WO2006000366A1 - Verfahren zur regelung und steuerung einer feuerungseinrichtung und feuerungseinrichtung - Google Patents
Verfahren zur regelung und steuerung einer feuerungseinrichtung und feuerungseinrichtung Download PDFInfo
- Publication number
- WO2006000366A1 WO2006000366A1 PCT/EP2005/006627 EP2005006627W WO2006000366A1 WO 2006000366 A1 WO2006000366 A1 WO 2006000366A1 EP 2005006627 W EP2005006627 W EP 2005006627W WO 2006000366 A1 WO2006000366 A1 WO 2006000366A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- firing device
- air
- value
- temperature
- burner
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N1/00—Regulating fuel supply
- F23N1/02—Regulating fuel supply conjointly with air supply
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N1/00—Regulating fuel supply
- F23N1/02—Regulating fuel supply conjointly with air supply
- F23N1/022—Regulating fuel supply conjointly with air supply using electronic means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N5/00—Systems for controlling combustion
- F23N5/02—Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N5/00—Systems for controlling combustion
- F23N5/02—Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
- F23N5/022—Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using electronic means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N5/00—Systems for controlling combustion
- F23N5/02—Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
- F23N5/10—Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using thermocouples
- F23N5/102—Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using thermocouples using electronic means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N2233/00—Ventilators
- F23N2233/06—Ventilators at the air intake
- F23N2233/08—Ventilators at the air intake with variable speed
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N2235/00—Valves, nozzles or pumps
- F23N2235/02—Air or combustion gas valves or dampers
- F23N2235/06—Air or combustion gas valves or dampers at the air intake
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N2235/00—Valves, nozzles or pumps
- F23N2235/02—Air or combustion gas valves or dampers
- F23N2235/10—Air or combustion gas valves or dampers power assisted, e.g. using electric motors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N2241/00—Applications
- F23N2241/02—Space-heating
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N5/00—Systems for controlling combustion
- F23N5/16—Systems for controlling combustion using noise-sensitive detectors
Definitions
- the invention relates to a method for controlling a firing device, in particular a gas burner, in which a value is determined, which depends on a measured temperature generated by the firing device, Furthermore, the invention relates to a firing device, in particular a gas burner, which comprises a device for measuring a value that depends on a temperature generated by the firing device comprises. Furthermore, the invention relates to a method for controlling a firing device, in particular a gas burner, and a firing device, in particular a gas burner, which comprises a gas valve for adjusting the fuel supply to the firing device.
- the power output is determined essentially by the adjustment of the supply of fuel gas and air and by the set mixing ratio between gas and air.
- the temperature generated by the flame is also a function of the mixing ratio between gas and air.
- the mixing ratio can be specified, for example, as the ratio of the mass flows or the volume flows of the air and the gas.
- other parameters, such as the fuel composition have an influence on the sizes mentioned.
- a mixing ratio can be determined in which the combustion efficiency is maximized, i. where the fuel burns as completely and clean as possible.
- a regulation can take place continuously or at regular intervals.
- a regulation is required when the operating state is changed, but for example also because of changes in the fuel composition in continuous operation.
- known gas burners are usually equipped with a radial fan, which sucks the mixture of air and gas during operation.
- the adjustment of the Massen ⁇ streams of air and gas can be done, for example, by changing the speed and thus the intake of the impeller of the radial fan.
- valves can be provided in the gas and / or air supply line, which can be actuated to adjust the individual mass flows or their ratio.
- various sensors can be arranged at suitable locations.
- appropriate measuring devices can be provided for measuring the mass flow and / or the volume flow of the gas and / or the air and / or the mixture.
- state variables such as the temperature of the air, pressures, etc., can be measured at suitable locations, evaluated and used for the control.
- the regulation of the mixing ratio is done today by default, especially for gas burners used in the household, by pneumatic control of a gas valve in dependence on the volume flow of the supplied air quantity (principle of pneumatic composite).
- pneumatic control pressures or pressure differences at orifices, in constrictions or in Venturi nozzles are used as control variables for a pneumatic gas control valve, by means of which the gas supply to the air flow is set.
- a disadvantage of the pneumatic control is that mechanical components must be used which are subject to hysteresis effects due to the friction.
- DE 100 45 270 C2 discloses a firing device and a method for controlling the firing device with fluctuating fuel quality.
- the fuel-air ratio is changed accordingly.
- the mixture composition readjusted until the desired flame core temperature is reached.
- characteristic maps are used for various fuels, from which a new, suitable fuel / air ratio is read out whenever the performance requirements change.
- GB 2 270 748 A shows a control system for a gas burner.
- the regulation takes place here using a temperature measured at the burner surface. Since the surface temperature depends on the flow rate of the air-gas mixture, falls below a certain temperature, the speed of the fan rotor is lowered, whereby the air flow and thus the air-gas ratio is lowered.
- a method for controlling a gas burner in which the CO concentration in the exhaust gases of the burner flame is detected by an exhaust gas sensor.
- a certain CO value corresponds to a certain gas-air ratio.
- a desired gas-air ratio can be adjusted.
- EP 770 824 B1 shows a regulation of the gas-air ratio in the fuel-air mixture by measuring an ionization current which depends on the excess air in the exhaust gases of the burner flame. With stoichiometric combustion, a maximum of the ionization current is known to be measured. Depending on this value, the mixture composition can be optimized.
- a disadvantage of the last-mentioned methods is that the feedback signal is detected only when the flame is burning and can be fed back to the control loop.
- the inertia of the sensors limits accurate readjustment.
- the sensors used are subject to contamination so that the combustion is suboptimally controlled over time and thus the pollutant values increase.
- it can lead to difficulties and in extreme cases to extinguishing the flame.
- pneumatic regulator which, however, an increase in the complexity of the system and the costs entails.
- a further object of the invention is to reliably ensure a gas-type-independent fuel supply, even in the event of rapid load changes and in the starting phase without any time delays.
- the method according to the invention for controlling a firing device comprises the steps of: determining a value which depends on a measured temperature generated by the firing device; Providing a first parameter that corresponds to a certain burner load; and regulating the value of the temperature generated by the furnace by means of a characteristic which represents a value range corresponding to a desired temperature as a function of the first parameter corresponding to a burner load, wherein a second parameter is shown in the representation of the characteristic curve ,
- the air ratio (D) defined as the ratio of the actual amount of air supplied to the amount of air theoretically required for optimal stoichiometric combustion, is constant.
- the invention is based on the finding that a characteristic curve for regulating the value dependent on a temperature generated by the firing device does not depend on a type of gas used.
- the inventive method of control is thus gasartunpli.
- the temperature generated by the firing device is generally measured by a sensor arranged in the flame core or at the burner itself, for example at the burner surface. However, it can also be measured at the base of the flame, at the tip of the flame, or at some distance within the working range of the flame.
- the measured temperatures depending on where the temperature sensor is mounted, and depending on the load and the air-fuel ratio, for example, values between 100 0 C and 1000 0 C.
- the characteristic curve shown for a constant second parameter can be determined both empirically and by calculation.
- the second parameter value is the value predetermined, in which finds the optimal combustion with the existing burner sau ⁇ .
- the air ratio ⁇ is defined as the ratio of the actual amount of air supplied to the amount of air theoretically required for optimal stoichiometric combustion.
- the method is particularly simple and reliable in that the control can be carried out independently of the quality of the fuel and thus without analysis of the fuel.
- continuous or periodic corrections of the characteristic curve or a pre-selection from a characteristic field for different fuels / gases are dispensed with.
- the first parameter corresponds in particular to one of the firing devices per unit of time to be supplied air quantity.
- a constant second parameter means that with the change in the amount of air, the amount of fuel supplied is changed accordingly to maintain the optimal stoichiometric ratio between air and fuel gas for combustion.
- the first parameter preferably corresponds to a mass flow or volume flow of the air to be supplied to the firing device.
- the mass flow of the air can be determined, for example, by a mass flow sensor in the feed channel for the air supplied to the burner.
- the constant second parameter " changes likewise in the mass flow or volumetric flow of the fuel, which can likewise be measured by a mass flow sensor arranged at a suitable point.
- the burner load is at a constant air ratio substantially proportional to the amount of air supplied to the firing device per unit time. For the characteristic curve used, it is therefore irrelevant whether the first parameter expresses an air or gas mass flow or a load, for example.
- the method preferably comprises a comparison of the measured value dependent on the temperature with a desired value determined from the characteristic curve.
- a deviation of the actual temperature from the temperature setpoint value results in a setting of the operating parameters which reduces this deviation so long or until the deviation between the actual value and the setpoint value is compensated.
- the mixture can be enriched until the deviation of the actual value from the desired value no longer exists by gradually increasing the amount of fuel supplied. In the same way, the mixture can be emaciated accordingly at too high actual temperature.
- the value corresponding to the setpoint temperature is preferably determined as a function of the first parameter from the characteristic curve. If, for example, the mass flow of the air is selected as the first parameter, then the mass flow of the air is predetermined and the setpoint temperature corresponding to this mass flow is read from the characteristic curve. The regulation takes place until the value of the actual temperature corresponds to the setpoint temperature value.
