EP2495496B1 - Brenneranlage - Google Patents

Brenneranlage Download PDF

Info

Publication number
EP2495496B1
EP2495496B1 EP20110156892 EP11156892A EP2495496B1 EP 2495496 B1 EP2495496 B1 EP 2495496B1 EP 20110156892 EP20110156892 EP 20110156892 EP 11156892 A EP11156892 A EP 11156892A EP 2495496 B1 EP2495496 B1 EP 2495496B1
Authority
EP
European Patent Office
Prior art keywords
voltage
voltmeter
ionisation
signal
burner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20110156892
Other languages
English (en)
French (fr)
Other versions
EP2495496A1 (de
Inventor
Wilfried Dr. Hangauer
Rainer Dr. Lochschmied
Volker Schmid
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP20110156892 priority Critical patent/EP2495496B1/de
Priority to PL11156892T priority patent/PL2495496T3/pl
Priority to ES11156892.9T priority patent/ES2536128T3/es
Priority to CA2769900A priority patent/CA2769900C/en
Priority to US13/412,255 priority patent/US9062882B2/en
Priority to JP2012047891A priority patent/JP5355732B2/ja
Publication of EP2495496A1 publication Critical patent/EP2495496A1/de
Application granted granted Critical
Publication of EP2495496B1 publication Critical patent/EP2495496B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/12Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods
    • F23N5/123Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2225/00Measuring
    • F23N2225/26Measuring humidity
    • F23N2225/30Measuring humidity measuring lambda
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/12Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods

