EP2154430A1 - Control device for a gas burner - Google Patents

Control device for a gas burner Download PDF

Info

Publication number
EP2154430A1
EP2154430A1 EP08105048A EP08105048A EP2154430A1 EP 2154430 A1 EP2154430 A1 EP 2154430A1 EP 08105048 A EP08105048 A EP 08105048A EP 08105048 A EP08105048 A EP 08105048A EP 2154430 A1 EP2154430 A1 EP 2154430A1
Authority
EP
European Patent Office
Prior art keywords
amplifier
ionization
flame
gas
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP08105048A
Other languages
German (de)
French (fr)
Other versions
EP2154430B1 (en
Inventor
Rainer Dr. Lochschmied
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens Building Technologies HVAC Products GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Building Technologies HVAC Products GmbH filed Critical Siemens Building Technologies HVAC Products GmbH
Priority to EP08105048.6A priority Critical patent/EP2154430B1/en
Publication of EP2154430A1 publication Critical patent/EP2154430A1/en
Application granted granted Critical
Publication of EP2154430B1 publication Critical patent/EP2154430B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/02Regulating fuel supply conjointly with air supply
    • F23N1/022Regulating fuel supply conjointly with air supply using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/12Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods
    • F23N5/123Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods using electronic means

Definitions

  • the present invention relates to a control device with an arranged in the flame region of a gas burner ionization electrode which detects a combustion dependent ionization current, wherein a signal processing circuit in response to the ionization provides a controlled variable for a control unit, which the ratio of air to gas in the combustion after a Setpoint.
  • a control device of the type mentioned is, for example, from the EP 1 154 203 B1 known.
  • a mains AC voltage via a capacitive coupling element (blocking capacitor) of the measuring device is switched.
  • the blocking capacitor separates the direct current component caused by the flame from the alternating voltage and shields the measuring device, for example against interference occurring in the voltage network.
  • the blocking capacitor must not fail during the measurement.
  • the invention has for its object to provide a control device with a signal processing circuit, which allows a reliable measurement and error-free processing of the measurement signal to a controlled variable for a gas-air composite control despite its simple structure.
  • the signal processing circuit comprises an amplifier whose input is connected to a ground potential of the gas burner, wherein the ionization electrode is connected to a voltage source which generates an alternating voltage, galvanic from the power supply of the voltage source is disconnected.
  • the signal processing circuit switched AC voltage flows from the ionization through the flame an ionization with a caused by the flame DC component to the input of the amplifier, which amplifies the ionization or only caused by the flame DC component.
  • the DC component flows back through the voltage source to the ionization electrode and thus forms a closed circuit with the flame.
  • the invention has the advantage that the alternating voltage used for the measurement of the mains supply is galvanically isolated and the control of the measurement signal dependent parameters such. B. smooth ionization, peak or RMS value of the ionization, flame resistance can be used as a controlled variable. Therefore, the regulation based thereon z. B. independent of interference occurring in the network. Also, the signal processing circuit can be constructed inexpensively from a few components with high reliability. The invention is preferably used in conjunction with a premix burner.
  • FIG. 1 shows in a functional block diagram, a gas-air composite control with a gas burner with flame 1 wherein in the flame area 1 an ionization electrode 2 is arranged, which is connected via a line 14 to a signal processing circuit 3.
  • the signal processing circuit 3 is connected to a voltage supply 13 and connected via a line 15 to the ground potential 15 of the gas burner.
  • the signal processing circuit 3 provides a controlled variable 21 for the control unit 4 as a function of the measurement signal of the ionization electrode.
  • the control unit 4 In the case of a heat or power requirement 19, 20, the control unit 4 generates corresponding control signals 16, 17, whereby the amount of air or gas 10, 11 can be adjusted.
  • the control signal 16 controls z.
  • B. a gas valve 5 and the control signal 17 controls a fan 6.
  • the fan 6 is z.
  • ambient air 8 is supplied and the gas valve 5 is connected to a gas supply 9.
  • a mixer 7 mixes the amount of air 10 set by the fan 6 with the gas quantity 11 set by the gas valve 5 to a mixture 12 which the gas burner 1 burns.
  • the signal 18 is optional and denotes a feedback of the amount of blower 10.
  • FIG. 2 shows an electrical equivalent circuit diagram for a gas burner flare with a rectifying flame diode DF and a flame resistance RF. This electrical equivalent circuit usually describes the characteristics of the flame with sufficient accuracy.
  • FIG. 3a shows a first embodiment of a signal processing circuit 3, for example, in connection with the in FIG. 1 shown gas-air composite control is used.
  • the signal processing circuit 3 has a voltage source S, z. B. a transformer on the primary circuit, a power supply, for. B. a mains voltage 13 is connected.
  • the secondary circuit of the transformer S provides an AC voltage 25 which is galvanically isolated from the mains voltage 13.
