EP3969812B1 - Method for monitoring a burner and/or a burner behavior, and burner unit - Google Patents

Method for monitoring a burner and/or a burner behavior, and burner unit Download PDF

Info

Publication number
EP3969812B1
EP3969812B1 EP20734460.7A EP20734460A EP3969812B1 EP 3969812 B1 EP3969812 B1 EP 3969812B1 EP 20734460 A EP20734460 A EP 20734460A EP 3969812 B1 EP3969812 B1 EP 3969812B1
Authority
EP
European Patent Office
Prior art keywords
burner
ionization
electrode
measured
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20734460.7A
Other languages
German (de)
French (fr)
Other versions
EP3969812A1 (en
Inventor
Wolfgang MUSELMANN
Kai Armesto-Beyer
Craig Hawthorne
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Truma Geraetetechnik GmbH and Co KG
Original Assignee
Truma Geraetetechnik GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Truma Geraetetechnik GmbH and Co KG filed Critical Truma Geraetetechnik GmbH and Co KG
Publication of EP3969812A1 publication Critical patent/EP3969812A1/en
Application granted granted Critical
Publication of EP3969812B1 publication Critical patent/EP3969812B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/12Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods
    • F23N5/123Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M11/00Safety arrangements
    • F23M11/04Means for supervising combustion, e.g. windows
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/002Regulating fuel supply using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/20Systems for controlling combustion with a time programme acting through electrical means, e.g. using time-delay relays
    • F23N5/203Systems for controlling combustion with a time programme acting through electrical means, e.g. using time-delay relays using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/20Arrangement or mounting of control or safety devices
    • F24H9/2007Arrangement or mounting of control or safety devices for water heaters
    • F24H9/2035Arrangement or mounting of control or safety devices for water heaters using fluid fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2229/00Flame sensors
    • F23N2229/12Flame sensors with flame rectification current detecting means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2241/00Applications
    • F23N2241/06Space-heating and heating water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2900/00Special features of, or arrangements for controlling combustion
    • F23N2900/05005Mounting arrangements for sensing, detecting or measuring devices

Definitions

  • the invention relates to a method for monitoring a burner and/or the combustion behavior of a burner.
  • An ionization signal is measured and the measured ionization signal is used to monitor the burner.
  • the method preferably also serves to regulate the burner or the combustion behavior of the burner.
  • the invention relates to a burner arrangement with a burner, a heat exchanger, at least one ionization electrode, an air-fuel mixture supply for the burner and a control device.
  • the control device is connected to the ionization electrode and monitors the burner and/or a burning behavior of the burner based on ionization signals measured with the at least one ionization electrode.
  • the burner is preferably a gas burner.
  • FIG WO 2013/032324 A1 The basic structure of a burner arrangement with a burner, a surrounding heat exchanger and an ionization electrode is shown, for example, in FIG WO 2013/032324 A1 , as well as the EP 2 017 531 B1 .
  • an air-fuel (or alternatively: air-gas) mixture is burned (see also e.g. the DE 34 15 946 C2 ).
  • the fuel is, for example, propane, butane or z. B. in the gaseous state converted diesel or a mixture of these components.
  • the flame emanates from the surface of the burner.
  • ionization electrodes In order to monitor the presence of a flame or the combustion quality itself and preferably to regulate the behavior of the burner or the combustion process based thereon, it is known in the prior art to use so-called ionization electrodes.
  • the construction and use of ionization electrodes for monitoring or for detecting a flame is described, for example, in B. the EP 1 036 984 A1 , the EP 1 707 880 A1 , the DE 10 2010 055 567 B4 or the EP 2 357 410 A2 .
  • the ionization effect of a flame is used.
  • An AC voltage is applied to an area where the flame should be, either via two electrodes or via one electrode and a ground electrode. If a flame burns in this area, this causes a rectifier effect on the AC voltage, which in turn causes a current to flow, e.g. B. caused by the ground to the ionization electrode.
  • This current flow is recorded by measuring electronics and can be provided in the form of an ionization voltage as a measure of the ionization current that actually occurs.
  • a limit value is usually specified for the measured ionization voltage, exceeding which is evaluated as the presence of a flame and falling below it is interpreted to mean that no flame is burning. Overall, an ionization signal is thus determined which, depending on the design, can be a voltage or a current.
  • the ionization electrode is attached relative to this surface or to this ground electrode.
  • the position of the electrode relative to the flame or burner surface is decisive for measuring the ionization voltage.
  • Gas burners and in particular fan-operated gas burners are often exposed to changing environmental conditions that can lead to variable combustion behavior.
  • environmental parameters are, for example, air pressure, temperature of the combustion air, gas pressure (ie the pressure at which the fuel gas is supplied), type of gas and also the energy value of the gas.
  • gas pressure ie the pressure at which the fuel gas is supplied
  • type of gas ie the pressure at which the fuel gas is supplied
  • energy value of the gas ie the pressure at which the fuel gas is supplied
  • the composition of the fuel gas can often vary.
  • typical gas mixtures such as LPG (Liquefied Petroleum Gas; Autogas) or typical propane/butane mixtures
  • LPG Liquefied Petroleum Gas
  • propane/butane mixtures can vary.
  • the gas burner is not operated at the optimum operating point, at which the fuel is burned optimally and the pollutant emissions are minimal.
  • lambda ranges are used for clean and low-emission combustion.
  • this lambda range the combustion takes place completely and hygienically. Combustion outside these limits leads to reduced efficiency and increased emissions of harmful exhaust gas components.
  • the EP 0 770 824 B1 provides that, starting from a lean, over-stoichiometric burner operation, the excess air is reduced until the combustion is under-stoichiometric. To do this, the ionization voltage is measured between an ionization electrode and the burner surface. Since the ionization voltage is at a maximum in the case of stoichiometric combustion, the ionization voltage initially increases in the method described when the excess air is reduced. If the ionization voltage subsequently falls after reaching the maximum, this is a sign that the combustion is sub-stoichiometric.
  • the qualitative course of the ionization signal usually shows reproducible characteristic features in the relevant lambda range.
  • the absolute values can be subject to deviations. So e.g. B. the absolute value of the ionization voltage depends on the position of the ionization electrode (another name is also ionization candle), on aging properties, on the nature of the fuel or on the altitude at which the combustion process takes place. Hence a calibration of the measuring arrangement in order to use the ionization signal as a controlled variable for combustion control.
  • the calibration consists, for example, in finding the aforementioned maximum of the ionization voltage by varying the mixing ratio by making the air-fuel mixture richer.
  • the combustion is gradually made richer until the maximum voltage is determined by running a blower for the combustion air at a lower speed or by allowing more gas to flow in through a valve.
  • it is known to carry out a calibration by leaning the gas-air mixture (see e.g EP 2 014 985 A2 ).
  • the object on which the invention is based is to propose a method for monitoring a burner and a corresponding burner arrangement with a burner that can be monitored in this way, which represent an alternative to the prior art.
  • the invention achieves the object by a method which is characterized in that the ionization signal is measured between an ionization electrode and a counter-electrode spaced apart from a burner surface of the burner.
  • the monitoring consists, for example, in determining an amount for an ionization voltage or an ionization current from the ionization signal measured relative to the counter-electrode and with a known lambda value, and in comparing this value with a desired value. If the determined value deviates from the target value by more than a tolerance range, the air/fuel mixture is corrected, e.g. B. the proportion of air is increased or decreased.
  • a target value is determined or how the method is subjected to a calibration.
  • the method is used to monitor a burner or specifically the burning behavior of a burner.
  • the method preferably serves to monitor or regulate the combustion of the air-fuel mixture by the burner, ie the combustion behavior of the burner.
  • the method also includes a calibration or a determination of the parameters used for the monitoring.
  • the burner is preferably a fully premixed surface burner.
  • the burner or specifically the burner surface, from which the flames generated during combustion emanate serves as a counter-electrode, opposite which the ionization signal (eg the ionization voltage or the ionization current) is measured with the ionization electrode.
  • the ionization signal eg the ionization voltage or the ionization current
  • this takes place via a counter-electrode spaced apart from the burner surface.
  • the counter-electrode is therefore primarily not a part of the burner and is—depending on the configuration—galvanically isolated from the burner or in particular from the burner surface.
  • an electrical ionization signal (that is, depending on the design, an electrical voltage or an electrical current) is measured between the ionization electrode and a counter-electrode spaced apart from the burner surface. From the ionization signal measured in this way, it is then determined whether the firing process is taking place optimally and whether it may be necessary to intervene to regulate the burner or the entire firing arrangement.
  • the counter-electrode is a heat exchanger that at least partially surrounds the burner surface.
  • the heat exchanger or z. B. an inner housing of the heat exchanger facing the burner surface is at least partially electrically conductive.
  • the heat exchanger is used to transfer the thermal energy of the flue gas generated during combustion to a fluid, e.g. B. water is transferred.
  • a single ionization electrode is used, which is further away from the flame area - i.e. in particular from the burner surface - compared to the prior art, or at least two ionization electrodes - For example, at different distances from the burner surface - used to measure ionization signals.
  • this is preferably located in one embodiment centrally between the burner surface and the heat exchanger housing as an example of the counter-electrode that differs from the burner.
  • a spark plug is used both to ignite the combustion process of the burner and as an ionization electrode.
  • --based on the at least one ionization signal--the burner is supplied with an air-fuel mixture.
  • the air supply or the fuel supply is changed.
  • the composition of an air-fuel mixture with which the burner is supplied is acted upon, e.g. B. changed.
  • One embodiment provides that the ionization signal is measured between the ionization electrode and the counter-electrode by electrically connecting the counter-electrode to ground.
  • an—additional or supplementary—ionization signal is measured between the ionization electrode and a burner surface of the burner.
  • This ionization signal is thus preferably used in addition to the ionization signal between the ionization electrode and the counter-electrode for monitoring the burner.
  • the burner surface or, in general, the burner and the counter-electrode are preferably galvanically isolated from one another, ie electrically isolated from one another.
  • a type of mixed ionization signal (possibly as a supplementary signal in addition to an ionization signal measured only between the ionization electrode and the counter-electrode) is measured by measuring the heat exchanger—or a heat exchanger housing—and the burner—or preferably the burner surface - are electrically connected to ground and preferably to the same ground.
  • the different ionization signals result from the following measuring arrangements:
  • the ionization signal is measured between the ionization electrode and the counter-electrode, with the burner surface being electrically insulated from the counter-electrode.
  • the ionization signal is measured between, on the one hand, the counter-electrode and burner surface, both of which are connected to one another or to ground, and, on the other hand, the ionization electrode.
  • --as is customary in the prior art--a (preferably supplementary) ionization signal is measured between the ionization electrode and the burner surface, which is connected to ground and is electrically insulated from the counter-electrode.
  • the counter-electrode is formed in particular by a heat exchanger surrounding the burner surface.
  • ionization signals are recorded via ionization electrodes located at different positions.
  • such an ionization electrode is used which is located in a region around the mean distance between the burner (or specifically the burner surface) and the counter-electrode.
  • the range lies within plus or minus 20% of the mean distance. In another embodiment, the range is within plus or minus 10% relative to the mean distance. In one embodiment, the ionization electrode used for measuring the ionization signal is located closer to the counter-electrode than to the burner surface.
  • the ionization signals when using the ionization signals it is advantageous and relevant to safety to carry out calibrations or at least occasionally or at least when starting up for the first time the parameters used for monitoring and preferably controlling the combustion behavior (e.g. target or limit values) to determine.
  • the parameters used for monitoring and preferably controlling the combustion behavior e.g. target or limit values
  • the method according to the invention provides that for a calibration and/or for a determination of parameters used in the monitoring of the burner, ionization signals are measured in an over-stoichiometric combustion, and that a local extreme (e.g. a minimum of the amount) of the ionization signal is determined as a function of a lambda value of an air-fuel mixture supplied to the burner and is used for the calibration or the determination.
  • a local extreme e.g. a minimum of the amount
  • measurements of the ionization signal in the depleted area i.e. H. made with an excess of air.
  • the ratio of air and fuel is varied—preferably only—in the lean range (ie the lambda value is changed) and the respective ionization signals are measured and evaluated.
  • a local extremum of the ionization signal is determined as a function of the lambda value. This extremum is then used for calibration or for determining the parameter adjustment that may be required.
  • the advantage of the above steps is that the measurements are carried out in the gentle lean range.
  • the ionization signal is preferably measured between at least one ionization electrode and the counter-electrode spaced apart from the burner. Depending on the sign of the measured ionization signal or depending on how - z. B. considering the magnitude - the ionization signal is evaluated, the local extremum is a minimum or a maximum.
  • a local extremum of the measured ionization signals is determined via lambda in the area of the lean air/fuel mixture (that is, with a lambda value greater than 1). In one embodiment, this extremum is then approached for the calibration. The lambda value is then reduced by a predetermined value, for example by reducing the speed of the combustion air fan, in order to thereby achieve a desired combustion process.
  • one embodiment provides for ionization signals to be measured via at least two ionization electrodes for calibration and/or for determining the parameters used in monitoring the burner, with the ionization electrodes being at different distances from a burning surface of the burner and/or the counter electrode.
  • the ionization signals are measured—preferably by varying the lambda value of the air/fuel mixture fed to the burner—in such a way that at least the counter-electrode is grounded.
  • the ionization signals are measured with different lambda values.
  • an intersection of the two curves that is, the dependency, for example, of the amplitude of the ionization signal on the lambda value
  • the measurements are preferably only carried out in the over-stoichiometric range.
  • the invention solves the problem by a burner arrangement, which is characterized in that the control device for monitoring - and / or regulation - the burner and / or a combustion behavior of a burner at least one between The ionization signal measured by the ionization electrode and the heat exchanger is used as the counter electrode.
  • control device allows monitoring or control by implementing at least one of the preceding configurations of the method.
  • One embodiment provides that the ionization electrode is arranged in an area around a mean distance between a burner surface and the heat exchanger.
  • the ionization electrode is arranged in a range of plus/minus 20% around the average distance between a burner surface and the heat exchanger. If the mean distance is M, the ionization electrode in this embodiment is in a range between 0.8*M and 1.2*M.
  • the configuration according to the invention includes that the control device leans the air-fuel mixture supplied to the burner for a calibration and/or for a determination of parameters used in monitoring the burner via the air-fuel mixture supply and with the leaned air Evaluates fuel mixture measured ionization signals, and that the control device for the calibration or the determination of the parameters determines a local extreme of the ionization signals.
  • an ionization electrode is also used for classic flame monitoring and/or as a spark plug to start a combustion process.
  • the 1 1 schematically shows a burner arrangement 1 with a burner 2 which is supplied with an air-fuel mixture via an air-fuel mixture supply 5 .
  • the fuel is, for example, a combustible gas such as propane or butane or diesel that has been converted into the gaseous state.
  • the air-fuel mixture is burned by the burner 2, with a flame—not shown—forming here above the burner surface 2' of the burner 2.
  • the burner surface 2' is surrounded by a heat exchanger 3, in which the heat generated by the combustion process - in the form of the flame and the flue gas generated - is transferred to another medium, e.g. B. is transferred to water or a glycol-water mixture.
  • a heat exchanger 3 in which the heat generated by the combustion process - in the form of the flame and the flue gas generated - is transferred to another medium, e.g. B. is transferred to water or a glycol-water mixture.
  • the heat exchanger 3 is designed to be electrically conductive at least partially and preferably on the inner side facing the burner surface 2′. This conductivity allows the heat exchanger 3 to be electrically connected to ground or the ionization voltage to be measured via the at least one ionization electrode 4 in relation to the heat exchanger 3.
  • An ionization electrode 4 via which an ionization signal (here, for example, the ionization voltage) is measured, serves to monitor or control the firing process--only in the illustrated embodiment. Alternatively, an ionization current can be measured.
  • an ionization signal here, for example, the ionization voltage
  • either the burner surface 2' of the burner 2 or the previously mentioned, at least partially electrically conductive inner surface of the heat exchanger 3 is connected to ground, so that the ionization electrode 4 is used to measure the ionization voltage with respect to the burner 2 or with respect to the heat exchanger 3 is measured. It is also provided in one embodiment that the heat exchanger 3 and the burner surface 2' are at the same mass, so that the ionization signal from the ionization electrode 4 is measured opposite both as a counter-electrode.
  • the ionization signal is measured by the at least one ionization electrode 4 with the burner surface 2', with the heat exchanger 3 as individual counter-electrodes, or with the burner surface 2' and the heat exchanger 3 as a common counter-electrode.
  • These three differently measured ionization signals are then processed individually or together and used to monitor the burner 2 or as a controlled variable for the combustion behavior of the burner 2 .
  • the burner surface 2' and the heat exchanger 3 are of the same mass, so that the ionization signal is measured relative to the burner surface 2' and the heat exchanger 3.
  • the options between which components the electrical voltage is measured are indicated in the figure by the double arrows.
  • the ionization electrode 4 is connected to the control device 6, which evaluates or processes the measurement signal (ie the ionization signal) and which acts on the air/fuel mixture supply 5 based on the measurement values. This happens e.g. B. by regulating the amount of fuel or e.g. B. by controlling a - the air-promoting blower - not shown here.
  • the action of the control device 6 on the control of the combustion process is indicated by the dashed arrow.
  • control device 6 acts on a - not shown here - starting device for starting a combustion process, if z. B. shows from the ionization signal that no flame is burning.
  • the arrangement 1 thus also allows flame monitoring.
  • the cut of the 2 1 shows a burner arrangement 1 with two ionization electrodes 4, 4', which are located radially at different distances between the burner surface 2' and the inside of the heat exchanger 3. It can be seen that the burner surface 2 ′ has a circular cross-section in this embodiment, which is surrounded by the inner wall of the circular-cylindrical heat exchanger 3 . The representation is not true to size.
  • the burner surface 2' has a diameter of 50 mm, the distance between the burner surface 2' and the inner edge of the heat exchanger 3 being 38 mm.
  • the two ionization electrodes 4', 4 in this exemplary embodiment have a distance of between 5 mm and 9 mm (for the ionization electrode 4' that is closer to the burner surface 2') or between 14 mm and 22 mm (for the ionization electrode 4' that is further from the burner surface 2 'Removed ionization electrode 4) to the outer surface of the burner surface 2'.
  • the position of the inner ionization electrode 4' corresponds to the configuration known in the prior art.
  • the short distance from the burner surface 2' has the advantage that there is a high probability that the ionization electrode 4' will project directly into a flame. This therefore relates in particular to the use of the ionization electrode 4' for flame detection.
  • the radially further outer ionization electrode 4 is located here in an area around a central distance between the burner surface 2' and the inner edge of the heat exchanger 3.
  • the inner wall of the heat exchanger 3 is grounded and the electrical ionization signal is measured via the ionization electrode 4 with respect to this ground.
  • the 3 shows two ionization voltages with the two ionization electrodes 4, 4 'of the embodiment of 2 have been measured.
  • the voltages were measured (the voltages are plotted with a negative sign on the y-axis) in each case with respect to the burner surface 2', which was grounded. This measurement thus corresponds to the state of the art.
  • the heat exchanger 3 was electrically isolated from the burner surface 2'.
  • the lambda value increasing from left to right is plotted on the x-axis. The mixture thus becomes leaner from left to right.
  • the 4 shows the curves of the voltage values when the voltages between on the one hand the respective ionization electrode 4, 4' and on the other hand both the burner surface 2' and the surrounding heat exchanger 3 of the embodiment of FIG 2 be measured. In contrast to the measurements of 3 the burner surface 2 'and the heat exchanger 3 electrically connected to each other and thus on the same ground.
  • the upper curve was measured with the ionization electrode 4' positioned closer to the burner surface 2'.
  • the lower curve originates from the measurement via the ionization electrode 4, which is further away from the burner surface 2'.
  • the ionization signal of the ionization electrode 4 that is further away initially falls, in order then to rise again after a local minimum—which is the local extremum sought here.
  • the amplitude of this ionization signal also falls towards zero, as in the curve of the ionization electrode 4' located closer to the burner surface 2'.
  • the ionization signal After passing through the minimum, the ionization signal increases again and then decreases again. With these larger lambda values, the flame is also clearly lifted off the burner surface.
  • the position and the form of the minimum in the lean range also depend on the area loading of the burner (ratio of the energy supplied and the usable burner surface). Therefore, in one embodiment, it is provided that whenever there is a change in the output at which the burner 2 is operated, the control parameters are determined anew, ie a new calibration is carried out.
  • a method for calibration - and thus, for example, as part of the method for monitoring the burner or for controlling the combustion process - is that the air-fuel mixture is leaned and that a local minimum of the ionization signal between the ionization electrode and the heat exchanger is sought as an example of a surrounding counter-electrode. The minimum is then used for calibration so that the combustion behavior of the burner can finally be monitored or the combustion process can be regulated using the calibration data.
  • a big advantage is that the calibration is carried out in the lean range.
  • a target value is calculated which—in particular as a function of the output or the surface load of the burner—is higher by a previously specified value and is then used as a controlled variable.
  • FIG 5 shows the course of the ionization voltages measured across the two ionization electrodes 4, 4' for the case in which only the heat exchanger 3 as the counter-electrode to the respective ionization electrode 4, 4' is electrically connected to ground and galvanically isolated from the burner surface 2'.
  • the negative voltage is plotted on the y-axis and the lambda value increasing from left to right is plotted on the x-axis.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Control Of Combustion (AREA)

