DE102015222155B4 - Verfahren zur Steuerung einer Heizeinheit sowie Heizeinheit und Computerprogrammprodukt zur Ausführung des Steuerverfahrens - Google Patents

Verfahren zur Steuerung einer Heizeinheit sowie Heizeinheit und Computerprogrammprodukt zur Ausführung des Steuerverfahrens Download PDF

Info

Publication number
DE102015222155B4
DE102015222155B4 DE102015222155.5A DE102015222155A DE102015222155B4 DE 102015222155 B4 DE102015222155 B4 DE 102015222155B4 DE 102015222155 A DE102015222155 A DE 102015222155A DE 102015222155 B4 DE102015222155 B4 DE 102015222155B4
Authority
DE
Germany
Prior art keywords
voltage
burner
ionization
heating unit
ionization electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
DE102015222155.5A
Other languages
English (en)
Other versions
DE102015222155A1 (de
Inventor
Sebastian Hack
Arno Clemens
Martin Ries
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Viessmann Werke GmbH and Co KG
Original Assignee
Viessmann Werke GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Viessmann Werke GmbH and Co KG filed Critical Viessmann Werke GmbH and Co KG
Priority to DE102015222155.5A priority Critical patent/DE102015222155B4/de
Priority to PCT/EP2016/077512 priority patent/WO2017081307A1/de
Priority to EP16794647.4A priority patent/EP3374697B1/de
Priority to CA3004943A priority patent/CA3004943A1/en
Priority to US15/775,386 priority patent/US10605458B2/en
Publication of DE102015222155A1 publication Critical patent/DE102015222155A1/de
Application granted granted Critical
Publication of DE102015222155B4 publication Critical patent/DE102015222155B4/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/12Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods
    • F23N5/126Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods using electrical or electromechanical means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/02Regulating fuel supply conjointly with air supply
    • F23N1/025Regulating fuel supply conjointly with air supply using electrical or electromechanical means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/12Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2223/00Signal processing; Details thereof
    • F23N2223/06Sampling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2223/00Signal processing; Details thereof
    • F23N2223/42Function generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2223/00Signal processing; Details thereof
    • F23N2223/54Recording
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2229/00Flame sensors
    • F23N2229/12Flame sensors with flame rectification current detecting means

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Combustion (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

Verfahren zur Steuerung einer Heizeinheit, mit einem Brenner (1) mit einem Brennergehäuse (2), einer dem Brenner (1) zugeordneten lonisationselektrode , und einer Spannungsversorgung (8) zum Anlegen einer Wechselspannung zwischen der lonisationselektrode und dem Brennergehäuse (2),enthaltend die VerfahrensschritteAnlegen einer Wechselspannung zwischen der lonisationselektrode und dem Brennergehäuse (2) mittels der Spannungsversorgung (8),gekennzeichnet durch Nachregeln der Leistung der Spannungsversorgung (8) bei Auftreten von parasitären Leckageströmen, wobei eine tatsächlich an der lonisationselektrode anliegende Spannung gemessen wird, mit einem Sollwert verglichen und wenn nötig auf den Sollwert eingeregelt wird.

