EP0908679A1 - Circuit de surveillance de flammes - Google Patents

Circuit de surveillance de flammes Download PDF

Info

Publication number
EP0908679A1
EP0908679A1 EP97117731A EP97117731A EP0908679A1 EP 0908679 A1 EP0908679 A1 EP 0908679A1 EP 97117731 A EP97117731 A EP 97117731A EP 97117731 A EP97117731 A EP 97117731A EP 0908679 A1 EP0908679 A1 EP 0908679A1
Authority
EP
European Patent Office
Prior art keywords
capacitor
flame
monitoring circuit
input
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP97117731A
Other languages
German (de)
English (en)
Inventor
Karl-Friedrich Haupenthal
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electrowatt Technology Innovation AG
Original Assignee
Electrowatt Technology Innovation AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electrowatt Technology Innovation AG filed Critical Electrowatt Technology Innovation AG
Priority to EP97117731A priority Critical patent/EP0908679A1/fr
Priority to KR1020007003760A priority patent/KR20010030982A/ko
Priority to DE59807206T priority patent/DE59807206D1/de
Priority to DK98950111T priority patent/DK1021684T3/da
Priority to PCT/EP1998/006392 priority patent/WO1999019672A1/fr
Priority to US09/508,996 priority patent/US6501383B1/en
Priority to AU96299/98A priority patent/AU742228B2/en
Priority to JP2000516189A priority patent/JP4124962B2/ja
Priority to EP98950111A priority patent/EP1021684B1/fr
Publication of EP0908679A1 publication Critical patent/EP0908679A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/12Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/12Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods
    • F23N5/123Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2231/00Fail safe
    • F23N2231/10Fail safe for component failures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/08Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using light-sensitive elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/24Preventing development of abnormal or undesired conditions, i.e. safety arrangements