Description

Die Erfindung bezieht sich auf ein Verfahren zur Überwachung eines Brenners und/oder eines Brennverhaltens eines Brenners. Dabei wird ein lonisationssignal gemessen und das gemessene lonisationssignal zur Überwachung des Brenners verwendet. Vorzugsweise dient das Verfahren auch der Regelung des Brenners bzw. des Brennverhaltens des Brenners. Weiterhin bezieht sich die Erfindung auf eine Brenneranordnung mit einem Brenner, einem Wärmetauscher, mindestens einer lonisationselektrode, einer Luft-Brennstoff-Gemisch-Versorgung für den Brenner und einer Steuervorrichtung. Die Steuervorrichtung ist mit der lonisationselektrode verbunden und überwacht basierend auf mit der mindestens einen lonisationselektrode gemessenen lonisationssignalen den Brenner und/oder ein Brennverhalten des Brenners. Bei dem Brenner handelt es sich vorzugsweise um einen Gas-Brenner.The invention relates to a method for monitoring a burner and/or the combustion behavior of a burner. An ionization signal is measured and the measured ionization signal is used to monitor the burner. The method preferably also serves to regulate the burner or the combustion behavior of the burner. Furthermore, the invention relates to a burner arrangement with a burner, a heat exchanger, at least one ionization electrode, an air-fuel mixture supply for the burner and a control device. The control device is connected to the ionization electrode and monitors the burner and/or a burning behavior of the burner based on ionization signals measured with the at least one ionization electrode. The burner is preferably a gas burner.

Den prinzipiellen Aufbau einer Brenneranordnung mit einem Brenner, einem umgebenden Wärmetauscher und einer lonisationselektrode zeigt beispielsweise die WO 2013/032324 A1 , ebenso wie die EP 2 017 531 B1 .The basic structure of a burner arrangement with a burner, a surrounding heat exchanger and an ionization electrode is shown, for example, in FIG WO 2013/032324 A1 , as well as the EP 2 017 531 B1 .

