EP2154430B1 - Control device for a gas burner, and use of the control device - Google Patents

Control device for a gas burner, and use of the control device Download PDF

Info

Publication number
EP2154430B1
EP2154430B1 EP08105048.6A EP08105048A EP2154430B1 EP 2154430 B1 EP2154430 B1 EP 2154430B1 EP 08105048 A EP08105048 A EP 08105048A EP 2154430 B1 EP2154430 B1 EP 2154430B1
Authority
EP
European Patent Office
Prior art keywords
amplifier
ionisation
resistor
flame
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP08105048.6A
Other languages
German (de)
French (fr)
Other versions
EP2154430A1 (en
Inventor
Rainer Dr. Lochschmied
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP08105048.6A priority Critical patent/EP2154430B1/en
Publication of EP2154430A1 publication Critical patent/EP2154430A1/en
Application granted granted Critical
Publication of EP2154430B1 publication Critical patent/EP2154430B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/02Regulating fuel supply conjointly with air supply
    • F23N1/022Regulating fuel supply conjointly with air supply using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/12Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods
    • F23N5/123Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods using electronic means

Definitions

  • the present invention relates to a control device and its use, with an arranged in the flame region of a gas burner ionization electrode, which detects a combustion dependent ionization current, wherein a signal processing circuit in response to the ionization provides a control variable for a control unit, which the ratio of air to gas at combustion according to a setpoint.
  • This signal processing circuit has an amplifier which is connected to a ground potential of the gas burner.
  • the ionization electrode is connected to an AC voltage source, which is galvanically isolated from a power supply of the voltage source.
  • the EP 1 5191 14 A1 shows a device for flame monitoring by means of an ionization electrode.
  • the electrode signal is simply amplified and processed in an automatic burner control.
  • This device is equipped with a transformer as a voltage source.
  • the EP 1 5191 14 A1 does not teach to constantly consider changes in the mains voltage or how such changes can be reliably and cheaply taken into account. In any case, the device regularly interrupts the power supply to the ionization electrode, and an air ratio control by means of the ionization electrode would settle only slowly.
  • a control device of the type mentioned is, for example, from the EP 1 154 203 B1 known.
  • a mains AC voltage via a capacitive coupling element (blocking capacitor) of the measuring device is switched.
  • the blocking capacitor separates the DC component caused by the flame from the AC voltage and shields the measuring device, for example, from interference occurring in the voltage network. To ensure that the measuring device functions properly, the blocking capacitor must not fail during the measurement.
  • the EP 1 293 727 A1 shows a same input circuit as the EP 1 154 203 B1 , In addition, it shows in more detail a control unit to set the ratio of air to gas for combustion to a setpoint.
  • a control device is for example from the EP-A-1 519 114 known. Based on this document, the present invention seeks to propose a control device with a signal processing circuit, which is insensitive to voltage fluctuations and allows a simple construction reliable measurement and error-free processing of the measurement signal to a controlled variable for a gas-air network control.
  • the invention has the advantage that for the control of the measurement signal dependent parameters such. B. smooth ionization current, peak or RMS value of the ionization current, flame resistance, reliably measured with a simple structure and processed error-free used as a controlled variable. Therefore is the regulation based on it z. B. independent of interference occurring in the network. Also, the signal processing circuit can be constructed inexpensively from a few components with high reliability. The invention is preferably used in conjunction with a premix burner.
  • FIG. 1 shows in a functional block diagram, a gas-air composite control with a gas burner with flame 1 wherein in the flame area 1 an ionization electrode 2 is arranged, which is connected via a line 14 to a signal processing circuit 3.
  • the signal processing circuit 3 is connected to a Power supply 13 connected and connected via a line 15 to the ground potential 15 of the gas burner.
  • the signal processing circuit 3 provides a controlled variable 21 for the control unit 4 as a function of the measurement signal of the ionization electrode.
  • the control unit 4 In the case of a heat or power requirement 19, 20, the control unit 4 generates corresponding control signals 16, 17, whereby the amount of air or gas 10, 11 can be adjusted.
  • the control signal 16 controls z.
  • B. a gas valve 5 and the control signal 17 controls a fan 6.
  • the fan 6 is z.
  • ambient air 8 is supplied and the gas valve 5 is connected to a gas supply 9.
  • a mixer 7 mixes the amount of air 10 set by the fan 6 with the gas quantity 11 set by the gas valve 5 to a mixture 12 which the gas burner 1 burns.
  • the signal 18 is optional and denotes a feedback of the amount of blower 10.
  • FIG. 2 shows an electrical equivalent circuit diagram for a gas burner flare with a rectifying flame diode DF and a flame resistance RF. This electrical equivalent circuit usually describes the characteristics of the flame with sufficient accuracy.
  • FIG. 3a shows a first embodiment of a signal processing circuit 3, for example, in connection with the in FIG. 1 shown gas-air composite control is used.
  • the signal processing circuit 3 has a voltage source S, z. B. a transformer on the primary circuit, a power supply, for. B. a mains voltage 13 is connected.
  • the secondary circuit of the transformer S provides an AC voltage 25 which is galvanically isolated from the mains voltage 13.
  • the AC voltage 25 is electrically connected via a line 14 to the arranged in the flame region 1 of the gas burner ionization electrode 2.
  • an ionization current 26 flows with one of the flame diode DF caused DC component to a ground potential 15 of the gas burner and from there to an amplifier, the z. B. comprises an operational amplifier IC1 and a feedback resistor R2.
  • the input of the amplifier is connected to the ground potential (15) of the gas burner.
  • Parallel to the resistor R2, a capacitor C1 is connected, whereby only the DC component of the ionization current 26 caused by the flame 1 or by the flame diode DF is amplified.