Definitions

  • the invention relates to a flame monitoring circuit in the preamble of claim 1 Art.
  • Flame monitors which act as rectifiers, are often used to monitor gas flames take advantage of the flame, which works according to the so-called ionization principle. Doing so an alternating voltage is applied between two electrodes. The volume that fills the flame depends on the current output of the burner. The achievable direct current can be smaller Burner performance and less than optimal geometry of the electrodes are very low during the Alternating current, depending on the capacity of the sensor line, can be significantly larger. Of the Flame signal amplifiers must therefore be able to absorb the low DC component as a whole Filter circuit current without the alternating current due to the inevitable rectifier effects can simulate a flame signal in the amplifier input.
  • this filtering can be done through a low-pass filter upstream of the flame signal amplifier with a sufficiently low cut-off frequency accomplish.
  • the filter property of the low pass goes e.g. B. due to a failure of a filter capacitor, the alternating current could also contribute to the presence of the flame pretend their absence. This faulty behavior must be observed by the flame Burner control system can be recognized. This is usually the case with burners in intermittent operation not a problem because the control system after switching off the fuel supply, resulting in a Extinguishing the flame leads, recognize a fake flame signal as faulty and a new one Prevent the burner from being started up.
  • the misbehavior In the case of burners in continuous operation, the misbehavior must can be recognized by periodically checking the flame monitor without the burner may be put out of operation. With optical flame sensors, this is usually done by Interruption of the beam path between flame and sensor by means of an aperture, d. H. it will during operation briefly simulated a flame failure, whereupon the output of the flame signal amplifier must react accordingly.
  • the process of signal interruption on the flame sensor is also used for ionization flame monitoring applicable.
  • the ionization circuit could be set using a suitable switching element interrupt. However, this element would have to be placed close to the sensor electrode so that only the flame signal current and not also the one flowing over line capacities Alternating current is interrupted, its flame-simulating effect in the event of a component failure yes should be recognized by the test.
  • EP 159 748 discloses a circuit which suggests a high sensitivity, provided the capacitive load current at the sensor connections caused by line capacities is low remains in relation to the flame signal current. In this respect, this circuit meets the requirements after high sensitivity and at the same time high resistance to line capacity.
  • the object of the present invention is to provide a flame monitoring circuit, the Responsiveness is significantly improved without the prior art Compatibility for line capacity, whose output signal is a measure of the Flame intensity represents and their switch-off ability periodically testable during burner operation is.
  • the flame monitoring circuit is bipolar of two operating voltages + Ub1 and -Ub2 defined in relation to a reference potential m fed. It has two connections 1 and 2, either with two ionization electrodes 3 or with the two connections of an ultraviolet sensor can be connected, that of a gas-filled ultraviolet cell 4 and a diode 4a connected to it in series.
  • the first connection 1 serves as Output, which one generated by an AC voltage generator 5, with respect to the reference potential m defined AC voltage leads.
  • the second connection 2 serves as an input to which the actual Sensor signal is supplied.
  • the second connection 2 is a first one, consisting of a resistor R1 and a low pass 6 formed after a capacitor C1.
  • the from the AC voltage generator 5 AC voltage is generated via a limiting resistor R3 and a coupling capacitor C3 led to the capacitor C1 and further to the input of a charge pump 7.
  • the signal on Output of the charge pump 7 is connected to the positive operating voltage Voltage divider 8 to the non-inverting input of a Schmitt trigger Operational amplifier 9 performed.
  • the inverting input of the operational amplifier 9 is connected to the Output of low pass 6 connected.
  • the output of the operational amplifier 9 controls a switch 10, through which the capacitor C1 can be discharged.
  • the AC voltage acting on the capacitor C1 that in the example from that of the AC voltage generator 5 AC voltage generated could also be derived from a second AC voltage generator are generated.
  • the sensor circuit flows between the ionization electrodes 3 because of the rectifying effect only a direct current in the flame or in the ultraviolet cell 4 because of the diode 4a, and only then if the flame is actually burning.
  • the connections 1 and 2 flows because of the unavoidable capacitance of the sensor lines constantly also an undesirable alternating current, which superimposed on the direct current.
  • the flame monitoring circuit is now set up so that this Alternating current is not rectified and therefore there is no signal "flame if there is no flame present "can pretend.
  • the flame monitoring circuit works as follows: As long as the capacitor C1 is intact, the charge pump 7 has an approximately static, negative potential U C5 at its output, the absolute value of which is approximately 75-80% of the positive supply voltage + Ub1.
  • the resistors R7 and R8 of the voltage divider 8 are dimensioned such that the voltage applied to the non-inverting input of the operational amplifier 9 is then also negative.
  • the output of the operational amplifier 9 initially carries the negative operating voltage -Ub2, so that the switch 10 designed as a junction field effect transistor T2 is open. As soon as the flame is present, the direct current flowing between the ionization electrodes 3 or the photocurrent of the ultraviolet sensor 4 charges the capacitor C1, whose potential becomes increasingly negative.
  • the voltage at the inverting input of the operational amplifier 9 also drops to an increasingly negative potential.
  • the output of the operational amplifier 9 carries the positive supply voltage + Ub1, the switch 10 closes and the capacitor C1 begins to discharge.
  • the operational amplifier 9 has a certain switching hysteresis, so that the capacitor C1 is partially discharged. If the discharge of the capacitor C1 has progressed sufficiently far, then the output of the operational amplifier 9 switches over again and again leads the negative supply voltage -Ub2. The game starts over.
  • the signal at the output of the operational amplifier 9 is a rectangular signal. Its frequency represents a measure of the intensity of the flame, since the strength of the direct current flowing between the ionization electrodes 3 determines the time it takes to charge the capacitor C1 until the operational amplifier 9 switches again.
  • An interruption of the capacitor C1 leads to the transistor T1 of the charge pump 7 continuously blocks and the charge pump 7 is therefore out of operation.
  • the capacitor C5 is switched to positive supply voltage Ub1 charged so that the output of the charge pump 7 as well as the Output of the operational amplifier 9 carry a static signal.
  • a short circuit of capacitor C1 causes the charge pump 7 to remain in operation, the amplitude of the voltage am inverting input of the operational amplifier 9, however, with respect to that on the non-inverting Input voltage remains sufficiently small, so that the output of the operational amplifier 9 in turn carries a static signal.
  • the amplitude of the AC voltage generator 5 generated AC voltage, the resistor R3 and the capacitors C1 and C3 can be matched to one another in such a way that the amplitude of the capacitor C3 and thus also the inverting input of the operational amplifier 9 is not sufficient AC as a Schmitt trigger switched operational amplifier 9 to switch back and forth and thus to simulate a "flame present" signal.
  • the flame monitoring circuit can be activated whenever the burner is switched off, check whether there is no "flame" signal at the output present "appears.
  • a second switch 11 is provided with which the input of the charge pump 7 with the Reference potential m is connectable. If the switch 11 is closed, then the Flame monitoring circuit and / or downstream circuits the information "Flame not present "appear.
  • the switch 11 is preferably controlled by a microprocessor Switch 11 shown in FIG. 2 is an optocoupler controlled via two inputs, the one galvanically isolated control enables.
  • FIG. 3 shows a further development of the flame monitoring circuit, in which between the Capacitor C1 and the input of operational amplifier 9, a second, from a resistor R2 and a capacitor C2 formed low pass 19 is connected.
  • the switch 10 controls the discharge of capacitor C2.
  • the capacitor C2 must be the same as the capacitor C1 a possible interruption can be monitored.
  • the capacitor C2 is therefore with the input an integrator 20 connected to the output of which a DC voltage is present, the level of which is a measure for the flame intensity is.
  • the integrator 20 is designed as a charge pump.
  • the capacitor C7 will correspond to the frequency of the charge / discharge cycles of capacitor C2 across the capacitor C6 reloaded. The frequency is determined by the sensor current.
  • Capacitor C2 takes the voltage across capacitor C7 the value of the reference potential m what is synonymous with "flame not present".
  • the voltage across capacitor C7 becomes, for example Digitized using a voltage / frequency converter and galvanically via an optocoupler separately to a higher-level device, e.g. an automatic burner control.
  • the advantage of this Circuit is that the low-pass filter 19 is the AC voltage generated by the AC voltage generator 5 dampens in such a way that a much larger ratio between that through the sensor line capacities caused alternating current and the ionization current can be accepted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Control Of Combustion (AREA)
EP97117731A 1997-10-10 1997-10-10 Circuit de surveillance de flammes Withdrawn EP0908679A1 (fr)