In einem solchen Brenner wird ein Luft-Brennstoff- (oder alternativ: Luft-Gas-)Gemisch verbrannt (siehe auch z. B. die DE 34 15 946 C2 ). Der Brennstoff ist dabei beispielsweise Propan, Butan oder z. B. in den gasförmigen Zustand überführter Diesel oder ein Gemisch aus diesen Komponenten. Von der Brenneroberfläche geht beim Brennvorgang die Flamme aus.In such a burner, an air-fuel (or alternatively: air-gas) mixture is burned (see also e.g. the DE 34 15 946 C2 ). The fuel is, for example, propane, butane or z. B. in the gaseous state converted diesel or a mixture of these components. During the burning process, the flame emanates from the surface of the burner.

Um das Vorliegen einer Flamme oder auch die Verbrennungsqualität selbst zu überwachen und vorzugsweise darauf bauend das Verhalten des Brenners bzw. den Brennvorgang zu regeln, ist es im Stand der Technik bekannt, sog. lonisationselektroden zu verwenden. Den Aufbau und die Verwendung von lonisationselektroden zum Überwachen bzw. zum Erkennen einer Flamme beschreiben z. B. die EP 1 036 984 A1 , die EP 1 707 880 A1 , die DE 10 2010 055 567 B4 oder die EP 2 357 410 A2 . Weitere Messanordnungen finden sich beispielsweise in der WO 2016/140681 A1 , der DE 201 12 299 U1 , der DE 198 17 966 A1 , der DE 10 2017 204 014 A1 , der DE 10 2010 046 954 A1 oder der DE 102 20 773 A1 . Die sich an die Messung anschließende Regelung des Brennverhaltens erfolgt beispielsweise über die Steuerung der Luftzahl. Dies geschieht mit dem Ziel, beispielsweise bei vollvormischenden Oberflächenbrennern eine sichere, saubere und effiziente Verbrennung zu gewährleisten. Beispielsweise werden ein Gasventil und ein Verbrennungsluftgebläse separat in Abhängigkeit von dem lonisationssignal (also der lonisationsspannung und/oder dem lonisationsstrom) geregelt.In order to monitor the presence of a flame or the combustion quality itself and preferably to regulate the behavior of the burner or the combustion process based thereon, it is known in the prior art to use so-called ionization electrodes. The construction and use of ionization electrodes for monitoring or for detecting a flame is described, for example, in B. the EP 1 036 984 A1 , the EP 1 707 880 A1 , the DE 10 2010 055 567 B4 or the EP 2 357 410 A2 . Further measurement arrangements can be found, for example, in WO 2016/140681 A1 , the DE 201 12 299 U1 , the DE 198 17 966 A1 , the DE 10 2017 204 014 A1 , the DE 10 2010 046 954 A1 or the DE 102 20 773 A1 . The control of the combustion behavior that follows the measurement is carried out, for example, by controlling the air ratio. This is done with the aim, for example, of fully premixing surface burners, to achieve a safe, clean and efficient to ensure combustion. For example, a gas valve and a combustion air fan are controlled separately depending on the ionization signal (ie the ionization voltage and/or the ionization current).

Bei der vorgenannten Methode zur Überwachung des Vorhandenseins einer Flamme bei einem Gasbrenner wird die lonisationswirkung einer Flamme ausgenutzt. Dabei wird entweder über zwei Elektroden oder über eine Elektrode und eine Masseelektrode eine Wechselspannung in einem Bereich angelegt, in dem sich die Flamme befinden sollte. Brennt eine Flamme in diesem Bereich, so bewirkt dies einen Gleichrichtereffekt auf die Wechselspannung, der wiederum einen Stromfluss z. B. von der Masse zur Ionisationselektrode bewirkt. Dieser Stromfluss wird von einer Messelektronik erfasst und kann in Form einer Ionisationsspannung als Maß für den eigentlich auftretenden lonisationsstrom bereitgestellt werden. Meist wird für die gemessene lonisationsspannung ein Grenzwert vorgegeben, dessen Überschreiten als Vorhandensein einer Flamme gewertet wird und dessen Unterschreiten dahingehend interpretiert wird, dass keine Flamme brennt. Insgesamt wird also ein lonisationssignal ermittelt, bei dem es sich je nach Ausgestaltung um eine Spannung oder um einen Strom handeln kann.In the aforementioned method for monitoring the presence of a flame in a gas burner, the ionization effect of a flame is used. An AC voltage is applied to an area where the flame should be, either via two electrodes or via one electrode and a ground electrode. If a flame burns in this area, this causes a rectifier effect on the AC voltage, which in turn causes a current to flow, e.g. B. caused by the ground to the ionization electrode. This current flow is recorded by measuring electronics and can be provided in the form of an ionization voltage as a measure of the ionization current that actually occurs. A limit value is usually specified for the measured ionization voltage, exceeding which is evaluated as the presence of a flame and falling below it is interpreted to mean that no flame is burning. Overall, an ionization signal is thus determined which, depending on the design, can be a voltage or a current.

Es ist bekannt, die Oberfläche des Brenners (also die Brenneroberfläche), von der die Flamme ausgeht, als elektrische Masse zu verwenden. Relativ zu dieser Oberfläche bzw. zu dieser Masseelektrode wird die lonisationselektrode angebracht. Entscheidend für die Messung der Ionisationsspannung ist dabei die Position der Elektrode relativ zur Flamme bzw. zur Brenneroberfläche.It is known to use the surface of the burner (that is, the burner surface) from which the flame emanates as electrical ground. The ionization electrode is attached relative to this surface or to this ground electrode. The position of the electrode relative to the flame or burner surface is decisive for measuring the ionization voltage.

Gasbrenner und insbesondere gebläsebetriebene Gasbrenner sind häufig wechselnden Umgebungsbedingungen ausgesetzt, die zu einem veränderlichen Brennverhalten führen können. Derartige Umgebungsparameter sind zum Beispiel Luftdruck, Temperatur der Verbrennungszuluft, Gasdruck (also der Druck, mit dem das Brenngas zugeführt wird), Gasart und auch der Energiewert des Gases. Dabei ist zu berücksichtigen, dass häufig die Zusammensetzung des Brenngases variieren kann. Zum Beispiel kann bei typischen Gasgemischen wie LPG (Liquefied Petroleum Gas; Autogas) bzw. typischen Propan/Butan-Gemischen die Zusammensetzung veränderlich sein. So ist es je nach Gaszufuhr möglich, dass reines Propan, reines Butan oder auch ein undefiniertes Propan/Butan-Gemisch zugeführt wird.Gas burners and in particular fan-operated gas burners are often exposed to changing environmental conditions that can lead to variable combustion behavior. Such environmental parameters are, for example, air pressure, temperature of the combustion air, gas pressure (ie the pressure at which the fuel gas is supplied), type of gas and also the energy value of the gas. It should be noted that the composition of the fuel gas can often vary. For example, the composition of typical gas mixtures such as LPG (Liquefied Petroleum Gas; Autogas) or typical propane/butane mixtures can vary. Depending on the gas supply, it is possible for pure propane, pure butane or even an undefined propane/butane mixture to be fed in.

Es besteht somit aufgrund der veränderlichen Umgebungsparameter die Möglichkeit, dass der Gasbrenner nicht im optimalen Betriebspunkt betrieben wird, bei dem der Brennstoff optimal verbrannt wird und der Schadstoffausstoß minimal ist. Ist ein solches Verhältnis zwischen Brenngas und (Luft-)Sauerstoff gegeben, sodass eine vollständige Verbrennung stattfindet, indem das Brenngas vollständig mit dem (Luft-)Sauerstoff reagieret, so spricht man von einer stöchiometrischen Verbrennung, was Lambda = 1 entspricht. Ist der Wert Lambda kleiner als 1, also unterstöchiometrisch, so bedeutet dies, dass das Luft-Brennstoff-Gemisch so ist, dass eine fette, unvollständige Verbrennung unter Sauerstoffmangel gegeben ist. Ist der Wert Lambda größer als 1, also überstöchiometrisch, so erfolgt die Verbrennung rechnerisch unter Luftüberschuss. In der technischen Verbrennung werden je nach Anwendungsbereich unterschiedliche Lambdabereiche für eine saubere und schadstoffarme Verbrennung genutzt. Bei vollvermischenden Gasbrennern wird oftmals ein Bereich von Lambda = 1,2 bis Lambda = 1,5 genutzt. In diesem Lambdabereich erfolgt die Verbrennung vollständig und hygienisch. Eine Verbrennung außerhalb dieser Grenzen führt zu einem verminderten Wirkungsgrad und einem erhöhten Ausstoß schädlicher Abgasbestandteile.Due to the variable environmental parameters, there is therefore the possibility that the gas burner is not operated at the optimum operating point, at which the fuel is burned optimally and the pollutant emissions are minimal. If the ratio between fuel gas and (atmospheric) oxygen is such that complete combustion takes place by the fuel gas reacting completely with the (atmospheric) oxygen, this is referred to as stoichiometric combustion, which corresponds to lambda = 1. If the lambda value is less than 1, i.e. sub-stoichiometric, this means that the air-fuel mixture is such that rich, incomplete combustion occurs with a lack of oxygen. If the lambda value is greater than 1, i.e. over-stoichiometric, the combustion takes place mathematically with excess air. In technical combustion, depending on the area of application, different lambda ranges are used for clean and low-emission combustion. In fully mixing gas burners, a range from lambda = 1.2 to lambda = 1.5 is often used. In this lambda range, the combustion takes place completely and hygienically. Combustion outside these limits leads to reduced efficiency and increased emissions of harmful exhaust gas components.

Die EP 0 770 824 B1 sieht vor, dass ausgehend von einem mageren, überstöchiometrischen Brennerbetrieb der Luftüberschuss so lange reduziert wird, bis eine unterstöchiometrische Verbrennung vorliegt. Dafür wird die Ionisationsspannung zwischen einer lonisationselektrode und der Brenneroberfläche gemessen. Da bei stöchiometrischer Verbrennung die lonisationsspannung maximal ist, steigt bei dem beschriebenen Verfahren die Ionisationsspannung bei Reduzierung des Luftüberschusses zunächst an. Fällt die Ionisationsspannung nach Erreichen des Maximums in weiterer Folge ab, so ist dies ein Zeichen dafür, dass die Verbrennung unterstöchiometrisch ist.The EP 0 770 824 B1 provides that, starting from a lean, over-stoichiometric burner operation, the excess air is reduced until the combustion is under-stoichiometric. To do this, the ionization voltage is measured between an ionization electrode and the burner surface. Since the ionization voltage is at a maximum in the case of stoichiometric combustion, the ionization voltage initially increases in the method described when the excess air is reduced. If the ionization voltage subsequently falls after reaching the maximum, this is a sign that the combustion is sub-stoichiometric.

Der qualitative Verlauf des lonisationssignals zeigt in der Regel im relevanten Lambda-Bereich reproduzierbar charakteristische Merkmale. Die absoluten Werte können jedoch Abweichungen unterliegen. So ist z. B. der Absolutwert der Ionisationsspannung abhängig von der Position der lonisationselektrode (eine andere Bezeichnung ist auch Ionisationskerze), von Alterungseigenschaften, von der Beschaffenheit des Brennstoffs oder auch von der Höhenlage, in welcher der Brennvorgang stattfindet. Daher ist eine Kalibrierung der Messanordnung zweckmäßig, um das lonisationssignal als Regelgröße für eine Verbrennungsregelung zu nutzen.The qualitative course of the ionization signal usually shows reproducible characteristic features in the relevant lambda range. However, the absolute values can be subject to deviations. So e.g. B. the absolute value of the ionization voltage depends on the position of the ionization electrode (another name is also ionization candle), on aging properties, on the nature of the fuel or on the altitude at which the combustion process takes place. Hence a calibration of the measuring arrangement in order to use the ionization signal as a controlled variable for combustion control.