- the measured value and / or the value range of the characteristic corresponds in particular to a temperature difference.
- a temperature difference is a temperature difference between a temperature generated in the region of the burner flame and a reference temperature.
- the reference temperature may correspond to the temperature of the air or of the mixture of air and combustion medium before it enters the region of the burner flame. If the temperature of the reference junction is known, the absolute temperature can also be determined. Alternatively, for example, the ambient temperature of the burner can serve as a reference.
- the control may include an increase or decrease in the amount of gas supplied per unit time.
- the temperature is controlled by enriching or leaning the mixture with fuel until the measured value, which is dependent on the actual temperature, coincides with the desired value.
- the increase or decrease in the amount of gas supplied per unit time is carried out in particular by actuation of a valve.
- a stepper motor can actuate an actuator of a valve, or modulate a pulse width or an electrical variable can be changed in an electrically controlled coil.
- the firing device in particular a gas burner, comprises: means for measuring a value which depends on a temperature generated by the firing device; Means for controlling the temperature generated by the firing device with specification of a first parameter corresponding to a certain burner load, and using a characteristic curve representing a value range corresponding to a desired temperature as a function of the first parameter corresponding to the burner load, wherein in the illustration the characteristic is constant, a second parameter which corresponds to a ratio of an amount of air to an amount of combustion medium in a mixture of air and combustion medium to be supplied to the firing device.
- the device for measuring the temperature-dependent value can be arranged in particular in the flame kernel, at the burner surface, at the base of the flame or at the tip of the flame.
- the inertia of the temperature sensor depends essentially on the distance to the flame and on the inert masses of the sensor and its attachment.
- the first parameter may correspond to one of the firing devices per unit of time to be supplied with the amount of air, in particular a mass flow or volume flow of the air.
- the firing device preferably has a measuring device for measuring the amount of air and / or fuel medium fed to the firing device per unit time and / or of a mixture of air and fuel medium, in particular for measuring a mass flow or volume flow.
- the sensors are to be arranged in the device such that the most reliable possible conclusion can be drawn on the mass flows flowing through them. This can for example be the case in a bypass.
- the burner load at a constant air ratio is generally substantially proportional to the amount of air supplied to the gas burner per unit time.
- the firing device may comprise means for comparing the value corresponding to the measured temperature with a desired value determined from the characteristic curve.
- the means for measuring a value dependent on the generated temperature may be adapted to measure a value corresponding to a temperature difference. speaks. From this temperature difference, the absolute temperature can be determined at a known reference temperature.
- the value corresponds to a temperature difference between a temperature generated in the region of the burner flame and a reference temperature, the reference temperature in particular corresponding to the temperature of the air or of the mixture of air and combustion medium before it enters the region of the burner flame.
- the device for measuring a temperature value preferably comprises a part which is arranged at least partially in the region of the reaction zone of the burner flame.
- part of the device for measuring the temperature value outside the reaction zone of the flame in particular in the region of an entry zone for the air supplied to the firing device and / or for the air / mixture mixture supplied to the firing device, can be used ⁇ be orders.
- the device for measuring a temperature value preferably comprises a thermoelement.
- a contact point of the different limbs of the thermocouple element is arranged in the region of the reaction zone of the burner flame, the reference point outside this reaction zone in order to detect a temperature difference between the flame and a region thermally decoupled therefrom, for example an environmental region of the gas burner ,
- the value measured by the device for measuring a temperature value is preferably a thermoelectric voltage.
- the means for regulating can be adapted to increase and / or reduce the amount of the combustion medium supplied to the combustion device per unit of time.
- the firing device comprises a valve which can be actuated to increase or reduce the amount of gas supplied per unit of time.
- the fuel supply to the firing device is adjusted by changing the opening of a gas valve from a first to a second opening value and by presetting a set value that depends on the first parameter, the second opening value being between an upper and lower limit value, and wherein the transition of the opening of the gas valve from the first to the second opening value, no control of the fuel supply performed and only after reaching the target value of the first parameter corresponding to the burner load, a control of operating parameters of the firing device is performed.
- a Nach ⁇ control of the gas valve which takes a lot of time with strong fluctuations in the operating parameters and is imperfect due to the inertia of the sensors, can thus be omitted.
- a control that specifies a setpoint value for a new setting as a function of the target value of the first parameter. Only in the following step is readjusted using real measured variables. Regardless of the inertia of the sensors used for the control, the method can be used to find a fast and reliable adjustment of the gas valve.
- the real opening of the gas valve is between an upper and a lower limit.
- control elements for example the fan or a gas control valve
- the control elements can be readjusted after a certain period of time, which depends on the inertia of the sensors. It thus takes place in the execution of the method according to the invention, a transition from a pure control to a control.
- the parameter corresponding to the burner load may be the quantity of air to be supplied to the firing device per unit time, in particular a mass flow or volume flow of the air to be supplied to the firing device.
- the opening values of the gas valve can therefore be represented in this embodiment as a function of the mass or mass flow of the air.
- the characteristic of this characteristic is determined inter alia by the properties of the gas valve.
- the burner load is essentially proportional to the amount of air supplied to the gas burner per unit of time. It is thus clear that the representation of the opening of the gas valve as a function of the mass flow of the air is equivalent to a depiction of the opening of the gas valve as a function of a load on the burner.
- the change of the opening of the gas valve may be performed by the modulation of a pulse width, by the variation of a voltage or a current of a valve spool, or by the operation of a stepping motor of a valve. Exceeding the upper or lower limit of the opening of the gas valve can be detected in the process.
- the gas opening may be above or below the upper or lower limit value. This can occur, in particular, if the setpoint values for the opening of the gas valve, which were never set when the characteristic was generated, deviate greatly from the optimally adjusted values.
- the reasons for this may be changes in the fuel composition, changes in the measurement characteristics of the sensors or the settings of the system parameters.
- the characteristic curve which results from the setpoint values for the opening of the gas valve as a function of the parameter which corresponds to the burner load can be recalibrated on the basis of the operating parameters of the firing device set by the control. If, after regulation, the value of the opening of the gas valve falls outside the range bounded by the upper and lower limit values, a recalibration of the characteristic curve can be carried out. For example, during this recalibration, the setpoints may be shifted so that the new setpoint line passes through the adjusted value for the opening of the gas valve. In the same way, the upper and lower limit values can be shifted, so that the new setpoint curve is surrounded by a tolerance corridor, as in the previously valid characteristic curve.
- Exceeding the upper or falling below the lower limit can, in particular after the expiry of a predetermined period of time, lead to switching off the firing device. This measure can be based on both safety concerns and economic considerations. Regulation in a range outside the desired range indicated by the limit values can, for example, indicate an undesired change in the predetermined settings of the gas burner, so that it may operate in an unsafe or ineffective operating range. The device would have to be checked and maintained below.
- a further firing device in particular a gas burner, comprises: a gas valve for adjusting the fuel supply to the firing device; a memory for storing set values that depend on a parameter corresponding to the burner load and upper and lower limits; a device for controlling the opening of the gas valve, which adjusts the opening of the gas valve from a first to a second opening value un ⁇ ter specification of a stored desired value in a change of the parameter corresponding to the burner load, from a starting value to a Ziel ⁇ the second opening value lies between a stored upper and a lower limit value, and wherein no control of the fuel supply is carried out during the transition of the opening of the gas valve from the first to the second opening value; and means for controlling which, after reaching the target value of the parameter which corresponds to the burner load, regulate operating parameters of the firing device.
- the control after the control step for example, as in a method according to the. Proverbs 1 to 24 take place.
- the gas valve may comprise an actuator, in particular a stepper motor, a pulse width modulated or an electrical size controlled coil.
- the firing device preferably has at least one mass flow sensor and / or volume flow sensor for measuring the amount of air supplied to the firing device per unit time and / or the amount of fuel medium fed per unit time and / or the amount of mixture of air and fuel medium supplied.
- the firing device can have a device in the region of the burner flame for measuring a temperature generated by the firing device.
- the temperature sensor may be arranged, for example, in the region of the flame, but also on the burner in the vicinity of the flame.
- a thermocouple can be used as a temperature sensor.
- FIG. 1 shows a firing device according to the present invention
- FIG. 2 shows a characteristic curve which is used in carrying out the first method
- FIG. 3 shows a characteristic curve as used for carrying out the second method
- a schematic representation of a structure of a control for performing a method is shown in FIG. 1 .
- FIG. 1 shows a gas burner in which a mixture of air L and gas G is mixed and burnt.
- the gas burner has an air supply section 1, is sucked through the combustion air L.
- a mass flow sensor 2 measures the mass flow of the air L drawn in by a fan 9.
- the mass flow sensor 2 is arranged in such a way that a flow which is as laminar as possible is generated in its surroundings in order to avoid measurement errors.
- the mass flow sensor could be arranged in a bypass (not shown) and using a laminar element.
- a valve 3 may be arranged for the combustion air.
- a regulated fan with air mass flow sensor will be used, so that the valve can be dispensed with.
