EP2495496B1 - Installation de brûleur - Google Patents

Installation de brûleur Download PDF

Info

Publication number
EP2495496B1
EP2495496B1 EP20110156892 EP11156892A EP2495496B1 EP 2495496 B1 EP2495496 B1 EP 2495496B1 EP 20110156892 EP20110156892 EP 20110156892 EP 11156892 A EP11156892 A EP 11156892A EP 2495496 B1 EP2495496 B1 EP 2495496B1
Authority
EP
European Patent Office
Prior art keywords
voltage
voltmeter
ionisation
signal
burner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20110156892
Other languages
German (de)
English (en)
Other versions
EP2495496A1 (fr
Inventor
Wilfried Dr. Hangauer
Rainer Dr. Lochschmied
Volker Schmid
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP20110156892 priority Critical patent/EP2495496B1/fr
Priority to ES11156892.9T priority patent/ES2536128T3/es
Priority to PL11156892T priority patent/PL2495496T3/pl
Priority to CA2769900A priority patent/CA2769900C/fr
Priority to US13/412,255 priority patent/US9062882B2/en
Priority to JP2012047891A priority patent/JP5355732B2/ja
Publication of EP2495496A1 publication Critical patent/EP2495496A1/fr
Application granted granted Critical
Publication of EP2495496B1 publication Critical patent/EP2495496B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/12Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods
    • F23N5/123Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2225/00Measuring
    • F23N2225/26Measuring humidity
    • F23N2225/30Measuring humidity measuring lambda
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/12Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods

Definitions

  • the invention relates to a burner system according to the preamble of claim 1, as from EP-A1-1 460 338 known.
  • the ratio of air to fuel can be adjusted.
  • An appropriate structure is also referred to as a fuel-air composite.
  • a particularly inexpensive sensor for detecting the air ratio is the ionization electrode. With an applied alternating voltage, an ionization current flows through the electrode and the flame, which is regulated to a setpoint value which is predetermined as a function of the respective output of the burner. With such an arrangement, the air ratio can be controlled, since the ionization current of the air ratio at each power point is dependent.
  • the AC voltage is controlled by means of a voltage regulator to a voltage setpoint.
  • a signal processing for a burner system of the type mentioned is in DE-C2-19632983 indicated.
  • a fuel-air network with a signal detection circuit after DE-A1-4433425 mentioned in which an additional compensation circuit for the switched to the ionization AC voltage is required.
  • This AC voltage must always be kept at a constant size, or measured and computationally compensated.
  • the generation of an alternating voltage of constant size is circuitry-consuming and requires moreover even when using the control circuit as a working with microprocessor digital circuit, the digitization of the first analog signal generated in order to continue working it. That is why in DE-C2-19632983 proposed another solution.
  • An AC voltage regulator with a control to a constant RMS value is for example off DE-A1-10021399 known.
  • the adjustment of the AC voltage is carried out by a controlled phase control, which is designed in the form of a closed loop.
  • a flame amplifier for detecting the ionization with a arranged in the flame region of a gas burner ionization electrode is known, which is connected to an AC voltage supplied by a secondary circuit of a transformer.
  • the secondary circuit is galvanically isolated from the primary circuit.
  • an ionization current with a direct current component caused by the flame flows to an amplifier.
  • the DC current flows through the AC voltage source to the ionization electrode and forms a closed circuit with the flame.
  • the signal processing circuit outputs a control variable dependent on the ionization current to a control device which compares this actual value with a desired value.
  • control device generates the actuating signals for the actuators, for example for a fan with which the air quantity and for a gas valve with which the amount of gas for the combustion can be set. It is not proposed to correct the AC voltage applied to the ionization electrode due to mains disturbances. Nor is it pointed out that some components, in particular the transformer, have significant tolerances and therefore systematic measurement errors occur, which result in a systematic scattering of the adjusted ⁇ value.
  • WO-A1-2009 / 110015 a method for monitoring a flame is known, with the parasitic elements occurring during operation can be detected and compensated.
  • an alternating voltage source is controlled on the basis of the measured ionization current in such a way that an alternating voltage signal with greatly differing duty cycle between positive and negative amplitude with different amplitude values is generated, which is connected to the ionization electrode.
  • high alternating voltages on the ionization electrode and the flame and thus also high amplitudes of the alternating voltage source cause less dependence of the ionization signal of layers that can form on the burner and the ionization electrode. Due to the non-linear behavior of the flame is a at the desired high alternating voltages DE-C2-19632983 proposed linear compensation unfavorable.
  • the applied AC voltage must be sufficiently accurate to rule out systematic errors due to component scattering.
  • the invention has for its object to propose a control of the AC voltage to a predetermined voltage setpoint, with the fuel-air composite control inexpensive, simple and reliable, the AC voltage used to measure an ionization current can be kept sufficiently constant.
  • a voltmeter is connected in parallel to a series connection in the sequence of the ionization electrode, the flame area, the burner and the input of an ionization current amplifier.
  • the input of the ionization current amplifier is connected at one terminal to the burner mass. This allows a common source of ionization current amplifier with other active circuit components.
  • the other port is virtually set by the ionization current amplifier to the potential of the burner mass and is connected to the AC voltage source.
  • the voltage regulator is connected.
  • the voltage regulator further receives a setpoint signal and its output is connected to the AC voltage source, wherein the amplitude of the AC voltage is determined by the output signal of the voltage regulator. It is of great advantage, if also the setpoint signal, the voltage regulator and the input of the AC voltage source can be grounded as a reference potential, so that no separate power supply is necessary.
  • the invention is also based on the insight that therefore a connection of the voltmeter to the voltage regulator has a parasitic current from the voltage regulator to ground through the input of the ionization amplifier result;
  • this parasitic current only insignificantly affects the air flow control if its averaged value is less than 5% of the averaged value of the ionization current through the flame; for the flame amplifier is not significantly more expensive and is not affected in its effect.