Die Kalibrierung besteht beispielsweise im Auffinden des vorgenannten Maximums der lonisationsspannung durch Variation des Mischungsverhältnisses, indem eine Anfettung des Luft-Brennstoff-Gemischs vorgenommen wird. Dabei wird die Verbrennung bis zur Ermittlung der maximalen Spannung schrittweise fetter eingestellt, indem ein Gebläse für die Verbrennungsluft mit geringerer Drehzahl läuft oder ein Ventil mehr Gas einströmen lässt. Alternativ ist es bekannt, eine Kalibrierung unter Abmagerung des Gas-Luft-Gemischs vorzunehmen (siehe z. B. die EP 2 014 985 A2 ).The calibration consists, for example, in finding the aforementioned maximum of the ionization voltage by varying the mixing ratio by making the air-fuel mixture richer. The combustion is gradually made richer until the maximum voltage is determined by running a blower for the combustion air at a lower speed or by allowing more gas to flow in through a valve. Alternatively, it is known to carry out a calibration by leaning the gas-air mixture (see e.g EP 2 014 985 A2 ).

Insbesondere das Anfahren des fetten bzw. unterstöchiometrischen Bereichs hat den Nachteil der erhöhten Kohlenmonoxid-Bildung, der verstärkten Alterung der Brenneroberfläche oder z. B. auch der erhöhten Rußbildung.In particular, approaching the rich or sub-stoichiometric range has the disadvantage of increased carbon monoxide formation, increased aging of the burner surface or z. B. also the increased formation of soot.

Die der Erfindung zugrundeliegende Aufgabe besteht darin, ein Verfahren zur Überwachung eines Brenners und eine entsprechende Brenneranordnung mit einem derartig überwachbaren Brenner vorzuschlagen, die eine Alternative zum Stand der Technik darstellen.The object on which the invention is based is to propose a method for monitoring a burner and a corresponding burner arrangement with a burner that can be monitored in this way, which represent an alternative to the prior art.

Die Erfindung löst die Aufgabe durch ein Verfahren, das dadurch gekennzeichnet ist, dass das lonisationssignal zwischen einer lonisationselektrode und einer von einer Brenneroberfläche des Brenners beabstandeten Gegenelektrode gemessen wird.The invention achieves the object by a method which is characterized in that the ionization signal is measured between an ionization electrode and a counter-electrode spaced apart from a burner surface of the burner.

Die Überwachung besteht beispielsweise darin, dass aus dem relativ zur Gegenelektrode und bei einem bekannten Lambda-Wert gemessenen lonisationssignal ein Betrag für eine Ionisationsspannung oder einen lonisationsstrom ermittelt wird und dass dieser Wert mit einem Sollwert verglichen wird. Bei einer Abweichung des ermittelten Werts vom Sollwert über einen Toleranzbereich hinaus wird eine Korrektur des Luft-Brennstoff-Gemischs vorgenommen, z. B. wird der Luft-Anteil erhöht oder verringert. In einer der folgenden Ausgestaltungen wird beschrieben, wie ein solcher Sollwert ermittelt bzw. wie das Verfahren einer Kalibrierung unterzogen wird.The monitoring consists, for example, in determining an amount for an ionization voltage or an ionization current from the ionization signal measured relative to the counter-electrode and with a known lambda value, and in comparing this value with a desired value. If the determined value deviates from the target value by more than a tolerance range, the air/fuel mixture is corrected, e.g. B. the proportion of air is increased or decreased. One of the following configurations describes how such a target value is determined or how the method is subjected to a calibration.

Das Verfahren dient der Überwachung eines Brenners oder speziell des Brennverhaltens eines Brenners. Vorzugsweise dient das Verfahren der Überwachung oder Regelung der Verbrennung des Luft-Brennstoff-Gemischs durch den Brenner, also des Brennverhaltens des Brenners. In einer der folgenden Ausgestaltungen umfasst das Verfahren auch ein Kalibrieren bzw. ein Ermitteln der für die Überwachung verwendeten Parameter.The method is used to monitor a burner or specifically the burning behavior of a burner. The method preferably serves to monitor or regulate the combustion of the air-fuel mixture by the burner, ie the combustion behavior of the burner. In one of the following configurations, the method also includes a calibration or a determination of the parameters used for the monitoring.

Bei dem Brenner handelt es sich vorzugsweise um einen vollvormischenden Oberflächenbrenner.The burner is preferably a fully premixed surface burner.

Im Stand der Technik dient der Brenner bzw. speziell die Brenneroberfläche, von welcher die beim Verbrennen erzeugten Flammen ausgehen, als Gegenelektrode, der gegenüber mit der lonisationselektrode das lonisationssignal (also z. B. die Ionisationsspannung oder der lonisationsstrom) gemessen wird. Beim erfindungsgemäßen Verfahren geschieht dies jedoch über eine von der Brenneroberfläche beabstandete Gegenelektrode. Die Gegenelektrode ist somit vor allem auch kein Teil vom Brenner und ist - je nach Ausgestaltung - von dem Brenner bzw. insbesondere der Brenneroberfläche galvanisch getrennt.In the prior art, the burner or specifically the burner surface, from which the flames generated during combustion emanate, serves as a counter-electrode, opposite which the ionization signal (eg the ionization voltage or the ionization current) is measured with the ionization electrode. In the method according to the invention, however, this takes place via a counter-electrode spaced apart from the burner surface. The counter-electrode is therefore primarily not a part of the burner and is—depending on the configuration—galvanically isolated from the burner or in particular from the burner surface.

Die Idee besteht darin, dass ein elektrisches lonisationssignal (also je nach Ausgestaltung eine elektrische Spannung oder ein elektrischer Strom) zwischen der lonisationselektrode und einer von der Brenneroberfläche beabstandeten Gegenelektrode gemessen wird. Aus dem so gemessenen lonisationssignal wird dann ermittelt, ob der Brennvorgang optimal stattfindet und ob möglicherweise auf den Brenner bzw. auf die gesamte Brennanordnung regulierend eingegriffen werden muss.The idea is that an electrical ionization signal (that is, depending on the design, an electrical voltage or an electrical current) is measured between the ionization electrode and a counter-electrode spaced apart from the burner surface. From the ionization signal measured in this way, it is then determined whether the firing process is taking place optimally and whether it may be necessary to intervene to regulate the burner or the entire firing arrangement.

Die Gegenelektrode ist in einer möglichen Ausgestaltung ein die Brenneroberfläche zumindest teilweise umgebender Wärmetauscher. Dabei ist der Wärmetauscher oder z. B. ein der Brenneroberfläche zugewandtes Innengehäuse des Wärmetauschers zumindest teilweise elektrisch leitfähig. Der Wärmetauscher dient in einer Ausgestaltung dazu, dass die thermische Energie des beim Verbrennen erzeugten Rauchgases auf ein Fluid, z. B. Wasser übertragen wird.In one possible configuration, the counter-electrode is a heat exchanger that at least partially surrounds the burner surface. The heat exchanger or z. B. an inner housing of the heat exchanger facing the burner surface is at least partially electrically conductive. In one embodiment, the heat exchanger is used to transfer the thermal energy of the flue gas generated during combustion to a fluid, e.g. B. water is transferred.

Verwendet wird je nach Ausgestaltung eine einzelne lonisationselektrode, die im Vergleich zum Stand der Technik weiter vom Flammenbereich - also insbesondere von der Brenneroberfläche - entfernt ist, oder es werden mindestens zwei lonisationselektroden - beispielsweise in unterschiedlichen Abständen zur Brenneroberfläche - zur Messung von lonisationssignalen verwendet. Bei der Messung mit nur einer lonisationselektrode befindet sich diese vorzugsweise in einer Ausgestaltung mittig zwischen der Brenneroberfläche und dem Wärmetauschergehäuse als einem Beispiel für die von dem Brenner unterschiedliche Gegenelektrode.Depending on the design, a single ionization electrode is used, which is further away from the flame area - i.e. in particular from the burner surface - compared to the prior art, or at least two ionization electrodes - For example, at different distances from the burner surface - used to measure ionization signals. When measuring with only one ionization electrode, this is preferably located in one embodiment centrally between the burner surface and the heat exchanger housing as an example of the counter-electrode that differs from the burner.

In einer Variante wird eine Zündkerze sowohl zum Zünden des Brennvorgangs des Brenners als auch als lonisationselektrode verwendet.In one variant, a spark plug is used both to ignite the combustion process of the burner and as an ionization electrode.

In einer Ausgestaltung wird - basierend auf dem mindestens einen lonisationssignal - auf eine Versorgung des Brenners mit einem Luft-Brennstoff-Gemisch eingewirkt. So wird beispielsweise die Luftzufuhr oder die Brennstoffzufuhr geändert. Alternativ oder ergänzend wird und/oder auf eine Zusammensetzung eines Luft-Brennstoff-Gemischs, mit welchem der Brenner versorgt wird, eingewirkt, z. B. verändert.In one embodiment--based on the at least one ionization signal--the burner is supplied with an air-fuel mixture. For example, the air supply or the fuel supply is changed. Alternatively or additionally, and/or the composition of an air-fuel mixture with which the burner is supplied is acted upon, e.g. B. changed.

Eine Ausgestaltung sieht vor, dass das lonisationssignal zwischen der lonisationselektrode und der Gegenelektrode gemessen wird, indem die Gegenelektrode elektrisch mit Masse verbunden wird.One embodiment provides that the ionization signal is measured between the ionization electrode and the counter-electrode by electrically connecting the counter-electrode to ground.

Ergänzend zur Messung eines lonisationssignals zwischen lonisationselektrode und Gegenelektrode wird in einer Ausgestaltung ein - zusätzliches oder ergänzendes - lonisationssignal zwischen der lonisationselektrode und einer Brenneroberfläche des Brenners gemessen. Dieses lonisationssignal wird somit vorzugsweise ergänzend zum Ionisationssignal zwischen lonisationselektrode und Gegenelektrode für die Überwachung des Brenners verwendet.In addition to the measurement of an ionization signal between the ionization electrode and the counter-electrode, in one embodiment an—additional or supplementary—ionization signal is measured between the ionization electrode and a burner surface of the burner. This ionization signal is thus preferably used in addition to the ionization signal between the ionization electrode and the counter-electrode for monitoring the burner.

Bei den vorgenannten separaten lonisationssignalen sind vorzugsweise die Brenneroberfläche bzw. allgemein der Brenner und die Gegenelektrode galvanisch voneinander getrennt, also elektrisch voneinander isoliert.In the case of the aforementioned separate ionization signals, the burner surface or, in general, the burner and the counter-electrode are preferably galvanically isolated from one another, ie electrically isolated from one another.

In einer weiteren Ausgestaltung wird eine Art von einem gemischten lonisationssignal (ggf. als ergänzendes Signal zusätzlich zu einem nur zwischen lonisationselektrode und Gegenelektrode gemessenem lonisationssignal) gemessen, indem der Wärmetauscher - bzw. ein Wärmetauschergehäuse - und der Brenner - bzw. vorzugsweise die Brenneroberfläche - mit Masse und vorzugsweise mit der gleichen Masse elektrisch verbunden sind.In another embodiment, a type of mixed ionization signal (possibly as a supplementary signal in addition to an ionization signal measured only between the ionization electrode and the counter-electrode) is measured by measuring the heat exchanger—or a heat exchanger housing—and the burner—or preferably the burner surface - are electrically connected to ground and preferably to the same ground.