- a gas supply section 4 is provided, which is connected to a gas supply line.
- the gas flows through the section 4, during operation of the gas burner.
- a valve 6, which may be an electronically controlled valve the gas flows through a line 7 into the mixing region 8.
- a mixing of the gas G with the air L takes place.
- the fan of the fan 9 is driven at an adjustable speed to suck in both the air L and the gas G.
- the valve 6 is set so that, taking into account the other operating parameters, for example the speed of the fan, a predetermined air-gas ratio reaches the mixing area 8.
- the air-gas ratio should be chosen so that the most clean and effective combustion takes place.
- the air-gas mixture flows from the fan 9 to the burner part 11. There it exits and feeds the burner flame 13, which has a predetermined heat conductivity. to surrender.
- a temperature sensor 12 for example a thermocouple
- an actual temperature is measured which is used in the implementation of the methods described below for controlling or controlling the gas burner.
- the temperature sensor 12 is arranged on a surface of the burner part 11. However, it is also conceivable to arrange the sensor elsewhere in the effective range of the flame 13.
- the reference temperature of the thermocouple is measured at a position outside the effective range of the flame 13, for example in the air supply line 1.
- a device for controlling or regulating the air and / or gas flow receives input data from the temperature sensor 12 and from the mass flow sensor 2 and outputs control signals to the valve 6 and to the drive of the blower 9.
- the opening of the valve 6 and the speed of the fan of the fan 9 are adjusted so that the desired air and gas supply results.
- control device has a memory for storing characteristic curves or nominal values as well as a corresponding data processing unit which is set up to carry out the corresponding methods.
- FIG. 2 shows a characteristic curve in which the setpoint temperature T so as a function of a mass flow mi. the combustion air, which is to be supplied to a gas burner, is applied.
- a temperature is predetermined for the mass flow of the combustion air at a constant air ratio.
- ⁇ For other values of the air ratio ⁇ , another dependence of the setpoint temperature T so n on the air mass flow m L would result.
- the method is based on the observation that the target temperature T so n belonging to a specific value of the mass flow of the combustion air for a given air number does not depend on the type of gas. The method thus works independently of gas types.
- a change starting from an operating state 1 to an operating state 2 is assumed.
- the change in the operating state requires a load change, for example a changed heat requirement.
- the operating state 1 corresponds to an air mass flow m L i
- the operating state 2 an air mass flow m L2 .
- the burner load is at a constant air ratio ⁇ substantially proportional to the mass flow of both the air and the fuel.
- the new air mass flow is first m ⁇ . 2 , starting from a desired in operating state 2 burner load Q S0
- the air mass flow m L can be measured on a mass flow sensor 2.
- the corresponding opening of the gas valve is adjusted by means of the desired characteristic Gasventilöff ⁇ tion via mass flow
- readjustment takes place.
- the readjustment takes place by a leaning or enrichment of the air-gas mixture by actuation of the gas valve 6.
- the gas valve 6 is adjusted so long until the control process is completed, that is, until the target temperature T S0
- thermocouple 12 instead of absolute actual and desired temperatures and temperature differences DT is t, DT S0
- the target temperature T n instead of the target temperature T n as in accordance with a thermal voltage U n as a function of the air mass flow m L are applied.
- the reference temperature of the thermocouple 12 may, for example, in the air supply section 1, in a burner area outside the range of action of the burner flame 13 in the Umgege- Be measured by the burner.
- the characteristic curve shown in FIG. 2 can be represented empirically or mathematically.
- the use of a low thermal inertia sensor 12 located close to the flame 13 would be advantageous.
- Sheathed thermocouples with a jacket made of materials which are suitable for oxidation processes at high temperatures have proven to be particularly effective and stable.
- the measured temperatures Tj S t move, depending on the place of installation, burner load Q so n and air ratio ⁇ between 100 and 1000 0 C.
- the volumetric flow measurement which is generally more cost-effective than the mass flow measurement of the combustion air, can generally be used.
- FIG. 3 shows a dependency of the opening w of the gas valve 6, which determines the fuel feed, depending on the mass flow mi. the air supplied to the burner shown.
- the middle curve K3 corresponding to a target value curve, the predetermined opening values w n 6 so a gas valve in response to a corresponding air mass flow m L indicates.
- the air mass flow m L is changed from an initial value m L1 to a second value m L2 and adapted to the new load Q 2 .
- the Rege ⁇ ment is turned off and the opening value w of the gas valve from the previously set Value W 1 changed to a new target opening value W 2 .
- the value W 2 lies on the sol 'lö Stammskurve K3.
- the adjusting opening of the gas valve is in any case between an upper limit curve K1 and a lower limit curve K2, which indicate a tolerance range for the opening of the gas valve.
- the upper limit curve K1 corresponds to a maximum permissible opening of the gas valve
- the lower limit curve K2 to a minimum permissible opening of the gas valve 6.
- control process In the control process, the operating parameters of the firing device, in particular the setting of the valve 6 and the speed of the fan of the fan 9 are adjusted so that the combustion process is optimized.
- the scheme can be done in any way. In the present example it is done by measuring a flame from the Brenner ⁇ 13 temperature T produced in their area of influence is tursensor by a Tempera ⁇ 12. Control can be achieved, for example, acids, such as in the previously described procedural.
- the control signal for adjusting the opening of the gas valve can accordingly trigger, for example, the operation of a stepping motor, or change the pulse width, the voltage or the current of a coil.
- the air mass flows ⁇ m L and G m Gasmassen ⁇ flows are measured by mass flow sensors 2 and 5.
- a valve opening w which lies above the upper limit curve K1 or below the lower limit curve K2 is set in a phase of the method before or after execution of the control process, then corresponding consequences can be drawn. For example, leaving the tolerance range between K1 and K2 can lead to a calibration process. During the calibration, the conditions set according to the control could be stored in a memory of the control device and used for the next start. The setpoint curve K3, like the limit curves K1 and K2, can be shifted so that a uniform tolerance corridor for the opening of the gas valve 6 around the setpoint curve K3 also results in the new curve.
- exceeding the limit curves K1 or K2 upwards or downwards after a certain period of time or with repeated overshoots or undershoots can cause the device to be switched off. It may happen that certain settings of the gas burner are adjusted over time or certain boundary conditions have changed so that a safety risk occurs or the gas burner operates in a non-effective operating state.
- a deviation of the opening of the gas valve from the permitted corridor can be triggered for example by a deviation of the gas pressure from the permissible inlet pressure range or by a malfunction of the sensors. The shutdown can thus be interpreted as an indication that a review and maintenance of the device is required.
- FIG. 4 shows schematically and by way of example a control device for carrying out one of the methods according to the invention.
- the measured air mass flow mi. and gemes ⁇ in the area of the burner flame sene actual temperature T is used to control device as input signals.
- the air mass flow m L is directly proportional to the load of the burner Q.
- the speed n of the fan which is proportional to the heat output, is calculated from the determined load. read out and adjusted accordingly.
- the target temperature T so n the burner flame is determined.
- a setpoint temperature is specified.
- this target temperature T so n is compared with the measured actual temperature Tj St. If there is a temperature difference .DELTA.T, so employs a control process, which is continued until the actual temperature Tj S t of the target temperature T corresponds to n.
- n is, as shown schematically by the diagram E, by actuating the stepping motor of a Gasven ⁇ tils, which determines the fuel supply m G changed. This results in enriching or leaning of the fuel-air mixture, which leads to an increase or decrease in the temperature generated by the burner.
- the diagram F shows the opening of the gas valve in the form of the step setting of the stepping motor of the gas valve as a function of the air mass flow m L.
- the curves (1) and (2) indicate an upper or lower limit curve.
- the opening of the gas valve must always be in the target corridor defined by curves (1) and (2) during and after the control operations.
- a corresponding measure can be initiated.