  • the AC voltage 25 is electrically connected via a line 14 to the arranged in the flame region 1 of the gas burner ionization electrode 2.
  • Flammenersatzersatzsent flows from the ionization electrode 2, an ionization 26 with a caused by the flame diode DF DC component to a ground potential 15 of the gas burner and from there to an amplifier, the z. B. comprises an operational amplifier IC1 and a feedback resistor R2.
  • the input of the amplifier is connected to the ground potential (15) of the gas burner.
  • Parallel to the resistor R2, a capacitor C1 is connected, whereby only the DC component of the ionization current 26 caused by the flame 1 or by the flame diode DF is amplified.
  • the DC component flows through a resistor R1 through the voltage source S to the ionization electrode 2 and from there through the flame 1 to the ground potential 15.
  • the resistor R1 limited in the case of a short circuit of the ionization electrode 2 to the ground potential 15, the current flowing in the circuit current.
  • a resistor R3 and a capacitor C2 are connected in series, whereby the amplified DC component is smoothed. This one is from the signal processing circuit 3 as a controlled variable 21 of in FIG. 1 shown control unit 4 provided.
  • FIG. 3a shown signal processing circuit is based on the in FIG. 3b illustrated diagram illustrates.
  • This shows the waveform for a flame with a flame resistance RF according to the equivalent circuit of FIG. 2 .
  • the amplitude and the waveform of the AC voltage 25 are known, depending on the combustion of the ionization 26 and the smoothed DC component 21 set.
  • Case A the combustion of a high energy content gas is shown.
  • Case B shows the case that the energy content of the gas during combustion becomes lower, ie lower calorie, than in case A.
  • the ionization current 26 decreases and, as a consequence, the signal level of the DC component 21 decreases FIG.
  • control unit 4 detected as a deviation of the controlled variable from the setpoint and then the control unit increases the amount of gas until the signal level of the DC component 21 has again adjusted to the setpoint as in A.
  • the lower energy content of the gas B can be compensated by increasing the amount of gas or by reducing the amount of air, so that the gas-air ratio is equal again.
  • signal processing circuit 3 consists of the parts 3a and 3c.
  • Part 3a is in FIG. 5 shown in detail.
  • the part 3c can z. B. be executed as a microcontroller, which processes the signal provided by the circuit 3a 3b to a controlled variable 21 for the control unit 4.
  • the ionization current 26 from the amplifier comprising the operational amplifier IC1 and the resistor R2 is amplified to a signal 3b.
  • the signal 3b is z. B. the peak value of the ionization current 26.
  • This value is then used as a controlled variable 21 of the control unit 4.
  • the RMS value of the ionization current can be used as a controlled variable.
  • FIG. 6 shows an embodiment of a gas-air composite control, which additionally has a processing unit 23. This determines, based on the signals or quantities 21 and 22 obtained from the signal processing circuit 3, the in FIG. 2 illustrated flame resistance RF. The calculated flame resistance RF is then made available to the control device 4 as a controlled variable 24.
  • signal processing circuit 3 is in Figure 7a shown in detail. The operation of the signal processing circuit 3 is based on the in FIG. 7b shown diagram in connection with the equivalent circuit diagram according to FIG. 2 clarified.
  • the signal processing circuit 3 has a second amplifier, the z. B comprises the operational amplifier IC2, the diode D1 and the resistor R6.
  • the input of the second amplifier is connected in series via a resistor R4 to the first amplifier comprising an operational amplifier IC1 and a feedback resistor R2.
  • a resistor R5 is connected, which is parallel to the current path formed by the ionization electrode 2, the flame 1 and the first amplifier. Resistor R5 causes a small alternating current component with zero crossing to flow through resistor R1. In the blocking half-wave of flame 1, only the alternating current component flows out of resistor R5 through R4.
  • the direct current component originating from the flame 1 or the flame diode DF adds to this.
  • the voltage R 27 is applied to the resistor R4.
  • a resistor R7 and a capacitor C3 are connected in series, whereby the in FIG. 7b shown signal 22 is obtained.
  • FIG. 7b shown diagram shows the AC voltage 25, the peak value 22 of the upper one with existing flame Blocking half-wave, the ionization current 26, the smoothed DC component 21 and the voltage applied to the resistor R4 27.
  • the amplitude of the AC voltage 25 may be calculated from the peak value of the signal 22.
  • the flame resistance RF can then be determined from the signal 21 at the respective time and as shown in FIG FIG. 6 shown used by the control unit 4 as a controlled variable 24. As a result, fluctuations in the power supply 13 or component tolerances of the voltage source S have no effect on the controlled variable 24.
  • Case A and B show combustion with different energy contents.
  • Case B shows the combustion with a gas of low energy content and Case A shows the combustion of a gas whose energy content is higher, ie higher calorific.
  • the ionization current 26 increases with respect to case B and as a result the signal level of the DC component 21 increases
  • FIG. 6 shown control unit 4 detected as a deviation from the setpoint. The control unit 4 then reduces the amount of gas until the signal level of the DC component 21 has again adjusted to the setpoint as in B.
  • the higher energy content of the gas B can alternatively be compensated by increasing the amount of air.