Die unterschiedlichen lonisationssignale ergeben sich somit je nach Ausgestaltung aus folgenden Messanordnungen: Es wird das lonisationssignal zwischen lonisationselektrode und Gegenelektrode gemessen, wobei die Brenneroberfläche elektrisch von der Gegenelektrode isoliert ist. Alternativ oder ergänzend wird das lonisationssignal zwischen einerseits Gegenelektrode und Brenneroberfläche, die beide miteinander bzw. jeweils mit Masse verbunden sind, und andererseits der lonisationselektrode gemessen. In einer weiteren Ausgestaltung wird - wie im Stand der Technik üblich - ein (vorzugsweise ergänzendes) lonisationssignal zwischen der lonisationselektrode und der mit Masse verbundenen und von der Gegenelektrode elektrisch isolierten Brenneroberfläche gemessen. Die Gegenelektrode wird dabei in einer Ausgestaltung insbesondere durch einen die Brenneroberfläche umgebenden Wärmetauscher gebildet.Depending on the design, the different ionization signals result from the following measuring arrangements: The ionization signal is measured between the ionization electrode and the counter-electrode, with the burner surface being electrically insulated from the counter-electrode. Alternatively or additionally, the ionization signal is measured between, on the one hand, the counter-electrode and burner surface, both of which are connected to one another or to ground, and, on the other hand, the ionization electrode. In a further embodiment--as is customary in the prior art--a (preferably supplementary) ionization signal is measured between the ionization electrode and the burner surface, which is connected to ground and is electrically insulated from the counter-electrode. In one configuration, the counter-electrode is formed in particular by a heat exchanger surrounding the burner surface.

In einer Ausgestaltungen werden lonisationssignale über an unterschiedlichen Positionen befindlichen lonisationselektroden aufgenommen.In one configuration, ionization signals are recorded via ionization electrodes located at different positions.

Insbesondere für die Messung des lonisationssignals zwischen der lonisationselektrode und der Gegenelektrode wird eine solche lonisationselektrode verwendet, die sich in einem Bereich um den mittleren Abstand zwischen dem Brenner (oder speziell der Brenneroberfläche) und der Gegenelektrode befindet. Der Bereich liegt dabei in einer Ausgestaltung innerhalb von plus oder minus 20% zum mittleren Abstand. In einer weiteren Ausgestaltung liegt der Bereich innerhalb von plus oder minus 10% relativ zum mittleren Abstand. Die für die Messung des lonisationssignals verwendete lonisationselektrode befindet sich in einer Ausgestaltung insbesondere näher an der Gegenelektrode als an der Brenneroberfläche.In particular for measuring the ionization signal between the ionization electrode and the counter-electrode, such an ionization electrode is used which is located in a region around the mean distance between the burner (or specifically the burner surface) and the counter-electrode. In one embodiment, the range lies within plus or minus 20% of the mean distance. In another embodiment, the range is within plus or minus 10% relative to the mean distance. In one embodiment, the ionization electrode used for measuring the ionization signal is located closer to the counter-electrode than to the burner surface.

Wie bereits zum Stand der Technik ausgeführt, ist es bei der Verwendung der lonisationssignale vorteilhaft und sicherheitsrelevant, Kalibrierungen vorzunehmen bzw. zumindest gelegentlich oder zumindest bei einer ersten Inbetriebnahme die für die Überwachung und vorzugsweise Regelung des Brennverhaltens verwendeten Parameter (z. B. Soll- oder Grenzwerte) zu ermitteln.As already explained with regard to the prior art, when using the ionization signals it is advantageous and relevant to safety to carry out calibrations or at least occasionally or at least when starting up for the first time the parameters used for monitoring and preferably controlling the combustion behavior (e.g. target or limit values) to determine.

Werden nun wie bei dem erfindungsgemäßen Verfahren die Ionisationssignale zwischen lonisationselektrode und beabstandeter Gegenelektrode ermittelt, so erlaubt dies die folgenden Verfahrensschritte, wobei der große Vorteil darin liegt, dass die Kalibrierung bzw. Parameter-Ermittlung im abgemagerten Bereich stattfindet. Dies reduziert u.a. die Umweltbelastung.If the ionization signals are now determined between the ionization electrode and the spaced-apart counter-electrode, as in the method according to the invention, this permits the following method steps, with the great advantage being that the calibration or parameter determination takes place in the emaciated area. Among other things, this reduces the environmental impact.

So sieht es das erfindungsgemäße Verfahren vor, dass für eine Kalibrierung und/oder für eine Ermittlung von bei der Überwachung des Brenners verwendeten Parametern lonisationssignale bei einer überstöchiometrischen Verbrennung gemessen werden, und dass ein lokales Extremum (z. B. ein Minimum des Betrags) des lonisationssignals in Abhängigkeit von einem Lambda-Wert eines dem Brenner zugeführten Luft-Brennstoff-Gemischs ermittelt und für die Kalibrierung bzw. die Ermittlung verwendet wird.The method according to the invention provides that for a calibration and/or for a determination of parameters used in the monitoring of the burner, ionization signals are measured in an over-stoichiometric combustion, and that a local extreme (e.g. a minimum of the amount) of the ionization signal is determined as a function of a lambda value of an air-fuel mixture supplied to the burner and is used for the calibration or the determination.

Für eine Kalibrierung bzw. eine Ermittlung notwendiger Parameter oder ggf. für eine Parameterkorrektur (z. B. des vorgenannten Sollwerts für die Amplitude des lonisationssignals) werden somit in dieser Ausgestaltung Messungen des lonisationssignals im abgemagerten Bereich, d. h. mit einem Luft-Überschuss vorgenommen. Dabei wird - vorzugsweise nur - im abgemagerten Bereich das Verhältnis von Luft und Brennstoff variiert (es wird also der Lambda-Wert geändert) und es werden die jeweiligen lonisationssignale gemessen und ausgewertet. Dabei wird insbesondere ein lokales Extremum des lonisationssignals in Abhängigkeit vom Lambda-Wert ermittelt. Dieses Extremum dient anschließend zur Kalibrierung bzw. zur Ermittlung der ggf. erforderlichen Parameteranpassung. Vorteilhaft bei den vorgenannten Schritten ist, dass die Messungen im schonenden mageren Bereich erfolgen. Die Messungen des lonisationssignals erfolgen vorzugsweise zwischen mindestens einer lonisationselektrode und der vom Brenner beabstandeten Gegenelektrode. Je nach dem Vorzeichen des gemessenen lonisationssignals bzw. je nachdem, wie - z. B. unter Betrachtung des Betrags - das lonisationssignal ausgewertet wird, handelt es sich bei dem lokalen Extremum um ein Minimum oder um ein Maximum.In this embodiment, measurements of the ionization signal in the depleted area, i.e. H. made with an excess of air. In this case, the ratio of air and fuel is varied—preferably only—in the lean range (ie the lambda value is changed) and the respective ionization signals are measured and evaluated. In this case, in particular, a local extremum of the ionization signal is determined as a function of the lambda value. This extremum is then used for calibration or for determining the parameter adjustment that may be required. The advantage of the above steps is that the measurements are carried out in the gentle lean range. The ionization signal is preferably measured between at least one ionization electrode and the counter-electrode spaced apart from the burner. Depending on the sign of the measured ionization signal or depending on how - z. B. considering the magnitude - the ionization signal is evaluated, the local extremum is a minimum or a maximum.

Hierbei wird darauf Bezug genommen, dass sich in vielen Untersuchungen gezeigt hat, dass die relativ zur beschriebenen Gegenelektrode gemessenen lonisationssignale im abgemagerten Bereich einen besonderen Verlauf zeigen, der bei der Messung gemäß dem Stand der Technik nicht auftritt und der es erlaubt, die Kalibrierung bzw. die Ermittlung der Parameter vorzunehmen.In this context, reference is made to the fact that many investigations have shown that the ionization signals measured relative to the described counter-electrode in the emaciated area show a special course, which is shown in the measurement according to FIG does not occur with the state of the art and which allows the calibration or the determination of the parameters to be carried out.

Daher wird in diesem Verfahrensschritt ein lokales Extremum der gemessenen lonisationssignale über Lambda im Bereich des mageren Luft-Brennstoff-Gemischs (also mit einem Lambda-Wert größer 1) ermittelt. Dieses Extremum wird dann in einer Ausgestaltung für die Kalibrierung angefahren. Anschließend wird der Lambda-Wert beispielsweise durch Verringerung der Drehzahl des Verbrennungsluftgebläses um einen vorgegebenen Wert reduziert, um dadurch einen gewünschten Verbrennungsprozess zu erreichen.Therefore, in this method step, a local extremum of the measured ionization signals is determined via lambda in the area of the lean air/fuel mixture (that is, with a lambda value greater than 1). In one embodiment, this extremum is then approached for the calibration. The lambda value is then reduced by a predetermined value, for example by reducing the speed of the combustion air fan, in order to thereby achieve a desired combustion process.

Dabei hat sich gezeigt, dass das Extremum in einem solchen Bereich des Lambda-Werts liegt, in dem noch nicht mit einer kritischen Verbrennungsinstabilität gerechnet werden muss.It has been shown that the extreme is in a range of the lambda value in which critical combustion instability does not have to be expected.

Alternativ oder ergänzend ist in einer Ausgestaltung vorgesehen, dass für eine Kalibrierung und/oder für eine Ermittlung der bei der Überwachung des Brenners verwendeten Parameter lonisationssignale über mindestens zwei lonisationselektroden gemessen werden, wobei sich die lonisationselektroden in unterschiedlichen Abständen zu einer Brennoberfläche des Brenners und/oder der Gegenelektrode befinden. Die lonisationssignale werden dabei - vorzugsweise unter Variation des Lambda-Werts des dem Brenner zugeführten Luft-Brennstoff-Gemischs - derartig gemessen, dass zumindest die Gegenelektrode auf Masse liegt.Alternatively or additionally, one embodiment provides for ionization signals to be measured via at least two ionization electrodes for calibration and/or for determining the parameters used in monitoring the burner, with the ionization electrodes being at different distances from a burning surface of the burner and/or the counter electrode. The ionization signals are measured—preferably by varying the lambda value of the air/fuel mixture fed to the burner—in such a way that at least the counter-electrode is grounded.

In einer Ausgestaltung werden die lonisationssignale mit unterschiedlichen Lambda-Werten gemessen. In einer damit einhergehenden Ausgestaltung wird ein Schnittpunkt der beiden Kurvenverläufe (also die Abhängigkeit z. B. der Amplitude des lonisationssignals vom Lambda-Wert) zur Kalibrierung bzw. zur Ermittlung der Parameter verwendet. Auch in dieser Variante werden in einer Ausführung die Messungen vorzugsweise nur im überstöchiometrischen Bereich vorgenommen.In one embodiment, the ionization signals are measured with different lambda values. In an associated embodiment, an intersection of the two curves (that is, the dependency, for example, of the amplitude of the ionization signal on the lambda value) is used for calibration or for determining the parameters. In this variant, too, in one embodiment, the measurements are preferably only carried out in the over-stoichiometric range.

Weiterhin löst die Erfindung die Aufgabe durch eine Brenneranordnung, die dadurch gekennzeichnet ist, dass die Steuervorrichtung für eine Überwachung - und/oder Regelung - des Brenners und/oder eines Brennverhaltens eines Brenners mindestens ein zwischen der lonisationselektrode und dem Wärmetauscher als Gegenelektrode gemessenes lonisationssignal verwendet.Furthermore, the invention solves the problem by a burner arrangement, which is characterized in that the control device for monitoring - and / or regulation - the burner and / or a combustion behavior of a burner at least one between The ionization signal measured by the ionization electrode and the heat exchanger is used as the counter electrode.

Die Ausgestaltungen des Verfahrens werden vorzugsweise durch die Brenneranordnung ausgeführt, sodass die diesbezüglichen Ausführungen auch für die Varianten der Brenneranordnung gelten. Insbesondere erlaubt die Steuervorrichtung die Überwachung bzw. Steuerung durch das Umsetzen wenigstens einer der vorangehenden Ausgestaltungen des Verfahrens.The refinements of the method are preferably carried out by the burner arrangement, so that the relevant statements also apply to the variants of the burner arrangement. In particular, the control device allows monitoring or control by implementing at least one of the preceding configurations of the method.

Eine Ausgestaltung sieht vor, dass die lonisationselektrode in einem Bereich um einen mittleren Abstand zwischen einer Brenneroberfläche und dem Wärmetauscher angeordnet ist.One embodiment provides that the ionization electrode is arranged in an area around a mean distance between a burner surface and the heat exchanger.