  • the DC component flows via a resistor R1 through the voltage source S to the ionization electrode 2 and from there through the flame 1 to the ground potential 15. This forms a closed circuit.
  • the resistor R1 limited in the case of a short circuit of the ionization electrode 2 to the ground potential 15, the current flowing in the circuit current.
  • a resistor R3 and a capacitor C2 are connected in series, whereby the amplified DC component is smoothed. This is from the signal processing circuit 3 as a controlled variable 21 of in FIG. 1 shown control unit 4 provided.
  • FIG. 3a shown signal processing circuit is based on the in FIG. 3b illustrated diagram illustrates.
  • This shows the waveform for a flame with a flame resistance RF according to the equivalent circuit of FIG. 2 .
  • the amplitude and the waveform of the AC voltage 25 are known, depending on the combustion of the ionization 26 and the smoothed DC component 21 set.
  • Case A the combustion of a high energy content gas is shown.
  • Case B shows the case that the energy content of the gas during combustion becomes lower, ie lower calorie, than in case A.
  • the ionization current 26 decreases and, as a consequence, the signal level of the DC component 21 decreases FIG.
  • control unit 4 detected as a deviation of the controlled variable from the setpoint and then the control unit increases the amount of gas until the signal level of the DC component 21 has again adjusted to the setpoint as in A.
  • the lower one Energy content of the gas B can be compensated by increasing the amount of gas or by reducing the amount of air, so that the gas-air ratio is equal again.
  • signal processing circuit 3 consists of the parts 3a and 3c.
  • Part 3a is in FIG. 5 shown in detail.
  • the part 3c can z. B. be executed as a microcontroller, which processes the signal provided by the circuit 3a 3b to a controlled variable 21 for the control unit 4.
  • the ionization current 26 from the amplifier comprising the operational amplifier IC1 and the resistor R2 is amplified to a signal 3b.
  • the signal 3b is z. B. the peak value of the ionization current 26.
  • This value is then used as a controlled variable 21 of the control unit 4.
  • the effective value of the ionization current can also be used as a controlled variable.
  • FIG. 6 shows an embodiment of a gas-air composite control, which additionally has a processing unit 23. This determines, based on the signals or quantities 21 and 22 obtained from the signal processing circuit 3, the in FIG. 2 illustrated flame resistance RF. The calculated flame resistance RF is then made available to the control device 4 as a controlled variable 24.
  • signal processing circuit 3 is in Figure 7a shown in detail. The operation of the signal processing circuit 3 is based on the in FIG. 7b shown diagram in connection with the equivalent circuit diagram according to FIG. 2 clarified.
  • the signal processing circuit 3 has a second amplifier, the z. B comprises the operational amplifier IC2, the diode D1 and the resistor R6.
  • the input of the second amplifier is connected through a resistor R4 to the first amplifier, which includes an operational amplifier IC1 and a Feedback resistor R2 includes, connected in series.
  • a resistor R5 is connected, which is parallel to the current path formed by the ionization electrode 2, the flame 1 and the first amplifier.
  • Resistor R5 causes a small alternating current component with zero crossing to flow through resistor R1. In the blocking half-wave of flame 1, only the alternating current component flows out of resistor R5 through R4.
  • the direct current component originating from the flame 1 or the flame diode DF adds to this.
  • the voltage R 27 is applied to the resistor R4.
  • a resistor R7 and a capacitor C3 are connected in series, whereby the in FIG. 7b shown signal 22 is obtained.
  • FIG. 7b In the present case, when the flame is present, the alternating voltage 25, the peak value 22 of the upper blocking half-wave, the ionisation current 26, the smoothed direct current component 21 and the voltage 27 applied to the resistor R4 are shown. In the present case, only the waveform is known for the alternating voltage 25. However, the amplitude of the AC voltage 25 may be calculated from the peak value of the signal 22. The flame resistance RF can then be determined from the signal 21 at the respective time and as shown in FIG FIG. 6 shown used by the control unit 4 as a controlled variable 24. As a result, fluctuations in the power supply 13 or component tolerances of the voltage source S have no effect on the controlled variable 24.
  • Case A and B show combustion with different energy contents.
  • Case B shows the combustion with a gas of low energy content and Case A shows the combustion of a gas whose energy content is higher, ie higher calorific.
  • the ionization current 26 increases with respect to case B and as a result the signal level of the DC component 21 increases
  • FIG. 6 shown control unit 4 detected as a deviation from the setpoint. The control unit 4 then reduces the Gas quantity until the signal level of the DC component 21 has again adjusted to the setpoint as in B.
  • the higher energy content of the gas B can alternatively be compensated by increasing the amount of air.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Combustion (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Description

Die vorliegende Erfindung betrifft eine Regeleinrichtung und deren Verwendung, mit einer im Flammenbereich eines Gasbrenners angeordneten Ionisationselektrode, die einen von der Verbrennung abhängigen Ionisationsstrom erfasst, wobei eine Signalverarbeitungsschaltung in Abhängigkeit vom Ionisationsstrom eine Regelgrösse für eine Regeleinheit bereitstellt, welche das Verhältnis von Luft zu Gas bei der Verbrennung nach einem Sollwert einstellt. Diese Signalverarbeitungsschaltung weist einen Verstärker auf, der mit einem Massepotential des Gasbrenners verbunden ist. Die Ionisationselektrode ist an eine Wechselspannungsquelle angeschlossen, die von einer Energieversorgung der Spannungsquelle galvanisch getrennt ist.The present invention relates to a control device and its use, with an arranged in the flame region of a gas burner ionization electrode, which detects a combustion dependent ionization current, wherein a signal processing circuit in response to the ionization provides a control variable for a control unit, which the ratio of air to gas at combustion according to a setpoint. This signal processing circuit has an amplifier which is connected to a ground potential of the gas burner. The ionization electrode is connected to an AC voltage source, which is galvanically isolated from a power supply of the voltage source.