Definitions

  • the invention relates to a burner system according to the preamble of claim 1, as from EP-A1-1 460 338 known.
  • the ratio of air to fuel can be adjusted.
  • An appropriate structure is also referred to as a fuel-air composite.
  • a particularly inexpensive sensor for detecting the air ratio is the ionization electrode. With an applied alternating voltage, an ionization current flows through the electrode and the flame, which is regulated to a setpoint value which is predetermined as a function of the respective output of the burner. With such an arrangement, the air ratio can be controlled, since the ionization current of the air ratio at each power point is dependent.
  • the AC voltage is controlled by means of a voltage regulator to a voltage setpoint.
  • a signal processing for a burner system of the type mentioned is in DE-C2-19632983 indicated.
  • a fuel-air network with a signal detection circuit after DE-A1-4433425 mentioned in which an additional compensation circuit for the switched to the ionization AC voltage is required.
  • This AC voltage must always be kept at a constant size, or measured and computationally compensated.
  • the generation of an alternating voltage of constant size is circuitry-consuming and requires moreover even when using the control circuit as a working with microprocessor digital circuit, the digitization of the first analog signal generated in order to continue working it. That is why in DE-C2-19632983 proposed another solution.
  • An AC voltage regulator with a control to a constant RMS value is for example off DE-A1-10021399 known.
  • the adjustment of the AC voltage is carried out by a controlled phase control, which is designed in the form of a closed loop.
  • a flame amplifier for detecting the ionization with a arranged in the flame region of a gas burner ionization electrode is known, which is connected to an AC voltage supplied by a secondary circuit of a transformer.
  • the secondary circuit is galvanically isolated from the primary circuit.
  • an ionization current with a direct current component caused by the flame flows to an amplifier.
  • the DC current flows through the AC voltage source to the ionization electrode and forms a closed circuit with the flame.
  • the signal processing circuit outputs a control variable dependent on the ionization current to a control device which compares this actual value with a desired value.
  • control device generates the actuating signals for the actuators, for example for a fan with which the air quantity and for a gas valve with which the amount of gas for the combustion can be set. It is not proposed to correct the AC voltage applied to the ionization electrode due to mains disturbances. Nor is it pointed out that some components, in particular the transformer, have significant tolerances and therefore systematic measurement errors occur, which result in a systematic scattering of the adjusted ⁇ value.
  • WO-A1-2009 / 110015 a method for monitoring a flame is known, with the parasitic elements occurring during operation can be detected and compensated.
  • an alternating voltage source is controlled on the basis of the measured ionization current in such a way that an alternating voltage signal with greatly differing duty cycle between positive and negative amplitude with different amplitude values is generated, which is connected to the ionization electrode.
  • high alternating voltages on the ionization electrode and the flame and thus also high amplitudes of the alternating voltage source cause less dependence of the ionization signal of layers that can form on the burner and the ionization electrode. Due to the non-linear behavior of the flame is a at the desired high alternating voltages DE-C2-19632983 proposed linear compensation unfavorable.
  • the applied AC voltage must be sufficiently accurate to rule out systematic errors due to component scattering.
  • the invention has for its object to propose a control of the AC voltage to a predetermined voltage setpoint, with the fuel-air composite control inexpensive, simple and reliable, the AC voltage used to measure an ionization current can be kept sufficiently constant.
  • a voltmeter is connected in parallel to a series connection in the sequence of the ionization electrode, the flame area, the burner and the input of an ionization current amplifier.
  • the input of the ionization current amplifier is connected at one terminal to the burner mass. This allows a common source of ionization current amplifier with other active circuit components.
  • the other port is virtually set by the ionization current amplifier to the potential of the burner mass and is connected to the AC voltage source.
  • the voltage regulator is connected.
  • the voltage regulator further receives a setpoint signal and its output is connected to the AC voltage source, wherein the amplitude of the AC voltage is determined by the output signal of the voltage regulator. It is of great advantage, if also the setpoint signal, the voltage regulator and the input of the AC voltage source can be grounded as a reference potential, so that no separate power supply is necessary.
  • the invention is also based on the insight that therefore a connection of the voltmeter to the voltage regulator has a parasitic current from the voltage regulator to ground through the input of the ionization amplifier result;
  • this parasitic current only insignificantly affects the air flow control if its averaged value is less than 5% of the averaged value of the ionization current through the flame; for the flame amplifier is not significantly more expensive and is not affected in its effect.
  • such a ratio of the parasitic current to the ionization current of less than 0.1% can be achieved.
  • the circuit for detecting the applied AC voltage can be carried out very precisely. Scattering and temperature fluctuations of components of the AC voltage source can thus be corrected via the voltage regulation.
  • the order in front of the ionization electrode or after the input of the ionization current amplifier additionally comprises a limiting resistor and the voltmeter is equipped with a series of resistors and with a measuring unit which taps the voltage between two of these resistors in the voltage regulating operation.
  • the effective resistance of the measuring unit from the voltmeter and the effective resistance of the voltage regulator at its input to the voltmeter are at least 10 times greater than the limiting resistor.
  • the parasitic current can be kept so easily and reliably below the permissible limit.
  • the measuring unit of the voltmeter preferably comprises a means for rectification in the series of resistors, and a means for smoothing the tapped between the resistors voltage.
  • the AC source is equipped with a voltage generator and a multiplier that multiplies the output voltage of the voltage generator with the signal at the output of the voltage regulator.
  • the voltage generator generates a voltage signal whose amplitude and frequency are independent of the mains.
  • the AC voltage source is equipped with a transformer which is connected on the output side parallel to the order of ionization electrode, flame area, burner and ionization current amplifier.
  • FIG. 1 schematically shows a burner system with a fuel-air-composite control.
  • An ionization current through a flame 1 generated by the burner is detected by a flame amplifier 3 via an ionization electrode 2.
  • the circuit is closed by the connection of the flame amplifier 3 to the burner mass.
  • the processed by the flame amplifier 3 ionization signal 4 is passed to an adjusting device 5, which in normal operation, the ionization signal 4 as an input signal for used a regulation.
  • the ionization signal 4 is designed as an analog electrical signal, but may alternatively be implemented as a digital signal or variable of two software module units.
  • the adjusting device 5 receives an external request signal 11, with which the heat output is specified.
  • the control can be switched on and off.
  • a heat request is generated by a higher-level, not shown here, temperature control loop.
  • a performance specification can be generated by another external consumer or can also be specified directly by hand, for example via a potentiometer.
  • the request signal 11 is mapped to one of the two actuators 6, 7 with the aid of data stored in the setting device 5.
  • the request signal 11 is mapped to speed setpoints for a fan as the first actuator 6.
  • the speed command values are compared with a speed signal 9 returned by a fan 6.
  • the fan 6 is controlled via a first control signal 8 to the desired delivery rate of the air 12 for the predetermined request signal 11.
  • the request signal 11 can be mapped directly to the first control signal 8 of the blower 6.
  • the mapping of the request signal 11 to a fuel valve as the first, power-carrying actuator 6 is possible.
  • the Air ratio tracked With the second actuator 7, preferably a fuel valve, via the supply of the fuel 13, the Air ratio tracked. This is done by the predefined request signal 11 is imaged in the control device 5 via a function in a Ionisationssignalsollwert. This ionization signal setpoint is compared with the ionization signal 4. With the control difference, the fuel quantity 7 which tracks the air ratio is regulated via a control unit realized in the adjusting device 5. Thus, a change in the ionization signal 4 via a second control signal 10 causes a change in the position of the fuel valve 7 and thus the flow of the amount of fuel 13. The control loop is closed by the change in the amount of fuel at the given amount of air a change in the ionization current through flame. 1 and ionization electrode 2 causes and thus also a change of the ionization signal 4 until its actual value is again equal to the predetermined ionization signal setpoint.
  • FIG. 2 shows in a block diagram the structure and function of a first flame amplifier according to the invention.
  • An AC voltage source 14 comprises a voltage generator 15, a multiplier 16, a filter 17 with an optionally integrated amplifier and a transformer 18.
  • the voltage generator 15 In the voltage regulation mode, the voltage generator 15 generates a rectangular voltage signal which is located at an input of the multiplier 16.
  • the voltage regulator 19 At the other input of the multiplier 16 is provided by a voltage regulator 19 signal with which the amplitude of the output from the multiplier 16 square wave signal is adjustable.
  • the multiplier 16 can be constructed very simply, for example, from an inverter stage, consisting of switching transistor and resistor, wherein the supply level and the output level and thus the amplitude of the square wave signal obtained at the output of the multiplier 16 are determined by the voltage regulator 19.
  • the amplitude-modulated rectangular voltage signal of the multiplier 16 is applied to the filter 17, which converts this into a sinusoidal alternating voltage signal, which can optionally be further amplified analogously.
  • the transformer 18 transmits the AC signal obtained from the filter 17 on the primary side to the secondary side, which is galvanically isolated from the primary side.
  • the transmission ratio of the transformer is preferably selected so that the amplitude of the AC voltage obtained on the secondary side of the transformer is significantly greater than the amplitude of the AC voltage on the primary side.
  • the desired high signal level of the AC voltage can be provided. If the signal level at the output of the filter 17 is sufficient, the transformer 18 can alternatively be dispensed with and the ionization circuit can be supplied in another way from the output of the filter 17 as long as it remains decoupled from the burner mass.
  • the AC voltage obtained from the transformer 18 on the secondary side is detected by a voltmeter 20, and rectified and smoothed in this advantageous manner.
  • the voltmeter 20 has a voltage divider, a diode and a capacitor.
  • the diode performs a half-wave rectification in which the voltage divider and capacitor act as a low-pass filter, smoothing the rectified signal. Diode and capacitor thus form a Measurement unit.
  • the output signal for the voltmeter 20 is tapped directly.
  • the output signal is a DC signal, which is proportional to the amplitude of the AC voltage at the output of the transformer 18 via the rectification factor.
  • the DC voltage signal generated by the voltmeter 20 is present as an actual value at the input of the voltage regulator 19.
  • the voltage regulator 19 includes a PID controller 21, and a comparator 22 as an input stage which compares the actual value with a voltage reference value 23.
  • the comparator 22 generates an analog signal dependent on the control deviation, which is applied to the input of the PID controller 21. Its input impedance is greater than 10 M ⁇ .
  • the PID controller 21 in turn generates a signal which is given to the input of the multiplier 16. This results in a closed voltage control loop, with which the detected actual value can be controlled exactly to the voltage setpoint 23.
  • the voltage control is maintained not only during the Lucasiereregelung, but also during periods in which no Vietnameseiereregelung takes place, such as during the ignition of the flame, or even during the calibration process of the Heiliereregelung.
  • the voltage regulation takes place during commissioning of the system only for a short period of time in order to regulate the influence of the component tolerances.
  • the AC voltage source 14 is insensitive anyway for fluctuations in the mains voltage. At regular intervals, the adjustment of the voltage is repeated for calibration.
  • the flame 1 is in FIG. 2 in the form of an electrical equivalent circuit diagram, which has a flame resistance and a flame diode.
  • the ionization current first flows through the limiting resistor 24, through the in FIG. 2 ionization electrode 2, not shown, through the flame 1, through the burner and through the input of the ionization current amplifier 25.
  • the limiting resistor 24 limits the ionization current, which is amplified by the ionization current amplifier 25 virtually without feedback.
  • the input of the ionization current amplifier 25 is connected to the burner at one terminal.
  • the other input terminal is connected to the transformer 18, wherein it is virtually set by the Ionisationsverellr to ground potential. This circuit is closed via the transformer 18.
  • At the output of the ionization current amplifier 25 is an averaged ionization signal 4, which is evaluated by the adjusting device 5.
  • FIG. 3 shows in a block diagram the structure and function of another flame amplifier according to the invention.
  • the voltage generator 15 generates a sinusoidal alternating voltage signal, whereby the in FIG. 2 shown filter 17 can be omitted.
  • the AC voltage source 14 for generating an AC voltage for the ionization electrode 2 consists of voltage generator 15, multiplier 16 and transformer 18th
  • the peak value of the alternating voltage is detected in this embodiment.
  • the voltmeter 20 has for this purpose a voltage divider with a peak filter 26 as its measuring unit.
  • the rms value of the alternating voltage can be detected.
  • the peak value filter can be designed with a high impedance of more than 10 M ⁇ at its input so that the parasitic ionization current through the ionization current amplifier is sufficiently low.
  • connection of the voltmeter 20 to the voltage regulator 19 is galvanic, the input of the voltage regulator is designed high impedance.
  • decouple the connection of the voltmeter 20 to the voltage regulator 19 galvanically for example by an optical data transmission, wherein no parasitic current through the ionization more occurs.
  • the active components of AC source 14, voltmeter 20, and voltage regulator 19, namely, voltage generator 15, multiplier 16, filter 17, peaking filter 26, comparator 22, and PID controller 21 are, for practical reasons, grounded as a reference potential switched, in particular to use a common supply source with other circuit blocks.
  • block diagram shown can be in the form of an analog circuit with passive and active components can be realized.
  • the voltage generator 15, the multiplier 16, the filter 17, the comparator 22, filters in the voltmeter 20 and the PID controller 21 can alternatively be executed as a program flow within a microprocessor, the other blocks are then realized as an analog circuit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Combustion (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Description