In einer weiteren Ausgestaltung ist die lonisationselektrode in einem Bereich von Plus/Minus 20% um den mittleren Abstand zwischen einer Brenneroberfläche und dem Wärmetauscher angeordnet ist. Beträgt also der mittlere Abstand M, so befindet sich die lonisationselektrode in dieser Ausgestaltung in einem Bereich zwischen 0,8 * M und 1,2 * M.In a further embodiment, the ionization electrode is arranged in a range of plus/minus 20% around the average distance between a burner surface and the heat exchanger. If the mean distance is M, the ionization electrode in this embodiment is in a range between 0.8*M and 1.2*M.

Die erfindungsgemäße Ausgestaltung beinhaltet, dass die Steuervorrichtung für eine Kalibrierung und/oder für eine Ermittlung von bei der Überwachung des Brenners verwendeter Parameter über die Luft-Brennstoff-Gemisch-Versorgung das dem Brenner zugeführte Luft-Brennstoff-Gemisch abmagert und mit dem abgemagerten Luft-Brennstoff-Gemisch gemessene lonisationssignale auswertet, sowie dass die Steuervorrichtung für die Kalibrierung bzw. die Ermittlung der Parameter ein lokales Extremum der lonisationssignale ermittelt.The configuration according to the invention includes that the control device leans the air-fuel mixture supplied to the burner for a calibration and/or for a determination of parameters used in monitoring the burner via the air-fuel mixture supply and with the leaned air Evaluates fuel mixture measured ionization signals, and that the control device for the calibration or the determination of the parameters determines a local extreme of the ionization signals.

In einer Variante dient eine lonisationselektrode zusätzlich der klassischen Flammüberwachung und/oder als Zündkerze zum Starten eines Brennvorganges.In one variant, an ionization electrode is also used for classic flame monitoring and/or as a spark plug to start a combustion process.

Im Einzelnen gibt es eine Vielzahl von Möglichkeiten, das erfindungsgemäße Verfahren und die erfindungsgemäße Brenneranordnung auszugestalten und weiterzubilden. Dazu wird verwiesen einerseits auf die den unabhängigen Patentansprüchen nachgeordneten Patentansprüche, andererseits auf die folgende Beschreibung von Ausführungsbeispielen in Verbindung mit der Zeichnung. Es zeigen die:

Fig. 1
ein schematisches Blockschaltbild einer erfindungsgemäßen Brenneranordnung,
Fig. 2
einen Schnitt durch ein schematisches Blockschaltbild einer alternativen Ausgestaltung einer erfindungsgemäßen Brenneranordnung,
Fig. 3
zwei Messkurven der Ionisationsspannung für zwei lonisationselektroden in unterschiedlichen Abständen zur Brenneroberfläche, wobei nur die Brenneroberfläche auf Masse liegt, und
Fig. 4
zwei Messkurven der vorgenannten zwei lonisationselektroden, wobei die Brenneroberfläche und der umgebende Wärmetauscher auf Masse liegen und
Fig. 5
zwei Messkurven der vorgenannten zwei lonisationselektroden, wobei nur der die Brenneroberfläche umgebende Wärmetauscher auf Masse liegt.
In detail, there are a number of possibilities for embodying and developing the method according to the invention and the burner arrangement according to the invention. In this regard, reference is made on the one hand to the claims subordinate to the independent patent claims Claims, on the other hand, to the following description of exemplary embodiments in conjunction with the drawing. It shows the:
1
a schematic block diagram of a burner arrangement according to the invention,
2
a section through a schematic block diagram of an alternative embodiment of a burner arrangement according to the invention,
3
two measurement curves of the ionization voltage for two ionization electrodes at different distances from the burner surface, with only the burner surface being grounded, and
4
two measurement curves of the aforementioned two ionization electrodes, with the burner surface and the surrounding heat exchanger being grounded and
figure 5
Two measurement curves of the two ionization electrodes mentioned above, with only the heat exchanger surrounding the burner surface being grounded.

Die Fig. 1 zeigt schematisch eine Brenneranordnung 1 mit einem Brenner 2, der über eine Luft-Brennstoff-Gemisch-Versorgung 5 mit einem Luft-Brennstoff-Gemisch versorgt wird. Bei dem Brennstoff handelt es sich beispielsweise um ein brennbares Gas wie Propan oder Butan oder um Diesel, der in den gasförmigen Zustand überführt worden ist.The 1 1 schematically shows a burner arrangement 1 with a burner 2 which is supplied with an air-fuel mixture via an air-fuel mixture supply 5 . The fuel is, for example, a combustible gas such as propane or butane or diesel that has been converted into the gaseous state.

Das Luft-Brennstoff-Gemisch wird von dem Brenner 2 verbrannt, wobei sich hier oberhalb der Brenneroberfläche 2' des Brenners 2 eine - nicht dargestellte - Flamme bildet.The air-fuel mixture is burned by the burner 2, with a flame—not shown—forming here above the burner surface 2' of the burner 2.

Die Brenneroberfläche 2' ist umgeben von einem Wärmetauscher 3, in welchem die durch den Brennprozess erzeugte Wärme - in Form der Flamme und des erzeugten Rauchgases - auf ein weiteres Medium, z. B. auf Wasser oder ein Glykol-Wasser-Gemisch übertragen wird.The burner surface 2' is surrounded by a heat exchanger 3, in which the heat generated by the combustion process - in the form of the flame and the flue gas generated - is transferred to another medium, e.g. B. is transferred to water or a glycol-water mixture.

Der Wärmetauscher 3 ist zumindest teilweise und vorzugsweise auf der der Brenneroberfläche 2' zugewandten Innenseite elektrisch leitfähig ausgestaltet. Diese Leitfähigkeit erlaubt es, den Wärmetauscher 3 elektrisch mit Masse zu verbinden bzw. die lonisationsspannung über die mindestens eine lonisationselektrode 4 gegenüber dem Wärmetauscher 3 zu messen.The heat exchanger 3 is designed to be electrically conductive at least partially and preferably on the inner side facing the burner surface 2′. This conductivity allows the heat exchanger 3 to be electrically connected to ground or the ionization voltage to be measured via the at least one ionization electrode 4 in relation to the heat exchanger 3.

Der Überwachung bzw. Regelung des Brennvorgangs dient - in der dargestellten Ausgestaltung nur - eine lonisationselektrode 4, über die ein lonisationssignal (hier beispielsweise die Ionisationsspannung) gemessen wird. Alternativ kann ein lonisationsstrom gemessen werden.An ionization electrode 4, via which an ionization signal (here, for example, the ionization voltage) is measured, serves to monitor or control the firing process--only in the illustrated embodiment. Alternatively, an ionization current can be measured.

Für die Messung der Spannung (alternativ des Stroms) wird entweder die Brenneroberfläche 2' des Brenners 2 oder die zuvor erwähnte, zumindest teilweise elektrisch leitfähige Innenfläche des Wärmetauschers 3 mit Masse verbunden, sodass mit der lonisationselektrode 4 die Ionisationsspannung gegenüber dem Brenner 2 bzw. gegenüber dem Wärmetauscher 3 gemessen wird. Es ist auch in einer Ausgestaltung vorgesehen, dass der Wärmetauscher 3 und die Brenneroberfläche 2' auf der gleichen Masse liegen, sodass das lonisationssignal von der lonisationselektrode 4 gegenüber beiden als Gegenelektrode gemessen wird.To measure the voltage (alternatively the current), either the burner surface 2' of the burner 2 or the previously mentioned, at least partially electrically conductive inner surface of the heat exchanger 3 is connected to ground, so that the ionization electrode 4 is used to measure the ionization voltage with respect to the burner 2 or with respect to the heat exchanger 3 is measured. It is also provided in one embodiment that the heat exchanger 3 and the burner surface 2' are at the same mass, so that the ionization signal from the ionization electrode 4 is measured opposite both as a counter-electrode.

Je nach Variante bzw. Verfahrensschritt wird somit das lonisationssignal von der mindestens einen lonisationselektrode 4 mit der Brenneroberfläche 2', mit dem Wärmetauscher 3 als einzelne Gegenelektroden oder mit der Brenneroberfläche 2' und dem Wärmetauscher 3 als gemeinsamer Gegenelektrode gemessen. Diese drei unterschiedlich gemessenen Ionisationssignale werden dann einzeln oder gemeinsam verarbeitet und für die Überwachung des Brenners 2 bzw. als Regelgröße des Brennverhaltens des Brenners 2 verwendet.Depending on the variant or method step, the ionization signal is measured by the at least one ionization electrode 4 with the burner surface 2', with the heat exchanger 3 as individual counter-electrodes, or with the burner surface 2' and the heat exchanger 3 as a common counter-electrode. These three differently measured ionization signals are then processed individually or together and used to monitor the burner 2 or as a controlled variable for the combustion behavior of the burner 2 .

In einer Ausgestaltung befinden sich die Brenneroberfläche 2' und der Wärmetauscher 3 auf gleicher Masse, sodass das lonisationssignal gegenüber Brenneroberfläche 2' und Wärmetauscher 3 gemessen wird. Die Möglichkeiten, zwischen welchen Komponenten die elektrische Spannung gemessen wird, sind in der Abbildung durch die Doppelpfeile angedeutet.In one embodiment, the burner surface 2' and the heat exchanger 3 are of the same mass, so that the ionization signal is measured relative to the burner surface 2' and the heat exchanger 3. The options between which components the electrical voltage is measured are indicated in the figure by the double arrows.

Die lonisationselektrode 4 ist mit der Steuervorrichtung 6 verbunden, die das Messsignal (also das lonisationssignal) auswertet oder verarbeitet und die ausgehend von den Messwerten auf die Luft-Brennstoff-Gemisch-Versorgung 5 einwirkt. Dies geschieht z. B. über die Regulierung der Brennstoffmenge oder z. B. durch eine Steuerung eines - hier nicht dargestellten - die Luft fördernden Gebläses. Das Einwirken der Steuervorrichtung 6 auf die Steuerung des Brennvorgangs ist durch den gestrichelten Pfeil angedeutet.The ionization electrode 4 is connected to the control device 6, which evaluates or processes the measurement signal (ie the ionization signal) and which acts on the air/fuel mixture supply 5 based on the measurement values. This happens e.g. B. by regulating the amount of fuel or e.g. B. by controlling a - the air-promoting blower - not shown here. The action of the control device 6 on the control of the combustion process is indicated by the dashed arrow.

In einer Ausgestaltung wirkt die Steuervorrichtung 6 auf eine - hier nicht dargestellte - Startvorrichtung zum Starten eines Brennvorgangs ein, falls sich z. B. aus dem lonisationssignal ergibt, dass keine Flamme brennt. Die Anordnung 1 erlaubt somit auch die Flammüberwachung.In one embodiment, the control device 6 acts on a - not shown here - starting device for starting a combustion process, if z. B. shows from the ionization signal that no flame is burning. The arrangement 1 thus also allows flame monitoring.

Der Schnitt der Fig. 2 zeigt eine Brenneranordnung 1 mit zwei lonisationselektroden 4, 4', die sich radial in unterschiedlichen Abständen zwischen der Brenneroberfläche 2' und der Innenseite des Wärmetauschers 3 befinden. Zu sehen ist, dass die Brenneroberfläche 2' in dieser Ausgestaltung einen kreisförmigen Querschnitt hat, der von der Innenwandung des kreiszylindrischen Wärmetauschers 3 umgeben wird. Die Darstellung ist dabei nicht größengerecht.The cut of the 2 1 shows a burner arrangement 1 with two ionization electrodes 4, 4', which are located radially at different distances between the burner surface 2' and the inside of the heat exchanger 3. It can be seen that the burner surface 2 ′ has a circular cross-section in this embodiment, which is surrounded by the inner wall of the circular-cylindrical heat exchanger 3 . The representation is not true to size.