Description

  • Die vorliegende Erfindung betrifft ein Verfahren zur Steuerung einer Heizeinheit. Ein gattungsgemäßes Verfahren gemäß des Oberbegriffs von Anspruch 1 ist beispielsweise aus der DE 10 2005 024 763 B1 bekannt.
  • Im Stand der Technik sind mittels Gas oder mittels Öl betriebene Heizeinheiten mit einem entsprechenden Gas- oder Ölbrenner bekannt. Solche Heizeinheiten werden beispielsweise zur Erwärmung von Gebäuden verwendet.
  • Zur Überwachung der Brennerflamme wird beispielweise, neben alternativen bekannten Möglichkeiten, eine so genannte lonisationssicherung verwendet, bei welcher zwischen einer lonisationselektrode und einem leitfähigen Teil des Gehäuses eine Wechselspannung anliegt.
  • Solange im Brenner eine Brennerflamme brennt, in der ein Brennstoff-Luftgemisch verbrannt wird, fließt über das Plasma zwischen der Ionisationselektrode und dem leitfähigen Teil des Brennergehäuses u. a. ein Gleichstrom.
  • Ein relevanter Parameter bei dem Betrieb einer solchen Heizeinheit ist unter anderem das Luft/Brennstoffverhältnis, die so genannte Luftzahl bzw. der Lambdawert λ. Dieser kann beispielsweise durch Variation einer Gebläsedrehzahl oder Regulierung eines Brennstoffventils auf einen gewünschten Wert eingestellt werden.
  • Bevorzugte Werte für die Luftzahl λ liegen hierbei im Bereich von 1,15 bis 1,3. Je höher der Lambdawert λ, desto größer der Luftüberschuss.
  • Die Überwachung der Luftzahl wird beispielsweise in einem Verfahren, wie es aus der DE 44 33 425 A1 bekannt ist, derart durchgeführt, dass zwischen der lonisationselektrode und dem leitfähigen Teil des Gehäuses eine Wechselspannung angelegt wird und ein von der Ionisationselektrode abfließender, aufgrund der Gleichrichtereigenschaft der Flamme gleichgerichteter Strom als lonisationsstrom erfasst wird.
  • Mittels einer Regelschaltung wird dann der gemessene lonisationsstrom mit einem dem eingestellten Sollwert der Luftzahl entsprechendem Sollwert für den Ionisationsstrom verglichen und die Zusammensetzung des Luftbrennstoffgemisches entsprechend nachgeregelt.
  • Insbesondere haben die Erfinder der vorliegenden Erfinder festgestellt, dass im hohen Lastbereich der entsprechenden Heizeinheit Probleme bei der Luftzahlbestimmung auftreten und der gemessene lonisationsstrom nur ungenaue bzw. eine unzuverlässige Bestimmung des Lambdawertes λ ermöglicht.
  • Ausgehend von dem zuvor beschriebenen Problem, ist es Aufgabe der vorliegenden Erfindung, insbesondere eine Verbesserung der Zuverlässigkeit der Ermittlung des Luft/Brennstoffverhältnis über den lonisationsstrom zu erreichen.
  • Die DE 10 2005 024 763 B1 offenbart ein Heizgerät und ein Verfahren zum Steuern eines Heizgerätes. Zwischen einer Ionisationselektrode und einem Brenner liegt eine Wechselspannung an, wobei der Ionisationsstrom zur Flammenüberwachung gemessen wird. In der DE 10 2005 024 763 B1 wird beschrieben, dass aufgrund von elektrisch leitenden Verbrennungsrückständen innerhalb des Brennerraums ein parasitärer Widerstand parallel zum Messwiderstand ausgebildet werden kann. Folglich ändert sich auch das lonisationssignal. Gemäß der DE 10 2005 024 763 B1 soll dieser parasitäre Widerstand quantifiziert werden. Hierzu wird die Abklingkurve der angelegten Spannung bei Abschalten des Brenners mit und ohne Einfluss des parasitären Widerstands verglichen. Aus der Abklinggeschwindigkeit kann der parasitäre Widerstand berechnet werden. Die Abklinggeschwindigkeit ist höher wenn ein parasitärer Widerstand vorhanden ist.
  • Aus der US 2006/0257801 A1 ist ein Flammenüberwachungssystem bekannt. Mit der in der US 2006/0257801 A1 beschriebenen Erfindung soll einer Kompensation der Kontamination der lonisationselektrode entgegengewirkt werden. Dies wird insbesondere durch Veränderung der Spannungsfrequenz erreicht. Es wird der lonisationsstrom bei zwei verschiedenen Spannungsfrequenzen gemessen und verglichen. Wenn sich das Verhältnis der gemessenen Signale im Vergleich zu einem vorab gespeicherten Signalverhältnis wenn keine Kontaminationen vorliegen, ändert, wird darauf geschlossen, dass eine Kontamination vorliegt. Daraufhin wird die Signalstärke zur Kompensation der Kontamination gesteuert.
  • Aus DE 19539568 C1 ist ein Verfahren bekannt, bei dem die zwischen der Ionisationselektrode und dem Brenner anliegende Spannung bei Auftreten von Verbiegen, Verschleiß und Verschmutzung nachjustiert wird.
  • Zur Lösung des zuvor beschriebenen Problems schlägt die vorliegende Erfindung ein Verfahren mit den Merkmalen von Anspruch 1 vor.
  • Dieses Verfahren zur Steuerung einer Heizeinheit enthält zumindest die Verfahrensschritte: Anlegen einer Wechselspannung zwischen einer Ionisationselektrode und einem Brennergehäuse mittels einer Spannungsversorgung, und Nachregeln der Leistung der Spannungsversorgung bei Auftreten von parasitären Leckageströmen.
  • Die Heizeinheit enthält zumindest einen Brenner mit einem Brennergehäuse, einer dem Brenner zugeordneten Ionisationselektrode, und eine Spannungsversorgung zum Anlegen einer Wechselspannung zwischen der lonisationselektrode und dem Brennergehäuse.
  • Es wurde beobachtet, dass der zuvor beschriebene Gleichrichtereffekt der Gasflamme lediglich ein idealisiertes Modell darstellt, welches die Wirklichkeit nur teilweise abbildet.
  • Die Erfinder der vorliegenden Erfindung haben beobachtet, dass verwunderlicherweise der Widerstand in der Heizeinheit, insbesondere zwischen der lonisationselektrode und dem Brennergehäuse komplexer Art und nicht lediglich ohmscher Natur ist. Der Widerstand hat einen ohmschen und auch einen kapazitiven Anteil. Es wurde festgestellt, dass die Brennerflamme neben dem ohmschen Anteil eben auch einen Kondensatoreffekt besitzt.
  • Somit ist der zu beachtende Widerstand im Ersatzschaltbild der Brennerflamme, welcher die Nachregelung der Ionisationsspannung kompensiert, komplex.
  • In der Brennerflamme bildet sich, insbesondere in hohen Lastbereichen ein Schwingkreis zwischen dem ohmschen und kapazitiven Anteil aus, die Ionisationsspannung im Vergleich zum idealisierten Bild reduziert, bzw. die Ionisationsspannung zusammenbrechen lässt.
  • Das zuvor beschriebene Problem wird durch die erfindungsgemäße Steuerung des Nachregelns der Leistung der Spannungsversorgung bei Auftreten von parasitären Leckageströmen, vermindert, bzw. behoben.
  • Der zwischen der Ionisationselektrode und dem Brennergehäuse fließende Ionisationsstrom durch die Flamme bei einer bestimmten angelegten Wechselspannung fällt demnach in der Realität tatsächlich niedriger aus, als in dem idealisierten Bild, wenn keine parasitären Leckageströme fließen. Entsprechend kann sich zum Beispiel auch bei gleichbleibender tatsächlicher Luftzahl der an der Ionisationselektrode gemessen lonisationsstrom, d.h. der Proportionalitätsfaktor zwischen tatsächlicher Luftzahl und dem gemessenen Ionisationsstrom ändern. Insbesondere treten bei der Luftzahlbestimmung im hohen Lastbereich der entsprechenden Heizeinheit Probleme auf, weil der gemessene Ionisationsstrom gerade in diesem Bereich nur eine unzuverlässige Bestimmung des Lambdawertes λ ermöglicht.
  • Begrifflich wird eine angelegte Wechselspannung und eine tatsächlich an der Ionisationselektrode anliegende Spannung unterschieden. Die angelegte Wechselspannung entspricht hierbei demjenigen Wert, der an der Spannungsversorgung eingestellt ist bzw. von dieser ausgegeben wird. Die tatsächlich an der lonisationselektrode anliegende Spannung hingegen ist ein individueller Wert der nicht zwangsläufig dem demjenigen Wert, der an der Spannungsversorgung eingestellt ist, entspricht.
  • Durch den komplexen Widerstand bricht die anliegende Spannung ein bzw. zusammen. Damit ist die lonisationsstrom-Lambda-Charakteristik nicht mehr zum Steuern der Luftzahl brauchbar. Durch nachregeln der Leistung der Spannungsversorgung kann die tatsächlich an der Ionisationselektrode anliegende Spannung auf einen vorgegebenen Wert eingestellt werden.