  • such a ratio of the parasitic current to the ionization current of less than 0.1% can be achieved.
  • the circuit for detecting the applied AC voltage can be carried out very precisely. Scattering and temperature fluctuations of components of the AC voltage source can thus be corrected via the voltage regulation.
  • the order in front of the ionization electrode or after the input of the ionization current amplifier additionally comprises a limiting resistor and the voltmeter is equipped with a series of resistors and with a measuring unit which taps the voltage between two of these resistors in the voltage regulating operation.
  • the effective resistance of the measuring unit from the voltmeter and the effective resistance of the voltage regulator at its input to the voltmeter are at least 10 times greater than the limiting resistor.
  • the parasitic current can be kept so easily and reliably below the permissible limit.
  • the measuring unit of the voltmeter preferably comprises a means for rectification in the series of resistors, and a means for smoothing the tapped between the resistors voltage.
  • the AC source is equipped with a voltage generator and a multiplier that multiplies the output voltage of the voltage generator with the signal at the output of the voltage regulator.
  • the voltage generator generates a voltage signal whose amplitude and frequency are independent of the mains.
  • the AC voltage source is equipped with a transformer which is connected on the output side parallel to the order of ionization electrode, flame area, burner and ionization current amplifier.
  • FIG. 1 schematically shows a burner system with a fuel-air-composite control.
  • An ionization current through a flame 1 generated by the burner is detected by a flame amplifier 3 via an ionization electrode 2.
  • the circuit is closed by the connection of the flame amplifier 3 to the burner mass.
  • the processed by the flame amplifier 3 ionization signal 4 is passed to an adjusting device 5, which in normal operation, the ionization signal 4 as an input signal for used a regulation.
  • the ionization signal 4 is designed as an analog electrical signal, but may alternatively be implemented as a digital signal or variable of two software module units.
  • the adjusting device 5 receives an external request signal 11, with which the heat output is specified.
  • the control can be switched on and off.
  • a heat request is generated by a higher-level, not shown here, temperature control loop.
  • a performance specification can be generated by another external consumer or can also be specified directly by hand, for example via a potentiometer.
  • the request signal 11 is mapped to one of the two actuators 6, 7 with the aid of data stored in the setting device 5.
  • the request signal 11 is mapped to speed setpoints for a fan as the first actuator 6.
  • the speed command values are compared with a speed signal 9 returned by a fan 6.
  • the fan 6 is controlled via a first control signal 8 to the desired delivery rate of the air 12 for the predetermined request signal 11.
  • the request signal 11 can be mapped directly to the first control signal 8 of the blower 6.
  • the mapping of the request signal 11 to a fuel valve as the first, power-carrying actuator 6 is possible.
  • the Air ratio tracked With the second actuator 7, preferably a fuel valve, via the supply of the fuel 13, the Air ratio tracked. This is done by the predefined request signal 11 is imaged in the control device 5 via a function in a Ionisationssignalsollwert. This ionization signal setpoint is compared with the ionization signal 4. With the control difference, the fuel quantity 7 which tracks the air ratio is regulated via a control unit realized in the adjusting device 5. Thus, a change in the ionization signal 4 via a second control signal 10 causes a change in the position of the fuel valve 7 and thus the flow of the amount of fuel 13. The control loop is closed by the change in the amount of fuel at the given amount of air a change in the ionization current through flame. 1 and ionization electrode 2 causes and thus also a change of the ionization signal 4 until its actual value is again equal to the predetermined ionization signal setpoint.
  • FIG. 2 shows in a block diagram the structure and function of a first flame amplifier according to the invention.
  • An AC voltage source 14 comprises a voltage generator 15, a multiplier 16, a filter 17 with an optionally integrated amplifier and a transformer 18.
  • the voltage generator 15 In the voltage regulation mode, the voltage generator 15 generates a rectangular voltage signal which is located at an input of the multiplier 16.
  • the voltage regulator 19 At the other input of the multiplier 16 is provided by a voltage regulator 19 signal with which the amplitude of the output from the multiplier 16 square wave signal is adjustable.
  • the multiplier 16 can be constructed very simply, for example, from an inverter stage, consisting of switching transistor and resistor, wherein the supply level and the output level and thus the amplitude of the square wave signal obtained at the output of the multiplier 16 are determined by the voltage regulator 19.
  • the amplitude-modulated rectangular voltage signal of the multiplier 16 is applied to the filter 17, which converts this into a sinusoidal alternating voltage signal, which can optionally be further amplified analogously.
