- und/oder Randbedingungen, berücksichtigt und vorteilhaft ausgeglichen werden.
  • Zudem geht die Erfindung aus von einem Verfahren zum Betrieb einer Heizgerätevorrichtung, insbesondere einer Gas- und/oder Ölbrennervorrichtung, zur Gemischverbrennung, insbesondere zur Verbrennungsluft-Brennstoff-Gemischverbrennung, mit zumindest einer Speichereinheit, in der zumindest ein Regel-Kennlinienfeld abgelegt ist und mit zumindest einer Sensoreinheit zur Erfassung wenigstens einer Luftzahlkenngröße, wobei in Abhängigkeit der Luftzahlkenngröße eine Luftzahl auf eine Soll-Luftzahl eingestellt wird und in zumindest einem Betriebszustand das zumindest eine Regel-Kennlinienfeld, welches zur Regelung der Luftzahlkenngröße auf eine Soll-Luftzahlkenngröße vorgesehen ist, dynamisch angepasst wird. Hierdurch kann insbesondere eine Effizienz gesteigert und vorteilhaft eine optimierte Verbrennung mit einer stabilen Heizflamme, einem minimalen Schadstoffausstoß und/oder einem maximalen Wirkungsgrad erreicht werden.
  • Die Heizgerätevorrichtung soll hierbei nicht auf die oben beschriebene Anwendung und Ausführungsform beschränkt sein. Insbesondere kann die Heizgerätevorrichtung zu einer Erfüllung einer hierin beschriebenen Funktionsweise eine von einer hierin genannten Anzahl von einzelnen Elementen, Bauteilen und Einheiten abweichende Anzahl aufweisen.
  • Zeichnung
  • Weitere Vorteile ergeben sich aus der folgenden Zeichnungsbeschreibung. In der Zeichnung ist ein Ausführungsbeispiel der Erfindung dargestellt. Die Zeichnung, die Beschreibung und die Ansprüche enthalten zahlreiche Merkmale in Kombination. Der Fachmann wird die Merkmale zweckmäßigerweise auch einzeln betrachten und zu sinnvollen weiteren Kombinationen zusammenfassen.
  • Es zeigen:
  • Fig. 1
    ein als Gasbrenner ausgebildetes Heizgerät mit einer Heizgerätevorrichtung in einer schematischen Darstellung,
    Fig. 2
    ein Schaubild eines Steuer-Kennlinienfelds der Heizgerätevorrichtung,
    Fig. 3
    ein Schaubild eines Regel-Kennlinienfelds der Heizgerätevorrichtung,
    Fig. 4
    ein Schaubild eines weiteren Regel-Kennlinienfelds der Heizgerätevorrichtung,
    Fig. 5
    ein beispielhaftes Ablaufdiagramm für einen Betrieb der Heizgerätevorrichtung,
    Fig. 6
    ein Schaubild des dynamisch angepassten Steuer-Kennlinienfelds aus Figur 2,
    Fig. 7
    ein Schaubild des dynamisch angepassten Regel-Kennlinienfelds aus Figur 3 und
    Fig. 8
    ein Schaubild des dynamisch angepassten weiteren Regel-Kennlinienfelds aus Figur 4.
    Beschreibung der Ausführungsbeispiele
  • Figur 1 zeigt ein beispielhaftes als Gasbrenner ausgebildetes Heizgerät 20 in einer schematischen Darstellung. Das Heizgerät 20 weist eine Heizgerätevorrichtung auf.
  • Die Heizgerätevorrichtung umfasst einen Verbrennungsluftdosierer 22. Der Verbrennungsluftdosierer 22 ist als Aktor ausgebildet. Im vorliegenden Fall ist der Verbrennungsluftdosierer 22 als drehzahlvariables Gebläse ausgebildet. Der Verbrennungsluftdosierer 22 ist dazu vorgesehen, einen Verbrennungsluftstrom 24 zu fördern. Zudem ist der Verbrennungsluftdosierer 22 dazu vorgesehen, eine Verbrennungsluftmenge einzustellen. Ferner weist die Heizgerätevorrichtung eine Aufprägeeinheit 26 auf. Die Aufprägeeinheit 26 ist im vorliegenden Fall dazu vorgesehen, in zumindest einem Betriebszustand eine temporäre Veränderung auf den Verbrennungsluftstrom 24 aufzuprägen.
  • Des Weiteren umfasst die Heizgerätevorrichtung einen Brennstoffdosierer 28. Der Brennstoffdosierer 28 ist als Aktor ausgebildet. Im vorliegenden Fall ist der Brennstoffdosierer 28 als durchsatzvariables und insbesondere elektronisches Brennstoffventil ausgebildet. Der Brennstoffdosierer 28 ist als Regelventil ausgebildet. Der Brennstoffdosierer 28 ist dazu vorgesehen, einen Brennstoffstrom 30 zu fördern. Im vorliegenden Fall ist der Brennstoffdosierer 28 dazu vorgesehen, ein Gas zu fördern. Zudem ist der Brennstoffdosierer 28 dazu vorgesehen, eine Brennstoffmenge einzustellen. Alternativ kann ein Brennstoffdosierer eine Brennstoffmesseinheit umfassen, wodurch der Brennstoffdosierer insbesondere dazu vorgesehen ist, eine Brennstoffmenge präzise zu messen.