Priority Applications (9)

Application Number Priority Date Filing Date Title
EP97117731A EP0908679A1 (fr) 1997-10-10 1997-10-10 Circuit de surveillance de flammes
KR1020007003760A KR20010030982A (ko) 1997-10-10 1998-10-08 화염을 모니터링하는 방법 및 장치
DE59807206T DE59807206D1 (de) 1997-10-10 1998-10-08 Verfahren und vorrichtung zur überwachung einer flamme
DK98950111T DK1021684T3 (da) 1997-10-10 1998-10-08 Fremgangsmåde og indretning til overvågning af en flamme.
PCT/EP1998/006392 WO1999019672A1 (fr) 1997-10-10 1998-10-08 Procede et dispositif pour la surveillance d'une flamme
US09/508,996 US6501383B1 (en) 1997-10-10 1998-10-08 Method and device for monitoring a flame
AU96299/98A AU742228B2 (en) 1997-10-10 1998-10-08 Method and device for monitoring a flame
JP2000516189A JP4124962B2 (ja) 1997-10-10 1998-10-08 火炎を監視する方法及び装置
EP98950111A EP1021684B1 (fr) 1997-10-10 1998-10-08 Procede et dispositif pour la surveillance d'une flamme

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP97117731A EP0908679A1 (fr) 1997-10-10 1997-10-10 Circuit de surveillance de flammes