  • Die Höhe solcher parasitären Leckageströme kann beispielsweise in Abhängigkeit des jeweiligen Lastpunkt, bei welchem die Heizeinheit betrieben wird und/oder von der Betriebsdauer und/oder den Umgebungsbedingungen abhängen.
  • Wenn, wie die vorliegende Erfindung vorschlägt, die Leistung der Spannungsversorgung nachgeregelt wird, wenn solche parasitären Leckageströme auftreten, ist es möglich, dass der gemessene lonisationselektrodenstrom durch die Flamme zur zuverlässigen Bestimmung der Luftzahl insbesondere auch bei hohen Lastpunkten (bis hin zum Vollastbetrieb der Heizeinheit) herangezogen werden kann.
  • Es ist nicht zwangsweise notwendig, dass eine solche Nachregelung schon bei minimalen Leckageströmen bzw. unmittelbar bei Auftreten von solchen Leckageströmen durchgeführt wird, sondern zumindest in einem Betriebsbereich, in dem Leckageströme auftreten. Vorteilhaft ist es jedoch, dass eine solche Nachregelung schon bei minimalen Leckageströmen bzw. unmittelbar bei Auftreten von solchen Leckageströmen durchgeführt wird.
  • Solche Leckageströme können in Abhängigkeit der jeweiligen spezifischen Heizeinheit im gesamten Lastbereich der Heizeinheit auftreten. Die Leistung der Spannungsversorgung wird vorzugsweise in diesen, insbesondere im Wesentlichen lediglich in diesen Bereichen erhöht.
  • Vorliegend wird die tatsächlich an der lonisationselektrode anliegende Spannung gemessen und mit einem Sollwert verglichen, und wenn nötig auf diesen Sollwert eingeregelt.
  • Zum Nachregeln der Spannungsversorgung wird hiernach bei im Wesentlichen zumindest kurzzeitig konstanter anliegender Spannung die tatsächlich zwischen der lonisationselektrode und dem Brennergehäuse anliegende Spannung gemessen. Sobald sich diese tatsächliche an der lonisationselektrode anliegende Spannung kurzzeitig erniedrigt bzw. erhöht, wird davon ausgegangen, dass sich die Heizeinheit in einem solchen Betriebszustand, insbesondere in einem solchen Lastpunkt befindet, in welchem Leckageströme auftreten.
  • Mittels der Nachregelung der Leistung der Spannungsversorgung wird die von dieser abgegebene Spannung (die angelegte Spannung) derart geändert, dass die tatsächlich an der lonisationselektrode anliegende Spannung wieder dem an der Ionisationselektrode anliegendem Sollwert entspricht, der ursprünglich angelegt war.
  • Vorzugsweise wird mit steigenden Lastpunkten die Leistung der Spannungsversorgung hoch geregelt, damit die tatsächlich zwischen der Ionisationselektrode und dem Brennergehäuse angelegte Spannung dem Sollwert entspricht, auch wenn in diesem Betriebszustand der Heizeinheit parasitäre Leckageströme auftreten.
  • Gemäß einer vorteilhaften Weiterbildung nach Anspruch 2 kann die Leistung der Spannungsversorgung mit steigenden Lastpunkten der Heizeinheit erhöht werden.
  • Insbesondere wurde beobachtet, dass bei hohen Lastpunkten, insbesondere im oberen Lastbereich der Heizung von vorzugsweise oberhalb von 30%, insbesondere oberhalb von 60%, ganz besonders bevorzugt oberhalb von 80%, hohe parasitäre Leckageströme auftreten welches zu einem Spannungsabfall führt, wodurch der durch die Flamme fließende Ionisationsstrom niedriger ist, als im zuvor beschriebenen idealisierten Modell der Abhängigkeit des Ionisationsstroms von der Luftzahl. Deshalb wird die Leistung der Spannungsversorgung Spannungsversorgung mit steigenden Lastpunkten der Heizeinheit erhöht.
  • Die Abhängigkeit des Lambda-Werts vom lonisationsstrom ist deshalb nicht mehr eindeutig und verschiedene Luftzahlen werden durch denselben Ionisationsströmen repräsentiert.
  • Mit steigenden Lastpunkten wird demnach die Leistung der Spannungsversorgung erhöht, um die auftretenden parasitären Leckageströme bzw. die parasitären Widerstände zu kompensieren.
  • Die Lastpunkte der Heizeinheit werden üblicherweise in % zwischen 0 und 100 angegeben, wobei ein Lastpunkt von 100% ein Volllastbetrieb der Heizeinheit darstellt.
  • Gemäß einer vorteilhaften Weiterbildung der Erfindung nach Anspruch 3 kann das Nachregeln der der Leistung der Spannungsversorgung derart durchgeführt werden, dass der detektierte Ionisationsstrom zu jedem Lastpunkt eindeutig einer Luftzahl, in welcher der Brenner betrieben wird, zugeordnet werden kann.
  • Durch Leckageströme in dem Brenner ist bei ungeregelter Spannungsversorgung und somit vorgegebener angelegter Spannung, welche von der Spannungsversorgung abgegeben wird, eine eindeutige Zuordnung des entsprechenden durch die Flamme fließenden Ionisationsstroms zu dem entsprechenden Luftzahlwert nicht möglich, denn aufgrund des zusätzlichen Leckagestroms fließt tatsächlich ein niedrigerer lonisationsstrom durch die Flamme, als für die entsprechende Luftzahl erwartet.
  • Um die entsprechende charakteristische Abhängigkeit zwischen Luftzahl und lonisationsstrom erreichen zu können, wie es ohne Leckageströme der Fall wäre, wird hiernach erfindungsgemäß die angelegte Wechselspannung derart geregelt, dass jeweils in jedem Betriebszustand des Brenners, insbesondere zu jedem Lastpunkt durch eine Spannungsänderung eben der durch den Leckagestrom auftretende Spannungsverlust an der lonisationselektrode im Wesentlichen genau kompensiert wird, so dass der tatsächliche durch die Flamme fließende Strom demjenigen Strom entspricht, der ohne Leckagestrom durch diese fließen würde.
  • Gemäß einer vorteilhaften Weiterbildung der Erfindung nach Anspruch 4 kann die tatsächliche an der lonisationselektrode anliegende Wechselspannung im gesamten Lastbereich im Wesentlichen konstant gehalten werden.
  • Hierzu ist es vorteilhaft, jeweils die tatsächliche an der lonisationselektrode anliegende Wechselspannung zu messen und im gesamten Lastbereich, von Teillast bis zur Volllast, konstant zu halten. Auch wenn beispielsweise demnach bei höherer Last ein höherer Leckagestrom auftritt, muss dementsprechend an der Spannungsversorgung jeweils eine erhöhte Spannung eingestellt werden, um den Effekt des Leckagestroms zu kompensieren. Die tatsächliche Spannung an der lonisationselektrode soll jedoch konstant gehalten werden.
  • Durch diese konstante tatsächliche Spannung an der lonisationselektrode entspricht die tatsächliche lonisationsstromabhängigkeit der Lambda-Zahl des Ionisationsstroms dem Idealisierten Modell und kann demnach besser zugeordnet werden.
  • Üblicherweise werden unterschiedliche Heizeinheiten, z. B. bauart-, hersteller- oder betriebsbedingt bei vorgegebenen, zwischen der lonisationselektrode und dem Brennergehäuse angelegten Wechselspannungen betrieben. Insbesondere sind diese unterschiedlichen Heizeinheiten jeweils für sich auf eine bestimmte Maximalspannung ausgelegt, bei welcher die Heizeinheit ohne Gefahr der Beschädigung betrieben werden kann. Vorzugsweise sind solche Maximalspannungswerte zwischen 20 und 200 V, insbesondere zwischen 90 und 150 V, ganz besonders bevorzugt 130 V +/- 10 V gewählt. Die zuvor genannten Werte können jeweils für sich eine obere bzw. untere Grenze definieren. Das heißt die Heizeinheiten werden mit einer solchen Spannung betrieben. Die Wechselspannungen zwischen der lonisationselektrode und dem Brennergehäuse betragen vorzugsweise zwischen 30 und 150 Hz, insbesondere zwischen 40 Hz und 100 Hz, ganz besonders bevorzugt 50 Hz +/- 10 Hz.
  • Gemäß einer vorteilhaften Weiterbildung der Erfindung nach Anspruch 5 kann die Leistung der Spannungsversorgung mit steigendem Lastpunkt erniedrigt werden.
  • Diese vorteilhafte Weiterbildung stellt eine Alternative zu der in Anspruch 2 beschriebenen Verfahrensweise bzw. zu der zuvor beschriebenen Verfahrensweise dar, bei welcher die Spannung mit steigendem Lastpunkt erhöht wird.
  • Denn das tatsächliche Verhalten der Leckageströme in den verschiedenen Lastbereichen ist Brennerspezifisch und hängt zum Beispiel von der Brennergeometrie ab.