  • Die Heizgerätevorrichtung weist eine Zufuhreinheit 32 auf. Die Zufuhreinheit 32 umfasst einen Verbrennungsluftweg. Der Verbrennungsluftweg ist dazu vorgesehen, den Verbrennungsluftstrom 24 zu führen. Die Zufuhreinheit 32 umfasst ferner einen Brennstoffweg. Der Brennstoffweg ist dazu vorgesehen, den Brennstoffstrom 30 zu führen. Darüber hinaus umfasst die Zufuhreinheit 32 einen Verbrennungsluft-Brennstoff-Gemischstromweg. Der Verbrennungsluft-Brennstoff-Gemischstromweg ist dazu vorgesehen, den Verbrennungsluftstrom 24 mit dem Brennstoffstrom 30 zu mischen. Der Verbrennungsluft-Brennstoff-Gemischstromweg ist dazu vorgesehen, einen Gemischstrom 34, insbesondere einen Verbrennungsluft-Brennstoff-Gemischstrom, zu führen.
  • Die Heizgerätevorrichtung umfasst eine Verbrennungseinheit 36. Die Verbrennungseinheit 36 ist dazu vorgesehen, ein Verbrennungsluft-Brennstoff-Gemisch des Gemischstroms 34 zu verbrennen. Dabei ist die Verbrennungseinheit 36 dazu vorgesehen, eine Heizflamme 38 zu erzeugen. Im vorliegenden Fall ist die Verbrennungseinheit 36 dazu vorgesehen, die Heizflamme 38 in einem Brennraum der Heizgerätevorrichtung zu erzeugen.
  • Die Heizgerätevorrichtung weist ferner eine Sensoreinheit 16 auf. Die Sensoreinheit 16 weist genau einen Sensor auf. Die Sensoreinheit 16 ist in dem Brennraum der Heizgerätevorrichtung angeordnet. Im vorliegenden Fall ist die Sensoreinheit 16 insbesondere in einem Nahbereich der Heizflamme 38 der Verbrennungseinheit 36 angeordnet. Die Sensoreinheit 16 ist als Flammenionisationselektrode ausgebildet. Die Sensoreinheit 16 ist im vorliegenden Fall dazu vorgesehen, eine Luftzahlkenngröße der Verbrennung zu messen. Die Luftzahlkenngröße entspricht einer Steuer- und/oder Regelgröße. Im vorliegenden Fall entspricht die Luftzahlkenngröße einem lonisationswert der Verbrennung. Die Sensoreinheit 16 macht sich dabei den Umstand zu Nutze, dass Flammen bei Anlegen einer elektrischen Spannung Strom leiten. Alternativ ist denkbar, mehrere Sensoreinheiten und/oder Sensoreinheiten mit mehreren Sensoren zu verwenden. Dabei könnten die Sensoreinheiten insbesondere von einer Flammenionisationselektrode verschieden ausgebildet sein und/oder in einem anderen Bereich der Heizgerätevorrichtung angeordnet sein.
  • Des Weiteren weist die Heizgerätevorrichtung eine Steuer- und/oder Regeleinheit 18 auf. Die Steuer- und/oder Regeleinheit 18 ist dazu vorgesehen, einen Betrieb der Heizgerätevorrichtung zu steuern. Dazu weist die Steuer- und/oder Regeleinheit 18 eine Recheneinheit, eine Rechenspeichereinheit und ein in der Rechenspeichereinheit hinterlegtes Betriebsprogramm auf, das dazu vorgesehen ist, von der Recheneinheit ausgeführt zu werden. Ferner weist die Steuer- und/oder Regeleinheit 18 eine Speichereinheit 10 auf. Die Steuer- und/oder Regeleinheit 18 ist dazu vorgesehen, eine angeforderte Heizleistung bereitzustellen. Dazu weist die Steuer- und/oder Regeleinheit 18 eine elektrische Verbindung mit dem Verbrennungsluftdosierer 22 auf. Zudem weist die Steuer- und/oder Regeleinheit 18 eine elektrische Verbindung mit dem Brennstoffdosierer 28 auf. Ferner weist die Steuer- und/oder Regeleinheit 18 eine elektrische Verbindung mit der Sensoreinheit 16 auf. Alternativ ist denkbar, dass eine Steuer- und/oder Regeleinheit eine drahtlose Verbindung mit einem Verbrennungsluftdosierer, einem Brennstoffdosierer und/oder einer Sensoreinheit aufweist. Ferner könnten eine Steuer- und/oder Regeleinheit und eine Speichereinheit separat ausgebildet sein.
  • Die Steuer- und/oder Regeleinheit 18 ist dazu vorgesehen, Steuersignale zu einer Einstellung des Verbrennungsluftdosierers 22 und des Brennstoffdosierers 28 bereitzustellen. Zudem ist die Steuer- und/oder Regeleinheit 18 dazu vorgesehen, aktuelle Betriebswerte der Heizgerätevorrichtung zu erfassen. Dabei ist die Steuer- und/oder Regeleinheit 18 dazu vorgesehen, ein Brennstoffdosierersignal des Brennstoffdosierers 28, ein Verbrennungsluftdosierersignal des Verbrennungsluftdosierers 22 und ein Sensorsignal der Sensoreinheit 16 zu erfassen. Das Brennstoffdosierersignal entspricht dem Steuersignal des Brennstoffdosierers 28. Im vorliegenden Fall entspricht das Brennstoffdosierersignal einem PWM-Steuersignal. Das Verbrennungsluftdosierersignal entspricht einem Signal des Verbrennungsluftdosierers 22. Im vorliegenden Fall entspricht das Verbrennungsluftdosierersignal einer Drehzahl des Verbrennungsluftdosierers 22. Die Steuer- und/oder Regeleinheit 18 ist dazu vorgesehen, anhand des Brennstoffdosierersignals auf einen aktuellen Brennstoffstrom zu schließen. Alternativ ist denkbar, dass eine Steuer- und/oder Regeleinheit dazu vorgesehen, anhand einer Brennstoffmesseinheit einen aktuellen Brennstoffstrom zu messen. Die Steuer- und/oder Regeleinheit 18 ist dazu vorgesehen, anhand des Verbrennungsluftdosierersignals auf einen aktuellen Verbrennungsluftstrom zu schließen. Der aktuelle Brennstoffstrom und/oder der aktuelle Verbrennungsluftstrom können dabei insbesondere aufgrund geänderter Betriebs- und/oder Randbedingungen von einem tatsächlichen Brennstoffstrom und/oder einem tatsächlichen Verbrennungsluftstrom abweichen.