Publications (1)

Publication Number Publication Date
EP0908679A1 true EP0908679A1 (fr) 1999-04-14

Family

ID=8227475

Family Applications (2)

Application Number Title Priority Date Filing Date
EP97117731A Withdrawn EP0908679A1 (fr) 1997-10-10 1997-10-10 Circuit de surveillance de flammes
EP98950111A Expired - Lifetime EP1021684B1 (fr) 1997-10-10 1998-10-08 Procede et dispositif pour la surveillance d'une flamme

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP98950111A Expired - Lifetime EP1021684B1 (fr) 1997-10-10 1998-10-08 Procede et dispositif pour la surveillance d'une flamme

Country Status (8)

Country Link
US (1) US6501383B1 (fr)
EP (2) EP0908679A1 (fr)
JP (1) JP4124962B2 (fr)
KR (1) KR20010030982A (fr)
AU (1) AU742228B2 (fr)
DE (1) DE59807206D1 (fr)
DK (1) DK1021684T3 (fr)
WO (1) WO1999019672A1 (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10150819A1 (de) * 2001-10-15 2003-04-17 Dometic Gmbh Energiebetriebsvorrichtung
GB2367172B (en) * 2000-04-26 2004-02-18 Pektron Group Ltd Detection apparatus and a method of detection
EP1719947A1 (fr) * 2005-05-06 2006-11-08 Siemens Building Technologies HVAC Products GmbH Procédé et dispositif de contrôle de flammes
CN101614586B (zh) * 2009-07-21 2011-03-30 深圳和而泰智能控制股份有限公司 一种离子火焰检测装置及其设备
EP2495496A1 (fr) * 2011-03-03 2012-09-05 Siemens Aktiengesellschaft Installation de brûleur
DE102022203963B3 (de) 2022-04-25 2023-07-20 Prüfrex engineering e motion gmbh & co. kg Schaltungsanordnung zur Flammenüberwachung

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10023273A1 (de) * 2000-05-12 2001-11-15 Siemens Building Tech Ag Messeinrichtung für eine Flamme
DE10312669B3 (de) * 2003-03-21 2004-10-21 Honeywell B.V. Schaltungsanordnung zur Ermittlung des Flammenstromes eines Brenners
DE10324315A1 (de) * 2003-05-27 2004-12-16 Siemens Building Technologies Ag Verfahren zur Überwachung der Qualität eines von einem Reformer für den Betrieb von Brennstoffzellen gelieferten Gasgemisches
KR100810006B1 (ko) * 2004-02-06 2008-03-07 오중산 대두 발효 추출물 및 이를 함유하는 화장료 조성물
WO2005111556A2 (fr) * 2004-05-07 2005-11-24 Walter Kidde Portable Equipment, Inc. Detecteur de flammes uv
DE102007018122B4 (de) * 2007-04-16 2013-10-17 Viessmann Werke Gmbh & Co Kg Flammenüberwachungsvorrichtung mit einer Spannungserzeugungs- und Messanordnung und Verfahren zum Überwachen eines Brenners mittels der Flammenüberwachungsvorrichtung
PL2265867T3 (pl) * 2008-03-07 2019-04-30 Bertelli & Partners Srl Ulepszony sposób i urządzenie do wykrywania płomienia w palniku działającym na paliwie stałym, płynnym lub gazowym
US8446204B2 (en) * 2011-01-27 2013-05-21 Qualcomm Incorporated High voltage tolerant receiver
US8680891B2 (en) 2011-01-27 2014-03-25 Qualcomm Incorporated High voltage tolerant differential receiver
US9784449B2 (en) * 2014-05-30 2017-10-10 Jed Margolin Flame sensing system
DE102015210507A1 (de) * 2015-06-09 2016-12-15 Vaillant Gmbh Flammenüberwachung
US10890326B2 (en) * 2016-10-31 2021-01-12 Robertshaw Controls Company Flame rectification circuit using operational amplifier
ES2885902T3 (es) 2018-12-06 2021-12-15 Siemens Ag Sistema de control de vigilancia de la llama
JP7357221B2 (ja) * 2020-01-27 2023-10-06 パナソニックIpマネジメント株式会社 フレームロッド回路、水素生成装置、燃料電池システムおよび検知方法
JP7357220B2 (ja) 2020-01-27 2023-10-06 パナソニックIpマネジメント株式会社 フレームロッド回路、水素生成装置、燃料電池システムおよび検知方法
DE102020108006A1 (de) 2020-03-24 2021-09-30 Ebm-Papst Landshut Gmbh Schaltungsvorrichtung und Verfahren zum Überwachen einer Brennerflamme

