EP3869099A1 - Method, device, and computer program product for regulating a fuel-air mixture in a heating device - Google Patents
Method, device, and computer program product for regulating a fuel-air mixture in a heating device Download PDFInfo
- Publication number
- EP3869099A1 EP3869099A1 EP21156455.4A EP21156455A EP3869099A1 EP 3869099 A1 EP3869099 A1 EP 3869099A1 EP 21156455 A EP21156455 A EP 21156455A EP 3869099 A1 EP3869099 A1 EP 3869099A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- ionization
- heater
- combustion
- ionization signal
- ratio
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000010438 heat treatment Methods 0.000 title claims abstract description 14
- 238000000034 method Methods 0.000 title claims abstract description 14
- 230000001105 regulatory effect Effects 0.000 title claims abstract description 14
- 238000004590 computer program Methods 0.000 title claims description 4
- 239000000203 mixture Substances 0.000 title description 5
- 238000002485 combustion reaction Methods 0.000 claims abstract description 37
- 239000002737 fuel gas Substances 0.000 claims abstract description 16
- 239000000567 combustion gas Substances 0.000 claims abstract description 13
- 238000005259 measurement Methods 0.000 claims description 12
- 238000011156 evaluation Methods 0.000 claims description 11
- 230000001419 dependent effect Effects 0.000 claims description 4
- 239000003570 air Substances 0.000 description 20
- 238000010586 diagram Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 239000000446 fuel Substances 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 241000701959 Escherichia virus Lambda Species 0.000 description 1
- 239000012080 ambient air Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N1/00—Regulating fuel supply
- F23N1/02—Regulating fuel supply conjointly with air supply
- F23N1/022—Regulating fuel supply conjointly with air supply using electronic means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N5/00—Systems for controlling combustion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N5/00—Systems for controlling combustion
- F23N5/02—Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
- F23N5/12—Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods
- F23N5/123—Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods using electronic means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N2225/00—Measuring
- F23N2225/26—Measuring humidity
- F23N2225/30—Measuring humidity measuring lambda
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N2229/00—Flame sensors
- F23N2229/12—Flame sensors with flame rectification current detecting means
Definitions
- the invention is in the field of regulating a fuel gas-air mixture for a combustion process in a heating device, in particular for preparing hot water or heating a building.
- a heating device in particular for preparing hot water or heating a building.
- an ionization measurement is carried out in a flame area, especially in many heating devices. Such measurements should enable stable regulation over long periods of time. If the control fails, in most cases the heater has to be switched off, which of course should happen as rarely as possible.
- the regulation has so far often been carried out during operation by means of a separate ionization electrode.
- the respective actual value of the ionization in the flame area is determined, which is proportional to the currently present lambda value, so that this can be derived from the ionization measurement.
- An alternating voltage is applied to the ionization electrode, the flame area ionized in the presence of flames having a rectifying effect, so that an ionization current mainly only flows during one half-cycle of the alternating current.
- This current or a proportional voltage signal derived therefrom are measured and, if necessary, after digitization, further processed as an ionization signal in an analog / digital converter.
- the lambda value can be measured and regulated to a target value by means of a control circuit.
- the supply of air and / or Combustion gas is changed by suitable actuators until the desired setpoint for lambda is reached.
- a lambda value> 1 (1 corresponds to a stoichiometric ratio) is aimed for, e.g. B.
- Lambda 1.3 to ensure that enough air is supplied for clean combustion with essentially no carbon monoxide generation.
- lambda must remain so small that stable combustion is guaranteed.
- the regulation can in particular take place via a valve for the supply of fuel gas and / or a fan for the supply of ambient air.
- combustion controls which regulate the desired combustion quality (lambda value) via stored ionization current control curves.
- the basic structure of such heating devices, of measuring systems for ionization measurement and their use for regulation are, for example, also from the EP 0 770 824 B1 and the EP 2 466 204 B1 known. There it is also described that the control accuracy can change in the course of time due to various influences, in particular due to influences on the state or the shape of the ionization electrode. Various procedures for a recalibration if necessary are given there.
- the measured ionization signal is not only dependent on the lambda value, but also on the respective output of the heater, so that this must be known for precise regulation.
- the power can be linked to the speed of a fan for combustion air (or a mixture of combustion air and fuel gas) if a fixed relationship between this speed and the power is assumed.
- this does not necessarily lead to precise regulation if, for example, the operating and / or ambient conditions of the heater change.
- An exact measurement is essential possible if the flow of combustion air or combustion mixture is measured using a flow meter, which, however, requires a certain amount of additional measurement effort (intrinsically safe sensors, etc.).
- the present invention aims to provide a remedy here in order to enable safe and reliable operation of a heating device and stable and precise regulation at different powers with little effort.
- the diode effect (rectifier effect) of the flame is namely not perfect (only passage in a direction designated here as positive), but also in the opposite direction (here designated as a negative component) a certain current flows.
- the reverse resistance is several orders of magnitude larger than the so-called forward resistance in the direction of flow of the diode, which is why its influence is small.
- the Forward resistance depends not only on the lambda value, but also on the output of the heater in the sense that it would cause an excessively high lambda value with increasing output and unchanged calibration data.
- the quality of the reverse resistance depends almost exclusively on the output of the heater, but only to a very small extent.
- this portion can be evaluated by a sensitive measurement and used to determine the influence of the power on the positive portion of the ionization signal. So the deviation between a z. B. from the speed of a fan determined target power and the z. B. Environment variables specific actual performance are compensated.