Abstract

The device has a signal processing circuit (3) comprising an operational amplifier (IC1). An ionization electrode (2) is attached to a voltage source (S) e.g. transformer, that generates an alternating voltage (25), which is galvanically separated from an energy supply (13) of the source. The voltage is activated so that an ionization current (26) flows with a direct current component from the electrode to the amplifier by a flame (1). The amplifier amplifies the current or the component that flows to the electrode through the source and forms a closed electric circuit with the flame.

Description

Die vorliegende Erfindung betrifft eine Regeleinrichtung mit einer im Flammenbereich eines Gasbrenners angeordneten Ionisationselektrode, die einen von der Verbrennung abhängigen Ionisationsstrom erfasst, wobei eine Signalverarbeitungsschaltung in Abhängigkeit vom Ionisationsstrom eine Regelgrösse für eine Regeleinheit bereitstellt, welche das Verhältnis von Luft zu Gas bei der Verbrennung nach einem Sollwert einstellt.The present invention relates to a control device with an arranged in the flame region of a gas burner ionization electrode which detects a combustion dependent ionization current, wherein a signal processing circuit in response to the ionization provides a controlled variable for a control unit, which the ratio of air to gas in the combustion after a Setpoint.

Eine Regeleinrichtung der eingangs genannten Art ist beispielsweise aus der EP 1 154 203 B1 bekannt. Bei der in der Patentschrift beschriebenen Regeleinrichtung wird beispielsweise eine Netzwechselspannung über ein kapazitives Koppelglied (Blockkondensator) der Messeinrichtung aufgeschaltet. Der Blockkondensator trennt hierbei den von der Flamme verursachten Gleichstromanteil von der Wechselspannung und schirmt die Messeinrichtung beispielsweise gegenüber im Spannungsnetz auftretenden Störungen ab. Damit eine einwandfreie Funktion der Messeinrichtung gewährleistet ist, darf der Blockkondensator während der Messung nicht ausfallen.A control device of the type mentioned is, for example, from the EP 1 154 203 B1 known. In the control device described in the patent, for example, a mains AC voltage via a capacitive coupling element (blocking capacitor) of the measuring device is switched. In this case, the blocking capacitor separates the direct current component caused by the flame from the alternating voltage and shields the measuring device, for example against interference occurring in the voltage network. To ensure that the measuring device functions properly, the blocking capacitor must not fail during the measurement.

Insbesondere bei einer auf einer Messung des Ionisationsstromes basierenden Gas-Luftverbundregelung ist es wichtig, dass die zur Messung verwendete Wechselspannung sich nicht infolge von Netzstörungen ändert, was ein fehlerbehaftetes Messergebnis zur Folge hätte.Particularly in the case of a gas / air composite control based on a measurement of the ionization current, it is important that the AC voltage used for the measurement does not change as a result of mains disturbances, which would result in a faulty measurement result.

Der Erfindung liegt die Aufgabe zugrunde eine Regeleinrichtung mit einer Signalverarbeitungsschaltung vorzuschlagen, die trotz ihres einfachen Aufbaus eine zuverlässige Messung und fehlerfreie Verarbeitung des Messsignals zu einer Regelgrösse für eine Gas-Luftverbundregelung ermöglicht.The invention has for its object to provide a control device with a signal processing circuit, which allows a reliable measurement and error-free processing of the measurement signal to a controlled variable for a gas-air composite control despite its simple structure.