Die EP 1 5191 14 A1 zeigt eine Einrichtung zur Flammenüberwachung mittels einer Ionisationselektrode. Das Elektrodensignal wird einfach verstärkt und in einem Feuerungsautomaten verarbeitet. Diese Einrichtung ist mit einem Transformator als Spannungsquelle ausgestattet. Die EP 1 5191 14 A1 lehrt es nicht, laufend Änderungen der Netzspannung zu berücksichtigen, oder wie solche Änderungen zuverlässig und günstig berücksichtigbar sind. Ohnehin unterbricht die Einrichtung regelmässig die Spannungsversorgung an die Ionisationselektrode, und würde eine Luftzahlregelung mittels der Ionisationselektrode sich jeweils nur langsam wieder einpendeln.The EP 1 5191 14 A1 shows a device for flame monitoring by means of an ionization electrode. The electrode signal is simply amplified and processed in an automatic burner control. This device is equipped with a transformer as a voltage source. The EP 1 5191 14 A1 does not teach to constantly consider changes in the mains voltage or how such changes can be reliably and cheaply taken into account. In any case, the device regularly interrupts the power supply to the ionization electrode, and an air ratio control by means of the ionization electrode would settle only slowly.

Eine Regeleinrichtung der eingangs genannten Art ist beispielsweise aus der EP 1 154 203 B1 bekannt. Bei der in der Patentschrift beschriebenen Regeleinrichtung wird beispielsweise eine Netzwechselspannung über ein kapazitives Koppelglied (Blockkondensator) der Messeinrichtung aufgeschaltet. Der Blockkondensator trennt hierbei den von der Flamme verursachten Gleichstromanteil von der Wechselspannung und schirmt die Messeinrichtung beispielsweise gegenüber im Spannungsnetz auftretenden Störungen ab. Damit eine einwandfreie Funktion der Messeinrichtung gewährleistet ist, darf der Blockkondensator während der Messung nicht ausfallen.A control device of the type mentioned is, for example, from the EP 1 154 203 B1 known. In the control device described in the patent, for example, a mains AC voltage via a capacitive coupling element (blocking capacitor) of the measuring device is switched. The blocking capacitor separates the DC component caused by the flame from the AC voltage and shields the measuring device, for example, from interference occurring in the voltage network. To ensure that the measuring device functions properly, the blocking capacitor must not fail during the measurement.

Die EP 1 293 727 A1 zeigt eine gleiche Eingangsschaltung wie die EP 1 154 203 B1 . Zusätzlich zeigt sie mehr detailliert eine Regeleinheit um das Verhältnis von Luft zu Gas für die Verbrennung nach einem Sollwert einzustellen.The EP 1 293 727 A1 shows a same input circuit as the EP 1 154 203 B1 , In addition, it shows in more detail a control unit to set the ratio of air to gas for combustion to a setpoint.

Insbesondere bei einer auf einer Messung des Ionisationsstromes basierenden Gas-Luftverbundregelung ist es wichtig, dass die zur Messung verwendete Wechselspannung sich nicht infolge von Netzstörungen ändert, was ein fehlerbehaftetes Messergebnis zur Folge hätte.Particularly in the case of a gas / air composite control based on a measurement of the ionization current, it is important that the AC voltage used for the measurement does not change as a result of mains disturbances, which would result in a faulty measurement result.

Eine Regeleinrichtung gemäß dem Oberbegriff des Anspruchs 1 ist z.B. aus der EP-A-1 519 114 bekannt. Ausgehend von dieser Schrift liegt der Erfindung die Aufgabe zugrunde eine Regeleinrichtung mit einer Signalverarbeitungsschaltung vorzuschlagen, die unempfindlich gegen über Spannungsschwankungen ist und mit einem einfachen Aufbau eine zuverlässige Messung und fehlerfreie Verarbeitung des Messsignals zu einer Regelgrösse für eine Gas-Luftverbundregelung ermöglicht.A control device according to the preamble of claim 1 is for example from the EP-A-1 519 114 known. Based on this document, the present invention seeks to propose a control device with a signal processing circuit, which is insensitive to voltage fluctuations and allows a simple construction reliable measurement and error-free processing of the measurement signal to a controlled variable for a gas-air network control.

Die Aufgabe wird gemäß der Erfindung mit den Merkmalen des Anspruchs 1 gelöst.The object is achieved according to the invention with the features of claim 1.

Die Erfindung hat den Vorteil dass für die Regelung vom Messsignal abhängige Kenngrössen, wie z. B. geglätteter Ionisationsstrom, Spitzen- oder Effektivwert des Ionisationsstromes, Flammenwiderstand, mit einfachem Aufbau zuverlässig gemessen und fehlerfrei verarbeitet als Regelgrösse verwendet werden. Daher ist die darauf basierende Regelung z. B. gegenüber im Netz auftretenden Störungen unabhängig. Auch kann die Signalverarbeitungsschaltung kostengünstig aus wenigen Bauteilen bei gleichzeitig hoher Zuverlässigkeit aufgebaut sein. Die Erfindung wird vorzugsweise in Verbindung mit einem Vormischbrenner eingesetzt.The invention has the advantage that for the control of the measurement signal dependent parameters such. B. smooth ionization current, peak or RMS value of the ionization current, flame resistance, reliably measured with a simple structure and processed error-free used as a controlled variable. Therefore is the regulation based on it z. B. independent of interference occurring in the network. Also, the signal processing circuit can be constructed inexpensively from a few components with high reliability. The invention is preferably used in conjunction with a premix burner.