  • Gemäß einer vorteilhaften Weiterbildung nach Anspruch 6 kann für jede anliegende Spannung eine entsprechende lonisationsstrom/Lambdawert-Sollwertkurve bekannt sein und anhand der bekannten lonisationsstrom/Lambdawert Sollwertkurve die angelegten Wechselspannungen der Luftzahl bestimmt werden.
  • Wie zuvor beschrieben, besteht bei einer konstanten tatsächlich zwischen der Ionisationselektrode und dem Brennergehäuse anliegenden Wechselspannung zwischen dem jeweiligen lonisationsstrom und dem jeweiligen Lambda-Wert im idealisierten Modell, soweit keine Leckageströme auftreten, eine wohl definierte Abhängigkeit. Insbesondere verhält sich die Änderung des Ionisationsstroms invers zur Änderung der Luftzahl.
  • Wenn für jeden anliegenden Spannungswert die entsprechende Abhängigkeit zwischen gemessenem lonisationsstrom und Lambda-Wert bekannt ist, kann auch bei veränderter an den Ionisationselektroden und dem Brennergehäuse anliegenden tatsächlichen Spannungen jeweils der entsprechende Lambda-Wert bestimmt werden.
  • Gemäß eines nebengeordneten Aspektes der Erfindung nach Anspruch 7 schlägt diese eine Heizeinheit mit einem Brenner mit einem Brennergehäuse und einem Brennergehäuse zugeordneten lonisationselektrode und einer Spannungsversorgung zum Anlegen einer Wechselspannung zwischen der lonisationselektrode und dem Brennergehäuse vor.
  • Diese Heizeinheit weist zudem eine Regeleinheit auf, welche bei Auftreten von parasitären Leckageströmen Spannungsversorgung nachregelt.
  • Diese Regeleinheit ist vorzugsweise derart ausgebildet, dass diese die zuvor benannte bevorzugte Weiterbildung des erfindungsgemäßen Verfahrens regelt.
  • Weitere vorteilhafte Weiterbildungen der erfindungsgemäßen Heizeinheit sind in den Ansprüchen 8 beschrieben.
  • Darüber hinaus kann die Regeleinheit jeweils so ausgebildet sein, dass diese die zuvor beschriebenen Verfahrensschritte ausführt.
  • Insbesondere ist beispielsweise eine Messeinrichtung vorgesehen, die den tatsächlich an der lonisationselektrode anliegende Spannung misst und die gemessenen Werte in der Regeleinheit weitergibt, wobei die Regeleinheit eine Spannungsquelle derart regelt, wie zuvor für das beschriebene Verfahren erläutert.
  • Gemäß einer vorteilhaften Weiterbildung nach Anspruch 9 kann der Brenner eine zylindrische Oberfläche aufweisen, welche mit einer Belochungsstruktur versehen ist.
  • Das Gasluftgemisch strömt somit über zylindrische Oberfläche und durch die Belochungsstruktur.
  • Die Belochungsstruktur wird im Bereich der lonisationselektrode entsprechend gewählt, um eine größtmögliche Konstanz der beschriebenen Zuordnung zu erreichen.
  • Die Kombination der Leistungssteuerung der Spannungsversorgung mit der Belochungsstruktur gewährleistet eine noch bessere Zuordnung zwischen lonisationsstrom und Lambda-Wert.
  • Gemäß eines weiteren nebengeordneten Aspektes der Erfindung wird ein Computerprogrammprodukt vorgeschlagen mit computerausführbaren Instruktionen zur Ausführung des erfindungsgemäßen Verfahrens.
  • Dieses Computerprogrammprodukt kann beispielsweise nach Art einer Software innerhalb einer Steuerungs- bzw. Regelungselektronik in der Heizeinheit hinterlegt sein.
  • Insbesondere kann mittels des Computerprogrammprodukts jede handelsübliche Heizeinheit aufgerüstet werden, indem die Software aufgespielt wird, soweit die Heizeinrichtung vorrichtungsgemäß bzw. konstruktiv dazu in der Lage ist.
  • Vorteilhafte Weiterbildungen der Erfindung werden anhand eines nachfolgend erläuterten Ausführungsbeispiels in Verbindung mit der Zeichnung näher erläutert. In dieser zeigen:
    • 1a eine schematische Ansicht eines Gasbrenners, bei welchem das Gasbrennergehäuse auf positives Potenzial und eine lonisationselektrode auf negatives Potenzial geschaltet ist,
    • 1b eine schematische Ansicht desselben Brenners mit umgekehrter Polung,
    • 1c den Spannungsverlauf über die Zeit und den idealisierte lonisationsstrom zwischen Brenner und lonisationselektrode in der Flamme,
    • 2 ein Ersatzschaltbild eines Brenners einer Heizeinrichtung mit einer Wechselstromspannungsversorgung,
    • 3a eine lonisationsstromabhängigkeit vom Lastpunkt der Heizeinrichtung aus dem Stand der Technik, sowie
    • 3b eine lonisationsstromabhängigkeit vom Heizlastpunkt mit einer erfindungsgemäßen Regelung,
    • 4 eine Stromspannungscharakteristikkurve ohne die erfindungsgemäße Regelung sowie eine Stromspannungscharakteristikkurve bei der erfindungsgemäßen Regelung.
  • 1a zeigt schematisch einen Brenner 1, welcher Teil einer nicht dargestellten Heizeinheit ist.
  • Der Brenner 1 weist ein zylindrisches Brennergehäuse 2 auf mit einer frontseitigen Öffnung 3. Innerhalb des Brennergehäuses 2 und konzentrisch dazu und leicht zu der frontseitigen Öffnung 3 zurückversetzt ist eine Gasdüse 4 angeordnet.
  • Von einer Rückseite des Brennergehäuses 2 strömt in das Brennergehäuse 2 Luft und in die Gasdüse 4 Gas ein. In einer vor der Düse und innerhalb des Brennergehäuses angeordneten Mischzone 5 wird das Gas aus der Düse 4 mittels der Luft vermischt.
  • Mittels eines nicht dargestellten Zünders wird das Gas-Luft-Gemisch gezündet und es entsteht eine Flamme 6, die sich aus dem Gehäuse durch die frontseitige Öffnung 3 hinauserstreckt. Innerhalb der Flamme ist eine frontseitig vor der Öffnung 3 angeordnete lonisationselektrode 7 vorgesehen.
  • Zwischen der lonisationselektrode 7 und dem Brennergehäuse 2 liegt eine Wechselspannung (vgl. 1c). Die anliegende Wechselspannung beträgt zwischen 20 und 75 Volt, weitere bevorzugte Werte sind zwischen 20 und 150 V, insbesondere zwischen 30 und 100 V, ganz besonders bevorzugt 130 V gewählt.
  • In einer in der 1 nicht dargestellten Variante, weist der Brenner 4 eine zylindrische Oberfläche auf, welche mit einer Belochungsstruktur versehen ist. Das Gasluftgemisch strömt somit über zylindrische Oberfläche und durch die Belochungsstruktur.
  • Damit bildet sich ein Flammenteppich auf der Oberfläche aus, welcher insbesondere durch die Belochungsstruktur stabilisiert wird. Durch passende Wahl der Belochungsstruktur wird ein konstanterer Verlauf der lonisationsstromsollwerte für konstante Luftzahl erreicht. Dies ist für den Regelprozeß und auch Aspekte wie Luftzahltreue bei Modulation vorteilhaft.
  • Eine Frequenz beträgt von vorzugsweise 50 Hz, weitere bevorzugte Bereiche liegen zwischen 30 und 150 Hz, insbesondere zwischen 40 Hz und 100 Hz, ganz besonders bevorzugt 50 Hz +/- 10 Hz.
  • Die Wechselspannung wird von einer Spannungsversorgung 8 erzeugt und entsprechend zwischen der Ionisationselektrode 7 und dem Brennergehäuse 2 angelegt. Vorzugsweise liegt die angelegte Wechselspannung zwischen 20 und 200 V, insbesondere zwischen 90 und 150 V, ganz besonders bevorzugt 130 V +/- 10 V. Die Leistung der Spannungsversorgung kann geregelt werden.
  • Die Spannungsversorgung 8 ist vorzugsweise in einer Steuereinheit der Heizeinheit enthalten, welche nicht dargestellt ist. Diese Steuereinheit kann eine Regeleinheit enthalten, mit der das erfindungsgemäße Verfahren durchgeführt wird.
  • Wie in Abfolge der 1a und 1b dargestellt, fließt, wenn der Pluspol der Spannungsversorgung 8 auf das Brennergehäuse 2 geschaltet ist und der Minuspol der Spannungsversorgung 8 an die lonisationselektrode 7 geschaltet ist, ein Strom und im umgekehrten Fall wie in 1b, wenn das Brennergehäuse 2 auf negatives Potenzial und die Ionisationselektrode auf positives Potenzial geschaltet ist, kein Strom, da die Elektroden e- in der Flamme mit den Ionen I+ zur lonisationselektrode 7 strömen und dort die Ionen I+ entladen, d. h. neutralisieren.
  • Dieses schematische Schaubild zeigt das idealisierte Verhalten der Gleichrichtung.
  • Die lonisationselektrode 7 und der Brenner 2 können beliebige Geometrie aufweisen, jedoch müssen diese beiden zueinander derart angeordnet sein, dass zwischen der lonisationselektrode 7 und dem Brenner ein lonisationsstrom durch den Gleichrichtungseffekt der Flamme 6 erzeugt wird.