  • Zudem ist die Steuer- und/oder Regeleinheit 18 dazu vorgesehen, eine Luftzahl auf eine Soll-Luftzahl einzustellen. Die Steuer- und/oder Regeleinheit 18 ist im vorliegenden Fall dazu vorgesehen, die Luftzahl in Abhängigkeit der Luftzahlkenngröße auf die Soll-Luftzahl einzustellen. Die Steuer- und/oder Regeleinheit 18 ist dazu vorgesehen, die Luftzahlkenngröße auf eine Soll-Luftzahlkenngröße zu steuern und/oder zu regeln, sodass die Luftzahl der Soll-Luftzahl entspricht. Demnach ist die Steuer- und/oder Regeleinheit 18 dazu vorgesehen die Luftzahlkenngröße direkt zu steuern und/oder zu regeln und die Luftzahl indirekt. Im vorliegenden Fall ist die Steuer- und/oder Regeleinheit 18 dazu vorgesehen, in einem Steuer-Betriebszustand die Luftzahl nach Art einer Steuerung auf die Soll-Luftzahl einzustellen und in einem Regel-Betriebszustand und/oder einem Normalbetriebszustand die Luftzahl nach Art einer Regelung auf die Soll-Luftzahl einzustellen. Die Steuer- und/oder Regeleinheit 18 ist dazu vorgesehen, die Luftzahl anhand von Kennlinienfeldern auf die Soll-Luftzahl einzustellen. Die Kennlinienfelder sind dabei als Wertetabellen in der Speichereinheit 10 hinterlegt.
  • Figur 2 zeigt ein als Steuer-Kennlinienfeld 40 ausgebildetes erstes Kennlinienfeld der Heizgerätevorrichtung. Das Steuer-Kennlinienfeld 40 ist als Brennstoffdosierersignal-Verbrennungsluftdosierersignal-Kennlinienfeld ausgebildet. Auf einer Ordinatenachse 42 ist das Brennstoffdosierersignal dargestellt. Auf einer Abszissenachse 44 ist das Verbrennungsluftdosierersignal dargestellt. Die Kurve 46 zeigt dabei einen beispielhaften Verlauf der Luftzahlkenngröße. Die Steuer- und/oder Regeleinheit 18 ist dazu vorgesehen, anhand des Steuer-Kennlinienfelds 40 das Brennstoffdosierersignal und das Verbrennungsluftdosierersignal zu variieren und hierdurch insbesondere die Luftzahl auf eine Soll-Luftzahl zu steuern.
  • Figur 3 zeigt ein als Regel-Kennlinienfeld 12 ausgebildetes zweites Kennlinienfeld der Heizgerätevorrichtung. Das Regel-Kennlinienfeld 12 ist als Luftzahlkenngröße-Brennstoffdosierersignal-Kennlinienfeld ausgebildet. Auf einer Ordinatenachse 48 ist die Luftzahlkenngröße dargestellt. Auf einer Abszissenachse 50 ist das Brennstoffdosierersignal dargestellt. Die Kurven 52, 54 zeigen dabei beispielhafte Verläufe für verschiedene Luftzahlen. Eine oberste Kurve 52 entspricht einer Luftzahl von 1,1. Eine unterste Kurve 54 entspricht einer Luftzahl von 1,45. Die Steuer- und/oder Regeleinheit 18 ist dazu vorgesehen, anhand des Regel-Kennlinienfelds 12 das Verbrennungsluftdosierersignal zu variieren und hierdurch insbesondere die Luftzahlkenngröße auf eine Soll-Luftzahlkenngröße zu regeln.
  • Figur 4 zeigt ein als weiteres Regel-Kennlinienfeld 14 ausgebildetes zweites Kennlinienfeld der Heizgerätevorrichtung. Das weitere Regel-Kennlinienfeld 14 ist als Luftzahlkenngröße-Verbrennungsluftdosierersignal-Kennlinienfeld ausgebildet. Auf einer Ordinatenachse 56 ist die Luftzahlkenngröße dargestellt. Auf einer Abszissenachse 58 ist das Verbrennungsluftdosierersignal dargestellt. Die Kurven 60, 62 zeigen dabei beispielhafte Verläufe für verschiedene Luftzahlen. Eine oberste Kurve 60 entspricht einer Luftzahl von 1,1. Eine unterste Kurve 62 entspricht einer Luftzahl von 1,45. Die Steuer- und/oder Regeleinheit 18 ist dazu vorgesehen, anhand des weiteren Regel-Kennlinienfelds 14 das Brennstoffdosierersignal zu variieren und hierdurch insbesondere die Luftzahlkenngröße auf eine Soll-Luftzahlkenngröße zu regeln.
  • Figur 5 zeigt ein beispielhaftes Ablaufdiagramm für einen Betrieb der Heizgerätevorrichtung. Im vorliegenden Fall ist die Steuer- und/oder Regeleinheit 18 dazu vorgesehen, zur Regelung der Luftzahlkenngröße auf die Soll-Luftzahlkenngröße in zumindest einem Betriebszustand, insbesondere dem Normalbetriebszustand, das Regel-Kennlinienfeld 12 und in zumindest einem weiteren Betriebszustand das weitere Regel-Kennlinienfeld 14 auszuwerten.