  • Die Erfindung betrifft eine Brenneranlage nach dem Oberbegriff des Anspruchs 1, wie aus dem EP-A1-1 460 338 bekannt.
  • Um äußere Störeinflüsse wie Änderung der Brennstoffqualität, Temperatur oder Druckschwankungen auf die Verbrennungsqualität korrigieren zu können, kann das Verhältnis von Luft zu Brennstoff, die sogenannte Luftzahl λ, eingeregelt werden. Ein entsprechender Aufbau wird auch als Brennstoff-Luft-Verbund bezeichnet. Ein besonders kostengünstiger Sensor zur Erfassung der Luftzahl ist die Ionisationselektrode. Mit einer angelegten Wechselspannung fließt durch Elektrode und Flamme ein Ionisationsstrom, der auf einen in Abhängigkeit von der jeweiligen Leistung des Brenners vorgegebenen Sollwert eingeregelt wird. Mit einer solchen Anordnung kann die Luftzahl geregelt werden, da der Ionisationsstrom von der Luftzahl am jeweiligen Leistungspunkt abhängig ist. Die Wechselspannung wird mittels eines Spannungsreglers auf einen Spannungssollwert geregelt.
  • Eine Signalverarbeitung für eine Brenneranlage der eingangs genannten Art ist in DE-C2-19632983 angedeutet. Dort wird ein Brennstoff-Luft-Verbund mit einer Signalerfassungsschaltung nach DE-A1-4433425 erwähnt, bei dem eine zusätzliche Kompensationsschaltung für die auf die Ionisationselektrode geschaltete Wechselspannung erforderlich sei. Diese Wechselspannung müsse immer auf einer konstanten Größe gehalten, oder gemessen und rechnerisch kompensiert werden. Das Erzeugen einer Wechselspannung konstanter Größe sei schaltungstechnisch aufwendig und erfordere darüber hinaus selbst bei Verwendung der Regelschaltung als eine mit Mikroprozessor arbeitende Digitalschaltung die Digitalisierung des zunächst analog erzeugten Signals um es weitererarbeiten zu können. Darum wird in DE-C2-19632983 eine andere Lösung vorgeschlagen.
  • Ein Wechselspannungsregler mit einer Regelung auf einen konstanten Effektivwert ist beispielsweise aus DE-A1-10021399 bekannt. Die Einstellung der Wechselspannung erfolgt durch eine gesteuerte Phasenanschnittsteuerung, die in Form eines geschlossenen Regelkreises ausgeführt ist.
  • Aus EP-A1-2154430 ist ein Flammenverstärker zur Erfassung des Ionisationsstroms mit einer im Flammenbereich eines Gasbrenners angeordneten Ionisationselektrode bekannt, die an eine von einem Sekundärkreis eines Transformators gelieferte Wechselspannung angeschlossen ist. Der Sekundärkreis ist vom Primärkreis galvanisch getrennt. Im Sekundärkreis fließt ein Ionisationsstrom mit einem von der Flamme verursachten Gleichstromanteil zu einem Verstärker. Der Gleichstrom fließt durch die Wechselspannungsquelle zur Ionisationselektrode und bildet mit der Flamme einen geschlossenen Stromkreis. Die Signalverarbeitungsschaltung gibt eine vom Ionisationsstrom abhängige Regelgröße an eine Regeleinrichtung, die diesen Istwert mit einem Sollwert vergleicht. In Abhängigkeit davon generiert die Regeleinrichtung die Stellsignale für die Stellglieder, zum Beispiel für ein Gebläse mit dem die Luftmenge und für ein Gasventil mit dem die Gasmenge für die Verbrennung einstellbar sind. Es wird nicht vorgeschlagen, die an der Ionisationselektrode anliegende Wechselspannung infolge von Netzstörungen zu korrigieren. Ebenso wenig wird daraufhingewiesen, dass manche Bauteile, insbesondere der Transformator, signifikanten Toleranzen aufweisen und daher systematische Messfehler auftreten, die eine systematische Streuung des eingeregelten λ-Wertes zur Folge haben.
  • Aus der WO-A1-2009/110015 ist ein Verfahren zur Überwachung einer Flamme bekannt, mit dem beim Betrieb auftretende parasitäre Elemente feststellbar und kompensierbar sind. Hierzu wird eine Wechselspannungsquelle aufgrund der gemessenen Ionisationsstrom so gesteuert, dass ein Wechselspannungssignal mit stark unterschiedlichem Tastverhältnis zwischen positiver und negativer Amplitude mit unterschiedlichen Amplitudenwerten erzeugt wird, welches der Ionisationselektrode aufgeschaltet wird. In WO-A1-2009/110015 wird auch dargelegt, dass hohe Wechselspannungen an Ionisationselektrode und Flamme und damit auch hohe Amplituden der Wechselspannungsquelle eine geringere Abhängigkeit des Ionisationssignals von Schichten bewirken, die sich auf Brenner und Ionisationselektrode bilden können. Aufgrund des nichtlinearen Verhaltens der Flamme wird bei den angestrebten hohen Wechselspannungen eine nach DE-C2-19632983 vorgeschlagene lineare Kompensation ungünstig. Die angelegte Wechselspannung muss ausreichend genau sein, um systematische Fehler durch Bauteilstreuungen auszuschließen.
  • Der Erfindung liegt die Aufgabe zugrunde, eine Regelung der Wechselspannung auf einen vorgebbaren Spannungssollwert vorzuschlagen, mit dem bei einer Brennstoff-Luft-Verbundregelung preiswert, einfach und zuverlässig die zur Messung eines Ionisationsstromes verwendete Wechselspannung ausreichend konstant gehalten werden kann.
  • Die Aufgabe wird durch die Merkmale des Anspruches 1 gelöst. Dabei ist ein Spannungsmesser parallel zu einer Serienschaltung in der Folge aus der Ionisationselektrode, dem Flammenbereich, dem Brenner und dem Eingang eines Ionisationsstromverstärkers geschaltet. Der Eingang des Ionisationsstromverstärkers ist dabei an einem Anschluss an die Brennermasse geschaltet. Dies erlaubt eine mit sonstigen aktiven Schaltungskomponenten gemeinsame Speisequelle für den Ionisationsstromverstärker. Der andere Anschluss wird durch den Ionisationsstromverstärker virtuell auf das Potential der Brennermasse gelegt und ist mit der Wechselspannungsquelle verbunden.
  • In alternativer Reihenfolge, wobei der Eingang des Ionisationsstromverstärkers an einem Anschluss an die Ionisationselektrode geschaltet ist, wäre für den Ionisationsstromverstärker eine spezielle Speisung notwendig, denn es ist vorteilhaft, dass aktive Schaltungskomponenten wie die Stelleinrichtung und die Aktoren ebenfalls mit dem Brenner auf Masse liegen. Gleiches gilt etwaig bei einem mittelbaren Anschluss des Ionisationsverstärkers an den Brenner über einen Begrenzungswiderstand.
  • In DE-A1-4433425 wird eine auf den ersten Blick attraktive Alternative beschrieben, nämlich den Ionisationsstromverstärker parallel zur Strecke aus der Ionisationselektrode, dem Flammenbereich und dem Brenner zu schalten. Wie dort beschrieben, kann ein Anschluss vom Eingang des Ionisationsverstärkers ebenso wie die Verbindung zur Wechselspannungsquelle problemlos an Brennermasse gelegt werden. Für andere aktiven Schaltungsblöcke des Spannungsregelkreises kann dabei ebenfalls leicht die Brennermasse als Referenzpotential gewählt werden, weshalb eine gemeinsame Speisequelle für alle verwendet werden könnte. Eine solche Anordnung setzt aber die Spannung über der Ionisationselektrode durch einen parallel zur Flamme geschalteten Messwiderstand in Abhängigkeit vom Ionisationsstrom herab. Mit der Schaltungsanordnung gemäß der Erfindung liegt dagegen immer die maximal mögliche, stabile Spannung über der Ionisationselektrode, was sich insbesondere bei hohen Flammenwiderständen oder aber bei Belägen auf Brenner und Ionisationselektrode günstig auswirkt.