- the portion of the ionization signal that is more dependent on the lambda value is defined and referred to as the positive portion, the other as the negative portion.
- the positive portion the other as the negative portion.
- the actual value of the output of the heater (at least in the range that is important for regulation) can be determined almost independently of the lambda value.
- the current output of the heater can be determined on the basis of empirical values or calibration data without the need for additional sensors in the heater.
- a frequency of the alternating ionization voltage between 10 and 10,000 Hz [Hertz] is used for the method, preferably between 50 and 300 Hz, in particular around 100 Hz.
- the maxima of the amplitudes of the positive component of the ionization signal and the minima of the amplitudes of the negative component are determined and further processed separately for different purposes.
- This embodiment is however, it is not the only possible type of evaluation.
- rectified mean values of the respective half-waves can also be used as a measure.
- the regulation of the lambda value can be continuously corrected by means of the information about the current output of the heater from the negative component of the ionization signal.
- the result of the measurement of the current output of the heater is used to correct the calibration data for regulating the heater by means of a speed of a blower if necessary.
- a known type of control can be used, but it can always be adapted to changing operating conditions.
- a heater having an air supply and a fuel gas supply, which are regulated by a control unit using an ionization signal, comprising an ionization electrode, a counter electrode, an ionization AC voltage source for an ionization AC voltage of a predeterminable frequency and evaluation electronics for determining a positive component of the ionization signal , which can be fed to the control unit, an analysis unit being available for evaluating a negative component of the ionization signal to determine a current output of the heater.
- the analysis unit is preferably connected to or integrated into the evaluation electronics.
- a computer program product comprising commands that cause the heating device described here to carry out the proposed method.
- FIG. 1 shows schematically an expanded equivalent circuit diagram 10 for a flame in which an ionization current generated by an ionization voltage source 11 flows.
- the flame acts like a diode D, i.e. essentially only lets current through in one direction and also has a certain resistance, the forward resistance RF, which can be represented by a resistor connected in series with the diode D.
- the diode D also lets a certain current through in its reverse direction, which can be represented by a reverse resistor RR connected in parallel with the diode D.
- the reverse resistance RR is several orders of magnitude larger than the forward resistance RF, which is why its existence has been neglected in many equivalent circuit diagrams and circuits.
- FIG. 2 shows schematically an embodiment of a device proposed here.
- a flame area 2 is formed during operation.
- Air enters the heater 1 via an air supply 3 and a fan 5.
- Combustion gas is mixed with the air via a combustion gas supply 4 and a combustion gas valve 6.
- the fuel gas supply and the speed of the fan 5 can be regulated via control lines 7.
- An ionization signal I in the flame region 2 is measured by means of an ionization electrode 8.
- a measuring system is used for this purpose, from which the ionization electrode 8 is acted upon by an alternating ionization voltage U of a predeterminable frequency f from an alternating ionization voltage source 11, a first evaluation electronics 13 measuring the resulting ionization signal I and converting it into a lambda based on calibration data (control curve) stored in a calibration data memory 15.
- Value i.e. a mixture ratio of air to fuel converted.
- a setpoint value for the ionization signal can be specified. With this value as the actual value, a control unit 16 can control the fan 5 and / or the fuel gas valve 6 in such a way that the actual value for lambda is set to the desired value.
- a negative portion of the ionization signal I can also be evaluated.
- the ionization signal I is passed via a data line 12 to an analysis unit 14 which obtains information about the output of the heater 1 from the negative component or its ratio to the positive component. This can preferably be done on the basis of empirical values or calibration data.
- the analysis unit 14 can of course be part of the evaluation electronics 13, which then evaluate the positive and negative components of the ionization signal I separately.
- a conventional ionization signal has positive and negative half-waves, their respective maxima and minima can be determined, from which the respectively desired information for regulation is obtained.
- Tests have shown that the minima to be assigned to the reverse resistance RR hardly depend on the lambda value over a wide range, but strongly on the real power (actual value) of the heater. This makes it possible to eliminate the influence of the power on the regulation of the lambda value with the maxima of the positive components of the ionization signal.