  • In einem Betriebsschritt 70 wird das Heizgerät 20 gestartet und/oder eine durch einen Benutzer angeforderte Heizleistung verändert. Eine angeforderte Heizleistung entspricht dabei einer definierten Soll-Luftzahl. Ein Betriebsschritt 72 entspricht einem Steuer-Betriebszustand. Dabei ist die Steuer- und/oder Regeleinheit 18 dazu vorgesehen, die Luftzahlkenngröße nach Art einer Steuerung und anhand des Steuer-Kennlinienfelds 40 auf die angeforderte Soll-Luftzahlkenngröße einzustellen. Im vorliegenden Fall ist die Steuer- und/oder Regeleinheit 18 dazu vorgesehen, die Luftzahl immer dann zu steuern, wenn eine Heizleistung und/oder eine Soll-Luftzahl stark variieren, wie beispielsweise bei einem Wechsel der angeforderten Heizleistung. Entspricht die Luftzahl zumindest im Wesentlichen der Soll-Luftzahl folgt ein Betriebsschritt 74.
  • Der Betriebsschritt 74 entspricht einem Regel-Betriebszustand. Dabei ist die Steuer- und/oder Regeleinheit 18 dazu vorgesehen, die Luftzahlkenngröße nach Art einer Regelung und anhand des Regel-Kennlinienfelds 12 oder des weiteren Regel-Kennlinienfelds 14 auf die angeforderte Soll-Luftzahlkenngröße einzustellen, sodass die Luftzahl insbesondere der Soll-Luftzahl entspricht. Der Betriebsschritt 74 entspricht einem Normalbetriebszustand. Im vorliegenden Fall ist die Steuer- und/oder Regeleinheit 18 dazu vorgesehen, das Regel-Kennlinienfeld 12 zur Einstellung der Luftzahl zu verwenden. Das Regel-Kennlinienfeld 12 entspricht dabei dem Luftzahlkenngrößen-Brennstoffdosierersignal-Kennlinienfeld. In einem Normalbetriebszustand wird dabei bevorzugt und insbesondere im Gegensatz zum Stand der Technik das Luftzahlkenngrößen-Brennstoffdosierersignal-Kennlinienfeld zur Einstellung der Luftzahl verwendet, da eine Einstellgenauigkeit des Brennstoffdosierers 28 im Vergleich zu einer Einstellgenauigkeit des Verbrennungsluftdosierers 22 höher ist. Demzufolge wird in diesem Betriebsschritt das Verbrennungsluftdosierersignal variiert.
  • Alternativ ist jedoch auch denkbar, dass eine Einstellung der Luftzahl in einem Normalbetriebszustand anhand eines Luftzahlkenngröße-Verbrennungsluftdosierersignal-Kennlinienfelds erfolgt.
  • In einem Betriebsschritt 76 ist die Steuer- und/oder Regeleinheit 18 dazu vorgesehen, eine Abweichung eines aktuellen Betriebswerts von einem Referenzbetriebswert zu ermitteln. Im vorliegenden Fall ist die Steuer- und/oder Regeleinheit 18 dazu vorgesehen, eine Abweichung eines aktuellen Verbrennungsluftdosierersignals, insbesondere einer aktuellen Drehzahl des Verbrennungsluftdosierers, von einem in der Speichereinheit 10 hinterlegten Referenzwert des Verbrennungsluftdosierersignals, insbesondere einer Referenz-Drehzahl, zu ermitteln. Ist die Abweichung des aktuellen Betriebswerts dabei kleiner als eine Betriebswertgrenzabweichung, ist die Steuer- und/oder Regeleinheit 18 dazu vorgesehen, den Betriebsschritt 74 erneut auszuführen. Ist die Abweichung des aktuellen Betriebswerts jedoch größer als die Betriebswertgrenzabweichung, ist die Steuer- und/oder Regeleinheit 18 dazu vorgesehen einen Korrekturfaktor zu bestimmen. Der Korrekturfaktor entspricht im vorliegenden Fall einem Verbrennungsluft-Korrekturfaktor, insbesondere einem Drehzahl-Korrekturfaktor. Zudem folgt in diesem Fall ein Betriebsschritt 78.
  • Im Betriebsschritt 78 ist die Steuer- und/oder Regeleinheit 18 dazu vorgesehen, einen tatsächlichen Verbrennungsluftstrom zu bestimmen. Im vorliegenden Fall ist die Steuer- und/oder Regeleinheit 18 dazu vorgesehen, eine tatsächliche Verbrennungsluftmenge zu bestimmen. Dabei ist die Steuer- und/oder Regeleinheit 18 dazu vorgesehen, die tatsächliche Verbrennungsluftmenge durch ein Aufprägen einer temporären Veränderung auf den Verbrennungsluftstrom 24 mittels der Aufprägeeinheit 26 zu bestimmen. Die Steuer- und/oder Regeleinheit 18 ist in diesem Fall dazu vorgesehen, die temporäre Veränderung mittels der Sensoreinheit 16 zu detektieren und anhand einer Zeitdauer zwischen dem Aufprägen und dem Detektieren der Veränderung sowie unter Berücksichtigung konstruktiver Abmessungen der Zufuhreinheit 32 auf die tatsächliche Verbrennungsluftmenge zu schließen. Alternativ kann ein tatsächlicher Verbrennungsluftstrom jedoch auch auf eine beliebige weitere einem Fachmann als sinnvoll erscheinende Art ermittelt werden, wie beispielsweise mittels einer weiteren Sensoreinheit, insbesondere eines Durchflussmessers.