Weitere Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung und sind Gegenstand der abhängigen Ansprüche.Further advantages of the invention will become apparent from the following description and are the subject of the dependent claims.

Nachfolgend werden verschiedene Ausführungsbeispiele der Erfindung anhand der Figuren beschrieben. Es zeigen:

  • Figur 1 ein erstes Ausführungsbeispiel einer Gas-Luftverbundregelung,
  • Figur 2 ein elektrisches Ersatzschaltbild einer Flamme,
  • Figuren 3a und 3b ein erstes Ausführungsbeispiel einer Signalverarbeitungsschaltung mit Signalverlauf,
  • Figur 4 ein zweites Ausführungsbeispiel einer Gas-Luftverbundregelung,
  • Figur 5 ein zweits Ausführungsbeispiel einer Signalverarbeitungsschaltung,
  • Figur 6 ein drittes Ausführungsbeispiel einer Gas-Luftverbundregelung,
  • Figuren 7a und 7b ein drittes Ausführungsbeispiel einer Signalverarbeitungsschaltung mit Signalverlauf.
Hereinafter, various embodiments of the invention will be described with reference to the figures. Show it:
  • FIG. 1 a first embodiment of a gas-air composite control,
  • FIG. 2 an electrical equivalent of a flame,
  • FIGS. 3a and 3b A first embodiment of a signal processing circuit with waveform,
  • FIG. 4 A second embodiment of a gas-air composite control,
  • FIG. 5 a second embodiment of a signal processing circuit,
  • FIG. 6 a third embodiment of a gas-air composite control,
  • FIGS. 7a and 7b A third embodiment of a signal processing circuit with waveform.

Figur 1 zeigt in einem Funktionsblockschaltbild eine Gas-Luftverbundregelung mit einem Gasbrenner mit Flamme 1 wobei im Flammenbereich 1 eine Ionisationselektrode 2 angeordnet ist, die über eine Leitung 14 mit einer Signalverarbeitungsschaltung 3 verbunden ist. Die Signalverarbeitungsschaltung 3 ist an eine Spannungsversorgung 13 angeschlossen und über eine Leitung 15 mit dem Massepotential 15 des Gasbrenners verbunden. Die Signalverarbeitungsschaltung 3 stellt in Abhängigkeit von dem Messsignal der Ionisationselektrode eine Regelgrösse 21 für die Regeleinheit 4 bereit. Im Falle einer Wärme- bzw. Leistungsanforderung 19, 20, generiert die Regeleinheit 4 entsprechende Steuersignale 16, 17, wodurch die Luft- bzw. Gasmenge 10, 11 eingestellt werden kann. Das Steuersignal 16 steuert z. B. ein Gasventil 5 und das Steuersignal 17 steuert ein Gebläse 6. Dem Gebläse 6 wird z. B. Umgebungsluft 8 zugeführt und das Gasventil 5 ist an eine Gasversorgung 9 angeschlossen. Ein Mischer 7 mischt die durch das Gebläse 6 eingestellte Luftmenge 10 mit der durch das Gasventil 5 eingestellten Gasmenge 11 zu einem Gemisch 12, welches der Gasbrenner 1 verbrennt. Das Signal 18 ist optional und bezeichnet eine Rückmeldung der Gebläsemenge 10. FIG. 1 shows in a functional block diagram, a gas-air composite control with a gas burner with flame 1 wherein in the flame area 1 an ionization electrode 2 is arranged, which is connected via a line 14 to a signal processing circuit 3. The signal processing circuit 3 is connected to a Power supply 13 connected and connected via a line 15 to the ground potential 15 of the gas burner. The signal processing circuit 3 provides a controlled variable 21 for the control unit 4 as a function of the measurement signal of the ionization electrode. In the case of a heat or power requirement 19, 20, the control unit 4 generates corresponding control signals 16, 17, whereby the amount of air or gas 10, 11 can be adjusted. The control signal 16 controls z. B. a gas valve 5 and the control signal 17 controls a fan 6. The fan 6 is z. B. ambient air 8 is supplied and the gas valve 5 is connected to a gas supply 9. A mixer 7 mixes the amount of air 10 set by the fan 6 with the gas quantity 11 set by the gas valve 5 to a mixture 12 which the gas burner 1 burns. The signal 18 is optional and denotes a feedback of the amount of blower 10.

Figur 2 zeigt ein elektrisches Ersatzschaltbild für eine Gasbrennerflammel mit einer gleichrichtenden Flammendiode DF und einem Flammenwiderstand RF. Dieses elektrische Ersatzschaltbild beschreibt die Eigenschaften der Flamme in der Regel ausreichend genau. FIG. 2 shows an electrical equivalent circuit diagram for a gas burner flare with a rectifying flame diode DF and a flame resistance RF. This electrical equivalent circuit usually describes the characteristics of the flame with sufficient accuracy.