  • the transformer 18 transmits the AC signal obtained from the filter 17 on the primary side to the secondary side, which is galvanically isolated from the primary side.
  • the transmission ratio of the transformer is preferably selected so that the amplitude of the AC voltage obtained on the secondary side of the transformer is significantly greater than the amplitude of the AC voltage on the primary side.
  • the desired high signal level of the AC voltage can be provided. If the signal level at the output of the filter 17 is sufficient, the transformer 18 can alternatively be dispensed with and the ionization circuit can be supplied in another way from the output of the filter 17 as long as it remains decoupled from the burner mass.
  • the AC voltage obtained from the transformer 18 on the secondary side is detected by a voltmeter 20, and rectified and smoothed in this advantageous manner.
  • the voltmeter 20 has a voltage divider, a diode and a capacitor.
  • the diode performs a half-wave rectification in which the voltage divider and capacitor act as a low-pass filter, smoothing the rectified signal. Diode and capacitor thus form a Measurement unit.
  • the output signal for the voltmeter 20 is tapped directly.
  • the output signal is a DC signal, which is proportional to the amplitude of the AC voltage at the output of the transformer 18 via the rectification factor.
  • the DC voltage signal generated by the voltmeter 20 is present as an actual value at the input of the voltage regulator 19.
  • the voltage regulator 19 includes a PID controller 21, and a comparator 22 as an input stage which compares the actual value with a voltage reference value 23.
  • the comparator 22 generates an analog signal dependent on the control deviation, which is applied to the input of the PID controller 21. Its input impedance is greater than 10 M ⁇ .
  • the PID controller 21 in turn generates a signal which is given to the input of the multiplier 16. This results in a closed voltage control loop, with which the detected actual value can be controlled exactly to the voltage setpoint 23.
  • the voltage control is maintained not only during the Lucasiereregelung, but also during periods in which no Vietnameseiereregelung takes place, such as during the ignition of the flame, or even during the calibration process of the Heiliereregelung.
  • the voltage regulation takes place during commissioning of the system only for a short period of time in order to regulate the influence of the component tolerances.
  • the AC voltage source 14 is insensitive anyway for fluctuations in the mains voltage. At regular intervals, the adjustment of the voltage is repeated for calibration.
  • the flame 1 is in FIG. 2 in the form of an electrical equivalent circuit diagram, which has a flame resistance and a flame diode.
  • the ionization current first flows through the limiting resistor 24, through the in FIG. 2 ionization electrode 2, not shown, through the flame 1, through the burner and through the input of the ionization current amplifier 25.
  • the limiting resistor 24 limits the ionization current, which is amplified by the ionization current amplifier 25 virtually without feedback.
  • the input of the ionization current amplifier 25 is connected to the burner at one terminal.
  • the other input terminal is connected to the transformer 18, wherein it is virtually set by the Ionisationsverellr to ground potential. This circuit is closed via the transformer 18.
  • At the output of the ionization current amplifier 25 is an averaged ionization signal 4, which is evaluated by the adjusting device 5.
  • FIG. 3 shows in a block diagram the structure and function of another flame amplifier according to the invention.
  • the voltage generator 15 generates a sinusoidal alternating voltage signal, whereby the in FIG. 2 shown filter 17 can be omitted.
  • the AC voltage source 14 for generating an AC voltage for the ionization electrode 2 consists of voltage generator 15, multiplier 16 and transformer 18th
  • the peak value of the alternating voltage is detected in this embodiment.
  • the voltmeter 20 has for this purpose a voltage divider with a peak filter 26 as its measuring unit.
  • the rms value of the alternating voltage can be detected.
  • the peak value filter can be designed with a high impedance of more than 10 M ⁇ at its input so that the parasitic ionization current through the ionization current amplifier is sufficiently low.
  • connection of the voltmeter 20 to the voltage regulator 19 is galvanic, the input of the voltage regulator is designed high impedance.
  • decouple the connection of the voltmeter 20 to the voltage regulator 19 galvanically for example by an optical data transmission, wherein no parasitic current through the ionization more occurs.
  • the active components of AC source 14, voltmeter 20, and voltage regulator 19, namely, voltage generator 15, multiplier 16, filter 17, peaking filter 26, comparator 22, and PID controller 21 are, for practical reasons, grounded as a reference potential switched, in particular to use a common supply source with other circuit blocks.
  • block diagram shown can be in the form of an analog circuit with passive and active components can be realized.
  • the voltage generator 15, the multiplier 16, the filter 17, the comparator 22, filters in the voltmeter 20 and the PID controller 21 can alternatively be executed as a program flow within a microprocessor, the other blocks are then realized as an analog circuit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Combustion (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Claims (5)