Die Aufgabe wird gemäß der Erfindung nach Anspruch 1 dadurch gelöst, dass die Signalverarbeitungsschaltung einen Verstärker aufweist, dessen Eingang mit einem Massepotential des Gasbrenners verbunden ist, wobei die Ionisationselektrode an eine Spannungsquelle angeschlossen ist, die eine Wechselspannung erzeugt, die von der Energieversorgung der Spannungsquelle galvanisch getrennt ist. Durch die der Ionisationselektrode und der Signalverarbeitungsschaltung aufgeschaltete Wechselspannung fliesst von der Ionisationselektrode durch die Flamme ein Ionisationsstrom mit einem von der Flamme verursachten Gleichstromanteil zum Eingang des Verstärkers, der den Ionisationsstrom oder nur den von der Flamme verursachten Gleichstromanteil verstärkt. Der Gleichstromanteil fliesst dabei durch die Spannungsquelle zur Ionisationselektrode zurück und bildet somit mit der Flamme einen geschlossenen Stromkreis.The object is achieved according to the invention according to claim 1, characterized in that the signal processing circuit comprises an amplifier whose input is connected to a ground potential of the gas burner, wherein the ionization electrode is connected to a voltage source which generates an alternating voltage, galvanic from the power supply of the voltage source is disconnected. Through the ionization electrode and the signal processing circuit switched AC voltage flows from the ionization through the flame an ionization with a caused by the flame DC component to the input of the amplifier, which amplifies the ionization or only caused by the flame DC component. The DC component flows back through the voltage source to the ionization electrode and thus forms a closed circuit with the flame.

Die Erfindung hat den Vorteil dass die zur Messung verwendete Wechselspannung von der Netzversorgung galvanisch getrennt ist und das für die Regelung vom Messsignal abhängige Kenngrössen, wie z. B. geglätteter Ionisationsstrom, Spitzen- oder Effektivwert des Ionisationsstromes, Flammenwiderstand als Regelgrösse verwendet werden. Daher ist die darauf basierende Regelung z. B. gegenüber im Netz auftretenden Störungen unabhängig. Auch kann die Signalverarbeitungsschaltung kostengünstig aus wenigen Bauteilen bei gleichzeitig hoher Zuverlässigkeit aufgebaut sein. Die Erfindung wird vorzugsweise in Verbindung mit einem Vormischbrenner eingesetzt.The invention has the advantage that the alternating voltage used for the measurement of the mains supply is galvanically isolated and the control of the measurement signal dependent parameters such. B. smooth ionization, peak or RMS value of the ionization, flame resistance can be used as a controlled variable. Therefore, the regulation based thereon z. B. independent of interference occurring in the network. Also, the signal processing circuit can be constructed inexpensively from a few components with high reliability. The invention is preferably used in conjunction with a premix burner.

Weitere Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung und sind Gegenstand der abhängigen Ansprüche.Further advantages of the invention will become apparent from the following description and are the subject of the dependent claims.

Nachfolgend werden verschiedene Ausführungsbeispiele der Erfindung anhand der Figuren beschrieben. Es zeigen:

  • Figur 1 ein erstes Ausführungsbeispiel einer Gas-Luftverbundregelung,
  • Figur 2 ein elektrisches Ersatzschaltbild einer Flamme,
  • Figuren 3a und 3b ein erstes Ausführungsbeispiel einer Signalverarbeitungsschaltung mit Signalverlauf,
  • Figur 4 ein zweites Ausführungsbeispiel einer Gas-Luftverbundregelung,
  • Figur 5 ein zweits Ausführungsbeispiel einer Signalverarbeitungsschaltung,
  • Figur 6 ein drittes Ausführungsbeispiel einer Gas-Luftverbundregelung,
  • Figuren 7a und 7b ein drittes Ausführungsbeispiel einer Signalverarbeitungsschaltung mit Signalverlauf.
Hereinafter, various embodiments of the invention will be described with reference to the figures. Show it:
  • FIG. 1 a first embodiment of a gas-air composite control,
  • FIG. 2 an electrical equivalent of a flame,
  • FIGS. 3a and 3b A first embodiment of a signal processing circuit with waveform,
  • FIG. 4 A second embodiment of a gas-air composite control,
  • FIG. 5 a second embodiment of a signal processing circuit,
  • FIG. 6 a third embodiment of a gas-air composite control,
  • FIGS. 7a and 7b A third embodiment of a signal processing circuit with waveform.