In einer Ausgestaltung hat die Brenneroberfläche 2' einen Durchmesser von 50 mm, wobei der Abstand zwischen der Brenneroberfläche 2' und dem Innenrand des Wärmetauschers 3 38 mm beträgt. Dabei haben die beiden lonisationselektroden 4', 4 in diesem Ausführungsbeispiel einen Abstand zwischen 5 mm und 9 mm (für die näher an der Brenneroberfläche 2' benachbarte lonisationselektrode 4') bzw. zwischen 14 mm und 22 mm (für die weiter von der Brenneroberfläche 2' entfernte lonisationselektrode 4) zur Außenfläche der Brenneroberfläche 2'.In one embodiment, the burner surface 2' has a diameter of 50 mm, the distance between the burner surface 2' and the inner edge of the heat exchanger 3 being 38 mm. The two ionization electrodes 4', 4 in this exemplary embodiment have a distance of between 5 mm and 9 mm (for the ionization electrode 4' that is closer to the burner surface 2') or between 14 mm and 22 mm (for the ionization electrode 4' that is further from the burner surface 2 'Removed ionization electrode 4) to the outer surface of the burner surface 2'.

Die Position der inneren lonisationselektrode 4' entspricht der im Stand der Technik bekannten Ausgestaltung. Der geringe Abstand zur Brenneroberfläche 2' hat den Vorteil, dass die Wahrscheinlichkeit hoch ist, dass die lonisationselektrode 4' direkt in eine Flamme hineinragt. Dies bezieht sich somit insbesondere auf die Anwendung der lonisationselektrode 4' für die Flammenerkennung.The position of the inner ionization electrode 4' corresponds to the configuration known in the prior art. The short distance from the burner surface 2' has the advantage that there is a high probability that the ionization electrode 4' will project directly into a flame. This therefore relates in particular to the use of the ionization electrode 4' for flame detection.

Die radial weiter äußere lonisationselektrode 4 befindet sich hier in einem Bereich um einen mittleren Abstand zwischen der Brenneroberfläche 2' und dem Innenrand des Wärmetauschers 3.The radially further outer ionization electrode 4 is located here in an area around a central distance between the burner surface 2' and the inner edge of the heat exchanger 3.

Für eine Messung des lonisationssignals wird in einer Variante die Innenwandung des Wärmetauschers 3 auf Masse gelegt und das elektrische lonisationssignal wird über die lonisationselektrode 4 gegenüber dieser Masse gemessen.In order to measure the ionization signal, in one variant the inner wall of the heat exchanger 3 is grounded and the electrical ionization signal is measured via the ionization electrode 4 with respect to this ground.

Die Diagramme der Fig. 3 bis 5 zeigen beispielhafte Messungen, die den Verlauf der Kurven verdeutlichen. Die Messwerte sind dabei stark abhängig von den jeweils gegebenen Abmessungen der Komponenten der Brenneranordnung oder z. B. auch von der Leistung, mit welcher der Brenner betrieben wird.The diagrams of Figures 3 to 5 show exemplary measurements that clarify the course of the curves. The measured values are heavily dependent on the given dimensions of the components of the burner assembly or z. B. also from the power with which the burner is operated.

Die Fig. 3 zeigt zwei lonisationsspannungen, die mit den zwei lonisationselektroden 4, 4' der Ausgestaltung der Fig. 2 gemessen worden sind.The 3 shows two ionization voltages with the two ionization electrodes 4, 4 'of the embodiment of 2 have been measured.

Gemessen wurden die Spannungen (auf der y-Achse sind die Spannungen mit negativem Vorzeichen aufgetragen) jeweils gegenüber der Brenneroberfläche 2', die auf Masse lag. Diese Messung entspricht somit dem Stand der Technik. Bei den Messungen war der Wärmetauscher 3 jeweils elektrisch von der Brenneroberfläche 2' isoliert. Auf der x-Achse ist der von links nach rechts zunehmende Lambda-Wert aufgetragen. Somit wird das Gemisch von links nach rechts magerer.The voltages were measured (the voltages are plotted with a negative sign on the y-axis) in each case with respect to the burner surface 2', which was grounded. This measurement thus corresponds to the state of the art. During the measurements, the heat exchanger 3 was electrically isolated from the burner surface 2'. The lambda value increasing from left to right is plotted on the x-axis. The mixture thus becomes leaner from left to right.

Zu erkennen ist, wie ausgehend von einem Maximum (gekennzeichnet durch einen Pfeil) im Bereich Lambda = 1 jeweils die Spannungswerte mit zunehmendem Lambda-Wert - also magerem Luft-Brennstoff-Verhältnis - kleiner werden. Dieser Verlauf des abfallenden Signals von einem Maximum ist in der Regel reproduzierbar und ist aus dem Stand der Technik bekannt.It can be seen how, starting from a maximum (identified by an arrow) in the lambda=1 range, the voltage values decrease as the lambda value—that is, the lean air-fuel ratio—increases. This curve of the falling signal from a maximum is generally reproducible and is known from the prior art.

Die Fig. 4 zeigt die Verläufe der Spannungswerte, wenn die Spannungen zwischen einerseits der jeweiligen lonisationselektrode 4, 4' und andererseits sowohl der Brenneroberfläche 2' als auch dem umgebenden Wärmetauscher 3 der Ausgestaltung der Fig. 2 gemessen werden. Dabei sind im Gegensatz zu den Messungen der Fig. 3 die Brenneroberfläche 2' und der Wärmetauscher 3 elektrisch miteinander verbunden und somit auf gleicher Masse.The 4 shows the curves of the voltage values when the voltages between on the one hand the respective ionization electrode 4, 4' and on the other hand both the burner surface 2' and the surrounding heat exchanger 3 of the embodiment of FIG 2 be measured. In contrast to the measurements of 3 the burner surface 2 'and the heat exchanger 3 electrically connected to each other and thus on the same ground.

Die obere Kurve wurde mit der lonisationselektrode 4' gemessen, die näher an der Brenneroberfläche 2' positioniert ist. Die untere Kurve entstammt der Messung über die von der Brenneroberfläche 2' weiter entfernteren lonisationselektrode 4.The upper curve was measured with the ionization electrode 4' positioned closer to the burner surface 2'. The lower curve originates from the measurement via the ionization electrode 4, which is further away from the burner surface 2'.

Es zeigt sich deutlich, dass die Spannung der der Brenneroberfläche 2' näher liegenden lonisationselektrode 4' den bekannten abfallenden Verlauf des Ionisationssignals zeigt.It can be clearly seen that the voltage of the ionization electrode 4' lying closer to the burner surface 2' shows the known falling course of the ionization signal.

Das lonisationssignal der weiter entfernten lonisationselektrode 4 fällt ausgehend von dem Maximum bei Lambda = 1 zunächst ab, um dann nach einem lokalen Minimum - das hier also das gesuchte lokale Extremum ist - wieder anzusteigen. Im weiteren - hier nicht dargestellten - Verlauf der Messkurve fällt die Amplitude auch dieses lonisationssignals wie bei der Kurve der näher an der Brenneroberfläche 2' befindlichen lonisationselektrode 4' gegen Null ab.Starting from the maximum at lambda=1, the ionization signal of the ionization electrode 4 that is further away initially falls, in order then to rise again after a local minimum—which is the local extremum sought here. In the further course of the measurement curve--not shown here--the amplitude of this ionization signal also falls towards zero, as in the curve of the ionization electrode 4' located closer to the burner surface 2'.

Es ergibt sich somit in diesem abgemagerten Bereich ein lokales Minimum, das zur Kalibrierung verwendet wird. Dieses Minimum ist in der Abbildung durch einen Pfeil gekennzeichnet.This results in a local minimum in this emaciated area, which is used for calibration. This minimum is marked by an arrow in the figure.

Es hat sich bei etlichen Versuchen gezeigt, dass das lokale Minimum zumeist zwischen Lambda = 1,4 und Lambda = 1,6 auftritt. In der hier gezeigten Messung liegt das Minimum ungefähr bei Lambda = 1,55.A number of tests have shown that the local minimum mostly occurs between lambda = 1.4 and lambda = 1.6. In the measurement shown here, the minimum is around lambda = 1.55.

Das lonisationssignal wird nach dem Durchlaufen des Minimums wieder größer, um dann wieder abzufallen. Bei diesen größeren Lambda-Werten zeigt sich auch ein starkes Abheben der Flamme von der Brenneroberfläche.After passing through the minimum, the ionization signal increases again and then decreases again. With these larger lambda values, the flame is also clearly lifted off the burner surface.

Versuche zeigen, dass die Position und die Ausprägung des Minimums im mageren Bereich auch von der Flächenbelastung des Brenners (Quotient aus zugeführter Energie und nutzbarer Brenneroberfläche) abhängen. Daher ist in einer Ausgestaltung vorgesehen, dass bei jeder Änderung der Leistung, mit welcher der Brenner 2 betrieben wird, eine neue Ermittlung der Regelparameter, also eine neue Kalibrierung vorgenommen wird.Experiments show that the position and the form of the minimum in the lean range also depend on the area loading of the burner (ratio of the energy supplied and the usable burner surface). Therefore, in one embodiment, it is provided that whenever there is a change in the output at which the burner 2 is operated, the control parameters are determined anew, ie a new calibration is carried out.

Ein Verfahren zur Kalibrierung - und damit beispielsweise als Teil des Verfahrens zur Überwachung des Brenners bzw. zur Steuerung des Brennvorgangs - besteht darin, dass das Luft-Brennstoff-Gemisch abgemagert wird und dass ein lokales Minimum des lonisationssignals zwischen der lonisationselektrode und dem Wärmetauscher als ein Beispiel für eine umgebende Gegenelektrode gesucht wird. Das Minimum dient dann zur Kalibrierung, um schließlich mit den Kalibrierungsdaten das Brennverhalten des Brenners überwachen bzw. den Brennvorgang regeln zu können. Ein großer Vorteil ist dabei, dass die Kalibrierung im abgemagerten Bereich vorgenommen wird.A method for calibration - and thus, for example, as part of the method for monitoring the burner or for controlling the combustion process - is that the air-fuel mixture is leaned and that a local minimum of the ionization signal between the ionization electrode and the heat exchanger is sought as an example of a surrounding counter-electrode. The minimum is then used for calibration so that the combustion behavior of the burner can finally be monitored or the combustion process can be regulated using the calibration data. A big advantage is that the calibration is carried out in the lean range.

Alternativ wird ausgehend vom Minimum ein Sollwert errechnet, der - insbesondere in Abhängigkeit von der Leistung bzw. der Flächenbelastung des Brenners - um einen vorher festgelegten Wert höher liegt, und dann als Regelgröße verwendet wird.Alternatively, starting from the minimum, a target value is calculated which—in particular as a function of the output or the surface load of the burner—is higher by a previously specified value and is then used as a controlled variable.

In der Fig. 5 ist der Verlauf der über die zwei lonisationselektroden 4, 4' gemessenen Ionisationsspannungen für den Fall gezeigt, dass nur der Wärmetauscher 3 als Gegenelektrode zur jeweiligen lonisationselektrode 4, 4' elektrisch mit Masse verbunden und galvanisch von der Brenneroberfläche 2' getrennt ist. Aufgetragen ist wie bei den beiden vorhergehenden Abbildungen auf der y-Achse die negative Spannung und auf der x-Achse der von links nach rechts zunehmende Lambda-Wert.In the figure 5 shows the course of the ionization voltages measured across the two ionization electrodes 4, 4' for the case in which only the heat exchanger 3 as the counter-electrode to the respective ionization electrode 4, 4' is electrically connected to ground and galvanically isolated from the burner surface 2'. As in the two previous figures, the negative voltage is plotted on the y-axis and the lambda value increasing from left to right is plotted on the x-axis.