  • Dem Spannungsmesser ist erfindungsgemäß der Spannungsregler angebunden. Der Spannungsregler erhält weiter ein Sollwertsignal und sein Ausgang ist an die Wechselspannungsquelle angeschlossen, wobei die Amplitude der Wechselspannung durch das Ausgangssignal des Spannungsreglers festgelegt wird. Von großem Vorteil ist es, wenn auch das Sollwertsignal, der Spannungsregler und der Eingang der Wechselspannungsquelle auf Masse als Referenzpotential gelegt werden können, damit keine separate Speisung notwendig ist. Der Erfindung liegt auch die Einsicht zugrunde, dass deswegen eine Anbindung des Spannungsmessers an den Spannungsregler einen parasitären Strom vom Spannungsregler über Masse durch den Eingang des Ionisationsverstärkers zur Folge hat; dieser parasitäre Strom jedoch die Luftzahlregelung nur unwesentlich beeinflusst, wenn sein gemittelter Wert kleiner als 5% des gemittelten Wertes des Ionisationsstromes durch die Flamme ist; dafür der Flammenverstärker nicht wesentlich verteuert und nicht in seiner Wirkung beeinträchtigt wird. In der Praxis ist im stabilen, eingeregelten Zustand der Luftzahl ein solches Verhältnis des parasitären Stromes zum Ionisationsstrom von weniger als 0.1% erreichbar.
  • Durch die beschriebene Maßnahme werden der Regelkreis für die Luftzahlregelung mittels Ionisationssignalsollwert und der Regelkreis für die Spannungsregelung sehr gut entkoppelt, so dass beide Regelvorgänge einander nicht beeinflussen.
  • Die Schaltung zur Erfassung der angelegten Wechselspannung kann dabei sehr präzise ausgeführt werden. Streuungen und Temperaturgänge von Bauteilen der Wechselspannungsquelle können damit über die Spannungsregelung korrigiert werden.
  • In einer bevorzugten Ausführung umfasst die Reihenfolge vor der Ionisationselektrode oder nach dem Eingang des Ionisationsstromverstärkers zusätzlich einen Begrenzungswiderstand und der Spannungsmesser ist mit einer Serie aus Widerständen und mit einer Messeinheit ausgestattet, die im Spannungsregelbetrieb die Spannung zwischen zwei dieser Widerständen abgreift. Dabei sind der wirksame Widerstand der Messeinheit vom Spannungsmesser und der wirksame Widerstand des Spannungsreglers an seinem Eingang zum Spannungsmesser in Summe zumindest 10 Mal größer als der Begrenzungswiderstand. Der parasitäre Strom kann so einfach und zuverlässig unter dem zulässigen Grenzwert gehalten werden. Die Messeinheit des Spannungsmessers umfasst bevorzugt ein Mittel zur Gleichrichtung in der Serie der Widerstände, sowie ein Mittel zur Glättung der zwischen den Widerständen abgegriffenen Spannung.
  • In einer bevorzugten Ausführung ist die Wechselspannungsquelle ausgestattet mit einem Spannungsgenerator und mit einem Multiplikator der die Ausgangsspannung des Spannungsgenerators mit dem Signal am Ausgang des Spannungsreglers multipliziert. Der Spannungsgenerator erzeugt ein Spannungssignal, dessen Amplitude und Frequenz vom Netz unabhängig ist. Somit wird die Anforderung an die Reaktionszeit des Spannungsregelkreises reduziert, weil keine Einwirkung von schnellen Netzspannungsschwankungen auf die Luftzahlregelung erfolgt. Vorteilhaft ist die Wechselspannungsquelle mit einem Transformator ausgestattet der ausgangsseitig parallel zur Reihenfolge aus Ionisationselektrode, Flammenbereich, Brenner und Ionisationsstromverstärker geschaltet ist. So wird es auf einfache Weise ermöglicht, den mit der Wechselspannungsquelle verbundenen Anschluss am Eingang des Ionisationsstromverstärkers virtuell und nicht direkt auf das Potential der Brennermasse zu legen.
  • Nachfolgend werden verschiedene Ausführungsbeispiele der Erfindung anhand der Figuren beschrieben. Es zeigen:
    • Figur 1 schematisch eine erfindungsgemäßen Brenneranlage, in welcher die Luftzahl über ein Ionisationssignal geregelt wird,
    • Figur 2 einen ersten Flammenverstärker gemäß der Erfindung,
    • Figur 3 einen zweiten Flammenverstärker gemäß der Erfindung.
  • Figur 1 zeigt schematisch eine Brenneranlage mit einer Brennstoff-Luft-Verbund-Regelung. Ein Ionisationsstrom durch eine vom Brenner erzeugte Flamme 1 wird über eine Ionisationselektrode 2 von einem Flammenverstärker 3 erfasst.
  • Der Stromkreis wird durch den Anschluss des Flammenverstärkers 3 an die Brennermasse geschlossen. Das vom Flammenverstärker 3 verarbeitete Ionisationssignal 4 wird an eine Stelleinrichtung 5 weitergegeben, welche im Normalbetrieb das Ionisationssignal 4 als Eingangssignal für eine Regelung benutzt. Das Ionisationssignal 4 ist als analoges elektrisches Signal ausgeführt, kann aber alternativ als digitales Signal oder Variable zweier Software-Moduleinheiten realisiert sein.
  • Die Stelleinrichtung 5 erhält ein externes Anforderungssignal 11, mit der die Wärmeleistung vorgegeben wird. Außerdem kann mit dem Anforderungssignal 11 die Regelung ein- und ausgeschaltet werden. Beispielsweise wird eine Wärmeanforderung von einem übergeordneten, hier nicht eingezeichneten, Temperaturregelkreis erzeugt. Eine solche Leistungsvorgabe kann natürlich von einem anderen externen Verbraucher generiert werden oder aber auch direkt von Hand, zum Beispiel über ein Potentiometer vorgegeben werden.
  • Wie üblich wird das Anforderungssignal 11 mit Hilfe von in der Stelleinrichtung 5 hinterlegten Daten auf einen der beiden Aktoren 6, 7 abgebildet. In bevorzugter Weise wird das Anforderungssignal 11 auf Drehzahlsollwerte für ein Gebläse als ersten Aktor 6 abgebildet. Die Drehzahlsollwerte werden mit einem von einem Gebläse 6 zurückgegebenen Drehzahlsignal 9 verglichen. Mit einem in der Stelleinrichtung 5 integrierten Drehzahlregler wird das Gebläse 6 über ein erstes Stellsignal 8 auf die Sollfördermenge der Luft 12 für das vorgegebene Anforderungssignal 11 gesteuert. Natürlich kann alternativ das Anforderungssignal 11 direkt auf das erste Stellsignal 8 des Gebläses 6 abgebildet werden. Umgekehrt ist auch die Abbildung des Anforderungssignals 11 auf ein Brennstoffventil als ersten, leistungsführenden Aktor 6 möglich.
  • Mit dem zweiten Aktor 7, in bevorzugter Weise einem Brennstoffventil, wird über die Zufuhr des Brennstoffs 13 die Luftzahl nachgeführt. Dies erfolgt, indem in der Stelleinrichtung 5 das vorgegeben Anforderungssignal 11 über eine Funktion in einen Ionisationssignalsollwert abgebildet wird. Dieser Ionisationssignalsollwert wird mit dem Ionisationssignal 4 verglichen. Mit der Regeldifferenz wird über eine in der Stelleinrichtung 5 realisierte Regeleinheit das die Luftzahl nachführende Brennstoffventil 7 geregelt. Somit bewirkt eine Änderung des Ionisationssignals 4 über ein zweites Stellsignal 10 eine Änderung der Stellung des Brennstoffventils 7 und damit des Durchflusses der Menge des Brennstoffs 13. Der Regelkreis wird geschlossen, indem bei der vorgegebenen Luftmenge eine Änderung der Brennstoffmenge eine Änderung des Ionisationsstromes durch Flamme 1 und Ionisationselektrode 2 bewirkt und damit auch eine Änderung des Ionisationssignals 4, bis sein Istwert wieder gleich dem vorgegebenen Ionisationssignalsollwert ist.
  • Figur 2 zeigt in einem Blockschaltbild den Aufbau und die Funktion eines ersten Flammenverstärkers gemäß der Erfindung. Eine Wechselspannungsquelle 14 umfasst einen Spannungsgenerator 15, einen Multiplikator 16, ein Filter 17 mit einem optional integrierten Verstärker und einen Transformator 18. Im Spannungsregelbetrieb erzeugt der Spannungsgenerator 15 ein rechteckförmiges Spannungssignal, das an einem Eingang des Multiplikators 16 liegt. Am anderen Eingang des Multiplikators 16 liegt ein von einem Spannungsregler 19 bereitgestelltes Signal, mit dem die Amplitude des vom Multiplikator 16 abgegebenen Rechtecksignals einstellbar ist.