  • Alternativ zum Gasbrenner kann beispielsweise auch ein Ölbrenner oder ein Brenner für einen weiteren Kraftstoff Verwendung finden.
  • 1c zeigt entsprechend den idealisierten Stromfluss im Vergleich zur angelegten Spannung über die Zeit. Wie aus dieser Figur ersichtlich, hat die Flamme 6 ein Gleichrichtungseffekt.
  • Bei realen Heizeinheiten hat sich verwunderlicherweise gezeigt, dass der Widerstand in der Heizeinheit, insbesondere zwischen der lonisationselektrode und dem Brennergehäuse komplexer Art und nicht lediglich ohmscher Natur ist. Hierdurch ergeben sich parasitäre Widerstände, die zusätzlich zu dem lonisationsstrom durch die Brennflamme für einen weiteren parasitären Stromfluss verantwortlich sind.
  • Ein entsprechendes Ersatzschaltbild eines realen Brenners 1 ist beispielsweise in 2 dargestellt, wobei dieser auch eine Messschaltung 9 aufweist, mittels welcher wie später beschrieben die tatsächlich wischen der Ionisationselektrode 7 und dem Brennergehäuse 2 anliegende Spannung gemessen wird und hierüber die Spannungsversorgung 8 entsprechend nachjustiert wird.
  • Die Spannungsversorgung 8 ist in 2 schematisch links dargestellt und weist einen Widerstand Rinnen auf.
  • Ein Ersatzschaltbild des Brenners 6 ist in 2 rechts wiedergegeben. Die idealisierte Flamme 6 selbst, mit dem Gleichrichtungseffekt, wird durch die Diode D sowie durch den Flammenwiderstand RFlamme gebildet. Parallel dazu geschaltet ist in der Figur ein parasitärer Widerstand ZFlamme gezeigt, welcher für einen parasitären Stromfluss in Abhängigkeit der Betriebsparameter, wie z. B. Last, Lambda-Wert und Gasart verantwortlich ist.
  • Der parasitärer Widerstand ZFlamme ist komplexer Art und demnach auch als eine Art Scheinwiederstand mit dem üblichen Bezugszeichen Z, wie es bei Spulen verwendet wird, versehen. Der Widerstand hat einen ohmschen und auch einen kapazitiven Anteil. Es wurde festgestellt, dass die Brennerflamme neben dem ohmschen Anteil eben auch einen Kondensatoreffekt besitzt.
  • In der Brennerflamme bildet sich, insbesondere in hohen Lastbereichen ein Schwingkreis zwischen dem ohmschen und kapazitiven Anteil aus, die Ionisationsspannung im Vergleich zum idealisierten Bild reduziert, bzw. die Ionisationsspannung zusammenbrechen lässt.
  • Der mit Bezugszeichen 10 versehene Pfeil in 2 zeigt schematisch, dass die Spannungsversorgung 8 in dem erfindungsgemäßen Verfahren anhand der tatsächlich gemessenen Spannung der lonisationselektrode 7 geregelt wird.
  • 3a zeigt eine lonisationsstromabhängigkeit vom Lastpunkt für verschiedene Lambda-Werte ohne die erfindungsgemäße Regelung, d. h. Leistungsstabilisierung und 3b zeigt eine lonisationsstromabhängigkeit vom Lastpunkt für verschiedene Lambda-Werte mit der erfindungsgemäßen Regelung, d. h. Leistungsstabilisierung.
  • Die Linien in 3a und 3b entsprechen von oben angefangen den in den entsprechenden Figuren rechts dargestellten Lambda-Werten von 1,04, 1,14, 1,24, 1,34, 1,54, d.h. dass der Luftüberschuss in den Graphen von oben nach unten zunimmt.
  • Wie beispielsweise 3a bei einem niedrigen Lastpunkt von 10% zu erkennen, erhöht sich der gemessene lonisationsstrom mit steigendem Lambda im Wesentlich invers dazu (vertikaler Schnitt bei 10% Lastpunkt). Die Änderung des Ionisationsstroms ist invers proportionall zur Änderung der Luftzahl.
  • Die auf der Y-Achse eingetragenen Werte sind Stromwerte (Stromstärke in µA). Je niedriger der entsprechende Lambda-Wert, desto höher der jeweils gemessene Ionisationsstrom.)
  • Für den Lambda-Wert von 1,34 (4. Linie von oben in 3a) soll nachfolgend der gemessene Ionisationsstrom bei vorgegebener voreingestellter Spannung an der Spannungsversorgung 8 beschrieben werden.
  • Wenn der Lastpunkt von ca. 10% auf ca. 40% erhöht wird, steigt der gemessene Ionisationsstrom.
  • Bei weiterer Erhöhung des Lastpunktes hingegen fällt der lonisationsstrom erst zwischen ca. 50% und ca. 75% stark ab. Dieser Abfall des gemessenen Ionisationsstroms zwischen lonisationselektrode 7 und Brennergehäuse 2 ist dadurch verursacht, dass ein parasitärer Stromfluss auftritt. Hierdurch fällt die tatsächlich zwischen der lonisationselektrode 7 und Brenner 1 anliegende Spannung ab und der Ionisationsstrom in der Flamme erniedrigt sich entsprechend.
  • Wie in 3a zu sehen, schneiden sich bei dem 75% Lastpunkt die beiden Kurven und für den Lambda-Wert von 1,14 und 1,04 (vgl. die oberen beiden Linien in 3a; 2. Punkt von rechts auf den jeweiligen Graphen in 3): Obwohl unterschiedliche Lambdawerte vorliegen, wird derselbe lonisationsstrom gemessen.
  • Demnach kann nicht mehr über den lonisationsstrom auf die entsprechende Luftzahl bzw. den Lambdawert rückgeschlossen werden.
  • Der in 3a dargestellte schraffierte Bereich (Bereich ohne Sensitivität) von 50% bis 100% und zwischen den Linien für eine Luftzahl von 1,04 und 1,14 weist demnach keine Luftzahlsensivität aus.
  • D. h. der lonisationsstrom kann in diesem Lastbereich nicht zur Bestimmung der Luftzahl herangezogen werden. Solche Lastbereiche können folgende sein: oberhalb von 30%, vorzugsweise oberhalb von 50%, insbesondere oberhalb von 70% jedoch unterhalb von 100%. Die beschriebenen Werte können jeweils für sich eine obere und untere Grenze sein.
  • In 3a sind drei unterschiedliche Bereiche dargestellt. Bis zu einem Lastpunkt von 10% steigt der Strom (zumindest für Lambda Werte von 1,34 und mehr) stark an. Dieser Bereich ist als Bereich ungünstiger Sensitivität bezeichnet, weil eine Messung dort mit starken Fehlern behaftet sein kann. Neben diesem Bereich und dem zuvor beschriebenen Bereich ohne Sensitivität weist insbesondere die Kennlinie für Lambda 1,34 im Bereich des Scheitelpunks einen ungünstige Kennlinienverlauf auf.
  • 3b hingegen zeigt dieselbe Abhängigkeit für die entsprechenden sieben Lambda-Werte mit der erfindungsgemäßen Regelung. Soweit nämlich die tatsächliche an der lonisationselektrode 7 angemessene Spannung gemessen wird und diese in Abhängigkeit des Lastpunktes beispielsweise konstant gehalten wird, überschneiden sich für die entsprechenden Lambda-Werte die Linien der lonisationsstromabhängikeit vom Lastpunkt nicht mehr.
  • So wird beispielsweise, sobald ein parasitärer Widerstand bzw. Leckagestrom auftritt, die Leistung der Spannungsversorgung 8 hochgeregelt wird.
  • So kann auch für niedrige Lambda-Werte von unterhalb von 1,14, eindeutig die Luftzahl bestimmt werden. Denn die entsprechenden Linien in 3b schneiden sich nicht. Die entsprechenden Graphen für die einzelnen Lambda-Werte in 3b steigen allesamt leicht an. Lediglich der Graph für den Lambdawert 1,3 fällt zwischen ca. 50% und 70% des Lastpunktes leicht ab. Dennoch kommt es zu keiner Überschneidung bzw. Berührung der einzelnen Graphen.
  • Insbesondere liegt dies daran, dass der entsprechende tatsächlich an der Ionisationselektrode 7 anliegende Spannungswert eingeregelt wird.
  • 4 zeigt einen Vergleich einer Abhängigkeit der angelegten Spannung (an der Spannungsversorgung eingestellten Spannung) von dem lonisationsstrom.
  • Bei der mit a bezeichneten Linie ist die angelegte Spannung immer konstant auch wenn sich aufgrund der Leckageströme bei gleichem Lastpunkt der Ionisationsstrom erniedrigt. Bei dem erfindungsgemäßen Verfahren (vgl. Linie b in 4) wird bei einem sich aufgrund von auftretenden Leckageströmen erniedrigenden lonisationsstrom die von der Spannungsquelle abgegebene Spannung erhöht, sodass dann zwischen der lonisationselektrode 7 und dem Brenner eine konstante tatsächliche Spannung anliegt.
  • Bezugszeichenliste
  • 1
    Brenner
    2
    Brennergehäuse
    3
    Öffnung
    4
    Gasdüse
    5
    Mischzone
    6
    Flamme
    7
    Ionisationselektrode
    8
    Spannungsversorgung
    9
    Messschaltung
    10
    Regelung
    D
    Diode
    RFlamme
    Widerstand
    ZFlamme
    Leckagewiderstand