Die obere Kurve gehört zu der lonisationselektrode 4' der Fig. 2, die sich näher an der Brenneroberfläche 2' befindet. Es gibt das bekannte Maximum um den Bereich mit Lambda = 1 und den Abfall in Richtung zunehmender Lambda-Werte.The upper curve belongs to the ionization electrode 4' of FIG 2 , which is closer to the burner surface 2'. There is the known maximum around the area with lambda = 1 and the decrease towards increasing lambda values.

Unterschiedlich dazu ist der Verlauf der unteren Kurve, die mit der mittig zwischen Brenneroberfläche 2' und Gegenelektrode 3 befindlichen lonisationselektrode 4 gemessen worden ist. Auch hier liegt ein Maximum bei Lambda = 1 vor. Im mageren Bereich nimmt der Betrag der Amplitude der gemessenen Spannung ab, um in dem mit dem Pfeil angedeuteten Bereich ein Minimum als Extremum zu passieren. Nach diesem Minimum steigt die Kurve wieder an, um - in dem hier nicht dargestellten - Bereich mit größeren Lambda-Werten gegen Null abzufallen.The course of the lower curve, which was measured with the ionization electrode 4 located centrally between the burner surface 2' and the counter-electrode 3, differs from this. Here, too, there is a maximum at lambda=1. In the lean range, the absolute value of the amplitude of the measured voltage decreases in order to pass a minimum as the extreme in the area indicated by the arrow. After this minimum, the curve rises again, only to fall toward zero—in the area not shown here—with larger lambda values.

Auch hier zeigt sich somit ein Extremum, das der Kalibrierung bzw. Ermittlung oder der Korrektur der Regelparameter dienen kann.Here, too, there is an extremum that can serve to calibrate or determine or correct the control parameters.

BezugszeichenlisteReference List

11
Brenneranordnungburner arrangement
22
Brennerburner
2'2'
Brenneroberflächeburner surface
33
Wärmetauscherheat exchanger
4,4'4.4'
lonisationselektrodeionization electrode
55
Luft-Brennstoff-Gemisch-VersorgungAir-Fuel Mixture Supply
66
Steuervorrichtungcontrol device

Claims (5)

  1. A method of monitoring a burner (2) and/or a burning behavior of a burner (2),
    wherein at least one ionization signal is measured, and
    wherein the measured ionization signal is used for monitoring the burner (2) and/or the burning behavior of the burner (2), and
    wherein the ionization signal is measured between an ionization electrode (4, 4') and a counter-electrode (3) spaced apart from a burner surface (2') of the burner (2),
    wherein for a calibration and/or for a determination of parameters used when monitoring the burner (2), ionization signals are measured during a hyperstoichiometric combustion, characterized in
    that a local extremum of the ionization signal is determined during the hyperstoichiometric combustion in dependence on a lambda value of an air-fuel mixture supplied to the burner (2) and is used for the calibration and/or determination.
  2. The method according to claim 1,
    wherein a heat exchanger (3) is used as a counter-electrode.
  3. The method according to claim 1 or 2,
    wherein the ionization signal is measured between the ionization electrode (4, 4') and the counter-electrode (3) by electrically connecting the counter-electrode (3) and the burner surface (2') to ground.
  4. A burner assembly (1) comprising a burner (2), a heat exchanger (3), at least one ionization electrode (4, 4'), an air-fuel mixture supply unit (5) for the burner (2), and a control device (6),
    wherein the control device (6) is connected to the at least one ionization electrode (4, 4'),
    wherein based on ionization signals measured by means of the at least one ionization electrode (4, 4'), the control device (6) monitors the burner (2) and/or a burning behavior of the burner (2), and
    wherein for monitoring the burner (2) and/or a burning behavior of the burner (2) the control device (6) uses at least one ionization signal measured between the ionization electrode (4, 4') and the heat exchanger (3) as a counter-electrode,
    characterized in
    that for a calibration and/or for a determination of parameters used when monitoring the burner (2), the control device (6) leans the air-fuel mixture supplied to the burner (2) via the air-fuel mixture supply unit (5), and evaluates ionization signals measured by means of the leaned air-fuel mixture, and
    that for the calibration and/or the determination of the parameters the control device (6) determines a local extremum of the ionization signals by means of the leaned air-fuel mixture.
  5. The burner assembly (1) according to claim 4,
    wherein the ionization electrode (4, 4') is arranged in an area of plus/minus 20% around a mean distance between a burner surface (2') and the heat exchanger (3).
EP20734460.7A 2019-05-16 2020-05-06 Method for monitoring a burner and/or a burner behavior, and burner unit Active EP3969812B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019003451.1A DE102019003451A1 (en) 2019-05-16 2019-05-16 Method for monitoring a burner and / or a burning behavior of a burner and burner arrangement
PCT/EP2020/000091 WO2020228979A1 (en) 2019-05-16 2020-05-06 Method for monitoring a burner and/or a burner behavior, and burner unit

Publications (2)

Publication Number Publication Date
EP3969812A1 EP3969812A1 (en) 2022-03-23
EP3969812B1 true EP3969812B1 (en) 2023-07-05

Family

ID=71138709

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20734460.7A Active EP3969812B1 (en) 2019-05-16 2020-05-06 Method for monitoring a burner and/or a burner behavior, and burner unit

Country Status (7)

Country Link
US (1) US20220128235A1 (en)
EP (1) EP3969812B1 (en)
CN (1) CN113767252A (en)
AU (1) AU2020274574A1 (en)
CA (1) CA3126368A1 (en)
DE (1) DE102019003451A1 (en)
WO (1) WO2020228979A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021003172A1 (en) 2021-06-22 2022-12-22 Truma Gerätetechnik GmbH & Co. KG heating device

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2546273B1 (en) * 1983-05-19 1988-11-18 Sdecc AIR AND GAS PREMIX BURNER
EP0770824B1 (en) * 1995-10-25 2000-01-26 STIEBEL ELTRON GmbH & Co. KG Method and circuit for controlling a gas burner
DE19817966A1 (en) * 1998-04-22 1999-10-28 Buderus Heiztechnik Gmbh Burner with electrode at least partly installed in burner combustion chamber for monitoring presence of flame
DE19912076A1 (en) * 1999-03-18 2000-09-21 Kromschroeder Ag G Premix burner for gaseous fuels
DE20112299U1 (en) * 2001-07-26 2001-10-18 Buderus Heiztechnik Gmbh Ionization electrode
DE10220773A1 (en) * 2002-05-10 2003-11-20 Bosch Gmbh Robert Gas burner regulation method in which a signal from an ionization sensor is subject to spectral frequency analysis to set a fuel-air ratio for regulation of the burner
JP2004301437A (en) * 2003-03-31 2004-10-28 Tokyo Gas Co Ltd Open type gas equipment and its combustion determining method
EP1630178A1 (en) 2004-08-10 2006-03-01 Innovene Manufacturing Belgium NV Polymerisation process
DE102005012388B4 (en) * 2005-03-17 2007-09-20 Beru Ag Method for detecting the presence of a flame in the combustion chamber of a burner and igniter for a burner
AT505244B1 (en) * 2007-06-11 2009-08-15 Vaillant Austria Gmbh METHOD FOR CHECKING IONIZATION ELECTRODE SIGNAL IN BURNERS
AT505442B1 (en) * 2007-07-13 2009-07-15 Vaillant Austria Gmbh METHOD FOR FUEL GAS AIR ADJUSTMENT FOR A FUEL-DRIVEN BURNER
DE102010001307B4 (en) * 2010-01-28 2013-12-24 Viessmann Werke Gmbh & Co Kg Method and apparatus for ionization current based flame detection and flame monitoring system
DE102010046954B4 (en) * 2010-09-29 2012-04-12 Robert Bosch Gmbh Method for calibration, validation and adjustment of a lambda probe
DE102010055567B4 (en) * 2010-12-21 2012-08-02 Robert Bosch Gmbh Method for stabilizing a performance of a gas-fired burner
NL2007310C2 (en) * 2011-08-29 2013-03-04 Intergas Heating Assets B V WATER HEATING DEVICE AND METHOD FOR MEASURING A FLAME FLOW IN A FLAME IN A WATER HEATING DEVICE.
WO2016140681A1 (en) * 2015-03-05 2016-09-09 Clearsign Combustion Corporation APPLICATION OF ELECTRIC FIELDS TO CONTROL CO AND NOx GENERATION IN A COMBUSTION REACTION
PT108703B (en) * 2015-07-17 2021-03-15 Bosch Termotecnologia, S.A. DEVICE FOR HEATING DEVICES AND PROCESS FOR THE OPERATION OF A DEVICE FOR HEATING DEVICES
DE102017204014A1 (en) * 2016-09-02 2018-03-08 Robert Bosch Gmbh Method for determining a fuel type size in a heating system
DE102017126137A1 (en) * 2017-11-08 2019-05-09 Ebm-Papst Landshut Gmbh Method for controlling a fuel gas operated heater

Also Published As

Publication number Publication date
AU2020274574A1 (en) 2021-08-05
DE102019003451A1 (en) 2020-11-19
US20220128235A1 (en) 2022-04-28
WO2020228979A1 (en) 2020-11-19
CA3126368A1 (en) 2020-11-19
EP3969812A1 (en) 2022-03-23
CN113767252A (en) 2021-12-07

Similar Documents

Publication Publication Date Title
EP2005066B1 (en) Method for starting a firing device in unknown general conditions
EP1621811B1 (en) Operating Method for a Combustion Apparatus
EP3690318B1 (en) Method for regulating a fuel-air mixture in a heating device
EP0833106B1 (en) Method and device for operation optimisation of a gas burner
DE102010046954B4 (en) Method for calibration, validation and adjustment of a lambda probe
EP3779280A1 (en) Heating device for a building
EP3969812B1 (en) Method for monitoring a burner and/or a burner behavior, and burner unit
DE102019119186A1 (en) Method and device for controlling a fuel gas-air mixture in a heater
DE102020008001B4 (en) BURNER ASSEMBLY, METHOD OF OPERATING A BURNER ASSEMBLY AND WIND FUNCTION
EP4043793A1 (en) Method and arrangement for detecting flashback in a premix burner
DE3630177A1 (en) METHOD FOR OPERATING PRE-MIXING BURNERS AND DEVICE FOR CARRYING OUT THIS METHOD
EP4047270A1 (en) Method and arrangement for preventing flashback in a premix burner
EP3182007B1 (en) Heating device system and method with a heating device system
DE19734574B4 (en) Method and device for controlling a burner, in particular a fully premixing gas burner
DE3830687A1 (en) Calibrating method for a controller for controlling the air ratio of gas engines
EP1293728B1 (en) Method for controlling the power of a gas cooking appliance as well as a cooking appliance using this method
EP4133214B1 (en) Method for operating a buner assembly and burner assembly for carrying out the method
DE2509588C2 (en) Pilot flame burner for monitoring the atmosphere surrounding a burner device
EP3767174B1 (en) Method and device for recalibrating a measuring system for regulating a fuel-air mixture in a heating device
DE19501749A1 (en) Controlling combustion operation esp. with ignition of gas-blower burner
EP1811230B1 (en) Method for controlling the air-fuel ratio of a fuel operated burner
EP3985306A1 (en) Method and device for safe operation of a burner operated with a high proportion of hydrogen
DE102007001904A1 (en) Flame monitoring method for fuel operated burner, involves detecting electrical resistance of burner or measuring unit on side of burner surface for monitoring flame and controlling fuel air ratio of burner
EP4155608A1 (en) Method for detecting a burner flame extinguishment
AT396822B (en) Ignition and/or regulation method

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20211021

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230113

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230514

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1585157

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230715

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502020004059

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20230705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231006

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230705

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230705

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231106

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231005

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230705

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230705

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231105

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230705

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231006

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230705

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230705

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502020004059

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230705

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230705

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230705

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230705

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230705

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230705

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230705

26N No opposition filed

Effective date: 20240408