  1. Installation de brûleur comprenant au moins un brûleur mis à la terre, des actionneurs servant à régler l'alimentation en combustible et en air, une électrode d'ionisation (2) disposée dans la zone de la flamme, un amplificateur de flamme (3) au niveau de l'électrode d'ionisation pour produire un signal d'ionisation et un dispositif de réglage (5) qui, en mode de régulation du rapport air-combustible, positionne un premier actionneur (6) et règle un second actionneur (7) au moyen du signal d'ionisation et d'une valeur de consigne du signal d' ionisation,
    l'amplificateur de flamme étant équipé d'une source de tension alternative (14) pour produire une tension alternative pour l'électrode d'ionisation, d'un voltmètre (20) et d'un régulateur de tension (19) qui, en mode de régulation de tension, règle la source de tension alternative au moyen de la tension alternative mesurée par le voltmètre et d'une valeur de consigne de la tension, ainsi que d'un amplificateur de courant d'ionisation (25),
    caractérisée en ce que
    le voltmètre (20) est monté en parallèle à une suite comprenant l'électrode d'ionisation (2), la zone de flamme, le brûleur et l'entrée de l'amplificateur de courant d'ionisation (25), et
    la liaison du régulateur de tension (19) avec le voltmètre (20) étant configurée de telle manière qu'en mode de régulation de tension, grâce à la liaison, le courant moyen dans le temps induit par le voltmètre (20) est inférieur à 5 % du courant moyen dans le temps induit par l'électrode d'ionisation (2).
  2. Installation de brûleur selon la revendication 1,
    la suite en amont de l'électrode d'ionisation (2) ou en aval de l'entrée de l'amplificateur de courant d'ionisation (25) comprenant en outre une résistance de limitation (24),
    le voltmètre (20) étant équipé d'une série de résistances et d'une unité de mesure qui, en mode de régulation de tension, prélève la tension entre deux de ces résistances, et
    la résistance effective de l'unité de mesure du voltmètre (20) et la résistance effective du régulateur de tension (19) à son entrée au voltmètre (20) étant, au total, au moins de 10 fois plus grandes que la résistance de limitation (24).
  3. Installation de brûleur selon l'une des revendications précédentes,
    le voltmètre (20) étant équipé d'une série de résistances et d'une unité de mesure qui, en mode de régulation de tension, prélève la tension entre deux de ces résistances, et
    l'unité de mesure du voltmètre (20) comprenant un moyen de redressement dans la série des résistances ainsi qu'un moyen de lissage de la tension prélevée entre les résistances.
  4. Installation de brûleur selon l'une des revendications précédentes,
    la source de tension alternative (14) étant équipée d'un générateur de tension (15) et d'un multiplicateur (16) qui multiplie la tension de sortie du générateur de tension (15) par le signal en sortie du régulateur de tension (19).
  5. Installation de brûleur selon l'une des revendications précédentes,
    la source de tension alternative (14) étant équipée d'un transformateur (18) qui, côté sortie, est monté en parallèle à la suite comprenant l'électrode d'ionisation (2), la zone de flamme, le brûleur et l'amplificateur de courant d'ionisation (25).
EP20110156892 2011-03-03 2011-03-03 Installation de brûleur Active EP2495496B1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP20110156892 EP2495496B1 (fr) 2011-03-03 2011-03-03 Installation de brûleur
ES11156892.9T ES2536128T3 (es) 2011-03-03 2011-03-03 Instalación de quemador
PL11156892T PL2495496T3 (pl) 2011-03-03 2011-03-03 Instalacja palnikowa
CA2769900A CA2769900C (fr) 2011-03-03 2012-03-01 Dispositif de commande de bruleur a signal d'ionisation
US13/412,255 US9062882B2 (en) 2011-03-03 2012-03-05 Burner system
JP2012047891A JP5355732B2 (ja) 2011-03-03 2012-03-05 バーナーシステム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP20110156892 EP2495496B1 (fr) 2011-03-03 2011-03-03 Installation de brûleur