Figur 3a zeigt ein erstes Ausführungsbeispiel einer Signalverarbeitungsschaltung 3, die beispielsweise in Verbindung mit der in Figur 1 dargestellten Gas-Luftverbundregelung eingesetzt wird. Die Signalverarbeitungsschaltung 3 weist eine Spannungsquelle S, z. B. einen Transformator auf, an dessen Primärkreis eine Energieversorgung, z. B. eine Netzspannung 13 angeschlossen ist. Der Sekundärkreis des Transformators S stellt eine Wechselspannung 25 bereit, die von der Netzspannung 13 galvanisch getrennt ist. Die Wechselspannung 25 ist über eine Leitung 14 mit der im Flammenbereich 1 des Gasbrenners angeordneten Ionisationselektrode 2 elektrisch verbunden. FIG. 3a shows a first embodiment of a signal processing circuit 3, for example, in connection with the in FIG. 1 shown gas-air composite control is used. The signal processing circuit 3 has a voltage source S, z. B. a transformer on the primary circuit, a power supply, for. B. a mains voltage 13 is connected. The secondary circuit of the transformer S provides an AC voltage 25 which is galvanically isolated from the mains voltage 13. The AC voltage 25 is electrically connected via a line 14 to the arranged in the flame region 1 of the gas burner ionization electrode 2.

Gemäß dem in Figur 2 gezeigten Flammenersatzschaltbild fließt von der Ionisationselektrode 2 ein Ionisationsstrom 26 mit einem von der Flammendiode DF verursachten Gleichstromanteil zu einem Massepotential 15 des Gasbrenners und von dort zu einem Verstärker, der z. B. einen Operationsverstärker IC1 und einen Rückkopplungswiderstand R2 umfasst. Der Eingang des Verstärkers ist mit dem Massepotential (15) des Gasbrenners verbunden. Parallel zum Widerstand R2 ist ein Kondensator C1 geschaltet, wodurch nur der von der Flamme 1 bzw. von der Flammendiode DF verursachte Gleichstromanteil des Ionisationsstromes 26 verstärkt wird. Der Gleichstromanteil fliesst über einen Widerstand R1 durch die Spannungsquelle S zur Ionisationselektrode 2 und von dieser durch die Flamme 1 zum Massepotential 15. Dadurch wird ein geschlossener Stromkreis gebildet. Der Widerstand R1 begrenzt im Falle eines Kurzschlusses der Ionisationselektrode 2 zum Massepotential 15 den im Stromkreis fließenden Strom. Am Ausgang des Verstärkers sind ein Widerstand R3 und ein Kondensator C2 in Reihe geschaltet, wodurch der verstärkte Gleichstromanteil geglättet wird. Dieser wird von der Signalverarbeitungsschaltung 3 als Regelgrösse 21 der in Figur 1 gezeigten Regeleinheit 4 zur Verfügung gestellt.According to the in FIG. 2 from the ionization electrode 2, an ionization current 26 flows with one of the flame diode DF caused DC component to a ground potential 15 of the gas burner and from there to an amplifier, the z. B. comprises an operational amplifier IC1 and a feedback resistor R2. The input of the amplifier is connected to the ground potential (15) of the gas burner. Parallel to the resistor R2, a capacitor C1 is connected, whereby only the DC component of the ionization current 26 caused by the flame 1 or by the flame diode DF is amplified. The DC component flows via a resistor R1 through the voltage source S to the ionization electrode 2 and from there through the flame 1 to the ground potential 15. This forms a closed circuit. The resistor R1 limited in the case of a short circuit of the ionization electrode 2 to the ground potential 15, the current flowing in the circuit current. At the output of the amplifier, a resistor R3 and a capacitor C2 are connected in series, whereby the amplified DC component is smoothed. This is from the signal processing circuit 3 as a controlled variable 21 of in FIG. 1 shown control unit 4 provided.

Die Funktionsweise der in Figur 3a gezeigten Signalverarbeitungsschaltung wird anhand des in Figur 3b dargestellten Diagramms verdeutlicht. Dieses zeigt den Signalverlauf für eine Flamme mit einem Flammenwiderstand RF gemäß dem Ersatzschaltbild der Figur 2. Die Amplitude und die Kurvenform der Wechselspannung 25 sind bekannt, wobei sich in Abhängigkeit von der Verbrennung der Ionisationsstrom 26 und der geglättete Gleichstromanteil 21 einstellen. Im Fall A ist die Verbrennung von einem Gas mit hohem Energieinhalt dargestellt. Fall B zeigt den Fall, dass der Energieinhalt des Gases bei der Verbrennung gegenüber Fall A geringer, d.h. niederkalorischer wird. In diesem Fall sinkt bei gleicher Wechselspannung 25 der Ionisationsstrom 26 und als Folge dessen sinkt der Signalpegel des Gleichstromanteils 21.Diese Signaländerung wird von der in Figur 1 gezeigten Regeleinheit 4 als Abweichung der Regelgrösse vom Sollwert erfasst und die Regeleinheit erhöht daraufhin die Gasmenge, bis sich der Signalpegel des Gleichstromanteils 21 wieder dem Sollwert wie in A angeglichen hat. Der geringere Energieinhalt des Gases B kann durch eine Erhöhung der Gasmenge bzw. durch eine Reduzierung der Luftmenge ausgeglichen werden, so dass das Gas-Luft-Verhältnis wieder gleich ist.The functioning of in FIG. 3a shown signal processing circuit is based on the in FIG. 3b illustrated diagram illustrates. This shows the waveform for a flame with a flame resistance RF according to the equivalent circuit of FIG. 2 , The amplitude and the waveform of the AC voltage 25 are known, depending on the combustion of the ionization 26 and the smoothed DC component 21 set. In case A, the combustion of a high energy content gas is shown. Case B shows the case that the energy content of the gas during combustion becomes lower, ie lower calorie, than in case A. In this case, with the same AC voltage 25, the ionization current 26 decreases and, as a consequence, the signal level of the DC component 21 decreases FIG. 1 shown control unit 4 detected as a deviation of the controlled variable from the setpoint and then the control unit increases the amount of gas until the signal level of the DC component 21 has again adjusted to the setpoint as in A. The lower one Energy content of the gas B can be compensated by increasing the amount of gas or by reducing the amount of air, so that the gas-air ratio is equal again.