- the gas burner can be switched off in order to exclude safety risks or ineffective operation. It can also be just a warning or recalibration of certain characteristics are performed.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Regulation And Control Of Combustion (AREA)
Abstract
Description
Claims
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/629,019 US8500441B2 (en) | 2004-06-23 | 2005-06-20 | Method for regulating and controlling a firing device and a firing device |
EP05752994.3A EP1902254B1 (de) | 2004-06-23 | 2005-06-20 | Verfahren zur regelung und steuerung einer feuerungseinrichtung und feuerungseinrichtung |
CA2571520A CA2571520C (en) | 2004-06-23 | 2005-06-20 | Method for regulating and controlling a firing device and a firing device |
US12/907,365 US8636501B2 (en) | 2004-06-23 | 2010-10-19 | Method for regulating and controlling a firing device and firing device |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE202004017851U DE202004017851U1 (de) | 2004-06-23 | 2004-06-23 | Feuerungseinrichtung |
DE202004017851.6 | 2004-06-23 | ||
DE102004030299A DE102004030299A1 (de) | 2004-06-23 | 2004-06-23 | Verfahren zur Regelung und Steuerung einer Feuerungseinrichtung und Feuerungseinrichtung |
DE102004030299.5 | 2004-06-23 | ||
DE102004055716A DE102004055716C5 (de) | 2004-06-23 | 2004-11-18 | Verfahren zur Regelung einer Feuerungseinrichtung und Feuerungseinrichtung (Elektronischer Verbund I) |
DE102004055716.0 | 2004-11-18 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/629,019 A-371-Of-International US8500441B2 (en) | 2004-06-23 | 2005-06-20 | Method for regulating and controlling a firing device and a firing device |
US12/907,365 Division US8636501B2 (en) | 2004-06-23 | 2010-10-19 | Method for regulating and controlling a firing device and firing device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2006000366A1 true WO2006000366A1 (de) | 2006-01-05 |
Family
ID=34970763
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2005/006627 WO2006000366A1 (de) | 2004-06-23 | 2005-06-20 | Verfahren zur regelung und steuerung einer feuerungseinrichtung und feuerungseinrichtung |
Country Status (6)
Country | Link |
---|---|
US (2) | US8500441B2 (de) |
EP (2) | EP2594848B1 (de) |
KR (2) | KR20110129884A (de) |
CA (2) | CA2571520C (de) |
DE (1) | DE102004055716C5 (de) |
WO (1) | WO2006000366A1 (de) |
Cited By (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102006006964A1 (de) * | 2006-02-14 | 2007-08-23 | Ebm-Papst Landshut Gmbh | Verfahren zum Starten einer Feuerungseinrichtung bei unbekannten Rahmenbedingungen |
EP1923634A1 (de) * | 2006-11-15 | 2008-05-21 | Vaillant GmbH | Regelung des Brenngas-Luft-Gemisches über die Brenner- oder Flammentemperatur eines Heizgerätes |
AT505064B1 (de) * | 2007-03-22 | 2009-06-15 | Vaillant Austria Gmbh | Regelung des brenngas-luft-gemisches über die brenner- oder flammentemperatur eines heizgerätes |
CN101949549A (zh) * | 2010-10-18 | 2011-01-19 | 攀钢集团钢铁钒钛股份有限公司 | 燃烧系统流量控制方法 |
DE102012019409A1 (de) * | 2012-10-04 | 2014-04-10 | August Brötje GmbH | Vorrichtung zum Erzeugen von Wärme aus zumindest einem Energieträgermedium unter Hinzufügen von Luft |
US8839815B2 (en) | 2011-12-15 | 2014-09-23 | Honeywell International Inc. | Gas valve with electronic cycle counter |
US8899264B2 (en) | 2011-12-15 | 2014-12-02 | Honeywell International Inc. | Gas valve with electronic proof of closure system |
US8905063B2 (en) | 2011-12-15 | 2014-12-09 | Honeywell International Inc. | Gas valve with fuel rate monitor |
US8947242B2 (en) | 2011-12-15 | 2015-02-03 | Honeywell International Inc. | Gas valve with valve leakage test |
US9074770B2 (en) | 2011-12-15 | 2015-07-07 | Honeywell International Inc. | Gas valve with electronic valve proving system |
US9234661B2 (en) | 2012-09-15 | 2016-01-12 | Honeywell International Inc. | Burner control system |
US9557059B2 (en) | 2011-12-15 | 2017-01-31 | Honeywell International Inc | Gas valve with communication link |
US9645584B2 (en) | 2014-09-17 | 2017-05-09 | Honeywell International Inc. | Gas valve with electronic health monitoring |
US9683674B2 (en) | 2013-10-29 | 2017-06-20 | Honeywell Technologies Sarl | Regulating device |
US9835265B2 (en) | 2011-12-15 | 2017-12-05 | Honeywell International Inc. | Valve with actuator diagnostics |
US9841122B2 (en) | 2014-09-09 | 2017-12-12 | Honeywell International Inc. | Gas valve with electronic valve proving system |
US9846440B2 (en) | 2011-12-15 | 2017-12-19 | Honeywell International Inc. | Valve controller configured to estimate fuel comsumption |
US9851103B2 (en) | 2011-12-15 | 2017-12-26 | Honeywell International Inc. | Gas valve with overpressure diagnostics |
US20180058689A1 (en) * | 2016-08-31 | 2018-03-01 | Honeywell International Inc. | Air/gas admittance device for a combustion appliance |
DE102017204021A1 (de) | 2016-09-02 | 2018-03-08 | Robert Bosch Gmbh | Verfahren zum Aktualisieren einer Kennlinie in einem Heizsystem sowie eine Steuereinheit und ein Heizsystem |
US9995486B2 (en) | 2011-12-15 | 2018-06-12 | Honeywell International Inc. | Gas valve with high/low gas pressure detection |
US10024439B2 (en) | 2013-12-16 | 2018-07-17 | Honeywell International Inc. | Valve over-travel mechanism |
DE202019100261U1 (de) | 2019-01-17 | 2019-02-04 | Ebm-Papst Landshut Gmbh | Heizgerät mit Regelung eines Gasgemisches |
DE202019100263U1 (de) | 2019-01-17 | 2019-02-04 | Ebm-Papst Landshut Gmbh | Heizgerät mit Regelung eines Gasgemisches unter Nutzung eines Gassensors, eines Brenngassensors und eines Gasgemischsensors |
DE202019100264U1 (de) | 2019-01-17 | 2019-02-04 | Ebm-Papst Landshut Gmbh | Heizgerät mit Regelung eines Gasgemisches unter Nutzung eines Gassensors und eines Gasgemischsensors |
DE102017126137A1 (de) | 2017-11-08 | 2019-05-09 | Ebm-Papst Landshut Gmbh | Verfahren zur Regelung eines brenngasbetriebenen Heizgerätes |
DE102017126138A1 (de) | 2017-11-08 | 2019-05-09 | Ebm-Papst Landshut Gmbh | Verfahren zur Regelung eines brenngasbetriebenen Heizgerätes |
US10422531B2 (en) | 2012-09-15 | 2019-09-24 | Honeywell International Inc. | System and approach for controlling a combustion chamber |
US10503181B2 (en) | 2016-01-13 | 2019-12-10 | Honeywell International Inc. | Pressure regulator |
US10564062B2 (en) | 2016-10-19 | 2020-02-18 | Honeywell International Inc. | Human-machine interface for gas valve |
US10697815B2 (en) | 2018-06-09 | 2020-06-30 | Honeywell International Inc. | System and methods for mitigating condensation in a sensor module |
EP3683500A1 (de) | 2019-01-17 | 2020-07-22 | ebm-papst Landshut GmbH | Verfahren zur regelung eines gasgemisches unter nutzung eines gassensors und eines gasgemischsensors |
WO2020148434A1 (de) | 2019-01-17 | 2020-07-23 | Ebm-Papst Landshut Gmbh | Verfahren zur regelung eines gasgemisches unter nutzung eines gasgemischsensors |
WO2020148110A1 (de) | 2019-01-17 | 2020-07-23 | Ebm-Papst Landshut Gmbh | Verfahren zur regelung eines gasgemisches unter nutzung eines gassensors, eines brenngassensors und eines gasgemischsensors |
WO2020197391A1 (en) | 2019-03-28 | 2020-10-01 | Bdr Thermea Group B.V. | Method for operating a premix gas burner, a premix gas burner and a boiler |
DE102019110977A1 (de) * | 2019-04-29 | 2020-10-29 | Ebm-Papst Landshut Gmbh | Verfahren zur Überprüfung eines Gasgemischsensors bei einem brenngasbetriebenen Heizgerät |