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2932129A1 (de) 1978-08-25 1980-02-28 Satronic Ag Flammenwaechter an oel- oder gasbrennern
DE3026787A1 (de) 1980-06-19 1981-12-24 LGZ Landis & Gyr Zug AG, 6301 Zug Eigensicherer flammenwaechter
FR2556819A1 (fr) * 1983-12-14 1985-06-21 Landis & Gyr Ag Controleur de flamme autocontrole
EP0159748A1 (fr) 1984-04-12 1985-10-30 Koninklijke Philips Electronics N.V. Circuit de protection pour flamme
EP0388065A2 (fr) * 1989-03-17 1990-09-19 Black Automatic Controls Ltd Procédé et dispositif de détection de flamme
EP0617234A1 (fr) * 1993-03-24 1994-09-28 Karl Dungs GmbH & Co. Détecteur de flamme à ionisation
EP0634611A1 (fr) * 1993-07-16 1995-01-18 Johnson Service Company Circuit de détection de courant d'ionisation de flamme à plusieurs niveaux

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4039844A (en) * 1975-03-20 1977-08-02 Electronics Corporation Of America Flame monitoring system
US4823114A (en) * 1983-12-02 1989-04-18 Coen Company, Inc. Flame scanning system
AU2684888A (en) * 1988-01-21 1989-07-27 Honeywell Inc. Fuel burner control system with analog sensors
US5207276A (en) * 1991-04-25 1993-05-04 Pem All Fire Extinguisher Corp. Wire-sensored fire extinguisher with fault-monitoring control system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2932129A1 (de) 1978-08-25 1980-02-28 Satronic Ag Flammenwaechter an oel- oder gasbrennern
DE3026787A1 (de) 1980-06-19 1981-12-24 LGZ Landis & Gyr Zug AG, 6301 Zug Eigensicherer flammenwaechter
FR2556819A1 (fr) * 1983-12-14 1985-06-21 Landis & Gyr Ag Controleur de flamme autocontrole
EP0159748A1 (fr) 1984-04-12 1985-10-30 Koninklijke Philips Electronics N.V. Circuit de protection pour flamme
EP0388065A2 (fr) * 1989-03-17 1990-09-19 Black Automatic Controls Ltd Procédé et dispositif de détection de flamme
EP0617234A1 (fr) * 1993-03-24 1994-09-28 Karl Dungs GmbH & Co. Détecteur de flamme à ionisation
EP0634611A1 (fr) * 1993-07-16 1995-01-18 Johnson Service Company Circuit de détection de courant d'ionisation de flamme à plusieurs niveaux