Die in Figur 4 gezeigte Signalverarbeitungsschaltung 3 besteht aus den Teilen 3a und 3c. Der Teil 3a ist in Figur 5 im Detail dargestellt. Der Teil 3c kann z. B. als Mikrocontroller ausgeführt sein, der das von der Schaltung 3a bereitgestellte Signal 3b zu einer Regelgrösse 21 für die Regeleinheit 4 verarbeitet.In the FIG. 4 shown signal processing circuit 3 consists of the parts 3a and 3c. Part 3a is in FIG. 5 shown in detail. The part 3c can z. B. be executed as a microcontroller, which processes the signal provided by the circuit 3a 3b to a controlled variable 21 for the control unit 4.

Bei der in Figur 5 gezeigten Schaltung 3a wird der Ionisationsstrom 26 von dem Verstärker, der den Operationsverstärker IC1 und den Widerstand R2 umfasst, zu einem Signal 3b verstärkt. Das Signal 3b ist z. B. der Spitzenwert des Ionisationsstromes 26. Dieser Wert wird dann als Regelgröße 21 von der Regeleinheit 4 verwendet. Alternativ kann jedoch auch der Effektivwert des Ionisationsstromes als Regelgrösse verwendet werden.At the in FIG. 5 3, the ionization current 26 from the amplifier comprising the operational amplifier IC1 and the resistor R2 is amplified to a signal 3b. The signal 3b is z. B. the peak value of the ionization current 26. This value is then used as a controlled variable 21 of the control unit 4. Alternatively, however, the effective value of the ionization current can also be used as a controlled variable.

Figur 6 zeigt ein Ausführungsbeispiel einer Gas-Luftverbundregelung, die zusätzlich eine Verarbeitungseinheit 23 aufweist. Diese bestimmt ausgehend von den von der Signalverarbeitungsschaltung 3 erhaltenen Signalen bzw. Größen 21 und 22 den in Figur 2 dargestellten Flammenwiderstand RF. Der berechnete Flammenwiderstand RF wird dann als Regelgrösse 24 der Regeleinrichtung 4 zur Verfügung gestellt. Die in Figur 6 gezeigte Signalverarbeitungsschaltung 3 ist in Figur 7a im Detail dargestellt. Die Funktionsweise der Signalverarbeitungsschaltung 3 wird anhand des in Figur 7b gezeigten Diagramms in Zusammenhang mit dem Ersatzschaltbild gemäß Figur 2 verdeutlicht. FIG. 6 shows an embodiment of a gas-air composite control, which additionally has a processing unit 23. This determines, based on the signals or quantities 21 and 22 obtained from the signal processing circuit 3, the in FIG. 2 illustrated flame resistance RF. The calculated flame resistance RF is then made available to the control device 4 as a controlled variable 24. In the FIG. 6 shown signal processing circuit 3 is in Figure 7a shown in detail. The operation of the signal processing circuit 3 is based on the in FIG. 7b shown diagram in connection with the equivalent circuit diagram according to FIG. 2 clarified.

Die Signalverarbeitungsschaltung 3 weist einen zweiten Verstärker auf, der z. B den Operationsverstärker IC2, die Diode D1 und den Widerstand R6 umfasst. Der Eingang des zweiten Verstärkers ist über einen Widerstand R4 mit dem ersten Verstärker, der einen Operationsverstärker IC1 und einen Rückkopplungswiderstand R2 umfasst, in Reihe geschaltet. Zwischen dem Widerstand R4 und der Spannungsquelle S ist ein Widerstand R5 geschaltet, der parallel zu dem von der Ionisationselektrode 2, der Flamme 1 und dem ersten Verstärker gebildeten Strompfad liegt. Der Widerstand R5 bewirkt, dass ein kleiner Wechselstromanteil mit Nulldurchgang durch den Widerstand R1 fließt.In der Sperr-Halbwelle der Flame 1 fließt durch R4 ausschliesslich der Wechselstromanteil aus dem Widerstand R5. In der Durchlass-Halbwelle der Flamme addiert sich zu diesem der von der Flamme 1 bzw. der Flammendiode DF stammende Gleichstromanteil. Am Widerstand R4 liegt die Spannung 27 an. Am Ausgang des zweiten Verstärkers sind ein Widerstand R7 und ein Kondensator C3 in Reihe geschaltet, wodurch das in Figur 7b gezeigte Signal 22 erhalten wird.The signal processing circuit 3 has a second amplifier, the z. B comprises the operational amplifier IC2, the diode D1 and the resistor R6. The input of the second amplifier is connected through a resistor R4 to the first amplifier, which includes an operational amplifier IC1 and a Feedback resistor R2 includes, connected in series. Between the resistor R4 and the voltage source S, a resistor R5 is connected, which is parallel to the current path formed by the ionization electrode 2, the flame 1 and the first amplifier. Resistor R5 causes a small alternating current component with zero crossing to flow through resistor R1. In the blocking half-wave of flame 1, only the alternating current component flows out of resistor R5 through R4. In the forward half-wave of the flame, the direct current component originating from the flame 1 or the flame diode DF adds to this. The voltage R 27 is applied to the resistor R4. At the output of the second amplifier, a resistor R7 and a capacitor C3 are connected in series, whereby the in FIG. 7b shown signal 22 is obtained.