- the present invention makes it possible, without significant changes to a heating device, to implement reliable control with variable power only by additional electronics, which also enables (re) calibration of existing controls for different powers.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Control Of Combustion (AREA)
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
Abstract
Die Erfindung betrifft ein Verfahren zur Regelung einer Verbrennung in einem Heizgerät (1) bei variabler Leistung mittels eines in einem Flammenbereich (2) des Heizgerätes (1) gemessenen lonisationssignals (I), welches aus einem von einer lonisationselektrode (8) zu einer Gegenelektrode (9) durch den Flammenbereich (2) fließenden lonenstrom abgeleitet wird, der von einer lonisationswechselspannung (U) mit einer vorgebbaren Frequenz (f) erzeugt wird, wobei das Verhältnis (Lambda-Wert) von Verbrennungsluft zu Brenngas bei der Verbrennung in dem Heizgerät (1) anhand von Kalibrierdaten aus dem lonisationssignal (I) bestimmt und mittels Einstellung der Zufuhr an Brenngas und/oder der Zufuhr an Verbrennungsluft geregelt wird, mit folgenden Schritten: Das lonisationssignal enthält einen positiven und einen negativen Anteil, die separat voneinander betrachtet werden. Der positive Anteil ist abhängig vom Verhältnis von Verbrennungsluft zu Brenngas (Lambda-Wert) und wird für die Ermittlung des lonisationssignals (I) verwendet. Der negative Anteil und/oder sein Größenverhältnis zum positiven Anteil sind abhängig von der aktuellen Leistung des Heizgerätes (1), die mittels einer Analyseeinheit (14) aus Erfahrungswerten oder Kalibrierdaten ermittelt wird. Die Information über die aktuelle Leistung des Heizgerätes (1) wird genutzt, um geeignete Kalibrierdaten für diese Leistung zur Regelung des Verhältnisses von Verbrennungsluft zu Brenngas (Lambda-Wert) auszuwählen. Dies erlaubt es, ohne wesentliche Veränderungen an einem Heizgerät selbst nur durch zusätzliche Elektronik eine zuverlässige Regelung bei variabler Leistung zu verwirklichen, was auch eine (Nach-) Kalibrierung vorhandener Regelungen für verschiedene Leistungen ermöglicht.The invention relates to a method for regulating combustion in a heater (1) at variable power by means of an ionization signal (I) measured in a flame area (2) of the heater (1), which is transmitted from an ionization electrode (8) to a counter electrode ( 9) through the flame area (2) flowing ion current is derived, which is generated by an alternating ionization voltage (U) with a predeterminable frequency (f), the ratio (lambda value) of combustion air to combustion gas during combustion in the heater (1 ) is determined on the basis of calibration data from the ionization signal (I) and is regulated by adjusting the supply of fuel gas and / or the supply of combustion air, with the following steps: The ionization signal contains a positive and a negative component, which are considered separately from each other. The positive portion depends on the ratio of combustion air to combustion gas (lambda value) and is used to determine the ionization signal (I). The negative portion and / or its size ratio to the positive portion depend on the current output of the heater (1), which is determined by means of an analysis unit (14) from empirical values or calibration data. The information about the current output of the heater (1) is used to select suitable calibration data for this output for regulating the ratio of combustion air to combustion gas (lambda value). This makes it possible, without significant changes to a heating device itself, to implement reliable control with variable power only by means of additional electronics, which also enables (re) calibration of existing controls for different powers.
Description
Die Erfindung liegt auf dem Gebiet der Regelung eines Brenngas-Luftgemisches für einen Verbrennungsprozess in einem Heizgerät, insbesondere zur Warmwasserbereitung oder Beheizung eines Gebäudes. Zur Messung einer Qualität der Verbrennung, die hauptsächlich von dem während der Verbrennung vorliegenden Verhältnis von Verbrennungsluft zu Brenngas (Lambda-Wert, auch Luftzahl genannt) abhängt, wird insbesondere bei vielen Heizgeräten eine lonisationsmessung in einem Flammenbereich durchgeführt. Solche Messungen sollen eine stabile Regelung über lange Zeiträume ermöglichen. Fällt die Regelung aus, so muss in den meisten Fällen das Heizgerät abgeschaltet werden, was natürlich möglichst selten vorkommen sollte.The invention is in the field of regulating a fuel gas-air mixture for a combustion process in a heating device, in particular for preparing hot water or heating a building. To measure the quality of the combustion, which mainly depends on the ratio of combustion air to combustion gas (lambda value, also called air ratio) during combustion, an ionization measurement is carried out in a flame area, especially in many heating devices. Such measurements should enable stable regulation over long periods of time. If the control fails, in most cases the heater has to be switched off, which of course should happen as rarely as possible.
Nach dem Stand der Technik wird bisher im Betrieb die Regelung oft mittels einer gesonderten lonisationselektrode durchgeführt. Unabhängig von der Art der Elektrode wird der jeweilige Ist-Wert der Ionisation im Flammenbereich ermittelt, der proportional dem gerade vorliegenden Lambda-Wert ist, so dass dieser aus der lonisationsmessung abgeleitet werden kann. Dabei wird an die lonisationselektrode eine Wechselspannung angelegt, wobei der bei Vorhandensein von Flammen ionisierte Flammenbereich eine gleichrichtende Wirkung hat, so dass ein lonisationsstrom hauptsächlich jeweils nur während einer Halbwelle des Wechselstromes fließt. Dieser Strom oder ein daraus abgeleitetes proportionales Spannungssignal, im Folgenden lonisationssignal genannt, werden gemessen und gegebenenfalls nach einer Digitalisierung in einem Analog/Digital-Wandler als lonisationssignal weiterverarbeitet. So kann der Lambda-Wert gemessen und mittels eines Regelkreises auf einen Sollwert geregelt werden. Dabei wird die Zufuhr von Luft und/oder Brenngas durch geeignete Stellglieder verändert, bis der gewünschte Sollwert für Lambda erreicht ist. Im Allgemeinen wird ein Lambda-Wert > 1 (1 entspricht einem stöchiometrischen Verhältnis) angestrebt, z. B. Lambda = 1,3, um sicherzustellen, dass genug Luft für eine saubere Verbrennung im Wesentlichen ohne Erzeugung von Kohlenmonoxid zugeführt wird. Dabei muss Lambda aber so klein bleiben, dass eine stabile Verbrennung gewährleistet ist. Die Regelung kann insbesondere über ein Ventil für die Zufuhr von Brenngas und/oder ein Gebläse für die Zufuhr von Umgebungsluft erfolgen.According to the prior art, the regulation has so far often been carried out during operation by means of a separate ionization electrode. Regardless of the type of electrode, the respective actual value of the ionization in the flame area is determined, which is proportional to the currently present lambda value, so that this can be derived from the ionization measurement. An alternating voltage is applied to the ionization electrode, the flame area ionized in the presence of flames having a rectifying effect, so that an ionization current mainly only flows during one half-cycle of the alternating current. This current or a proportional voltage signal derived therefrom, hereinafter referred to as the ionization signal, are measured and, if necessary, after digitization, further processed as an ionization signal in an analog / digital converter. In this way, the lambda value can be measured and regulated to a target value by means of a control circuit. The supply of air and / or Combustion gas is changed by suitable actuators until the desired setpoint for lambda is reached. In general, a lambda value> 1 (1 corresponds to a stoichiometric ratio) is aimed for, e.g. B. Lambda = 1.3 to ensure that enough air is supplied for clean combustion with essentially no carbon monoxide generation. However, lambda must remain so small that stable combustion is guaranteed. The regulation can in particular take place via a valve for the supply of fuel gas and / or a fan for the supply of ambient air.