Figur 1 zeigt in einem Funktionsblockschaltbild eine Gas-Luftverbundregelung mit einem Gasbrenner mit Flamme 1 wobei im Flammenbereich 1 eine Ionisationselektrode 2 angeordnet ist, die über eine Leitung 14 mit einer Signalverarbeitungsschaltung 3 verbunden ist. Die Signalverarbeitungsschaltung 3 ist an eine Spannungsversorgung 13 angeschlossen und über eine Leitung 15 mit dem Massepotential 15 des Gasbrenners verbunden. Die Signalverarbeitungsschaltung 3 stellt in Abhängigkeit von dem Messsignal der Ionisationselektrode eine Regelgrösse 21 für die Regeleinheit 4 bereit. Im Falle einer Wärme- bzw. Leistungsanforderung 19, 20, generiert die Regeleinheit 4 entsprechende Steuersignale 16, 17, wodurch die Luft- bzw. Gasmenge 10, 11 eingestellt werden kann. Das Steuersignal 16 steuert z. B. ein Gasventil 5 und das Steuersignal 17 steuert ein Gebläse 6. Dem Gebläse 6 wird z. B. Umgebungsluft 8 zugeführt und das Gasventil 5 ist an eine Gasversorgung 9 angeschlossen. Ein Mischer 7 mischt die durch das Gebläse 6 eingestellte Luftmenge 10 mit der durch das Gasventil 5 eingestellten Gasmenge 11 zu einem Gemisch 12, welches der Gasbrenner 1 verbrennt. Das Signal 18 ist optional und bezeichnet eine Rückmeldung der Gebläsemenge 10. FIG. 1 shows in a functional block diagram, a gas-air composite control with a gas burner with flame 1 wherein in the flame area 1 an ionization electrode 2 is arranged, which is connected via a line 14 to a signal processing circuit 3. The signal processing circuit 3 is connected to a voltage supply 13 and connected via a line 15 to the ground potential 15 of the gas burner. The signal processing circuit 3 provides a controlled variable 21 for the control unit 4 as a function of the measurement signal of the ionization electrode. In the case of a heat or power requirement 19, 20, the control unit 4 generates corresponding control signals 16, 17, whereby the amount of air or gas 10, 11 can be adjusted. The control signal 16 controls z. B. a gas valve 5 and the control signal 17 controls a fan 6. The fan 6 is z. B. ambient air 8 is supplied and the gas valve 5 is connected to a gas supply 9. A mixer 7 mixes the amount of air 10 set by the fan 6 with the gas quantity 11 set by the gas valve 5 to a mixture 12 which the gas burner 1 burns. The signal 18 is optional and denotes a feedback of the amount of blower 10.

Figur 2 zeigt ein elektrisches Ersatzschaltbild für eine Gasbrennerflammel mit einer gleichrichtenden Flammendiode DF und einem Flammenwiderstand RF. Dieses elektrische Ersatzschaltbild beschreibt die Eigenschaften der Flamme in der Regel ausreichend genau. FIG. 2 shows an electrical equivalent circuit diagram for a gas burner flare with a rectifying flame diode DF and a flame resistance RF. This electrical equivalent circuit usually describes the characteristics of the flame with sufficient accuracy.

Figur 3a zeigt ein erstes Ausführungsbeispiel einer Signalverarbeitungsschaltung 3, die beispielsweise in Verbindung mit der in Figur 1 dargestellten Gas-Luftverbundregelung eingesetzt wird. Die Signalverarbeitungsschaltung 3 weist eine Spannungsquelle S, z. B. einen Transformator auf, an dessen Primärkreis eine Energieversorgung, z. B. eine Netzspannung 13 angeschlossen ist. Der Sekundärkreis des Transformators S stellt eine Wechselspannung 25 bereit, die von der Netzspannung 13 galvanisch getrennt ist. Die Wechselspannung 25 ist über eine Leitung 14 mit der im Flammenbereich 1 des Gasbrenners angeordneten Ionisationselektrode 2 elektrisch verbunden. FIG. 3a shows a first embodiment of a signal processing circuit 3, for example, in connection with the in FIG. 1 shown gas-air composite control is used. The signal processing circuit 3 has a voltage source S, z. B. a transformer on the primary circuit, a power supply, for. B. a mains voltage 13 is connected. The secondary circuit of the transformer S provides an AC voltage 25 which is galvanically isolated from the mains voltage 13. The AC voltage 25 is electrically connected via a line 14 to the arranged in the flame region 1 of the gas burner ionization electrode 2.