DE102019110976A1 (de) * | 2019-04-29 | 2020-10-29 | Ebm-Papst Landshut Gmbh | Verfahren zur Überprüfung eines Gasgemischsensors und Ionisationssensors bei einem brenngasbetriebenen Heizgerät |
DE102019114919A1 (de) * | 2019-06-04 | 2020-12-10 | Ebm-Papst Landshut Gmbh | Verfahren zur Regelung eines brenngasbetriebenen Heizgerätes |
US11073281B2 (en) | 2017-12-29 | 2021-07-27 | Honeywell International Inc. | Closed-loop programming and control of a combustion appliance |
Families Citing this family (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2217859A4 (de) | 2007-11-16 | 2011-07-13 | Wolfedale Eng Ltd | Temperatursteuervorrichtung für einen barbecue-grill |
US9119977B2 (en) * | 2008-07-11 | 2015-09-01 | Zodiac Aerotechnics | Oxygen breathing device with mass flow control |
DE102008038949A1 (de) | 2008-08-13 | 2010-02-18 | Ebm-Papst Landshut Gmbh | Sicherungssystem in und Verfahren zum Betrieb einer Verbrennungsanlage |
US8167610B2 (en) * | 2009-06-03 | 2012-05-01 | Nordyne, LLC | Premix furnace and methods of mixing air and fuel and improving combustion stability |
US9217654B2 (en) * | 2010-09-15 | 2015-12-22 | General Electric Company | Submetering hydrocarbon fueled water heaters with energy manager systems |
US20120125240A1 (en) * | 2010-11-22 | 2012-05-24 | Alstom Technology Ltd. | System and method of managing energy utilized in a flue gas processing system |
ITMI20110411A1 (it) * | 2011-03-15 | 2012-09-16 | Bertelli & Partners Srl | Metodo perfezionato di controllo di un apparecchio o caldaia a gas |
JP5742553B2 (ja) * | 2011-07-28 | 2015-07-01 | 株式会社ノーリツ | 燃焼装置 |
US20130337388A1 (en) * | 2012-06-14 | 2013-12-19 | Webasto Ag | Method of controlling a mobile heating device |
EP2685168B1 (de) * | 2012-07-13 | 2015-10-14 | Honeywell Technologies Sarl | Verfahren zum Betrieb eines Gasbrenners |
US10317076B2 (en) | 2014-09-12 | 2019-06-11 | Honeywell International Inc. | System and approach for controlling a combustion chamber |
ITBO20120568A1 (it) * | 2012-10-17 | 2014-04-18 | Gas Point S R L | Apparecchiatura di regolazione e controllo della combustione in un bruciatore a gas combustibile |
US10718517B2 (en) * | 2018-05-03 | 2020-07-21 | Grand Mate Co., Ltd. | Gas appliance and control method thereof |
CN113557390B (zh) * | 2019-03-12 | 2023-09-12 | 贝卡尔特燃烧技术股份有限公司 | 操作可调节的燃烧器的方法 |
DE102019113985A1 (de) * | 2019-05-24 | 2020-11-26 | Ebm-Papst Landshut Gmbh | Gasgebläsevorrichtung mit einem Gasgebläse und einem Anemometer |
NL2024101B1 (en) * | 2019-10-25 | 2021-07-19 | Bekaert Combustion Tech Bv | Surface stabilized fully premixed gas premix burner for burning hydrogen gas, and method for starting such burner |
DE102021214839A1 (de) | 2021-03-15 | 2022-09-15 | Siemens Aktiengesellschaft | Flammenüberwachung mit Temperatursensor |
PL4060232T3 (pl) | 2021-03-16 | 2023-09-11 | Siemens Aktiengesellschaft | Wykrywanie mocy i regulacja współczynnika nadmiaru powietrza za pomocą czujników w komorze spalania |
DE102021121093A1 (de) | 2021-08-13 | 2023-02-16 | Vaillant Gmbh | Verfahren zum Betreiben eines Heizgerätes, Computerprogramm, Speichermedium, Regel- und Steuergerät, Heizgerät und Verwendung eines Signals |
DE102021124643A1 (de) | 2021-09-23 | 2023-03-23 | Vaillant Gmbh | Verfahren zur Erkennung des Erlöschens einer Flamme eines Brenners |
DE102022112173A1 (de) | 2022-05-16 | 2023-11-16 | Vaillant Gmbh | Verfahren zum Betreiben eines Heizgerätes, Computerprogramm, Regel- und Steuergerät, Heizgerät und Verwendung eines ermittelten elektrischen Widerstandes |
DE102022122820A1 (de) | 2022-09-08 | 2024-03-14 | Vaillant Gmbh | Verfahren zur Bewertung einer Installation eines Gas-Luft-Verbundes eines Heizgerätes, Gas-Luftverbund und Computerprogramm |
DE102022123899A1 (de) | 2022-09-19 | 2024-03-21 | Vaillant Gmbh | Verfahren zum Betreiben eines Heizgerätes, Computerprogramm, Regel- und Steuergerät, Heizgerät und Verwendung einer erfassten Drehzahl |
EP4397908A1 (de) | 2023-01-06 | 2024-07-10 | Siemens Aktiengesellschaft | Brennstoffmengenregelung und/oder luftmengenregelung |
DE102023111345A1 (de) | 2023-05-03 | 2024-11-07 | Vaillant Gmbh | Verfahren zum Betrieb eines Heizgerätes, Heizgerät und Computerprogramm |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3712392C1 (en) * | 1987-04-11 | 1988-10-13 | Programmelectronic Eng Ag | Method and arrangement for increasing the operating reliability of furnace burner systems |
DE3937290A1 (de) * | 1988-11-10 | 1990-05-17 | Vaillant Joh Gmbh & Co | Verfahren und einrichtung zur herstellung eines einer verbrennung zuzufuehrenden brennstoff-verbrennungsluft-gemisches |
JPH0560321A (ja) * | 1991-08-30 | 1993-03-09 | Sanyo Electric Co Ltd | ガスバーナの制御装置 |
EP0697637A1 (de) * | 1994-08-17 | 1996-02-21 | G. Kromschröder Aktiengesellschaft | Verfahren zur Funktionsüberwachung eines Steuer- und Regelsystems |
US5511971A (en) * | 1993-08-23 | 1996-04-30 | Benz; Robert P. | Low nox burner process for boilers |
DE19627857A1 (de) * | 1996-07-11 | 1998-01-15 | Stiebel Eltron Gmbh & Co Kg | Verfahren zum Betrieb eines Gasgebläsebrenners |
EP1002997A2 (de) * | 1998-11-20 | 2000-05-24 | G. Kromschröder Aktiengesellschaft | Verfahren zur Luftzahlregelung eines vollvormischenden Gasbrenners |
DE10057902A1 (de) * | 2000-11-22 | 2002-05-29 | Buderus Heiztechnik Gmbh | Gasbrenner für ein Heizgerät |
EP1243857A1 (de) * | 2001-03-23 | 2002-09-25 | Motoren Ventilatoren Landshut GmbH | Gebläse für Verbrennungsluft |
EP1293727A1 (de) * | 2001-09-13 | 2003-03-19 | Siemens Building Technologies AG | Regeleinrichtung für einen Brenner und Einstellverfahren |
Family Cites Families (78)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2884009A (en) * | 1955-05-16 | 1959-04-28 | Sidney W Hetherington | Fluid flow control valve with modulating orifice |
US3191917A (en) * | 1962-03-30 | 1965-06-29 | Mcgraw Edison Company Inc | Dryer control and dryer |
US3266551A (en) * | 1965-08-31 | 1966-08-16 | Electronics Corp America | Combustion control system |
GB1288824A (de) * | 1970-05-06 | 1972-09-13 | ||
US3741710A (en) * | 1971-12-20 | 1973-06-26 | L Nelson | Combustion control valve means and system |
US3861858A (en) * | 1972-12-11 | 1975-01-21 | Midland Ross Corp | Throat mix burner |
US4059385A (en) * | 1976-07-26 | 1977-11-22 | International Business Machines Corporation | Combustion monitoring and control system |
US4083677A (en) * | 1976-09-22 | 1978-04-11 | Bloom Engineering Company, Inc. | Method and apparatus for heating a furnace chamber |
US4150939A (en) * | 1977-08-22 | 1979-04-24 | Reliance Instrument Manufacturing Corp. | Differential controller for positioning combustion system |
JPS6018887B2 (ja) * | 1978-04-17 | 1985-05-13 | 松下電器産業株式会社 | 燃焼制御装置 |
SE439980B (sv) * | 1978-06-02 | 1985-07-08 | United Stirling Ab & Co | Forfarande och anordning for reglering av luft/brensleblandning vid brennare av den typ som er utformade med ett evaporatorror |
JPS57166416A (en) * | 1981-04-04 | 1982-10-13 | Chugai Ro Kogyo Kaisha Ltd | Automatic air-fuel ratio controller of combustion equipment using preheated air |
JPS57196016A (en) * | 1981-05-28 | 1982-12-01 | Mitsubishi Electric Corp | Combustion device |
DE3407552A1 (de) * | 1984-03-01 | 1985-09-05 | Bodenseewerk Perkin Elmer Co | Gasregeleinrichtung zur regelung der brenngas- und oxidanszufuhr zu einem brenner bei einem atomabsorptions-spektrometer |
JPS62107241U (de) * | 1985-12-24 | 1987-07-09 | ||