  • Der Multiplikator 16 kann zum Beispiel aus einer Inverterstufe, bestehend aus Schalttransistor und Widerstand, sehr einfach aufgebaut werden, wobei der Versorgungspegel und der Ausgangspegel und damit die Amplitude des am Ausgang des Multiplikators 16 erhaltenen Rechteckssignals vom Spannungsregler 19 bestimmt werden. Das amplitudenmodulierte rechteckförmige Spannungssignal des Multiplikators 16 wird auf das Filter 17 gegeben, der dieses in ein sinusförmiges Wechselspannungssignal umformt, welches gegebenenfalls analog weiter verstärkt werden kann. Alternativ kann auch eine Wechselspannung mit anderer Signalform generiert werden, wobei die Amplitude vom Spannungsregler 19 bestimmt wird.
  • Der Transformator 18 überträgt das vom Filter 17 auf der Primärseite erhaltene Wechselspannungssignal auf die Sekundärseite, die von der Primärseite galvanisch getrennt ist. Das Übersetzungsverhältnis des Transformators ist vorzugsweise so gewählt, dass die Amplitude der auf der Sekundärseite des Transformators erhaltenen Wechselspannung deutlich größer ist als die Amplitude der Wechselspannung auf der Primärseite. So kann der erwünschte hohe Signalpegel der Wechselspannung bereitgestellt werden. Reicht der Signalpegel am Ausgang des Filters 17 aus, so kann alternativ auf den Transformator 18 verzichtet und der Ionisationskreis auf andere Weise vom Ausgang des Filters 17 versorgt werden, solange er vom der Brennermasse entkoppelt bleibt.
  • Die vom Transformator 18 auf der Sekundärseite erhaltene Wechselspannung wird von einem Spannungsmesser 20 erfasst, und in diesem in vorteilhafter Weise gleichgerichtet und geglättet. In der hier vorgestellten Ausführung weist der Spannungsmesser 20 einen Spannungsteiler, eine Diode und einen Kondensator auf. Die Diode führt eine Einweggleichrichtung durch, in der Spannungsteiler und Kondensator als Tiefpass wirken, der das gleichgerichtete Signal glättet. Diode und Kondensator bilden somit eine Messeinheit. Am Kondensator wird das Ausgangssignal für den Spannungsmesser 20 direkt abgegriffen. Beim Ausgangssignal handelt es sich um ein Gleichspannungssignal, welches über den Gleichrichtfaktor proportional zur Amplitude der Wechselspannung am Ausgang des Transformators 18 ist.
  • Das vom Spannungsmesser 20 generierte Gleichspannungssignal liegt als Istwert am Eingang des Spannungsreglers 19. In diesem Ausführungsbeispiel beinhaltet der Spannungsregler 19 einen PID-Regler 21, sowie einen Komparator 22 als Eingangsstufe der den Istwert mit einem Spannungssollwert 23 vergleicht. Der Komparator 22 generiert ein von der Regelabweichung abhängiges analoges Signal, welches an den Eingang des PID-Reglers 21 gelegt wird. Seine Eingangsimpedanz ist größer als 10 MΩ. Der PID-Regler 21 generiert wiederum ein Signal das an den Eingang des Multiplikators 16 gegeben wird. Dadurch erhält man einen geschlossenen Spannungsregelkreis, mit dem der erfasste Istwert genau auf den Spannungssollwert 23 regelbar ist.
  • In einer Variante wird die Spannungsregelung nicht nur während der Luftzahlregelung aufrechterhalten, sondern auch während Zeiten, in denen keine Luftzahlregelung stattfindet, wie während des Zündvorgangs der Flamme, oder auch während des Kalibriervorgangs der Luftzahlregelung. In einer weiteren Variante findet die Spannungsregelung bei der Inbetriebnahme der Anlage nur für eine kurze Zeitspanne statt um den Einfluss der Bauteiletoleranzen wegzuregeln. Die Wechselspannungsquelle 14 ist dabei ohnehin für Schwankungen der Netzspannung unempfindlich. In regelmäßigen Zeitabständen wird die Einregelung der Spannung zwecks Kalibrierung wiederholt.
  • Parallel zu dem Spannungsmesser 20 liegt in Serie ein Begrenzungswiderstand 24 von 600 kΩ, die Ionisationselektrode 2, die Flamme 1 und der Eingang des Ionisationsstromverstärkers 25 mit zwei Anschlüssen. Diese Serienschaltung bildet einen Messpfad zur Erfassung des Ionisationsstroms. Die Flamme 1 ist in Figur 2 in Form eines elektrischen Ersatzschaltbildes dargestellt, welches einen Flammenwiderstand und eine Flammendiode aufweist.
  • Der Ionisationsstrom fließt zunächst durch den Begrenzungswiderstand 24, durch die in Figur 2 nicht dargestellte Ionisationselektrode 2, durch die Flamme 1, durch den Brenner und durch den Eingang des Ionisationsstromverstärkers 25. Der Begrenzungswiderstand 24 begrenzt den Ionisationsstrom, welcher vom Ionisationsstromverstärker 25 praktisch rückwirkungsfrei verstärkt wird. Der Eingang des Ionisationsstromverstärkers 25 ist an einem Anschluss mit dem Brenner verbunden. Der andere Eingangsanschluss ist an den Transformator 18 geschaltet, wobei er vom Ionisationsverstärker virtuell auf Massepotential eingestellt wird. Dieser Stromkreis wird über den Transformator 18 geschlossen. Am Ausgang des Ionisationsstromverstärkers 25 liegt ein gemitteltes Ionisationssignal 4, welches von der Stelleinrichtung 5 ausgewertet wird.
  • Figur 3 zeigt in einem Blockschaltbild den Aufbau und die Funktion eines weiteren Flammenverstärkers gemäß der Erfindung. Im Unterschied zur Figur 2 erzeugt der Spannungsgenerator 15 ein sinusförmiges Wechselspannungssignal, wodurch das in Figur 2 gezeigte Filter 17 entfallen kann. Die Wechselspannungsquelle 14 zur Erzeugung einer Wechselspannung für die Ionisationselektrode 2 besteht aus Spannungsgenerator 15, Multiplikator 16 und Transformator 18.
  • Anstelle des Gleichrichtwertes wird in diesem Ausführungsbeispiel der Spitzenwert der Wechselspannung erfasst. Der Spannungsmesser 20 weist dazu einen Spannungsteiler mit einem Spitzenwertfilter 26 als seiner Messeinheit auf. Selbstverständlich kann in einer weiteren Alternative der Effektivwert der Wechselspannung erfasst werden. Das Spitzenwertfilter kann an seinem Eingang mit Werten größer 10 MΩ so hochohmig ausgelegt werden, dass der parasitäre Ionisationsstrom durch den Ionisationsstromverstärker ausreichend gering ist.
  • In den Figuren 2 und 3 erfolgt die Ankopplung des Spannungsmessers 20 an den Spannungsregler 19 galvanisch, wobei der Eingang des Spannungsreglers hochohmig ausgelegt ist. Natürlich ist es auch möglich, die Anknüpfung des Spannungsmessers 20 zum Spannungsregler 19 galvanisch zu entkoppeln, zum Beispiel durch eine optische Datenübertragung, wobei kein parasitärer Strom durch den Ionisationsverstärker mehr auftritt.
  • Die aktiven Komponenten der Wechselspannungsquelle 14, des Spannungsmessers 20 und des Spannungsreglers 19, nämlich der Spannungsgenerator 15, der Multiplikator 16, das Filter 17, das Spitzenwertfilter 26, der Komparator 22 und der PID-Regler 21, sind aus praktischen Gründen gegen Masse als Referenzpotential geschaltet, insbesondere um eine gemeinsame Speisequelle mit anderen Schaltungsblöcken zu benutzen.
  • Das in Figur 2 und 3 gezeigte Blockschaltbild kann zum Beispiel in Form einer Analogschaltung mit passiven und aktiven Komponenten realisiert werden. Insbesondere der Spannungsgenerator 15, der Multiplikator 16, das Filter 17, der Komparator 22, Filter im Spannungsmesser 20 und der PID-Regler 21 können alternativ als Programmablauf innerhalb eines Mikroprozessors ausgeführt werden, wobei die anderen Blöcke dann als analoge Schaltung realisiert sind.
  • Bezugszeichenliste:
  • 1
    Flamme
    2
    Ionisationselektrode
    3
    Flammenverstärker
    4
    Ionisationssignal
    5
    Stelleinrichtung
    6
    Erster Aktor
    7
    Zweiter Aktor
    8
    Erstes Stellsignal
    9
    Drehzahlsignal
    10
    Zweites Stellsignal
    11
    Anforderungssignal
    12
    Luft
    13
    Brennstoff
    14
    Wechselspannungsquelle
    15
    Spannungsgenerator
    16
    Multiplikator
    17
    Filter
    18
    Transformator
    19
    Spannungsregler
    20
    Spannungsmesser
    21
    PID-Regler
    22
    Komparator
    23
    Spannungssollwert
    24
    Begrenzungswiderstand
    25
    Ionisationsstromverstärker
    26
    Spitzenwertfilter