Publications (2)

Publication Number Publication Date
EP2495496A1 EP2495496A1 (fr) 2012-09-05
EP2495496B1 true EP2495496B1 (fr) 2015-04-29

Family

ID=44278629

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20110156892 Active EP2495496B1 (fr) 2011-03-03 2011-03-03 Installation de brûleur

Country Status (6)

Country Link
US (1) US9062882B2 (fr)
EP (1) EP2495496B1 (fr)
JP (1) JP5355732B2 (fr)
CA (1) CA2769900C (fr)
ES (1) ES2536128T3 (fr)
PL (1) PL2495496T3 (fr)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103732990B (zh) 2011-02-09 2016-08-17 克利尔赛恩燃烧公司 电动力学地驱动带电气体或气体中夹带的带电粒子的方法和装置
US9696031B2 (en) 2012-03-27 2017-07-04 Clearsign Combustion Corporation System and method for combustion of multiple fuels
CN104334970A (zh) 2012-05-31 2015-02-04 克利尔赛恩燃烧公司 具有火焰位置电极排列的燃烧器
CN104755842B (zh) * 2012-09-10 2016-11-16 克利尔赛恩燃烧公司 使用限流电气元件的电动燃烧控制
CN104854407A (zh) 2012-12-21 2015-08-19 克利尔赛恩燃烧公司 包括互补电极对的电燃烧控制系统
WO2014105990A1 (fr) * 2012-12-26 2014-07-03 Clearsign Combustion Corporation Système de combustion à électrode de commutation de réseau électrique
US10571124B2 (en) 2013-02-14 2020-02-25 Clearsign Combustion Corporation Selectable dilution low NOx burner
EP2956718A4 (fr) 2013-02-14 2016-11-30 Clearsign Comb Corp Stabilisateur de flamme perforé et brûleur comprenant un stabilisateur de flamme perforé
US9696034B2 (en) * 2013-03-04 2017-07-04 Clearsign Combustion Corporation Combustion system including one or more flame anchoring electrodes and related methods
US9664386B2 (en) 2013-03-05 2017-05-30 Clearsign Combustion Corporation Dynamic flame control
US10190767B2 (en) 2013-03-27 2019-01-29 Clearsign Combustion Corporation Electrically controlled combustion fluid flow
EP2789915A1 (fr) * 2013-04-10 2014-10-15 Alstom Technology Ltd Procédé de fonctionnement d'une chambre de combustion et chambre de combustion
WO2015038245A1 (fr) 2013-09-13 2015-03-19 Clearsign Combustion Corporation Commande transitoire d'une réaction de combustion
WO2015042566A1 (fr) 2013-09-23 2015-03-26 Clearsign Combustion Corporation Régulation de l'ampleur physique d'une réaction de combustion
WO2015051377A1 (fr) 2013-10-04 2015-04-09 Clearsign Combustion Corporation Dispositif d'ionisation pour un système de combustion
WO2015057740A1 (fr) 2013-10-14 2015-04-23 Clearsign Combustion Corporation Commande de visualisation de flamme pour commande de combustion électrodynamique
WO2016018610A1 (fr) * 2014-07-30 2016-02-04 Clearsign Combustion Corporation Ioniseur de flamme unipolaire asymétrique utilisant un transformateur-élévateur
US9702547B2 (en) 2014-10-15 2017-07-11 Clearsign Combustion Corporation Current gated electrode for applying an electric field to a flame
US20160138799A1 (en) * 2014-11-13 2016-05-19 Clearsign Combustion Corporation Burner or boiler electrical discharge control
PL3045816T3 (pl) * 2015-01-19 2019-07-31 Siemens Aktiengesellschaft Urządzenie do regulacji instalacji palnikowej
DE102015210636A1 (de) * 2015-06-10 2016-12-15 Rolls-Royce Deutschland Ltd & Co Kg Messvorrichtung für eine Strömungsmaschine
DE102015222155B4 (de) * 2015-11-11 2019-06-19 Viessmann Werke Gmbh & Co Kg Verfahren zur Steuerung einer Heizeinheit sowie Heizeinheit und Computerprogrammprodukt zur Ausführung des Steuerverfahrens
DE102015223177A1 (de) * 2015-11-24 2017-05-24 Robert Bosch Gmbh Heizgerätevorrichtung, insbesondere Gas und/oder Ölbrennervorrichtung, und Verfahren zum Betrieb einer Heizgerätevorrichtung
US10619845B2 (en) 2016-08-18 2020-04-14 Clearsign Combustion Corporation Cooled ceramic electrode supports
KR102422728B1 (ko) * 2017-12-21 2022-07-19 지오다노 컨트롤즈 에스.피.에이. 가스 버너의 화염을 검출하고 제어하는 장치 및 방법
WO2019185181A1 (fr) 2018-10-05 2019-10-03 Sensirion Ag Dispositif de régulation d'un taux de mélange d'un mélange gazeux
US10935237B2 (en) * 2018-12-28 2021-03-02 Honeywell International Inc. Leakage detection in a flame sense circuit
EP4102134A1 (fr) * 2021-06-11 2022-12-14 BDR Thermea Group B.V. Procédé de commande du fonctionnement d'une chaudière à gaz
US20240200783A1 (en) * 2022-12-14 2024-06-20 Whirlpool Corporation Flame ionization detection for pan detection and power management in a gas cooktop