Claims (10)

  1. Verfahren zur Steuerung einer Heizeinheit, mit einem Brenner (1) mit einem Brennergehäuse (2), einer dem Brenner (1) zugeordneten lonisationselektrode , und einer Spannungsversorgung (8) zum Anlegen einer Wechselspannung zwischen der lonisationselektrode und dem Brennergehäuse (2), enthaltend die Verfahrensschritte Anlegen einer Wechselspannung zwischen der lonisationselektrode und dem Brennergehäuse (2) mittels der Spannungsversorgung (8), gekennzeichnet durch Nachregeln der Leistung der Spannungsversorgung (8) bei Auftreten von parasitären Leckageströmen, wobei eine tatsächlich an der lonisationselektrode anliegende Spannung gemessen wird, mit einem Sollwert verglichen und wenn nötig auf den Sollwert eingeregelt wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Leistung der Spannungsversorgung (8) mit steigenden Lastpunkten der Gasheizeinheit erhöht wird.
  3. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass das Nachregeln der Leistung der Spannungsversorgung (8) derart durchgeführt wird, dass der detektierte lonisationsstrom für jeden Lastpunkt eindeutig einer Luftzahl, mit welcher der Brenner (1) betrieben wird, zugeordnet werden kann.
  4. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die tatsächliche an der Ionisationselektrode anliegende Wechselspannung im gesamten Lastbereich im Wesentlichen konstant gehalten wird.
  5. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Leistung der Spannungsversorgung (8) mit steigendem Lastpunkt erniedrigt wird.
  6. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass für jede angelegte Wechselspannung eine lonisationsstrom Sollwertkurve bekannt ist und anhand der bekannten lonisationsstrom Sollwertkurve und der angelegten Wechselspannung die Luftzahl bestimmt wird.
  7. Heizeinheit mit einem Brenner (1) mit einem Brennergehäuse (2), einer dem Brenner (1) zugeordneten lonisationselektrode und einer Spannungsversorgung (8) zum Anlegen einer Wechselspannung zwischen der Ionisationselektrode und dem Brennergehäuse (2), gekennzeichnet durch eine Regeleinheit welche bei Auftreten von parasitären Leckageströmen eine Spannungsversorgung (8) nachregelt, wobei die Regeleinheit derart ausgebildet ist, dass diese eine Messeinheit aufweist mittels der die tatsächlich an der Ionisationselektrode anliegende Spannung gemessen wird, und die Regeleinheit die tatsächlich an der lonisationselektrode anliegende Spannung mit einem Sollwert vergleicht und wenn nötig auf den Sollwert eingeregelt.
  8. Heizeinheit nach Anspruch 7, dadurch gekennzeichnet, dass die Regeleinheit derart ausgebildet ist, dass die Leistung der Spannungsversorgung (8) mit steigenden Lastpunkten der Gasheizeinheit erhöht oder erniedrigt wird.
  9. Heizeinheit nach einem der Ansprüche 7 oder 8, dadurch gekennzeichnet, dass der Brenner eine zylindrische Oberfläche aufweist, welcher mit einer Belochungsstruktur versehen ist.
  10. Computerprogrammprodukt mit computerausführbaren Instruktionen zur Ausführung des Verfahrens nach einem der Ansprüche 1 bis 6.
DE102015222155.5A 2015-11-11 2015-11-11 Verfahren zur Steuerung einer Heizeinheit sowie Heizeinheit und Computerprogrammprodukt zur Ausführung des Steuerverfahrens Active DE102015222155B4 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE102015222155.5A DE102015222155B4 (de) 2015-11-11 2015-11-11 Verfahren zur Steuerung einer Heizeinheit sowie Heizeinheit und Computerprogrammprodukt zur Ausführung des Steuerverfahrens
PCT/EP2016/077512 WO2017081307A1 (de) 2015-11-11 2016-11-11 Verfahren zur steuerung einer heizeinheit sowie heizeinheit und computerprogrammprodukt zur ausführung des steuerverfahrens
EP16794647.4A EP3374697B1 (de) 2015-11-11 2016-11-11 Verfahren zur steuerung einer heizeinheit sowie heizeinheit und computerprogrammprodukt zur ausführung des steuerverfahrens
CA3004943A CA3004943A1 (en) 2015-11-11 2016-11-11 Method for controlling a heating unit as well as a heating unit and a computer program product for carrying out the control method
US15/775,386 US10605458B2 (en) 2015-11-11 2016-11-11 Method for controlling a heating unit as well as a heating unit and a computer program product for carrying out the control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102015222155.5A DE102015222155B4 (de) 2015-11-11 2015-11-11 Verfahren zur Steuerung einer Heizeinheit sowie Heizeinheit und Computerprogrammprodukt zur Ausführung des Steuerverfahrens