Aus der
Der grundsätzliche Aufbau solcher Heizgeräte, von Messystemen zur lonisationsmessung und zu deren Benutzung zur Regelung sind beispielsweise auch aus der
Allerdings muss ein weiterer Parameter bei der Regelung berücksichtigt werden, nämlich die Leistung, bei der das Heizgerät arbeitet. Tatsächlich ist das gemessene lonisationssignal nicht nur vom Lambda-Wert, sondern auch von der jeweiligen Leistung des Heizgerätes abhängig, so dass diese für eine genaue Regelung bekannt sein muss. In erster Näherung kann man die Leistung mit der Drehzahl eines Gebläses für Verbrennungsluft (oder ein Gemisch aus Verbrennungsluft und Brenngas) verknüpfen, wenn man einen festen Zusammenhang zwischen dieser Drehzahl und der Leistung annimmt. Das führt aber nicht unbedingt zu einer genauen Regelung, wenn sich beispielsweise die Betriebs- und/oder Umgebungsbedingungen des Heizgerätes ändern. Eine genaue Messung ist prinzipiell möglich, wenn man den Durchfluss an Verbrennungsluft oder an Verbrennungsgemisch mittels eines Durchflussmessers misst, was jedoch einen gewissen zusätzlichen Messaufwand (eigensichere Sensorik etc.) erfordert.However, another parameter must be taken into account in the regulation, namely the power at which the heater is working. In fact, the measured ionization signal is not only dependent on the lambda value, but also on the respective output of the heater, so that this must be known for precise regulation. As a first approximation, the power can be linked to the speed of a fan for combustion air (or a mixture of combustion air and fuel gas) if a fixed relationship between this speed and the power is assumed. However, this does not necessarily lead to precise regulation if, for example, the operating and / or ambient conditions of the heater change. An exact measurement is essential possible if the flow of combustion air or combustion mixture is measured using a flow meter, which, however, requires a certain amount of additional measurement effort (intrinsically safe sensors, etc.).
Hier will die vorliegende Erfindung Abhilfe schaffen, um einen sicheren und zuverlässigen Betrieb eines Heizgerätes und eine stabile und genaue Regelung bei unterschiedlichen Leistungen mit geringem Aufwand zu ermöglichen.The present invention aims to provide a remedy here in order to enable safe and reliable operation of a heating device and stable and precise regulation at different powers with little effort.
Zur Lösung dieser Aufgabe tragen ein Verfahren, eine Vorrichtung sowie ein Computerprogrammprodukt gemäß den unabhängigen Ansprüchen bei. Vorteilhafte Ausgestaltungen und Weiterbildungen der Erfindung sind in den jeweiligen abhängigen Ansprüchen angegeben. Die Beschreibung, insbesondere im Zusammenhang mit den Figuren, veranschaulicht die Erfindung und gibt weitere Ausführungsbeispiele an.A method, a device and a computer program product according to the independent claims contribute to achieving this object. Advantageous refinements and developments of the invention are specified in the respective dependent claims. The description, in particular in connection with the figures, illustrates the invention and specifies further exemplary embodiments.