  • In einem Betriebsschritt 80 ist die Steuer- und/oder Regeleinheit 18 dazu vorgesehen, anhand eines Verhältnisses des tatsächlichen Verbrennungsluftstroms mit einem Normverbrennungsluftstrom einen Regel-Kennlinienfeld-Wechselfaktor zu bestimmen. In einem Betriebsschritt 82 ist die Steuer- und/oder Regeleinheit 18 dazu vorgesehen, den Regel-Kennlinienfeld-Wechselfaktor mit dem Korrekturfaktor zu vergleichen. Ist eine Abweichung des Regel-Kennlinienfeld-Wechselfaktors zu dem Korrekturfaktor dabei kleiner als eine Wechselgrenzabweichung, ist die Steuer- und/oder Regeleinheit 18 dazu vorgesehen, den Betriebsschritt 74 erneut auszuführen. In diesem Fall liegt eine Abweichung und/oder eine Schwankung im Verbrennungsluftstrom 24 vor, sodass weiterhin eine Regelung anhand des Regel-Kennlinienfelds 12 sinnvoll ist, insbesondere da in diesem Fall eine Anpassung des Verbrennungsluftdosierers 22 erfolgt.
  • Ist die Abweichung des Regel-Kennlinienfeld-Wechselfaktors zu dem Korrekturfaktor jedoch größer als die Wechselgrenzabweichung, ist die Steuer- und/oder Regeleinheit 18 dazu vorgesehen, einen Wechsel zwischen dem Regel-Kennlinienfeld 12 und dem weiteren Regel-Kennlinienfeld 14 vorzubereiten. In diesem Fall liegt eine Abweichung und/oder eine Schwankung im Brennstoffstrom 30 vor, sodass eine Regelung anhand des weiteren Regel-Kennlinienfelds 14 sinnvoll ist, insbesondere da in diesem Fall eine Anpassung des Brennstoffdosierers 28 erfolgt. Dazu ist die Steuer- und/oder Regeleinheit 18 in einem Betriebsschritt 84 dazu vorgesehen, das weitere Regel-Kennlinienfeld 14 dynamisch anzupassen. Dabei ist die Steuer- und/oder Regeleinheit 18 dazu vorgesehen, das weitere Regel-Kennlinienfeld 14 mittels des Korrekturfaktors anzupassen (vgl. auch Figur 8). Anschließend ist die Steuer- und/oder Regeleinheit 18 in einem Betriebsschritt 86 dazu vorgesehen, zwischen dem Regel-Kennlinienfeld 12 und dem weiteren Regel-Kennlinienfeld 14 zu wechseln. In diesem Fall ist die Steuer- und/oder Regeleinheit 18 somit dazu vorgesehen, das weitere Regel-Kennlinienfeld 14 zur Einstellung der Luftzahl zu verwenden. Das weitere Regel-Kennlinienfeld 14 entspricht dabei dem Luftzahlkenngrößen-Verbrennungsluftdosierersignal-Kennlinienfeld.
  • In einem Betriebsschritt 88 ist die Steuer- und/oder Regeleinheit 18 dazu vorgesehen, eine Abweichung eines weiteren aktuellen Betriebswerts von einem weiteren Referenzbetriebswert zu ermitteln. Im vorliegenden Fall ist die Steuer- und/oder Regeleinheit 18 dazu vorgesehen, eine Abweichung eines aktuellen Brennstoffdosierersignals, insbesondere eines aktuellen PWM-Steuersignals, von einem in der Speichereinheit 10 hinterlegten Referenzwert des Brennstoffdosierersignals, insbesondere einem Referenz-PWM-Steuersignal, zu ermitteln. Anschließend ist die Steuer- und/oder Regeleinheit 18 dazu vorgesehen einen weiteren Korrekturfaktor zu bestimmen. Der weitere Korrekturfaktor entspricht im vorliegenden Fall einem Brennstoff-Korrekturfaktor, insbesondere einem PWM-Steuersignal-Korrekturfaktor.
  • In einem Betriebsschritt 90 ist die Steuer- und/oder Regeleinheit 18 dazu vorgesehen, das Regel-Kennlinienfeld 12 dynamisch anzupassen. Dabei ist die Steuer- und/oder Regeleinheit 18 dazu vorgesehen, das Regel-Kennlinienfeld 12 mittels des weiteren Korrekturfaktors anzupassen (vgl. auch Figur 7). In einem Betriebsschritt 92 ist die Steuer- und/oder Regeleinheit 18 ferner dazu vorgesehen, das Steuer-Kennlinienfeld 40 dynamisch anzupassen. Dabei ist die Steuer- und/oder Regeleinheit 18 dazu vorgesehen, das Steuer-Kennlinienfeld 40 mittels des Korrekturfaktors und des weiteren Korrekturfaktors anzupassen (vgl. auch Figur 6).
  • Anschließend ist die Steuer- und/oder Regeleinheit 18 dazu vorgesehen, in einen Normalbetriebszustand zu wechseln. Im vorliegenden Fall ist die Steuer- und/oder Regeleinheit 18 dazu vorgesehen, den Betriebsschritt 74 erneut auszuführen. Dabei ist die Steuer- und/oder Regeleinheit 18 dazu vorgesehen, zwischen dem weiteren Regel-Kennlinienfeld 14 und dem Regel-Kennlinienfeld 12 zu wechseln. In diesem Fall ist die Steuer- und/oder Regeleinheit 18 somit dazu vorgesehen, das Regel-Kennlinienfeld 12 zur Einstellung der Luftzahl zu verwenden. Hierdurch kann erreicht werden, dass eine Luftzahl in jedem Betriebszustand zumindest im Wesentlichen der Soll-Luftzahl entspricht, wodurch insbesondere eine optimierte Verbrennung mit einer stabilen Heizflamme, einem minimalen Schadstoffausstoß und/oder einem maximalen Wirkungsgrad, erreicht werden kann.
  • Das beispielhafte Ablaufdiagramm in Figur 5 soll dabei insbesondere lediglich beispielhaft einen Betrieb der Heizgerätevorrichtung beschreiben. Insbesondere können einzelne Betriebsschritte und/oder eine Abfolge der Betriebsschritte variieren. Dabei könnte insbesondere eine dynamische Anpassung eines Steuer-Kennlinienfelds und/oder zumindest eines Regel-Kennlinienfelds zu einem anderen Zeitpunkt und/oder in einem anderen Betriebsschritt erfolgen.