JPS62206319A (ja) * | 1986-03-04 | 1987-09-10 | Yamamoto Seisakusho:Kk | バ−ナの空燃比制御装置 |
JPS62218724A (ja) * | 1986-03-20 | 1987-09-26 | Matsushita Electric Ind Co Ltd | 温水ボイラ |
JPS6332218A (ja) * | 1986-07-24 | 1988-02-10 | Matsushita Electric Ind Co Ltd | 燃焼制御装置 |
US4688547A (en) * | 1986-07-25 | 1987-08-25 | Carrier Corporation | Method for providing variable output gas-fired furnace with a constant temperature rise and efficiency |
JPH0198818A (ja) * | 1987-10-08 | 1989-04-17 | Nippon Denso Co Ltd | ガス給湯器制御装置 |
US4889103A (en) * | 1988-01-25 | 1989-12-26 | Joseph Fraioli | Infrared wok heater |
DE3812697A1 (de) * | 1988-04-16 | 1989-12-28 | Programmelectronic Eng Ag | Verfahren zur reduzierung der stoergroessenwirkung bei geblaesebrenneranlagen und geblaesebrenneranlage |
JPH0282015A (ja) * | 1988-09-19 | 1990-03-22 | Sanyo Electric Co Ltd | 暖房機の燃焼制御装置 |
CA2005415C (en) * | 1989-01-10 | 1994-03-01 | Willie H. Best | High efficiency gas burner assembly |
US4865540A (en) * | 1989-02-01 | 1989-09-12 | Foster Wheeler Energy Corporation | Air flow measurement device for fluidized bed reactor |
DE3908138A1 (de) * | 1989-03-14 | 1990-09-20 | Klamke Record Oel Gasbrenner | Vorrichtung zur ueberwachung und/oder regelung der verbrennung bei einem oel- oder gasbrenner |
US5367470A (en) * | 1989-12-14 | 1994-11-22 | Exergetics Systems, Inc. | Method for fuel flow determination and improving thermal efficiency in a fossil-fired power plant |
JPH04131610A (ja) * | 1990-09-21 | 1992-05-06 | Toshiba Corp | 燃焼制御装置 |
JPH04327713A (ja) * | 1991-04-26 | 1992-11-17 | Matsushita Electric Ind Co Ltd | 燃焼装置 |
JP2524933B2 (ja) * | 1991-12-27 | 1996-08-14 | 黒崎窯業株式会社 | ア―ク式電気炉精錬における溶鋼温度のコントロ―ル方法 |
GB2270748B (en) * | 1992-09-17 | 1995-12-06 | Caradon Heating Ltd | Burner control system |
US5360335A (en) * | 1992-10-22 | 1994-11-01 | Honeywell Inc. | Fuel burner control system with selectable standing pilot mode |
US5667375A (en) * | 1993-08-16 | 1997-09-16 | Sebastiani; Enrico | Gas combustion apparatus and method for controlling the same |
US5451371A (en) * | 1994-06-09 | 1995-09-19 | Ford Motor Company | High-sensitivity, silicon-based, microcalorimetric gas sensor |
US5599179A (en) * | 1994-08-01 | 1997-02-04 | Mississippi State University | Real-time combustion controller |
JP3176804B2 (ja) * | 1994-09-01 | 2001-06-18 | 新日本製鐵株式会社 | 連続熱処理炉の燃焼制御方法 |
US5634786A (en) * | 1994-11-30 | 1997-06-03 | North American Manufacturing Company | Integrated fuel/air ratio control system |
EG20966A (en) * | 1995-06-06 | 2000-07-30 | Shell Int Research | A method for flame stabilization in a process for preparing synthesis gas |
ATE189301T1 (de) * | 1995-10-25 | 2000-02-15 | Stiebel Eltron Gmbh & Co Kg | Verfahren und schaltung zur regelung eines gasbrenners |
WO1997018417A1 (en) * | 1995-11-13 | 1997-05-22 | Gas Research Institute, Inc. | Flame ionization control apparatus and method |
US5791332A (en) * | 1996-02-16 | 1998-08-11 | Carrier Corporation | Variable speed inducer motor control method |
ES2158400T3 (es) * | 1996-05-09 | 2001-09-01 | Stiebel Eltron Gmbh & Co Kg | Procedimiento para el funcionamiento de un quemador de gas. |
US5829962A (en) * | 1996-05-29 | 1998-11-03 | L'air Liquide, Societe Anonyme Pour L'etude Et, L'exploitation Des Procedes Georges | Method and apparatus for optical flame control of combustion burners |
US6045353A (en) * | 1996-05-29 | 2000-04-04 | American Air Liquide, Inc. | Method and apparatus for optical flame control of combustion burners |
SE9602688L (sv) * | 1996-07-08 | 1998-01-09 | Volvo Ab | Katalytisk brännkammare, samt förfarande för tändning och reglering av den katalytiska brännkammaren |
CA2205766C (en) * | 1996-09-12 | 2001-02-20 | Mitsubishi Denki Kabushiki Kaisha | Combustion system and operation control method thereof |
US6206687B1 (en) * | 1997-01-24 | 2001-03-27 | Aaf-Mcquay Inc. | High turndown modulating gas burner |
DE19734574B4 (de) * | 1997-08-09 | 2006-06-14 | Robert Bosch Gmbh | Verfahren und Vorrichtung zum Regeln eines Brenners, insbesondere eines vollvormischenden Gasbrenners |
KR19990053716A (ko) * | 1997-12-24 | 1999-07-15 | 전주범 | 가스보일러의 순풍시 공기량제어방법 |
JP2000205524A (ja) * | 1999-01-20 | 2000-07-25 | Tokyo Gas Co Ltd | 昇温手段を備えたバ―ナ―及びそれを用いた燃焼方法 |
IT1310192B1 (it) * | 1999-03-19 | 2002-02-11 | Worgas Bruciatori Srl | Metodo e mezzi per il controllo di sicurezza di bruciatori. |
JP3294215B2 (ja) * | 1999-03-23 | 2002-06-24 | 日本碍子株式会社 | バッチ式燃焼炉におけるバーナ燃焼制御方法 |
US7568908B2 (en) * | 1999-05-20 | 2009-08-04 | Cambridge Engineering, Inc. | Low fire start control |
DE10025769A1 (de) * | 2000-05-12 | 2001-11-15 | Siemens Building Tech Ag | Regeleinrichtung für einen Brenner |
DE10040358B4 (de) * | 2000-08-16 | 2006-03-30 | Honeywell B.V. | Regelungsverfahren für Gasbrenner |
DE10045270C2 (de) * | 2000-08-31 | 2002-11-21 | Heatec Thermotechnik Gmbh | Feuerungseinrichtung und Verfahren zum Regeln derselben |
JP2002147749A (ja) * | 2000-11-07 | 2002-05-22 | Nippon Steel Corp | 燃焼制御装置 |
AT413004B (de) * | 2000-11-23 | 2005-09-26 | Vaillant Gmbh | Verfahren zur steuerung eines von einem gebläseunterstützten brenner beheizten kessels |
WO2002070760A1 (en) * | 2001-03-05 | 2002-09-12 | Anglo Operations Limited | A furnace and a method of controlling a furnace |
DE10110810A1 (de) * | 2001-03-06 | 2002-09-12 | Siemens Building Tech Ag | Anordnung eines Feuerungsautomaten für einen Gas- oder Ölbrenner |
EP1370806B1 (de) * | 2001-03-23 | 2010-08-04 | GVP Gesellschaft zur Vermarktung der Porenbrennertechnik mbH | Verfahren und vorrichtung zur einstellung der luftzahl |
US6685464B2 (en) * | 2001-03-28 | 2004-02-03 | L'Air Liquide - Societe Anonyme à Directoire et Conseil de Surveillance pour l'Etude et l'Exploitation des Procedes Georges Claude | High velocity injection of enriched oxygen gas having low amount of oxygen enrichment |
CA2347966A1 (en) * | 2001-05-17 | 2002-11-17 | Wen Chou Chen | Gas burner operating system |
US6702571B2 (en) * | 2001-09-05 | 2004-03-09 | Gas Technology Institute | Flex-flame burner and self-optimizing combustion system |
US20030138747A1 (en) * | 2002-01-08 | 2003-07-24 | Yongxian Zeng | Oxy-fuel combustion process |
US20030134241A1 (en) * | 2002-01-14 | 2003-07-17 | Ovidiu Marin | Process and apparatus of combustion for reduction of nitrogen oxide emissions |
AT411189B (de) * | 2002-01-17 | 2003-10-27 | Vaillant Gmbh | Verfahren zur regelung eines gasbrenners |
US6827079B2 (en) * | 2002-02-26 | 2004-12-07 | Solaronics, Inc. | Apparatus and method for reducing peak temperature hot spots on a gas fired infrared industrial heater |
US7008218B2 (en) * | 2002-08-19 | 2006-03-07 | Abb Inc. | Combustion emission estimation with flame sensing system |
US20040137390A1 (en) * | 2003-01-09 | 2004-07-15 | Arnold Kenny M. | Methods and systems for measuring and controlling the percent stoichiometric oxidant in an incinerator |
US7048536B2 (en) * | 2003-04-25 | 2006-05-23 | Alzeta Corporation | Temperature-compensated combustion control |
DE10340045A1 (de) * | 2003-08-28 | 2005-03-24 | Karl Dungs Gmbh & Co. Kg | Verhältnisregler mit dynamischer Verhältnisbildung |
EP1510758A1 (de) * | 2003-08-29 | 2005-03-02 | Siemens Building Technologies AG | Verfahren zur Regelung beziehungsweise Steuerung eines Brenners |
DE10341543A1 (de) * | 2003-09-09 | 2005-04-28 | Honeywell Bv | Regelungsverfahren für Gasbrenner |