Bisher werden bei der Beschreibung des Prinzips einer lonisationsmessung für den Flammenwiderstand in einem Verbrennungsprozess als vereinfachtes Ersatzschaltbild eine Diode und ein damit in Reihe geschalteter Widerstand benutzt. Damit kann man die bisher genutzten Systeme recht gut beschreiben, bei denen der Flammenwiderstand eine gleichrichtende Funktion überlagert mit einem Widerstand hat. Tatsächlich aber gibt es noch eine weitere Eigenschaft des Flammenwiderstandes, die man durch einen zusätzlichen, zur Diode parallel geschalteten Widerstand, einen sogenannten Reverse-Widerstand, im einem erweiterten Ersatzschaltbild nachbilden kann. Die Diodenwirkung (Gleichrichterwirkung) der Flamme (jedenfalls bei einer typischen Flamme in einem Gasbrenner bzw. einer kohlenstoffhaltigen Flamme) ist nämlich nicht perfekt (nur Durchlass in einer hier als positiv bezeichneten Richtung), sondern auch in umgekehrter Richtung (hier als negativer Anteil bezeichnet) fließt ein gewisser Strom. Der Reverse-Widerstand ist allerdings mehrere Größenordnungen größer als der sogenannte Forward-Widerstand in Durchflussrichtung der Diode, weshalb sein Einfluss gering ist. Untersuchungen haben aber gezeigt, dass der Forward-Widerstand nicht nur vom Lambda-Wert, sondern auch von der Leistung des Heizgerätes in dem Sinne abhängt, dass er bei steigender Leistung und unveränderten Kalibrierdaten einen zu hohen Lambda-Wert bewirken würde. Der Reverse-Widerstand hängt qualitativ fast nur von der Leistung des Heizgerätes ab, aber eben nur in ganz geringem Anteil. Diesen Anteil kann man jedoch durch eine empfindliche Messung auswerten und zur Bestimmung des Einflusses der Leistung auf den positiven Anteil des lonisationssignals nutzen. So kann die Abweichung zwischen einer z. B. aus der Drehzahl eines Gebläses bestimmten Soll-Leistung und der durch z. B. Umgebungsvariablen bestimmten Ist-Leistung kompensiert werden.So far, when describing the principle of an ionization measurement for the flame resistance in a combustion process, a diode and a resistor connected in series have been used as a simplified equivalent circuit diagram. This can be used to describe the systems used so far, in which the flame resistance has a rectifying function superimposed with a resistance. In fact, there is another property of the flame resistance that can be reproduced in an extended equivalent circuit by an additional resistor connected in parallel to the diode, a so-called reverse resistor. The diode effect (rectifier effect) of the flame (at least with a typical flame in a gas burner or a carbon-containing flame) is namely not perfect (only passage in a direction designated here as positive), but also in the opposite direction (here designated as a negative component) a certain current flows. However, the reverse resistance is several orders of magnitude larger than the so-called forward resistance in the direction of flow of the diode, which is why its influence is small. However, studies have shown that the Forward resistance depends not only on the lambda value, but also on the output of the heater in the sense that it would cause an excessively high lambda value with increasing output and unchanged calibration data. The quality of the reverse resistance depends almost exclusively on the output of the heater, but only to a very small extent. However, this portion can be evaluated by a sensitive measurement and used to determine the influence of the power on the positive portion of the ionization signal. So the deviation between a z. B. from the speed of a fan determined target power and the z. B. Environment variables specific actual performance are compensated.
Das hier vorgeschlagene Verfahren betrifft die Regelung einer Verbrennung in einem Heizgerät bei variabler Leistung mittels eines in einem Flammenbereich des mit Verbrennungsluft und Brenngas betriebenen Heizgerätes gemessenen lonisationssignals, welches aus einem von einer lonisationselektrode zu einer Gegenelektrode durch den Flammenbereich fließenden lonenstrom abgeleitet wird, der von einer Ionisationswechselspannung mit einer vorgebbaren Frequenz erzeugt wird, wobei das Verhältnis (Lambda-Wert) von Verbrennungsluft zu Brenngas bei der Verbrennung in dem Heizgerät anhand von Kalibrierdaten aus dem lonisationssignal bestimmt und mittels Einstellung der Zufuhr an Brenngas und/oder der Zufuhr an Verbrennungsluft geregelt wird. Dabei werden zumindest folgende Schritte durchgeführt:
- 1.1 Das lonisationssignal enthält einen positiven und einen negativen Anteil, die separat voneinander betrachtet werden.
- 1.2 Der positive Anteil ist abhängig vom Verhältnis von Verbrennungsluft zu Brenngas (Lambda-Wert) und wird für die Ermittlung des lonisationssignals (I1) verwendet.
- 1.3 Der negative Anteil und/oder sein Größenverhältnis zum positiven Anteil sind abhängig von der aktuellen Leistung des Heizgerätes, die mittels einer Analyseeinheit (14) aus Erfahrungswerten oder Kalibrierdaten ermittelt wird.
- 1.4 Die Information über die aktuelle Leistung des Heizgerätes wird genutzt, um geeignete Kalibrierdaten für diese Leistung zur Regelung des Verhältnisses von Verbrennungsluft zu Brenngas (Lambda-Wert) auszuwählen.
- 1.1 The ionization signal contains a positive and a negative component, which are considered separately from one another.
- 1.2 The positive portion depends on the ratio of combustion air to combustion gas (lambda value) and is used to determine the ionization signal (I1).
- 1.3 The negative portion and / or its size ratio to the positive portion depend on the current output of the heater, which is determined by means of an analysis unit (14) from empirical values or calibration data.
- 1.4 The information about the current output of the heater is used to select suitable calibration data for this output to control the ratio of combustion air to combustion gas (lambda value).
Hier und im Folgenden wird der Anteil des lonisationssignals, der stärker vom Lambda-Wert abhängt, als positiver Anteil definiert und bezeichnet, der andere als negativer Anteil. Dies hängt aber von der Art der Signalauswertung ab, so dass es in der Praxis je nach Auswerteelektronik auch umgekehrt sein kann.Here and in the following, the portion of the ionization signal that is more dependent on the lambda value is defined and referred to as the positive portion, the other as the negative portion. However, this depends on the type of signal evaluation, so that in practice it can also be the other way round, depending on the evaluation electronics.
Durch die Analyse des negativen Anteils kann der Ist-Wert der Leistung des Heizgerätes (jedenfalls in dem für eine Regelung wichtigen Bereich) fast unabhängig vom Lambda-Wert ermittelt werden. Jedenfalls kann anhand von Erfahrungswerten oder Kalibrierdaten die aktuelle Leistung des Heizgerätes ermittelt werden, ohne dass es zusätzlicher Sensoren in dem Heizgerät bedarf.By analyzing the negative component, the actual value of the output of the heater (at least in the range that is important for regulation) can be determined almost independently of the lambda value. In any case, the current output of the heater can be determined on the basis of empirical values or calibration data without the need for additional sensors in the heater.