Publications (2)

Publication Number Publication Date
DE102015222155A1 DE102015222155A1 (de) 2017-05-11
DE102015222155B4 true DE102015222155B4 (de) 2019-06-19

Family

ID=57286516

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102015222155.5A Active DE102015222155B4 (de) 2015-11-11 2015-11-11 Verfahren zur Steuerung einer Heizeinheit sowie Heizeinheit und Computerprogrammprodukt zur Ausführung des Steuerverfahrens

Country Status (5)

Country Link
US (1) US10605458B2 (de)
EP (1) EP3374697B1 (de)
CA (1) CA3004943A1 (de)
DE (1) DE102015222155B4 (de)
WO (1) WO2017081307A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018118288A1 (de) * 2018-07-27 2020-01-30 Ebm-Papst Landshut Gmbh Verfahren zur Überwachung und Regelung einer Brennerflamme eines Heizgerätebrenners
CN114576648B (zh) * 2021-11-18 2022-12-06 浙江菲斯曼供热技术有限公司 用于运行气体燃烧器的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4433425A1 (de) 1994-09-20 1996-03-21 Stiebel Eltron Gmbh & Co Kg Regeleinrichtung zum Einstellen eines Gas-Verbrennungsluft-Gemisches bei einem Gasbrenner
DE19539568C1 (de) 1995-10-25 1997-06-19 Stiebel Eltron Gmbh & Co Kg Verfahren und Schaltung zur Regelung eines Gasbrenners
DE102005024763B3 (de) 2005-05-31 2006-06-08 Stiebel Eltron Gmbh & Co. Kg Heizgerät und Verfahren zum Steuern eines Heizgerätes
DE102005009274B3 (de) * 2005-02-25 2006-07-27 Stamm, Dan, Dipl.-Ing. Reinigungsverfahren für einen Verbrennungsraum und Vorrichtung zur Durchführung des Verfahrens
US20060257801A1 (en) 2005-05-12 2006-11-16 Honeywell International Inc. Leakage detection and compensation system