US7241135B2 (en) * | 2004-11-18 | 2007-07-10 | Honeywell International Inc. | Feedback control for modulating gas burner |
US7475646B2 (en) * | 2005-11-30 | 2009-01-13 | General Electric Company | System and method for decreasing a rate of slag formation at predetermined locations in a boiler system |
US7802984B2 (en) * | 2006-04-07 | 2010-09-28 | Thomas & Betts International, Inc. | System and method for combustion-air modulation of a gas-fired heating system |
JP2008108546A (ja) * | 2006-10-25 | 2008-05-08 | Aisin Seiki Co Ltd | 燃料電池システム |
-
2004
- 2004-11-18 DE DE102004055716A patent/DE102004055716C5/de not_active Expired - Fee Related
-
2005
- 2005-06-20 EP EP13152525.5A patent/EP2594848B1/de not_active Not-in-force
- 2005-06-20 KR KR1020117020876A patent/KR20110129884A/ko not_active Application Discontinuation
- 2005-06-20 CA CA2571520A patent/CA2571520C/en not_active Expired - Fee Related
- 2005-06-20 EP EP05752994.3A patent/EP1902254B1/de not_active Not-in-force
- 2005-06-20 US US11/629,019 patent/US8500441B2/en not_active Expired - Fee Related
- 2005-06-20 CA CA2773654A patent/CA2773654A1/en not_active Abandoned
- 2005-06-20 WO PCT/EP2005/006627 patent/WO2006000366A1/de active Application Filing
- 2005-06-20 KR KR1020067026710A patent/KR20070043712A/ko active IP Right Grant
-
2010
- 2010-10-19 US US12/907,365 patent/US8636501B2/en not_active Expired - Fee Related
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3712392C1 (en) * | 1987-04-11 | 1988-10-13 | Programmelectronic Eng Ag | Method and arrangement for increasing the operating reliability of furnace burner systems |
DE3937290A1 (de) * | 1988-11-10 | 1990-05-17 | Vaillant Joh Gmbh & Co | Verfahren und einrichtung zur herstellung eines einer verbrennung zuzufuehrenden brennstoff-verbrennungsluft-gemisches |
JPH0560321A (ja) * | 1991-08-30 | 1993-03-09 | Sanyo Electric Co Ltd | ガスバーナの制御装置 |
US5511971A (en) * | 1993-08-23 | 1996-04-30 | Benz; Robert P. | Low nox burner process for boilers |
EP0697637A1 (de) * | 1994-08-17 | 1996-02-21 | G. Kromschröder Aktiengesellschaft | Verfahren zur Funktionsüberwachung eines Steuer- und Regelsystems |
DE19627857A1 (de) * | 1996-07-11 | 1998-01-15 | Stiebel Eltron Gmbh & Co Kg | Verfahren zum Betrieb eines Gasgebläsebrenners |
EP1002997A2 (de) * | 1998-11-20 | 2000-05-24 | G. Kromschröder Aktiengesellschaft | Verfahren zur Luftzahlregelung eines vollvormischenden Gasbrenners |
DE10057902A1 (de) * | 2000-11-22 | 2002-05-29 | Buderus Heiztechnik Gmbh | Gasbrenner für ein Heizgerät |
EP1243857A1 (de) * | 2001-03-23 | 2002-09-25 | Motoren Ventilatoren Landshut GmbH | Gebläse für Verbrennungsluft |
EP1293727A1 (de) * | 2001-09-13 | 2003-03-19 | Siemens Building Technologies AG | Regeleinrichtung für einen Brenner und Einstellverfahren |
Non-Patent Citations (1)
Title |
---|
PATENT ABSTRACTS OF JAPAN vol. 017, no. 374 (M - 1445) 14 July 1993 (1993-07-14) * |
Cited By (60)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102006006964A1 (de) * | 2006-02-14 | 2007-08-23 | Ebm-Papst Landshut Gmbh | Verfahren zum Starten einer Feuerungseinrichtung bei unbekannten Rahmenbedingungen |
DE102006006964B4 (de) * | 2006-02-14 | 2012-09-06 | Ebm-Papst Landshut Gmbh | Verfahren zum Starten einer Feuerungseinrichtung bei unbekannten Rahmenbedingungen |
EP1923634A1 (de) * | 2006-11-15 | 2008-05-21 | Vaillant GmbH | Regelung des Brenngas-Luft-Gemisches über die Brenner- oder Flammentemperatur eines Heizgerätes |
AT505064B1 (de) * | 2007-03-22 | 2009-06-15 | Vaillant Austria Gmbh | Regelung des brenngas-luft-gemisches über die brenner- oder flammentemperatur eines heizgerätes |
CN101949549A (zh) * | 2010-10-18 | 2011-01-19 | 攀钢集团钢铁钒钛股份有限公司 | 燃烧系统流量控制方法 |
US8899264B2 (en) | 2011-12-15 | 2014-12-02 | Honeywell International Inc. | Gas valve with electronic proof of closure system |
US9995486B2 (en) | 2011-12-15 | 2018-06-12 | Honeywell International Inc. | Gas valve with high/low gas pressure detection |
US8839815B2 (en) | 2011-12-15 | 2014-09-23 | Honeywell International Inc. | Gas valve with electronic cycle counter |
US9835265B2 (en) | 2011-12-15 | 2017-12-05 | Honeywell International Inc. | Valve with actuator diagnostics |
US8905063B2 (en) | 2011-12-15 | 2014-12-09 | Honeywell International Inc. | Gas valve with fuel rate monitor |
US8947242B2 (en) | 2011-12-15 | 2015-02-03 | Honeywell International Inc. | Gas valve with valve leakage test |
US9074770B2 (en) | 2011-12-15 | 2015-07-07 | Honeywell International Inc. | Gas valve with electronic valve proving system |
US10851993B2 (en) | 2011-12-15 | 2020-12-01 | Honeywell International Inc. | Gas valve with overpressure diagnostics |
US9557059B2 (en) | 2011-12-15 | 2017-01-31 | Honeywell International Inc | Gas valve with communication link |
US10697632B2 (en) | 2011-12-15 | 2020-06-30 | Honeywell International Inc. | Gas valve with communication link |
US9851103B2 (en) | 2011-12-15 | 2017-12-26 | Honeywell International Inc. | Gas valve with overpressure diagnostics |
US9846440B2 (en) | 2011-12-15 | 2017-12-19 | Honeywell International Inc. | Valve controller configured to estimate fuel comsumption |
US11421875B2 (en) | 2012-09-15 | 2022-08-23 | Honeywell International Inc. | Burner control system |
US9657946B2 (en) | 2012-09-15 | 2017-05-23 | Honeywell International Inc. | Burner control system |
US9234661B2 (en) | 2012-09-15 | 2016-01-12 | Honeywell International Inc. | Burner control system |
US10422531B2 (en) | 2012-09-15 | 2019-09-24 | Honeywell International Inc. | System and approach for controlling a combustion chamber |
EP2716973A3 (de) * | 2012-10-04 | 2014-09-03 | August Brötje GmbH | Vorrichtung zum Erzeugen von Wärme aus zumindest einem Energieträgermedium unter Hinzufügen von Luft |
DE102012019409A1 (de) * | 2012-10-04 | 2014-04-10 | August Brötje GmbH | Vorrichtung zum Erzeugen von Wärme aus zumindest einem Energieträgermedium unter Hinzufügen von Luft |
US9683674B2 (en) | 2013-10-29 | 2017-06-20 | Honeywell Technologies Sarl | Regulating device |
US10215291B2 (en) | 2013-10-29 | 2019-02-26 | Honeywell International Inc. | Regulating device |
US10024439B2 (en) | 2013-12-16 | 2018-07-17 | Honeywell International Inc. | Valve over-travel mechanism |
US9841122B2 (en) | 2014-09-09 | 2017-12-12 | Honeywell International Inc. | Gas valve with electronic valve proving system |
US9645584B2 (en) | 2014-09-17 | 2017-05-09 | Honeywell International Inc. | Gas valve with electronic health monitoring |
US10203049B2 (en) | 2014-09-17 | 2019-02-12 | Honeywell International Inc. | Gas valve with electronic health monitoring |
US10503181B2 (en) | 2016-01-13 | 2019-12-10 | Honeywell International Inc. | Pressure regulator |
US10274195B2 (en) * | 2016-08-31 | 2019-04-30 | Honeywell International Inc. | Air/gas admittance device for a combustion appliance |
US20180058689A1 (en) * | 2016-08-31 | 2018-03-01 | Honeywell International Inc. | Air/gas admittance device for a combustion appliance |
DE102017204021A1 (de) | 2016-09-02 | 2018-03-08 | Robert Bosch Gmbh | Verfahren zum Aktualisieren einer Kennlinie in einem Heizsystem sowie eine Steuereinheit und ein Heizsystem |
US10564062B2 (en) | 2016-10-19 | 2020-02-18 | Honeywell International Inc. | Human-machine interface for gas valve |
DE102017126137A1 (de) | 2017-11-08 | 2019-05-09 | Ebm-Papst Landshut Gmbh | Verfahren zur Regelung eines brenngasbetriebenen Heizgerätes |