Claims (9)

  1. Heizgerätevorrichtung, insbesondere Gas- und/oder Ölbrennervorrichtung, zur Gemischverbrennung, mit zumindest einer Speichereinheit (10), in der zumindest ein Regel-Kennlinienfeld (12) abgelegt ist, mit zumindest einer Sensoreinheit (16) zur Erfassung wenigstens einer Luftzahlkenngröße und mit zumindest einer Steuer- und/oder Regeleinheit (18), welche dazu vorgesehen ist, zumindest in Abhängigkeit der Luftzahlkenngröße eine Luftzahl auf eine Soll-Luftzahl einzustellen, und wobei die Steuer- und/oder Regeleinheit (18), dazu vorgesehen ist, in zumindest einem Betriebszustand das zumindest eine Regel-Kennlinienfeld (12), welches zur Regelung zumindest der Luftzahlkenngröße auf eine Soll-Luftzahlkenngröße vorgesehen ist, dynamisch anzupassen, dadurch gekennzeichnet, dass das zumindest eine Regel-Kennlinienfeld (12) in einem Normalbetriebszustand einem Luftzahlkenngrößen-Brennstoffdosierersignal-Kennlinienfeld entspricht, wobei der Normalbetriebszustand ein Betriebszustand ist, bei welchem die Luftzahl auf die Soll-Luftzahl geregelt wird und wobei die Steuer- und/oder Regeleinheit (18) dazu vorgesehen ist, anhand des Regel-Kennlinienfeldes (12) ein Verbrennungsluftdosierersignal zu variieren und hierdurch die Luftzahlkenngröße auf eine Soll-Luftzahlkenngröße zu regeln.
  2. Heizgerätevorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Steuer- und/oder Regeleinheit (18) zu einer dynamischen Anpassung des zumindest einen Regel-Kennlinienfelds (12) dazu vorgesehen ist, in zumindest einem Betriebszustand eine Abweichung eines aktuellen Betriebswerts von einem Referenzbetriebswert zu ermitteln.
  3. Heizgerätevorrichtung nach Anspruch 2, dadurch gekennzeichnet, dass die Steuer- und/oder Regeleinheit (18) dazu vorgesehen ist, bei einer Abweichung des aktuellen Betriebswerts, die größer als eine Betriebswertgrenzabweichung ist, zumindest einen Korrekturfaktor zu bestimmen und mittels des Korrekturfaktors das zumindest eine Regel-Kennlinienfeld (12) anzupassen.
  4. Heizgerätevorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Steuer- und/oder Regeleinheit (18) dazu vorgesehen ist, zur Regelung der Luftzahlkenngröße auf die Soll-Luftzahlkenngröße zumindest ein weiteres Regel-Kennlinienfeld (14) auszuwerten.
  5. Heizgerätevorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Steuer- und/oder Regeleinheit (18) dazu vorgesehen ist, in zumindest einem Betriebszustand einen tatsächlichen Verbrennungsluftstrom zu bestimmen.
  6. Heizgerätevorrichtung nach Anspruch 5, dadurch gekennzeichnet, dass die Steuer- und/oder Regeleinheit (18) dazu vorgesehen ist, anhand eines Verhältnisses des tatsächlichen Verbrennungsluftstroms mit einem Normverbrennungsluftstrom einen Regel-Kennlinienfeld-Wechselfaktor zu bestimmen.
  7. Heizgerätevorrichtung zumindest nach Anspruch 6, dadurch gekennzeichnet, dass die Steuer- und/oder Regeleinheit (18) dazu vorgesehen ist, den Regel-Kennlinienfeld-Wechselfaktor mit dem Korrekturfaktor zu vergleichen, und bei einer Abweichung des Regel-Kennlinienfeld-Wechselfaktors zu dem Korrekturfaktor, die größer als eine Wechselgrenzabweichung ist, zwischen dem zumindest einem Regel-Kennlinienfeld (12, 14) und zumindest einem weiteren Regel-Kennlinienfeld (12, 14) zu wechseln.
  8. Heizgerät, insbesondere Gas- und/oder Ölbrenner, mit zumindest einer Heizgerätevorrichtung nach einem der vorhergehenden Ansprüche.
  9. Verfahren zum Betrieb einer Heizgerätevorrichtung, insbesondere Gas- und/oder Ölbrennervorrichtung, zur Gemischverbrennung, insbesondere nach einem der Ansprüche 1 bis 7, mit zumindest einer Speichereinheit (10), in der zumindest ein Regel-Kennlinienfeld (12, 14) abgelegt ist und mit zumindest einer Sensoreinheit (16) zur Erfassung wenigstens einer Luftzahlkenngröße, wobei in Abhängigkeit der Luftzahlkenngröße eine Luftzahl auf eine Soll-Luftzahl eingestellt wird, und wobei in zumindest einem Betriebszustand das zumindest eine Regel-Kennlinienfeld (12, 14), welches zur Regelung zumindest der Luftzahlkenngröße auf eine Soll-Luftzahlkenngröße vorgesehen ist, dynamisch angepasst wird, dadurch gekennzeichnet, dass das zumindest eine Regel-Kennlinienfeld (12, 14) in einem Normalbetriebszustand einem Luftzahlkenngrößen-Brennstoffdosierersignal-Kennlinienfeld entspricht, wobei der Normalbetriebszustand ein Betriebszustand ist, bei welchem die Luftzahl auf die Soll-Luftzahl geregelt wird und wobei die Steuer- und/ oder Regeleinheit (18) dazu vorgesehen ist, anhand des Regel-Kennlinienfeldes (12) ein Verbrennungsluftdosierersignal zu variieren und hierdurch die Luftzahlkenngröße auf eine Soll-Luftzahlkenngröße zu regeln.
EP15192022.0A 2014-12-04 2015-10-29 Heizgerätevorrichtung und verfahren zum betrieb einer heizgerätevorrichtung Active EP3029375B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102014224891.4A DE102014224891A1 (de) 2014-12-04 2014-12-04 Heizgerätevorrichtung und Verfahren zum Betrieb einer Heizgerätevorrichtung