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE20112299U1 (de) * 2001-07-26 2001-10-18 Buderus Heiztechnik Gmbh Ionisationselektrode
FR2829564A1 (fr) * 2001-09-10 2003-03-14 Sourdillon Sa Appareil a gaz avec bruleur en partie basse, equipe de moyens de securite, et chauffe-eau en faisant application
US7493766B2 (en) * 2004-09-30 2009-02-24 Gm Global Technology Operations, Inc. Auxiliary electrical power generation
DE102007018122B4 (de) * 2007-04-16 2013-10-17 Viessmann Werke Gmbh & Co Kg Flammenüberwachungsvorrichtung mit einer Spannungserzeugungs- und Messanordnung und Verfahren zum Überwachen eines Brenners mittels der Flammenüberwachungsvorrichtung
PL2265867T3 (pl) * 2008-03-07 2019-04-30 Bertelli & Partners Srl Ulepszony sposób i urządzenie do wykrywania płomienia w palniku działającym na paliwie stałym, płynnym lub gazowym
DE102010001307B4 (de) * 2010-01-28 2013-12-24 Viessmann Werke Gmbh & Co Kg Verfahren und Vorrichtung zur auf Ionisationsstrommessung basierenden Flammenerkennung sowie Flammenüberwachungssystem
US20110248690A1 (en) * 2010-04-07 2011-10-13 Maxitrol Company Power supply circuit for combustion appliance
ES2536128T3 (es) * 2011-03-03 2015-05-20 Siemens Aktiengesellschaft Instalación de quemador
WO2015055773A1 (en) 2013-10-17 2015-04-23 Ab Midnight Holding A fire-resistant material and a method for obtaining a fire-resistant material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4433425A1 (de) 1994-09-20 1996-03-21 Stiebel Eltron Gmbh & Co Kg Regeleinrichtung zum Einstellen eines Gas-Verbrennungsluft-Gemisches bei einem Gasbrenner
DE19539568C1 (de) 1995-10-25 1997-06-19 Stiebel Eltron Gmbh & Co Kg Verfahren und Schaltung zur Regelung eines Gasbrenners
DE102005009274B3 (de) * 2005-02-25 2006-07-27 Stamm, Dan, Dipl.-Ing. Reinigungsverfahren für einen Verbrennungsraum und Vorrichtung zur Durchführung des Verfahrens
US20060257801A1 (en) 2005-05-12 2006-11-16 Honeywell International Inc. Leakage detection and compensation system
DE102005024763B3 (de) 2005-05-31 2006-06-08 Stiebel Eltron Gmbh & Co. Kg Heizgerät und Verfahren zum Steuern eines Heizgerätes

Also Published As

Publication number Publication date
CA3004943A1 (en) 2017-05-18
EP3374697B1 (de) 2022-03-16
WO2017081307A1 (de) 2017-05-18
DE102015222155A1 (de) 2017-05-11
EP3374697A1 (de) 2018-09-19
US10605458B2 (en) 2020-03-31
US20180372317A1 (en) 2018-12-27

Similar Documents

Publication Publication Date Title
EP2495496B1 (de) Brenneranlage
DE19539568C1 (de) Verfahren und Schaltung zur Regelung eines Gasbrenners
DE202019100263U1 (de) Heizgerät mit Regelung eines Gasgemisches unter Nutzung eines Gassensors, eines Brenngassensors und eines Gasgemischsensors
EP0770824A2 (de) Verfahren und Schaltung zur Regelung eines Gasbrenners
DE19502901C2 (de) Regeleinrichtung für einen Gasbrenner
EP3690318B1 (de) Verfahren zur regelung eines brenngas-luft-gemisches in einem heizgerät
EP3824366B1 (de) Verfahren zur regelung eines gasgemisches unter nutzung eines gassensors, eines brenngassensors und eines gasgemischsensors
DE102019119186A1 (de) Verfahren und Vorrichtung zur Regelung eines Brenngas-Luft-Gemisches in einem Heizgerät
DE102015222155B4 (de) Verfahren zur Steuerung einer Heizeinheit sowie Heizeinheit und Computerprogrammprodukt zur Ausführung des Steuerverfahrens
EP2405198B1 (de) Verfahren zur Kalibrierung der Regelung des Brenngas-Luft-Verhältnisses eines brenngasbetriebenen Brenners
EP3029375B1 (de) Heizgerätevorrichtung und verfahren zum betrieb einer heizgerätevorrichtung
DE202019100261U1 (de) Heizgerät mit Regelung eines Gasgemisches
EP3182007B1 (de) Heizgerätesystem und verfahren mit einem heizgerätesystem
EP3870899B1 (de) Verfahren zur überprüfung eines gasgemischsensors und ionisationssensors bei einem brenngasbetriebenen heizgerät
EP2177830A1 (de) Gasbrenner für eine Gas-Luft-Verbundregelung
WO2020148434A1 (de) Verfahren zur regelung eines gasgemisches unter nutzung eines gasgemischsensors
EP3173699A1 (de) Heizgerätevorrichtung, insbesondere gas und/oder ölbrennervorrichtung, und verfahren zum betrieb einer heizgerätevorrichtung
EP3767174B1 (de) Verfahren und vorrichtung zur nachkalibrierung eines messsystems zur regelung eines brenngas-luft-gemisches in einem heizgerät
EP2354657B1 (de) Verfahren zum Betreiben eines Gasbrenners
EP2154430B1 (de) Regeleinrichtung für einen Gasbrenner, sowie Verwendung einer solchen Regeleinrichtung
EP3825610B1 (de) Verfahren und vorrichtung zur messung des lambda-wertes in einem fossil befeuerten brenner, insbesondere für eine heizungs- und/oder brauchwasseranlage
DE10220773A1 (de) Verfahren und Einrichtung zur Regelung eines Verbrennungsprozesses, insbesondere eines Brenners
DE102005024763B3 (de) Heizgerät und Verfahren zum Steuern eines Heizgerätes
DE202019100264U1 (de) Heizgerät mit Regelung eines Gasgemisches unter Nutzung eines Gassensors und eines Gasgemischsensors
WO2018054582A1 (de) Gasbereitungsvorrichtung und verfahren zur bereitstellung eines brenngasgemischs

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R016 Response to examination communication
R018 Grant decision by examination section/examining division
R020 Patent grant now final