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5853765A (ja) 1981-09-28 1983-03-30 Toshiba Corp 電流電圧測定回路
US4447204A (en) * 1982-06-10 1984-05-08 Westinghouse Electric Corp. Combustion control with flames
JPS59131826A (ja) 1983-01-19 1984-07-28 Matsushita Electric Ind Co Ltd 石油温風機
US4457692A (en) 1983-08-22 1984-07-03 Honeywell Inc. Dual firing rate flame sensing system
JP2685100B2 (ja) 1988-08-08 1997-12-03 バブコツク日立株式会社 火炎検出方法および火炎検出装置
US5003960A (en) * 1989-04-13 1991-04-02 The Thermos Company, Inc. Electronic grill control
JP3401075B2 (ja) 1994-03-18 2003-04-28 株式会社東邦製作所 炎検出装置
US5472337A (en) * 1994-09-12 1995-12-05 Guerra; Romeo E. Method and apparatus to detect a flame
DE4433425C2 (de) 1994-09-20 1998-04-30 Stiebel Eltron Gmbh & Co Kg Regeleinrichtung zum Einstellen eines Gas-Verbrennungsluft-Gemisches bei einem Gasbrenner
DE19632983C2 (de) * 1996-08-16 1999-11-04 Stiebel Eltron Gmbh & Co Kg Regeleinrichtung für einen Gasbrenner
EP0908679A1 (fr) * 1997-10-10 1999-04-14 Electrowatt Technology Innovation AG Circuit de surveillance de flammes
US6280180B1 (en) * 1999-07-16 2001-08-28 Vitromatic Comercial, S.A. De C.V. Method and system for igniting a burner of a gas stove
US7435082B2 (en) * 2000-02-11 2008-10-14 Michael E. Jayne Furnace using plasma ignition system for hydrocarbon combustion
US6289868B1 (en) * 2000-02-11 2001-09-18 Michael E. Jayne Plasma ignition for direct injected internal combustion engines
DE10021399A1 (de) 2000-05-03 2001-12-20 Pvl Electronic Germany Wechselspannungsregler
DE10027846A1 (de) * 2000-05-25 2001-11-29 Siemens Building Tech Ag Signalgeber
DE10312669B3 (de) * 2003-03-21 2004-10-21 Honeywell B.V. Schaltungsanordnung zur Ermittlung des Flammenstromes eines Brenners
JP2005016765A (ja) 2003-06-24 2005-01-20 Hanshin Electric Co Ltd フレームロッド式炎検出システム
WO2009110015A1 (fr) 2008-03-07 2009-09-11 Bertelli & Partners S.R.L. Procédé et dispositif perfectionnés pour détecter la flamme dans un brûleur fonctionnant avec un combustible solide, liquide ou gazeux
EP2154430B1 (fr) 2008-08-15 2015-09-30 Siemens Aktiengesellschaft Dispositif de commande pour un brûleur à gaz, et utilisation d'un tel dispositiv
US20140170575A1 (en) * 2012-12-14 2014-06-19 Clearsign Combustion Corporation Ionizer for a combustion system, including foam electrode structure
US10364984B2 (en) * 2013-01-30 2019-07-30 Clearsign Combustion Corporation Burner system including at least one coanda surface and electrodynamic control system, and related methods
US20140227645A1 (en) * 2013-02-14 2014-08-14 Clearsign Combustion Corporation Burner systems configured to control at least one geometric characteristic of a flame and related methods

Also Published As

Publication number Publication date
US20120276487A1 (en) 2012-11-01
ES2536128T3 (es) 2015-05-20
JP2012198010A (ja) 2012-10-18
CA2769900A1 (fr) 2012-09-03
EP2495496A1 (fr) 2012-09-05
CA2769900C (fr) 2015-02-24
US9062882B2 (en) 2015-06-23
JP5355732B2 (ja) 2013-11-27
PL2495496T3 (pl) 2015-10-30