Für das Verfahren wird in einer Ausführungsform eine Frequenz der lonisationswechselspannung zwischen 10 und 10000 Hz [Hertz] benutzt, vorzugsweise zwischen 50 und 300 Hz, insbesondere etwa 100 Hz. Damit können schon bekannte Ionisationsmessgeräte, die in diesen Bereichen arbeiten, eingesetzt werden.In one embodiment, a frequency of the alternating ionization voltage between 10 and 10,000 Hz [Hertz] is used for the method, preferably between 50 and 300 Hz, in particular around 100 Hz.
In einer bevorzugten Ausführungsform werden die Maxima der Amplituden des positiven Anteils des lonisationssignals und die Minima der Amplituden des negativen Anteils bestimmt und getrennt für verschiedene Zwecke weiterverarbeitet. Dies Ausführungsform ist allerdings nicht die einzige mögliche Art der Auswertung. So können beispielsweise auch gleichgerichtete Mittelwerte der jeweiligen Halbwellen als Maß benutzt werden.In a preferred embodiment, the maxima of the amplitudes of the positive component of the ionization signal and the minima of the amplitudes of the negative component are determined and further processed separately for different purposes. This embodiment is however, it is not the only possible type of evaluation. For example, rectified mean values of the respective half-waves can also be used as a measure.
Insbesondere kann die Regelung des Lambda-Wertes kontinuierlich mittels der Information über die aktuelle Leistung des Heizgerätes aus dem negativen Anteil des lonisationssignals korrigiert werden.In particular, the regulation of the lambda value can be continuously corrected by means of the information about the current output of the heater from the negative component of the ionization signal.
In einer alternativen Ausführungsform werden mit dem Ergebnis der Messung der aktuellen Leistung des Heizgerätes die Kalibrierdaten der Regelung des Heizgerätes mittels einer Drehzahl eines Gebläses bei Bedarf korrigiert. So kann eine bekannte Art der Regelung genutzt, aber immer wieder an veränderte Betriebsbedingungen angepasst werden.In an alternative embodiment, the result of the measurement of the current output of the heater is used to correct the calibration data for regulating the heater by means of a speed of a blower if necessary. In this way, a known type of control can be used, but it can always be adapted to changing operating conditions.
Weiter wird auch ein Heizgerät vorgeschlagen, aufweisend eine Luftzufuhr und eine Brenngaszufuhr, die von einer Regeleinheit geregelt werden unter Verwendung eines lonisationssignals, umfassend eine lonisationselektrode, eine Gegenelektrode, eine lonisationswechselspannungsquelle für eine lonisationswechselspannung einer vorgebbaren Frequenz und eine Auswertelektronik zur Ermittlung eines positiven Anteils des Ionisationssignales, das der Regeleinheit zuführbar ist, wobei eine Analyseeinheit vorhanden ist zur Auswertung eines negativen Anteils des lonisationssignals zur Ermittlung einer aktuellen Leistung des Heizgerätes.A heater is also proposed, having an air supply and a fuel gas supply, which are regulated by a control unit using an ionization signal, comprising an ionization electrode, a counter electrode, an ionization AC voltage source for an ionization AC voltage of a predeterminable frequency and evaluation electronics for determining a positive component of the ionization signal , which can be fed to the control unit, an analysis unit being available for evaluating a negative component of the ionization signal to determine a current output of the heater.
Bevorzugt ist die Analyseeinheit mit der Auswerteelektronik verbunden oder in diese integriert.The analysis unit is preferably connected to or integrated into the evaluation electronics.
Zudem wird auch ein Computerprogrammprodukt vorgeschlagen, umfassend Befehle, die bewirken, dass das hier beschriebene Heizgerät das vorgeschlagene Verfahren ausführt.In addition, a computer program product is also proposed, comprising commands that cause the heating device described here to carry out the proposed method.
Ein schematisches Ausführungsbeispiel der Erfindung, auf das diese jedoch nicht beschränkt ist, und die Funktionsweise des erfindungsgemäßen Verfahrens werden nun anhand der Zeichnung näher erläutert. Es stellen dar:
- Fig. 1:
- ein erweitertes Ersatzschaltbild für den Flammenwiderstand in einem Verbrennungsprozess und
- Fig. 2:
- eine schematische Darstellung eines Heizgerätes mit Regelung über ein Ionisationssignal gemäß der Erfindung.
- Fig. 1:
- an extended equivalent circuit diagram for the flame resistance in a combustion process and
- Fig. 2:
- a schematic representation of a heater with regulation via an ionization signal according to the invention.