Claims (5)

  1. Brenneranlage zumindest mit einem an Masse gelegten Brenner, Aktoren mit denen die Zufuhr von Brennstoff und Luft zum Brenner eingestellt wird, einer im Flammenbereich angeordneten Ionisationselektrode (2), einem Flammenverstärker (3) an der Ionisationselektrode zur Erzeugung eines Ionisationssignals und einer Stelleinrichtung (5) die im Luftzahlregelbetrieb einen ersten Aktor (6) stellt und einen zweiten Aktor (7) mittels des Ionisationssignals und eines Ionisationssignalsollwerts regelt,
    wobei der Flammenverstärker ausgestattet ist mit einer Wechselspannungsquelle (14) zur Erzeugung einer Wechselspannung für die Ionisationselektrode, mit einem Spannungsmesser (20) und mit einem Spannungsregler (19) der im Spannungsregelbetrieb die Wechselspannungsquelle mittels der vom Spannungsmesser gemessenen Wechselspannung und eines Spannungssollwerts regelt, sowie mit einem Ionisationsstromverstärker (25),
    dadurch gekennzeichnet, dass
    der Spannungsmesser (20) parallel zu einer Reihenfolge aus der Ionisationselektrode (2), dem Flammenbereich, dem Brenner und dem Eingang des Ionisationsstromverstärkers (25) geschaltet ist, und
    die Anbindung des Spannungsreglers (19) zum Spannungsmesser (20) so gestaltet ist, dass im Spannungsregelbetrieb der vom Spannungsmesser (20) verursachte zeitlich gemittelte Strom durch diese Anbindung kleiner ist als 5% des zeitlich gemittelten Stromes durch die Ionisationselektrode (2).
  2. Brenneranlage gemäß Anspruch 1,
    wobei
    die Reihenfolge vor der Ionisationselektrode (2) oder nach dem Eingang des Ionisationsstromverstärkers (25) zusätzlich einen Begrenzungswiderstand (24) umfasst,
    der Spannungsmesser (20) mit einer Serie aus Widerständen und mit einer Messeinheit ausgestattet ist, die in Spannungsregelbetrieb die Spannung zwischen zwei dieser Widerständen abgreift, und
    der wirksame Widerstand der Messeinheit vom Spannungsmesser (20) und der wirksame Widerstand des Spannungsreglers (19) an seinem Eingang zum Spannungsmesser (20) in Summe zumindest 10 Mal größer sind als der Begrenzungswiderstand (24).
  3. Brenneranlage gemäß einem der vorhergehenden Ansprüche,
    wobei
    der Spannungsmesser (20) mit einer Serie aus Widerständen und mit einer Messeinheit ausgestattet ist, die in Spannungsregelbetrieb die Spannung zwischen zwei dieser Widerstände abgreift, und
    die Messeinheit des Spannungsmessers (20) ein Mittel zur Gleichrichtung in der Serie der Widerstände umfasst, sowie ein Mittel zur Glättung der zwischen den Widerständen abgegriffenen Spannung.
  4. Brenneranlage gemäß einem der vorhergehenden Ansprüche,
    wobei
    die Wechselspannungsquelle (14) ausgestattet ist mit einem Spannungsgenerator (15) und mit einem Multiplikator (16) der die Ausgangsspannung des Spannungsgenerators (15) mit dem Signal am Ausgang des Spannungsreglers (19) multipliziert.
  5. Brenneranlage gemäß einem der vorhergehenden Ansprüche,
    wobei
    die Wechselspannungsquelle (14) ausgestattet ist mit einem Transformator (18) der ausgangsseitig parallel zur Reihenfolge aus Ionisationselektrode (2), Flammenbereich, Brenner und Ionisationsstromverstärker (25) geschaltet ist.
EP20110156892 2011-03-03 2011-03-03 Brenneranlage Active EP2495496B1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP20110156892 EP2495496B1 (de) 2011-03-03 2011-03-03 Brenneranlage
PL11156892T PL2495496T3 (pl) 2011-03-03 2011-03-03 Instalacja palnikowa
ES11156892.9T ES2536128T3 (es) 2011-03-03 2011-03-03 Instalación de quemador
CA2769900A CA2769900C (en) 2011-03-03 2012-03-01 Burner control system utilizing ionization signal
US13/412,255 US9062882B2 (en) 2011-03-03 2012-03-05 Burner system
JP2012047891A JP5355732B2 (ja) 2011-03-03 2012-03-05 バーナーシステム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP20110156892 EP2495496B1 (de) 2011-03-03 2011-03-03 Brenneranlage