Similar Documents

Publication Publication Date Title
EP2495496B1 (fr) Installation de brûleur
EP2466204B1 (fr) Dispositif de réglage pour une installation de brûleur
AT507553B1 (de) Verfahren und vorrichtung zum ermitteln eines gleichstroms und widerstandsschweissvorrichtung
DE4121237A1 (de) Elektronischer schweissstrom-generator fuer das impuls-lichtbogenschweissen
CH694996A5 (de) Verfahren zu Ueberpruefen eines elektromagnetischen Durchflussmessers und elektromagnetische Durchflussmesseranordnung.
EP3683500B1 (fr) Procédé de régulation d'un mélange gazeux à l'aide d'un capteur de gaz et d'un capteur de mélange gazeux
DE202019100263U1 (de) Heizgerät mit Regelung eines Gasgemisches unter Nutzung eines Gassensors, eines Brenngassensors und eines Gasgemischsensors
DE102009008199A1 (de) Verfahren zum Regeln einer Schweißstromquelle sowie Schweißstromquelle zur Durchführung des Verfahrens
DE102010051559B4 (de) Algorithmus und Kalibrierverfahren zur Temperaturbestimmung eines induktiv beheizten Maschinenteils
DE102019101190A1 (de) Verfahren zur Regelung eines Gasgemisches unter Nutzung eines Gassensors, eines Brenngassensors und eines Gasgemischsensors
DE2509344A1 (de) Verfahren und anordnung zur regelung von kessel-turbinenbloecken
DE1299751B (de) Nachlaufregler mit Rueckfuehrung
DE19854824C1 (de) Verfahren und Schaltung zur Regelung eines Gasbrenners
DE19839160A1 (de) Verfahren und Schaltung zur Regelung eines Gasbrenners
WO2020148434A1 (fr) Procédé de réglage d'un mélange gazeux au moyen d'un capteur de mélange gazeux
EP2961053A1 (fr) Élément d'un réseau de distribution
EP0202401B1 (fr) Elément chauffant
EP3869099B1 (fr) Procédé, dispositif, et produit logiciel de régulation d'un mélange gaz-air de combustion dans un appareil de chauffage à puissance variable
EP2154430B1 (fr) Dispositif de commande pour un brûleur à gaz, et utilisation d'un tel dispositiv
EP3767174A1 (fr) Procédé et dispositif d'étalonnage ultérieur d'un système de mesure permettant de réguler un mélange gaz-air de combustion dans un appareil de chauffage
DE202019100264U1 (de) Heizgerät mit Regelung eines Gasgemisches unter Nutzung eines Gassensors und eines Gasgemischsensors
DE102019110977A1 (de) Verfahren zur Überprüfung eines Gasgemischsensors bei einem brenngasbetriebenen Heizgerät
DE4016018C1 (en) Process regulating circuitry using two measurers in parallel - has range selection stage cooperating with proportional member and lowest and highest value limiting stages
DE1588211A1 (de) Regler fuer industrielle Verfahrensablaeufe
DE2223647C2 (de) Verfahren und Schaltungsanordnung zur Überwachung der Erreichung und Überschreitung einer vorgewählten Tangentenrichtlinie der Charakteristik zweier gegenseitig abhängiger, zeitlich veränderlicher Gleichspannungsgrößen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110819

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20141001

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG, CH

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 724653

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150515

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2536128

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20150520

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011006698

Country of ref document: DE

Effective date: 20150611

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150729

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150831

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150829

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150730

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011006698

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

Ref country code: RO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150429

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

26N No opposition filed

Effective date: 20160201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160303

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160303

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 724653

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160303

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCOW

Free format text: NEW ADDRESS: WERNER-VON-SIEMENS-STRASSE 1, 80333 MUENCHEN (DE)

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110303

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20220620

Year of fee payment: 13

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230510

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20230621

Year of fee payment: 13

Ref country code: CH

Payment date: 20230612

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230403

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240304

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20240223

Year of fee payment: 14

Ref country code: SE

Payment date: 20240311

Year of fee payment: 14

Ref country code: PL

Payment date: 20240223

Year of fee payment: 14

Ref country code: IT

Payment date: 20240321

Year of fee payment: 14

Ref country code: FR

Payment date: 20240319

Year of fee payment: 14