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2367172B (en) * 2000-04-26 2004-02-18 Pektron Group Ltd Detection apparatus and a method of detection
DE10150819A1 (de) * 2001-10-15 2003-04-17 Dometic Gmbh Energiebetriebsvorrichtung
US6662585B2 (en) 2001-10-15 2003-12-16 Dometic. Gmbh Energy administration device
EP1719947A1 (fr) * 2005-05-06 2006-11-08 Siemens Building Technologies HVAC Products GmbH Procédé et dispositif de contrôle de flammes
US7382140B2 (en) 2005-05-06 2008-06-03 Siemens Building Technologies Hvac Products Gmbh Method and device for flame monitoring
CN101614586B (zh) * 2009-07-21 2011-03-30 深圳和而泰智能控制股份有限公司 一种离子火焰检测装置及其设备
EP2495496A1 (fr) * 2011-03-03 2012-09-05 Siemens Aktiengesellschaft Installation de brûleur
US20120276487A1 (en) * 2011-03-03 2012-11-01 Siemens Aktiengesellschaft Burner system
US9062882B2 (en) 2011-03-03 2015-06-23 Siemens Aktiengesellschaft Burner system
DE102022203963B3 (de) 2022-04-25 2023-07-20 Prüfrex engineering e motion gmbh & co. kg Schaltungsanordnung zur Flammenüberwachung

Also Published As

Publication number Publication date
EP1021684A1 (fr) 2000-07-26
EP1021684B1 (fr) 2003-02-12
KR20010030982A (ko) 2001-04-16
JP2001520361A (ja) 2001-10-30
US6501383B1 (en) 2002-12-31
DK1021684T3 (da) 2003-06-10
AU742228B2 (en) 2001-12-20
JP4124962B2 (ja) 2008-07-23
WO1999019672A1 (fr) 1999-04-22
AU9629998A (en) 1999-05-03
DE59807206D1 (de) 2003-03-20

Similar Documents

Publication Publication Date Title
EP0908679A1 (fr) Circuit de surveillance de flammes
EP0514839B1 (fr) Circuit pour mesurer la capacité
EP0131146B1 (fr) Appareil de commutation électronique, fonctionnant de préférence sans contact
DE102007054297A1 (de) Sicherungslasttrennschalter bzw. Leistungsschalter
DE3930091A1 (de) Schaltungsanordnung zum schutz eines stromverbrauchers vor falschpolung seiner speisespannung
CH688842A5 (de) Einrichtung zur Ansteuerung des Motors des Gebläses eines Gebläsebrenners.
EP1843645B1 (fr) Circuit pour lampes à décharge haute pression
DE3401603C1 (de) Selbstueberwachender Flammenwaechter
DE4027090C2 (de) Anordnung zum Überwachen einer Brennerflamme
DE69928335T2 (de) Verfahren und Vorrichtung zur Steuerung eines Schalters
DE4232720C1 (de) Anordnung zur Funktionsüberwachung und Meßwertauswertung von Füllstands-Sensoren, insbesondere Vibrations-Füllstands-Grenzschaltern
DE2809993C3 (de) Flammenwächterschaltung zur Überwachung einer Brennerflamme
WO2003049128A1 (fr) Procede de determination de l'etat de commutation d'un contact et circuit d'evaluation correspondant
DE3101967C2 (de) Eigensicherer Flammenwächter
DE19726169C2 (de) Regeleinrichtung für einen Gasbrenner
DE4402017C2 (de) Verfahren zum fehlersicheren Überwachen einer Versorgungsspannung und Einrichtung zur Durchführung des Verfahrens
DE3723278C2 (fr)
EP0002504B1 (fr) Circuit de surveillance des signaux dans des dispositifs de signalisation lumineux
DE2452541C2 (de) Netzteil fuer eine elektronische ueberwachungseinrichtung
DE602004009146T2 (de) Anordnung in Verbindung mit einer Kupplungsvorrichtung einer Fluoreszenzlampe
DD276409A3 (de) Schaltungsanordnung zur dynamischen eigenueberwachung von flammenwaechtern
DE2449048A1 (de) Einrichtung zur ueberwachung mehrerer zustandspruefstellen
DE2704971B2 (de) Flanunendetektor mit einer UV-Röhre
CH627593A5 (de) Anordnung zum betrieb eines mit wechselspannung gespeisten synchronelektromotors.
WO2000003368A1 (fr) Dispositif de detection fonctionnant au moyen d'un bus et procede de controle correspondant

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;RO;SI

AKX Designation fees paid
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19991015

REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566