Publications (2)

Publication Number Publication Date
EP2495496A1 EP2495496A1 (de) 2012-09-05
EP2495496B1 true EP2495496B1 (de) 2015-04-29

Family

ID=44278629

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20110156892 Active EP2495496B1 (de) 2011-03-03 2011-03-03 Brenneranlage

Country Status (6)

Country Link
US (1) US9062882B2 (de)
EP (1) EP2495496B1 (de)
JP (1) JP5355732B2 (de)
CA (1) CA2769900C (de)
ES (1) ES2536128T3 (de)
PL (1) PL2495496T3 (de)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2673725A4 (de) 2011-02-09 2016-07-27 Clearsign Comb Corp Kontrolle von zwei oder mehr reaktionen in einem verbrennungssystem mithilfe eines elektrischen feldes
US9696031B2 (en) 2012-03-27 2017-07-04 Clearsign Combustion Corporation System and method for combustion of multiple fuels
WO2013181563A1 (en) 2012-05-31 2013-12-05 Clearsign Combustion Corporation LOW NOx BURNER AND METHOD OF OPERATING A LOW NOx BURNER
CN104755842B (zh) * 2012-09-10 2016-11-16 克利尔赛恩燃烧公司 使用限流电气元件的电动燃烧控制
CN104854407A (zh) 2012-12-21 2015-08-19 克利尔赛恩燃烧公司 包括互补电极对的电燃烧控制系统
CN104838208A (zh) * 2012-12-26 2015-08-12 克利尔赛恩燃烧公司 带有栅切换电极的燃烧系统
US9857076B2 (en) 2013-02-14 2018-01-02 Clearsign Combustion Corporation Perforated flame holder and burner including a perforated flame holder
US10571124B2 (en) 2013-02-14 2020-02-25 Clearsign Combustion Corporation Selectable dilution low NOx burner
US9696034B2 (en) * 2013-03-04 2017-07-04 Clearsign Combustion Corporation Combustion system including one or more flame anchoring electrodes and related methods
US9664386B2 (en) 2013-03-05 2017-05-30 Clearsign Combustion Corporation Dynamic flame control
WO2014160836A1 (en) 2013-03-27 2014-10-02 Clearsign Combustion Corporation Electrically controlled combustion fluid flow
EP2789915A1 (de) * 2013-04-10 2014-10-15 Alstom Technology Ltd Verfahren zum Betrieb einer Brennkammer und Brennkammer
WO2015038245A1 (en) 2013-09-13 2015-03-19 Clearsign Combustion Corporation Transient control of a combustion reaction
WO2015042566A1 (en) 2013-09-23 2015-03-26 Clearsign Combustion Corporation Control of combustion reaction physical extent
WO2015051377A1 (en) 2013-10-04 2015-04-09 Clearsign Combustion Corporation Ionizer for a combustion system
US20150104748A1 (en) 2013-10-14 2015-04-16 Clearsign Combustion Corporation Electrodynamic combustion control (ecc) technology for biomass and coal systems
WO2016018610A1 (en) * 2014-07-30 2016-02-04 Clearsign Combustion Corporation Asymmetrical unipolar flame ionizer using a step-up transformer
US9702547B2 (en) 2014-10-15 2017-07-11 Clearsign Combustion Corporation Current gated electrode for applying an electric field to a flame
US20160138799A1 (en) * 2014-11-13 2016-05-19 Clearsign Combustion Corporation Burner or boiler electrical discharge control
PL3045816T3 (pl) * 2015-01-19 2019-07-31 Siemens Aktiengesellschaft Urządzenie do regulacji instalacji palnikowej
DE102015210636A1 (de) * 2015-06-10 2016-12-15 Rolls-Royce Deutschland Ltd & Co Kg Messvorrichtung für eine Strömungsmaschine
DE102015222155B4 (de) * 2015-11-11 2019-06-19 Viessmann Werke Gmbh & Co Kg Verfahren zur Steuerung einer Heizeinheit sowie Heizeinheit und Computerprogrammprodukt zur Ausführung des Steuerverfahrens
DE102015223177A1 (de) * 2015-11-24 2017-05-24 Robert Bosch Gmbh Heizgerätevorrichtung, insbesondere Gas und/oder Ölbrennervorrichtung, und Verfahren zum Betrieb einer Heizgerätevorrichtung
US10619845B2 (en) 2016-08-18 2020-04-14 Clearsign Combustion Corporation Cooled ceramic electrode supports
EP3728950B1 (de) * 2017-12-21 2022-06-08 Giordano Controls S.p.A. Vorrichtung und verfahren zur steuerung und detektion der flamme eines gasbrenners
US20210388985A1 (en) 2018-10-05 2021-12-16 Sensirion Ag Device for regulating a mixing ratio of a gas mixture
US10935237B2 (en) * 2018-12-28 2021-03-02 Honeywell International Inc. Leakage detection in a flame sense circuit
EP4102134A1 (de) * 2021-06-11 2022-12-14 BDR Thermea Group B.V. Verfahren zur steuerung des betriebs eines gaskessels
US20240200783A1 (en) * 2022-12-14 2024-06-20 Whirlpool Corporation Flame ionization detection for pan detection and power management in a gas cooktop