Zusätzlich zu dieser an sich bekannten Regelung, die im Wesentlichen auf dem hier als positiv bezeichneten Anteil des lonisationssignals I beruht, kann auch ein negativer Anteil des lonisationssignals I ausgewertet werden. Über eine Datenleitung 12 wird das lonisationssignal I zu einer Analyseeinheit 14 geleitet, die aus dem negativen Anteil oder dessen Verhältnis zum positiven Anteil eine Information über die Leistung des Heizgerätes 1 gewinnt. Dies kann bevorzugt anhand von Erfahrungswerten oder Kalibrierdaten geschehen. Die Analyseeinheit 14 kann natürlich Teil der Auswerteelektronik 13 sein, die dann den positiven und den negativen Anteil des lonisationssignals I getrennt auswertet. Obwohl der Effekt des Reverse-Widerstands RR auf den lonenstrom in der Flamme klein ist, kann dieser mit heutiger Messtechnik problemlos gemessen werden. Tatsächlich hat ein übliches lonisationssignal positive und negative Halbwellen, deren jeweilige Maxima bzw. Minima bestimmt werden können, woraus dann die jeweils gewünschte Information zur Regelung gewonnen wird. Versuche haben gezeigt, dass die dem Reverse-Widerstand RR zuzuordnenden Minima über einen weiten Bereich kaum vom Lambda-Wert abhängen, aber stark von der real vorliegenden Leistung (Ist-Wert) des Heizgerätes. Dies ermöglicht es, den Einfluss der Leistung auf die Regelung des Lambda-Wertes mit den Maxima der positiven Anteile des lonisationssignals zu eliminieren.In addition to this regulation, known per se, which is essentially based on the portion of the ionization signal I referred to here as positive, a negative portion of the ionization signal I can also be evaluated. The ionization signal I is passed via a
Die vorliegende Erfindung erlaubt es, ohne wesentliche Veränderungen an einem Heizgerät selbst nur durch zusätzliche Elektronik eine zuverlässige Regelung bei variabler Leistung zu verwirklichen, was auch eine (Nach-)Kalibrierung vorhandener Regelungen für verschiedene Leistungen ermöglicht.The present invention makes it possible, without significant changes to a heating device, to implement reliable control with variable power only by additional electronics, which also enables (re) calibration of existing controls for different powers.
- 11
- Heizgerät mit einem BrennraumHeater with a combustion chamber
- 22
- FlammenbereichFlame area
- 33
- LuftzufuhrAir supply
- 44th
- BrenngaszufuhrFuel gas supply
- 55
- Gebläsefan
- 66th
- BrenngasventilFuel gas valve
- 77th
- SteuerleitungenControl lines
- 88th
- IonisationselektrodeIonization electrode
- 99
- Brenner / GegenelektrodeTorch / counter electrode
- 1010
- Ersatzschaltbild FlammeEquivalent circuit diagram flame
- 1111
- IonisationswechselspannungsquelleAC ionization voltage source
- 1212th
- SignalleitungSignal line
- 1313th
- AuswerteelektronikEvaluation electronics
- 1414th
- AnalyseeinheitAnalysis unit
- 1515th
- KalibrierdatenspeicherCalibration data memory
- 1616
- RegeleinheitControl unit
- UU
- IonisationswechselspannungAC ionization voltage
- ff
- Frequenzfrequency
- II.
- IonisationssignalIonization signal
- DD.
- Diodediode
- RFRF
- Forward-WiderstandForward resistance
- RRRR
- Reverse-WiderstandReverse resistance
Claims (8)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102020104210.8A DE102020104210A1 (en) | 2020-02-18 | 2020-02-18 | Method and device for regulating a fuel gas-air mixture in a heating device with variable power |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3869099A1 true EP3869099A1 (en) | 2021-08-25 |
EP3869099B1 EP3869099B1 (en) | 2022-10-26 |
Family
ID=74591789
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP21156455.4A Active EP3869099B1 (en) | 2020-02-18 | 2021-02-11 | Method, device, and computer program product for regulating a fuel-air mixture in a heating device |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP3869099B1 (en) |
CN (1) | CN113339841A (en) |
DE (1) | DE102020104210A1 (en) |
ES (1) | ES2934238T3 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102021128472A1 (en) | 2021-11-02 | 2023-05-04 | Vaillant Gmbh | Method for operating a heating device, computer program, storage medium, regulation and control unit, heating device and use of a recorded ionization current and a recorded temperature |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19502901C1 (en) | 1995-01-31 | 1996-03-21 | Stiebel Eltron Gmbh & Co Kg | Regulating device for gas burner |
US5549469A (en) * | 1994-02-28 | 1996-08-27 | Eclipse Combustion, Inc. | Multiple burner control system |
DE19618573C1 (en) | 1996-05-09 | 1997-06-26 | Stiebel Eltron Gmbh & Co Kg | Gas burner regulating method controlled by ionisation electrode signal |
EP0770824B1 (en) | 1995-10-25 | 2000-01-26 | STIEBEL ELTRON GmbH & Co. KG | Method and circuit for controlling a gas burner |
EP1002997A2 (en) * | 1998-11-20 | 2000-05-24 | G. Kromschröder Aktiengesellschaft | Method for controlling a fuel/air ratio of full premix gas burner |
WO2009110015A1 (en) * | 2008-03-07 | 2009-09-11 | Bertelli & Partners S.R.L. | Improved method and device to detect the flame in a burner operating on a solid, liquid or gaseous combustible |
EP2466204B1 (en) | 2010-12-16 | 2013-11-13 | Siemens Aktiengesellschaft | Regulating device for a burner assembly |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4871307A (en) | 1988-11-02 | 1989-10-03 | Harris George W | Flame ignition and monitoring system and method |
DE102015222263B3 (en) | 2015-11-11 | 2017-05-24 | Viessmann Werke Gmbh & Co Kg | METHOD AND DEVICE FOR FLAME SIGNAL DETECTION |
-
2020
- 2020-02-18 DE DE102020104210.8A patent/DE102020104210A1/en not_active Withdrawn
-
2021
- 2021-02-10 CN CN202110185197.0A patent/CN113339841A/en active Pending
- 2021-02-11 ES ES21156455T patent/ES2934238T3/en active Active
- 2021-02-11 EP EP21156455.4A patent/EP3869099B1/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5549469A (en) * | 1994-02-28 | 1996-08-27 | Eclipse Combustion, Inc. | Multiple burner control system |
DE19502901C1 (en) | 1995-01-31 | 1996-03-21 | Stiebel Eltron Gmbh & Co Kg | Regulating device for gas burner |