Publications (2)

Publication Number Publication Date
EP3029375A1 EP3029375A1 (de) 2016-06-08
EP3029375B1 true EP3029375B1 (de) 2018-12-12

Family

ID=54365060

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15192022.0A Active EP3029375B1 (de) 2014-12-04 2015-10-29 Heizgerätevorrichtung und verfahren zum betrieb einer heizgerätevorrichtung

Country Status (2)

Country Link
EP (1) EP3029375B1 (de)
DE (1) DE102014224891A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PT108703B (pt) * 2015-07-17 2021-03-15 Bosch Termotecnologia, S.A. Dispositivo para aparelhos de aquecimento e processo para a operação de um dispositivo para aparelhos de aquecimento
EP3290800B1 (de) * 2016-09-02 2021-03-24 Robert Bosch GmbH Verfahren zum aktualisieren einer kennlinie in einem heizsystem sowie eine steuereinheit und ein heizsystem
DE102017126138A1 (de) * 2017-11-08 2019-05-09 Ebm-Papst Landshut Gmbh Verfahren zur Regelung eines brenngasbetriebenen Heizgerätes
DE102017126137A1 (de) * 2017-11-08 2019-05-09 Ebm-Papst Landshut Gmbh Verfahren zur Regelung eines brenngasbetriebenen Heizgerätes