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5853765A (ja) * 1981-09-28 1983-03-30 Toshiba Corp 電流電圧測定回路
US4447204A (en) * 1982-06-10 1984-05-08 Westinghouse Electric Corp. Combustion control with flames
JPS59131826A (ja) * 1983-01-19 1984-07-28 Matsushita Electric Ind Co Ltd 石油温風機
US4457692A (en) * 1983-08-22 1984-07-03 Honeywell Inc. Dual firing rate flame sensing system
JP2685100B2 (ja) * 1988-08-08 1997-12-03 バブコツク日立株式会社 火炎検出方法および火炎検出装置
US5003960A (en) * 1989-04-13 1991-04-02 The Thermos Company, Inc. Electronic grill control
JP3401075B2 (ja) * 1994-03-18 2003-04-28 株式会社東邦製作所 炎検出装置
US5472337A (en) * 1994-09-12 1995-12-05 Guerra; Romeo E. Method and apparatus to detect a flame
DE4433425C2 (de) 1994-09-20 1998-04-30 Stiebel Eltron Gmbh & Co Kg Regeleinrichtung zum Einstellen eines Gas-Verbrennungsluft-Gemisches bei einem Gasbrenner
DE19632983C2 (de) * 1996-08-16 1999-11-04 Stiebel Eltron Gmbh & Co Kg Regeleinrichtung für einen Gasbrenner
EP0908679A1 (de) * 1997-10-10 1999-04-14 Electrowatt Technology Innovation AG Flammenüberwachungsschaltung
US6280180B1 (en) * 1999-07-16 2001-08-28 Vitromatic Comercial, S.A. De C.V. Method and system for igniting a burner of a gas stove
US6289868B1 (en) * 2000-02-11 2001-09-18 Michael E. Jayne Plasma ignition for direct injected internal combustion engines
US7435082B2 (en) * 2000-02-11 2008-10-14 Michael E. Jayne Furnace using plasma ignition system for hydrocarbon combustion
DE10021399A1 (de) 2000-05-03 2001-12-20 Pvl Electronic Germany Wechselspannungsregler
DE10027846A1 (de) * 2000-05-25 2001-11-29 Siemens Building Tech Ag Signalgeber
DE10312669B3 (de) * 2003-03-21 2004-10-21 Honeywell B.V. Schaltungsanordnung zur Ermittlung des Flammenstromes eines Brenners
JP2005016765A (ja) * 2003-06-24 2005-01-20 Hanshin Electric Co Ltd フレームロッド式炎検出システム
WO2009110015A1 (en) 2008-03-07 2009-09-11 Bertelli & Partners S.R.L. Improved method and device to detect the flame in a burner operating on a solid, liquid or gaseous combustible
EP2154430B1 (de) 2008-08-15 2015-09-30 Siemens Aktiengesellschaft Regeleinrichtung für einen Gasbrenner, sowie Verwendung einer solchen Regeleinrichtung
US20140170575A1 (en) * 2012-12-14 2014-06-19 Clearsign Combustion Corporation Ionizer for a combustion system, including foam electrode structure
US10364984B2 (en) * 2013-01-30 2019-07-30 Clearsign Combustion Corporation Burner system including at least one coanda surface and electrodynamic control system, and related methods
US20140227645A1 (en) * 2013-02-14 2014-08-14 Clearsign Combustion Corporation Burner systems configured to control at least one geometric characteristic of a flame and related methods

Also Published As

Publication number Publication date
CA2769900C (en) 2015-02-24
CA2769900A1 (en) 2012-09-03
PL2495496T3 (pl) 2015-10-30
US20120276487A1 (en) 2012-11-01
JP5355732B2 (ja) 2013-11-27
JP2012198010A (ja) 2012-10-18
US9062882B2 (en) 2015-06-23
EP2495496A1 (de) 2012-09-05
ES2536128T3 (es) 2015-05-20

Similar Documents

Publication Publication Date Title
EP2495496B1 (de) Brenneranlage
EP2466204B1 (de) Regeleinrichtung für eine Brenneranlage
AT507553B1 (de) Verfahren und vorrichtung zum ermitteln eines gleichstroms und widerstandsschweissvorrichtung
DE4121237A1 (de) Elektronischer schweissstrom-generator fuer das impuls-lichtbogenschweissen
CH694996A5 (de) Verfahren zu Ueberpruefen eines elektromagnetischen Durchflussmessers und elektromagnetische Durchflussmesseranordnung.
EP3683500B1 (de) Verfahren zur regelung eines gasgemisches unter nutzung eines gassensors und eines gasgemischsensors
DE202019100263U1 (de) Heizgerät mit Regelung eines Gasgemisches unter Nutzung eines Gassensors, eines Brenngassensors und eines Gasgemischsensors
DE102009008199A1 (de) Verfahren zum Regeln einer Schweißstromquelle sowie Schweißstromquelle zur Durchführung des Verfahrens
DE102010051559B4 (de) Algorithmus und Kalibrierverfahren zur Temperaturbestimmung eines induktiv beheizten Maschinenteils
DE102019101190A1 (de) Verfahren zur Regelung eines Gasgemisches unter Nutzung eines Gassensors, eines Brenngassensors und eines Gasgemischsensors
DE2509344A1 (de) Verfahren und anordnung zur regelung von kessel-turbinenbloecken
DE1299751B (de) Nachlaufregler mit Rueckfuehrung
DE19854824C1 (de) Verfahren und Schaltung zur Regelung eines Gasbrenners
DE19839160A1 (de) Verfahren und Schaltung zur Regelung eines Gasbrenners
WO2020148434A1 (de) Verfahren zur regelung eines gasgemisches unter nutzung eines gasgemischsensors
EP2961053A1 (de) Schaltnetzteil
EP0202401B1 (de) Heizelement
DE102019110977A1 (de) Verfahren zur Überprüfung eines Gasgemischsensors bei einem brenngasbetriebenen Heizgerät
EP3869099B1 (de) Verfahren, vorrichtung und computerprogrammprodukt zur regelung eines brenngas-luft-gemisches in einem heizgerät bei variabler leistung
EP2154430B1 (de) Regeleinrichtung für einen Gasbrenner, sowie Verwendung einer solchen Regeleinrichtung
DE4029117A1 (de) Vorrichtung zum elektrischen schweissen mit digitaler regelung und einstellung
EP3767174A1 (de) Verfahren und vorrichtung zur nachkalibrierung eines messsystems zur regelung eines brenngas-luft-gemisches in einem heizgerät
DE202019100264U1 (de) Heizgerät mit Regelung eines Gasgemisches unter Nutzung eines Gassensors und eines Gasgemischsensors
DE4016018C1 (en) Process regulating circuitry using two measurers in parallel - has range selection stage cooperating with proportional member and lowest and highest value limiting stages
DE1588211A1 (de) Regler fuer industrielle Verfahrensablaeufe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110819

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20141001

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG, CH

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 724653

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150515

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2536128

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20150520

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011006698

Country of ref document: DE

Effective date: 20150611

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150729

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150831

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150829

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150730

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011006698

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

Ref country code: RO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150429

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

26N No opposition filed

Effective date: 20160201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160303

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160303

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 724653

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160303

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCOW

Free format text: NEW ADDRESS: WERNER-VON-SIEMENS-STRASSE 1, 80333 MUENCHEN (DE)

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110303

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20220620

Year of fee payment: 13

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230510

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20230621

Year of fee payment: 13

Ref country code: CH

Payment date: 20230612

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230403

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240304

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20240223

Year of fee payment: 14

Ref country code: SE

Payment date: 20240311

Year of fee payment: 14

Ref country code: PL

Payment date: 20240223

Year of fee payment: 14

Ref country code: IT

Payment date: 20240321

Year of fee payment: 14

Ref country code: FR

Payment date: 20240319

Year of fee payment: 14