DE102017126138A1 (de) | 2017-11-08 | 2019-05-09 | Ebm-Papst Landshut Gmbh | Verfahren zur Regelung eines brenngasbetriebenen Heizgerätes |
WO2019091619A1 (de) | 2017-11-08 | 2019-05-16 | Ebm-Papst Landshut Gmbh | Verfahren zur regelung eines brenngasbetriebenen heizgeräts |
WO2019091612A1 (de) | 2017-11-08 | 2019-05-16 | Ebm-Papst Landshut Gmbh | Verfahren zur regelung eines brenngasbetriebenen heizgerätes |
CN110573800A (zh) * | 2017-11-08 | 2019-12-13 | 依必安派特兰茨胡特有限公司 | 用于调控由燃气操纵的加热设备的方法 |
CN110573800B (zh) * | 2017-11-08 | 2021-06-15 | 依必安派特兰茨胡特有限公司 | 用于调控由燃气操纵的加热设备的方法 |
US11073281B2 (en) | 2017-12-29 | 2021-07-27 | Honeywell International Inc. | Closed-loop programming and control of a combustion appliance |
US10697815B2 (en) | 2018-06-09 | 2020-06-30 | Honeywell International Inc. | System and methods for mitigating condensation in a sensor module |
DE102019101189A1 (de) | 2019-01-17 | 2020-07-23 | Ebm-Papst Landshut Gmbh | Verfahren zur Regelung eines Gasgemisches |
DE202019100261U1 (de) | 2019-01-17 | 2019-02-04 | Ebm-Papst Landshut Gmbh | Heizgerät mit Regelung eines Gasgemisches |
DE102019101190A1 (de) | 2019-01-17 | 2020-07-23 | Ebm-Papst Landshut Gmbh | Verfahren zur Regelung eines Gasgemisches unter Nutzung eines Gassensors, eines Brenngassensors und eines Gasgemischsensors |
WO2020148434A1 (de) | 2019-01-17 | 2020-07-23 | Ebm-Papst Landshut Gmbh | Verfahren zur regelung eines gasgemisches unter nutzung eines gasgemischsensors |
DE102019101191A1 (de) | 2019-01-17 | 2020-07-23 | Ebm-Papst Landshut Gmbh | Verfahren zur Regelung eines Gasgemisches unter Nutzung eines Gassensors und eines Gasgemischsensors |
DE202019100264U1 (de) | 2019-01-17 | 2019-02-04 | Ebm-Papst Landshut Gmbh | Heizgerät mit Regelung eines Gasgemisches unter Nutzung eines Gassensors und eines Gasgemischsensors |
WO2020148110A1 (de) | 2019-01-17 | 2020-07-23 | Ebm-Papst Landshut Gmbh | Verfahren zur regelung eines gasgemisches unter nutzung eines gassensors, eines brenngassensors und eines gasgemischsensors |
DE202019100263U1 (de) | 2019-01-17 | 2019-02-04 | Ebm-Papst Landshut Gmbh | Heizgerät mit Regelung eines Gasgemisches unter Nutzung eines Gassensors, eines Brenngassensors und eines Gasgemischsensors |
EP3683500A1 (de) | 2019-01-17 | 2020-07-22 | ebm-papst Landshut GmbH | Verfahren zur regelung eines gasgemisches unter nutzung eines gassensors und eines gasgemischsensors |
WO2020197391A1 (en) | 2019-03-28 | 2020-10-01 | Bdr Thermea Group B.V. | Method for operating a premix gas burner, a premix gas burner and a boiler |
NL2022826B1 (en) | 2019-03-28 | 2020-10-02 | Bdr Thermea Group B V | Method for operating a premix gas burner, a premix gas burner and a boiler |
US12025309B2 (en) | 2019-03-28 | 2024-07-02 | Bdr Thermea Group B.V. | Method for operating a premix gas burner, a premix gas burner and a boiler |
EP3734159A1 (de) | 2019-04-29 | 2020-11-04 | ebm-papst Landshut GmbH | Verfahren zur überprüfung eines gasgemischsensors bei einem brenngasbetriebenen heizgerät |
WO2020221758A1 (de) | 2019-04-29 | 2020-11-05 | Ebm-Papst Landshut Gmbh | Verfahren zur überprüfung eines gasgemischsensors und ionisationssensors bei einem brenngasbetriebenen heizgerät |
DE102019110976A1 (de) * | 2019-04-29 | 2020-10-29 | Ebm-Papst Landshut Gmbh | Verfahren zur Überprüfung eines Gasgemischsensors und Ionisationssensors bei einem brenngasbetriebenen Heizgerät |
DE102019110977A1 (de) * | 2019-04-29 | 2020-10-29 | Ebm-Papst Landshut Gmbh | Verfahren zur Überprüfung eines Gasgemischsensors bei einem brenngasbetriebenen Heizgerät |
EP3751200A1 (de) | 2019-06-04 | 2020-12-16 | ebm-papst Landshut GmbH | Verfahren zur regelung eines brenngasbetriebenen heizgerätes |
DE102019114919A1 (de) * | 2019-06-04 | 2020-12-10 | Ebm-Papst Landshut Gmbh | Verfahren zur Regelung eines brenngasbetriebenen Heizgerätes |
Also Published As
Publication number | Publication date |
---|---|
CA2571520A1 (en) | 2006-01-05 |
DE102004055716C5 (de) | 2010-02-11 |
KR20070043712A (ko) | 2007-04-25 |
EP2594848A1 (de) | 2013-05-22 |
CA2773654A1 (en) | 2006-01-05 |
US8636501B2 (en) | 2014-01-28 |
US20110033808A1 (en) | 2011-02-10 |
KR20110129884A (ko) | 2011-12-02 |
EP2594848B1 (de) | 2015-09-23 |
CA2571520C (en) | 2013-11-19 |
DE102004055716A1 (de) | 2006-01-12 |
EP1902254B1 (de) | 2016-03-30 |
US8500441B2 (en) | 2013-08-06 |
EP1902254A1 (de) | 2008-03-26 |
US20080318172A1 (en) | 2008-12-25 |
DE102004055716B4 (de) | 2007-09-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1902254B1 (de) | Verfahren zur regelung und steuerung einer feuerungseinrichtung und feuerungseinrichtung | |
EP1761728B1 (de) | Verfahren zur einstellung der luftzahl an einer feuerungseinrichtung und feuerungseinrichtung | |
DE3707259C2 (de) | Brennervorrichtung | |
EP2005066B1 (de) | Verfahren zum starten einer feuerungseinrichtung bei unbekannten rahmenbedingungen | |
EP3824366B1 (de) | Verfahren zur regelung eines gasgemisches unter nutzung eines gassensors, eines brenngassensors und eines gasgemischsensors | |
EP0833106B1 (de) | Verfahren und Vorrichtung zur Betriebsoptimierung eines Gasbrenners | |
DE202019100263U1 (de) | Heizgerät mit Regelung eines Gasgemisches unter Nutzung eines Gassensors, eines Brenngassensors und eines Gasgemischsensors | |
EP3596391B1 (de) | Verfahren zur regelung eines brenngasbetriebenen heizgerätes | |
DE3707258C2 (de) | Brennervorrichtung | |
EP3683500A1 (de) | Verfahren zur regelung eines gasgemisches unter nutzung eines gassensors und eines gasgemischsensors | |
DE19635974A1 (de) | Gas/Luft-Mischsystem für Gasheizgeräte | |
DE10045270C2 (de) | Feuerungseinrichtung und Verfahren zum Regeln derselben | |
DE4109841C2 (de) | Regelvorrichtung für Gasbrenner mit einem Gebläse zum Zuführen von Verbrennungsluft | |
AT394909B (de) | Einrichtung zur kontinuierlichen ueberwachung eines variablen luftstromes | |
DE3716641C2 (de) | Brennervorrichtung | |
DE19734574B4 (de) | Verfahren und Vorrichtung zum Regeln eines Brenners, insbesondere eines vollvormischenden Gasbrenners | |
DE19510425C2 (de) | Verfahren und Vorrichtung zur Regelung eines Heizgerätes | |
DE102004055715C5 (de) | Verfahren zur Einstellung von Betriebsparametern an einer Feuerungseinrichtung und Feuerungseinrichtung | |
DE102004063992B4 (de) | Verfahren zur Steuerung einer Feuerungseinrichtung und Feuerungseinrichtung | |
EP4060233B1 (de) | Leistungserfassung und luftzahlregelung mittels sensoren im feuerraum | |
DE202004017851U1 (de) | Feuerungseinrichtung | |
DE19921045A1 (de) | Brenner zur Verbrennung von flüssigen und/oder gasförmigen Brennstoffen in Feuerungsanlagen | |
DE102004030299A1 (de) | Verfahren zur Regelung und Steuerung einer Feuerungseinrichtung und Feuerungseinrichtung | |
DE10045272A1 (de) | Feuerungseinrichtung mit Überwachung der Flammenlänge | |
DE202004017850U1 (de) | Feuerungseinrichtung |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
DPEN | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 1020067026710 Country of ref document: KR |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2005752994 Country of ref document: EP |
|
WWW | Wipo information: withdrawn in national office |
Country of ref document: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2571520 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 11629019 Country of ref document: US |
|
WWP | Wipo information: published in national office |
Ref document number: 2005752994 Country of ref document: EP |