EP0770824B1 (en) | 1995-10-25 | 2000-01-26 | STIEBEL ELTRON GmbH & Co. KG | Method and circuit for controlling a gas burner |
DE19618573C1 (en) | 1996-05-09 | 1997-06-26 | Stiebel Eltron Gmbh & Co Kg | Gas burner regulating method controlled by ionisation electrode signal |
EP1002997A2 (en) * | 1998-11-20 | 2000-05-24 | G. Kromschröder Aktiengesellschaft | Method for controlling a fuel/air ratio of full premix gas burner |
WO2009110015A1 (en) * | 2008-03-07 | 2009-09-11 | Bertelli & Partners S.R.L. | Improved method and device to detect the flame in a burner operating on a solid, liquid or gaseous combustible |
EP2466204B1 (en) | 2010-12-16 | 2013-11-13 | Siemens Aktiengesellschaft | Regulating device for a burner assembly |
Also Published As
Publication number | Publication date |
---|---|
ES2934238T3 (en) | 2023-02-20 |
DE102020104210A1 (en) | 2021-08-19 |
CN113339841A (en) | 2021-09-03 |
EP3869099B1 (en) | 2022-10-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1370806B1 (en) | Method and device for adjusting air/fuel ratio | |
EP2495496B1 (en) | Burner assembly | |
EP2549187B1 (en) | Method and apparatus for controlling the air ratio of a burner | |
EP2874039B1 (en) | Control method for a heat transfer system and heat transfer system | |
EP2821705A1 (en) | Method and device for determining the calorific value of a fuel gas mixture by means of an ionisation sensor | |
DE19539568C1 (en) | Gas burner regulation system | |
DE9203528U1 (en) | Device for controlling a gas consumption device | |
DE3707258C2 (en) | Burner device | |
EP1002999A2 (en) | Control of the burner heating power with a gas fuelled range or stove | |
EP3869099B1 (en) | Method, device, and computer program product for regulating a fuel-air mixture in a heating device | |
DE3309404C2 (en) | ||
DE19615141A1 (en) | Method and device for controlling a combustion process in a boiler | |
EP2090827A2 (en) | Regulator for gas burner | |
AT511470A4 (en) | DEVICE AND METHOD FOR REGULATING A FRESH AIR SUPPLY IN A DEVICE FOR COOLING, HEATING AND / OR VENTILATING A BUILDING | |
DE2509344A1 (en) | PROCEDURE AND ARRANGEMENT FOR CONTROLLING BOILER TURBINE BLOCKS | |
DE69017104T2 (en) | Method and device for testing a lambda probe. | |
DE10122039A1 (en) | Method and device for determining a characteristic value representative of the nature of a gas | |
DE102007034171A1 (en) | Heat analysis device i.e. differential scanning calorimeter, has flow controller setting flow rate of gas guided to furnace`s inner area, where operation terms are set in section to differ terms in higher and lower temperature sides | |
DE10220773A1 (en) | Gas burner regulation method in which a signal from an ionization sensor is subject to spectral frequency analysis to set a fuel-air ratio for regulation of the burner | |
EP3825610B1 (en) | Method and device for measuring the lambda value in a fossil-fired burner, in particular for a heating and / or water system | |
EP2154430B1 (en) | Control device for a gas burner, and use of the control device | |
DE19639992A1 (en) | Gas-flow control procedure for gas space-heater | |
DE2457650A1 (en) | DEVICE FOR CHECKING GASES | |
DE10114901A1 (en) | Method and device for adjusting the air ratio of a fuel air mixture, measures mass flows and wobbe index and adjusts to give predetermined lambda | |
DE10056064B4 (en) | Method for controlling a gas burner |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20220110 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20220530 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1527279 Country of ref document: AT Kind code of ref document: T Effective date: 20221115 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502021000210 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2934238 Country of ref document: ES Kind code of ref document: T3 Effective date: 20230220 |
|
REG | Reference to a national code |
Ref country code: SK Ref legal event code: T3 Ref document number: E 41159 Country of ref document: SK |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221026 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230227 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230126 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221026 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221026 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221026 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221026 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221026 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230226 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221026 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230127 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502021000210 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221026 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221026 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221026 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221026 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221026 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221026 |
|
26N | No opposition filed |
Effective date: 20230727 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230211 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221026 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230211 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20240129 Year of fee payment: 4 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20240301 Year of fee payment: 4 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240201 Year of fee payment: 4 Ref country code: CZ Payment date: 20240122 Year of fee payment: 4 Ref country code: CH Payment date: 20240301 Year of fee payment: 4 Ref country code: SK Payment date: 20240119 Year of fee payment: 4 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20240131 Year of fee payment: 4 Ref country code: IT Payment date: 20240229 Year of fee payment: 4 Ref country code: FR Payment date: 20240227 Year of fee payment: 4 Ref country code: BE Payment date: 20240129 Year of fee payment: 4 |