Das in Figur 7b dargestellte Diagramm zeigt bei vorhandener Flamme die Wechselspannung 25, den Spitzenwert 22 der oberen Sperr-Halbwelle, den Ionisationsstrom 26, den geglätteten Gleichstromanteil 21 und die am Widerstand R4 liegende Spannung 27. Im vorliegenden Fall ist bei der Wechselspannung 25 nur die Kurvenform bekannt. Die Amplitude der Wechselspannung 25 kann jedoch aus dem Spitzenwert des Signals 22 berechnet werden. Der Flammenwiderstand RF kann dann ausgehend von dem Signal 21 zum jeweiligen Zeitpunkt bestimmt werden und wie in Figur 6 gezeigt von der Regeleinheit 4 als Regelgrösse 24 verwendet werden. Damit haben Schwankungen der Energieversorgung 13 oder Bauteiltoleranzen der Spannungsquelle S keine Auswirkungen auf die Regelgrösse 24.This in FIG. 7b In the present case, when the flame is present, the alternating voltage 25, the peak value 22 of the upper blocking half-wave, the ionisation current 26, the smoothed direct current component 21 and the voltage 27 applied to the resistor R4 are shown. In the present case, only the waveform is known for the alternating voltage 25. However, the amplitude of the AC voltage 25 may be calculated from the peak value of the signal 22. The flame resistance RF can then be determined from the signal 21 at the respective time and as shown in FIG FIG. 6 shown used by the control unit 4 as a controlled variable 24. As a result, fluctuations in the power supply 13 or component tolerances of the voltage source S have no effect on the controlled variable 24.

Fall A und B zeigen die Verbrennung mit unterschiedlichen Energieinhalten. Fall B zeigt die Verbrennung mit einem Gas von geringem Energieinhalt und Fall A zeigt die Verbrennung von einem Gas, dessen Energieinhalt höher, d. h. hochkalorischer ist. Im Fall A steigt bei gleicher Wechselspannung 25 der Ionisationsstrom 26 gegenüber Fall B und infolge dessen steigt der Signalpegel des Gleichstromanteils 21. Diese Signaländerung wird von der in Figur 6 gezeigten Regeleinheit 4 als Abweichung vom Sollwert erfasst. Die Regeleinheit 4 reduziert daraufhin die Gasmenge, bis sich der Signalpegel des Gleichstromanteils 21 wieder dem Sollwert wie in B angeglichen hat. Der höhere Energieinhalt des Gases B kann alternativ auch durch eine Erhöhung der Luftmenge ausgeglichen werden.Case A and B show combustion with different energy contents. Case B shows the combustion with a gas of low energy content and Case A shows the combustion of a gas whose energy content is higher, ie higher calorific. In case A, with the same AC voltage 25, the ionization current 26 increases with respect to case B and as a result the signal level of the DC component 21 increases FIG. 6 shown control unit 4 detected as a deviation from the setpoint. The control unit 4 then reduces the Gas quantity until the signal level of the DC component 21 has again adjusted to the setpoint as in B. The higher energy content of the gas B can alternatively be compensated by increasing the amount of air.

Claims (8)

  1. Control device having an ionisation electrode (2) arranged in the flame area (1) of a gas burner, said ionisation electrode recording an ionisation current (26) dependent on the combustion,
    having a signal processing circuit (3), which, as a function of the ionisation current (26), provides a control variable (21, 24) for a control unit (4), wherein the control unit (4) adjusts the ratio of air to gas for the combustion in accordance with a target value,
    wherein the signal processing circuit (3) has an amplifier (IC1, R2), which is connected to a ground potential (15) of the gas burner, and
    wherein the ionisation electrode (2) is connected to a voltage source (S), which generates an alternating voltage (25) and is galvanically isolated from a power supply (13) of the voltage source (S) and the alternating voltage (25) is applied to the ionisation electrode (2), wherein an ionisation current (26) with a DC component caused by the flame (1) flows from the ionisation electrode (2) through the flame (1) to the amplifier (IC1, R2),
    the amplifier (IC1, R2) amplifies the ionisation current (26) or the DC component caused by the flame (1), wherein the DC component flows through the voltage source (S) to the ionisation electrode (2) and forms a closed electric circuit with the flame (1), characterised in that
    the signal processing circuit (3) has a second amplifier (IC2, D1 R6), the input of which is connected in series with the first amplifier (IC1, R2) by way of a resistor (R4),
    a resistor (R4) which is parallel to the current path formed by the ionisation electrode (2), the flame (1) and the first amplifier (IC1, R2) is connected between the resistor (R4) and the voltage source (S), and
    a resistor (R7) and a capacitor (C3) are connected in series at the output of the second amplifier (IC2, D1, R6), whereby a signal (22) is provided for a processing unit (23).
  2. Control device according to claim 1, characterised in that a resistor (R1) is provided in the closed electric circuit, said resistor (R1) limiting the current flowing in the current circuit in the event of a short-circuit of the ionisation electrode (2).
  3. Control device according to claim 1 or 2, characterised in that the voltage source (S) is a transformer, the primary circuit of which is connected to the power supply (13), and the secondary circuit of the transformer (S) supplies the alternating voltage (25).
  4. Control device according to one of claims 1 to 3, characterised in that a capacitor (C1) is connected in parallel to the resistor (R2) of the first amplifier (IC1, R2), whereby only the DC component of the ionisation current (26) is amplified.
  5. Control device according to claim 4, characterised in that at least one resistor (R3) and a capacitor (C2) are connected in series at the output of the first amplifier (IC1, R2), whereby the DC component amplified by the first amplifier (IC1, R2) is smoothed.
  6. Control device according to claim 1, characterised in that the processing unit (23) determines a flame resistance (RF) based on the amplified DC component or ionisation current (26) and the signal (22), said flame resistance (RF) being provided by the processing unit (23) as a control variable (24) for the control unit (4).
  7. Control device according to one of claims 1 to 3, characterised in that the ionisation current (26) amplified by the first amplifier (IC1, R2) is processed by a microcontroller (3c) to the control variable (21).
  8. Use of the control device according to one of claims 1 to 7 for a premix burner with a mixer (7), which mixes an air quantity (10) obtained by a fan (6) with a gas quantity (11) obtained by a gas valve (5), wherein the control unit (4) controls the ratio of the air and gas quantity (10, 11) as a function of a deviation of the control variable (21, 24) from the target value, the control unit (4) for adjusting the air and gas quantity (10, 11) generates corresponding control signals (16, 17) for the gas valve (5) and the fan (6).
EP08105048.6A 2008-08-15 2008-08-15 Control device for a gas burner, and use of the control device Active EP2154430B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP08105048.6A EP2154430B1 (en) 2008-08-15 2008-08-15 Control device for a gas burner, and use of the control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP08105048.6A EP2154430B1 (en) 2008-08-15 2008-08-15 Control device for a gas burner, and use of the control device