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19831648A1 (de) * 1998-07-15 2000-01-27 Stiebel Eltron Gmbh & Co Kg Verfahren zur funktionalen Adaption einer Regelelektronik an ein Gasgerät

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202004017850U1 (de) * 2004-06-23 2005-07-21 Ebm-Papst Landshut Gmbh Feuerungseinrichtung
DE102004049905A1 (de) * 2004-10-13 2006-04-27 Webasto Ag Verfahren zur Steuerung eines Verbrennungs-Heizgerätes und Verbrennungs-Heizgerät für Kraftfahrzeuge
DE102004051270A1 (de) * 2004-10-21 2006-04-27 G. Kromschröder AG Verfahren und Einrichtung zur Kalibrierung eines Heizwertgerätes
DE102006006964B4 (de) * 2006-02-14 2012-09-06 Ebm-Papst Landshut Gmbh Verfahren zum Starten einer Feuerungseinrichtung bei unbekannten Rahmenbedingungen
DE102011111453A1 (de) 2011-08-30 2013-02-28 Robert Bosch Gmbh Verfahren zur Luftzahleinstellung bei einem Heizgerät

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19831648A1 (de) * 1998-07-15 2000-01-27 Stiebel Eltron Gmbh & Co Kg Verfahren zur funktionalen Adaption einer Regelelektronik an ein Gasgerät

Also Published As

Publication number Publication date
DE102014224891A1 (de) 2016-06-09
EP3029375A1 (de) 2016-06-08

Similar Documents

Publication Publication Date Title
EP2594848B1 (de) Verfahren zur Steuerung einer Feuerungseinrichtung und Feuerungseinrichtung
EP1154202B1 (de) Regeleinrichtung für einen Brenner
EP3029375B1 (de) Heizgerätevorrichtung und verfahren zum betrieb einer heizgerätevorrichtung
DE102013106987A1 (de) Verfahren und Vorrichtung zur Bestimmung einer Brennwertgröße sowie gasbetriebene Einrichtung mit einer derartigen Vorrichtung
EP3690318B1 (de) Verfahren zur regelung eines brenngas-luft-gemisches in einem heizgerät
EP3824366B1 (de) Verfahren zur regelung eines gasgemisches unter nutzung eines gassensors, eines brenngassensors und eines gasgemischsensors
DE102008031979A1 (de) Verfahren zur Brenngas-Luft-Einstellung für einen brenngasbetriebenen Brenner
EP3301365A1 (de) Verfahren zum steuern eines zündbetriebs eines heizsystems sowie eine steuereinheit und ein heizsystem
DE202019100263U1 (de) Heizgerät mit Regelung eines Gasgemisches unter Nutzung eines Gassensors, eines Brenngassensors und eines Gasgemischsensors
EP3303925B1 (de) Heizgerätevorrichtung und verfahren zum betrieb einer heizgerätevorrichtung
EP2405198B1 (de) Verfahren zur Kalibrierung der Regelung des Brenngas-Luft-Verhältnisses eines brenngasbetriebenen Brenners
DE102019119186A1 (de) Verfahren und Vorrichtung zur Regelung eines Brenngas-Luft-Gemisches in einem Heizgerät
EP3499124A1 (de) Heizgerätkomponente und verfahren zur einstellung eines brennstoffvolumenstroms
EP3182007B1 (de) Heizgerätesystem und verfahren mit einem heizgerätesystem
AT515769A2 (de) Verbrennungsmotor und Verfahren zum Betrieb desselben
EP3290797B1 (de) Verfahren zum erfassen eines alterungszustands eines heizsystems sowie eine steuereinheit und ein heizsystem
EP3173699B1 (de) Heizgerätevorrichtung, insbesondere gas und/oder ölbrennervorrichtung, und verfahren zum betrieb einer heizgerätevorrichtung
EP3825610B1 (de) Verfahren und vorrichtung zur messung des lambda-wertes in einem fossil befeuerten brenner, insbesondere für eine heizungs- und/oder brauchwasseranlage
DE102011111453A1 (de) Verfahren zur Luftzahleinstellung bei einem Heizgerät
EP3767174B1 (de) Verfahren und vorrichtung zur nachkalibrierung eines messsystems zur regelung eines brenngas-luft-gemisches in einem heizgerät
DE102015222155B4 (de) Verfahren zur Steuerung einer Heizeinheit sowie Heizeinheit und Computerprogrammprodukt zur Ausführung des Steuerverfahrens
DE10220773A1 (de) Verfahren und Einrichtung zur Regelung eines Verbrennungsprozesses, insbesondere eines Brenners
EP3163169B1 (de) Heizgerätevorrichtung und verfahren zum betrieb einer heizgerätevorrichtung
DE102017126138A1 (de) Verfahren zur Regelung eines brenngasbetriebenen Heizgerätes
DE102017204014A1 (de) Verfahren zur Bestimmung einer Brennstofftypengröße in einem Heizsystem

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20161208

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20171107

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180622

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1076526

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015007176

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190312

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190312

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190412

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190412

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015007176

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

26N No opposition filed

Effective date: 20190913

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191029

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191031

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20151029

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1076526

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20231023

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231025

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231023

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20231023

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231218

Year of fee payment: 9