Publications (2)

Publication Number Publication Date
EP2154430A1 EP2154430A1 (en) 2010-02-17
EP2154430B1 true EP2154430B1 (en) 2015-09-30

Family

ID=40380767

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08105048.6A Active EP2154430B1 (en) 2008-08-15 2008-08-15 Control device for a gas burner, and use of the control device

Country Status (1)

Country Link
EP (1) EP2154430B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2495496B1 (en) 2011-03-03 2015-04-29 Siemens Aktiengesellschaft Burner assembly
CN111396869B (en) * 2020-03-16 2022-08-30 济南红烛科技有限公司 Low-calorific-value gas burner and combustion technology
DE102020126788A1 (en) 2020-10-13 2022-04-14 Ebm-Papst Landshut Gmbh Flame amplifier for flame monitoring and associated method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH663077A5 (en) * 1983-12-14 1987-11-13 Landis & Gyr Ag SELF-MONITORING FLAME GUARD.
DE10023273A1 (en) 2000-05-12 2001-11-15 Siemens Building Tech Ag Measuring device for a flame
DE10125574A1 (en) * 2001-05-25 2002-11-28 Siemens Building Tech Ag Flame monitoring device with which an asymmetrical voltage is applied across burner and ionization electrode to detect presence of flame
ATE310925T1 (en) * 2001-09-13 2005-12-15 Siemens Schweiz Ag CONTROL DEVICE FOR A BURNER AND ADJUSTMENT METHOD
NL1024388C2 (en) 2003-09-26 2005-03-31 Betronic Design B V Flame monitoring system.

Also Published As

Publication number Publication date
EP2154430A1 (en) 2010-02-17

Similar Documents

Publication Publication Date Title
EP2495496B1 (en) Burner assembly
DE102011079325B4 (en) Method for controlling the air number of a burner
EP0770824A2 (en) Method and circuit for controlling a gas burner
EP0876742B1 (en) Method and control circuit for regulation of the operational characteristics of gas discharge lamps
DE19539568C1 (en) Gas burner regulation system
DE19502901C2 (en) Control device for a gas burner
DE10023273A1 (en) Measuring device for a flame
DE2829135C2 (en) Monitoring device for the lamp failure in the case of an airport lighting system
EP2154430B1 (en) Control device for a gas burner, and use of the control device
DE102019119186A1 (en) Method and device for controlling a fuel gas-air mixture in a heater
WO2009049849A1 (en) Control circuit for a primary-controlled switched-mode power supply with increased voltage regulation accuracy, as well as a primary-controlled switched-mode power supply
DE102010002201B4 (en) Inductive proximity switch
WO2001095049A1 (en) Power supply with low loss making current limitation
DE2622834A1 (en) FLAME DETECTOR
EP2398137A2 (en) Alternating current positioner
DE19529333B4 (en) Self-exciting flyback converter and method of controlling a self-excited flyback converter
EP0164774B1 (en) Circuit device for controlling the running voltage of high-pressure gas-discharge lamps
EP3869099B1 (en) Method, device, and computer program product for regulating a fuel-air mixture in a heating device
DE4337461A1 (en) Switching power supply
DE3139405C2 (en)
DE2654881C2 (en) Monitoring device with adjustable response threshold for monitoring physical parameters, especially flame monitors
DE102016115980B4 (en) Ignition generator and method for generating electrical sparks for igniting plasmas in microsystems
DE19613257A1 (en) Method and electronic control circuit for regulating the operating behavior of gas discharge lamps
DE19946253B4 (en) Control unit for an arc lamp
DE4124344A1 (en) Current monitor for LV lighting systems - has reference value forming circuit producing at least one level varying according to supply voltage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

17P Request for examination filed

Effective date: 20100816

17Q First examination report despatched

Effective date: 20100909

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140519

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150318

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 752651

Country of ref document: AT

Kind code of ref document: T

Effective date: 20151015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008013422

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151230

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151231

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160130

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160201

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008013422

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

26N No opposition filed

Effective date: 20160701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160831

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160831

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160815

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160815

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 752651

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160815

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160815

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20080815

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230828

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231019

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240805

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240910

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20240821

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240819

Year of fee payment: 17