Gemäß dem in Figur 2 gezeigten Flammenersatzschaltbild fließt von der Ionisationselektrode 2 ein Ionisationsstrom 26 mit einem von der Flammendiode DF verursachten Gleichstromanteil zu einem Massepotential 15 des Gasbrenners und von dort zu einem Verstärker, der z. B. einen Operationsverstärker IC1 und einen Rückkopplungswiderstand R2 umfasst. Der Eingang des Verstärkers ist mit dem Massepotential (15) des Gasbrenners verbunden. Parallel zum Widerstand R2 ist ein Kondensator C1 geschaltet, wodurch nur der von der Flamme 1 bzw. von der Flammendiode DF verursachte Gleichstromanteil des Ionisationsstromes 26 verstärkt wird. Der Gleichstromanteil fliesst über einen Widerstand R1 durch die Spannungsquelle S zur Ionisationselektrode 2 und von dieser durch die Flamme 1 zum Massepotential 15. Dadurch wird ein geschlossener Stromkreis gebildet. Der Widerstand R1 begrenzt im Falle eines Kurzschlusses der Ionisationselektrode 2 zum Massepotential 15 den im Stromkreis fließenden Strom. Am Ausgang des Verstärkers sind ein Widerstand R3 und ein Kondensator C2 in Reihe geschaltet, wodurch der verstärkte Gleichstromanteil geglättet wird. Dieser wird von der Signalverarbeitungsschaltung 3 als Regelgrösse 21 der in Figur 1 gezeigten Regeleinheit 4 zur Verfügung gestellt.According to the in FIG. 2 shown Flammenersatzersatzbild flows from the ionization electrode 2, an ionization 26 with a caused by the flame diode DF DC component to a ground potential 15 of the gas burner and from there to an amplifier, the z. B. comprises an operational amplifier IC1 and a feedback resistor R2. The input of the amplifier is connected to the ground potential (15) of the gas burner. Parallel to the resistor R2, a capacitor C1 is connected, whereby only the DC component of the ionization current 26 caused by the flame 1 or by the flame diode DF is amplified. The DC component flows through a resistor R1 through the voltage source S to the ionization electrode 2 and from there through the flame 1 to the ground potential 15. As a result, a closed circuit is formed. The resistor R1 limited in the case of a short circuit of the ionization electrode 2 to the ground potential 15, the current flowing in the circuit current. At the output of the amplifier, a resistor R3 and a capacitor C2 are connected in series, whereby the amplified DC component is smoothed. This one is from the signal processing circuit 3 as a controlled variable 21 of in FIG. 1 shown control unit 4 provided.

Die Funktionsweise der in Figur 3a gezeigten Signalverarbeitungsschaltung wird anhand des in Figur 3b dargestellten Diagramms verdeutlicht. Dieses zeigt den Signalverlauf für eine Flamme mit einem Flammenwiderstand RF gemäß dem Ersatzschaltbild der Figur 2. Die Amplitude und die Kurvenform der Wechselspannung 25 sind bekannt, wobei sich in Abhängigkeit von der Verbrennung der Ionisationsstrom 26 und der geglättete Gleichstromanteil 21 einstellen. Im Fall A ist die Verbrennung von einem Gas mit hohem Energieinhalt dargestellt. Fall B zeigt den Fall, dass der Energieinhalt des Gases bei der Verbrennung gegenüber Fall A geringer, d.h. niederkalorischer wird. In diesem Fall sinkt bei gleicher Wechselspannung 25 der Ionisationsstrom 26 und als Folge dessen sinkt der Signalpegel des Gleichstromanteils 21.Diese Signaländerung wird von der in Figur 1 gezeigten Regeleinheit 4 als Abweichung der Regelgrösse vom Sollwert erfasst und die Regeleinheit erhöht daraufhin die Gasmenge, bis sich der Signalpegel des Gleichstromanteils 21 wieder dem Sollwert wie in A angeglichen hat. Der geringere Energieinhalt des Gases B kann durch eine Erhöhung der Gasmenge bzw. durch eine Reduzierung der Luftmenge ausgeglichen werden, so dass das Gas-Luft-Verhältnis wieder gleich ist.The functioning of in FIG. 3a shown signal processing circuit is based on the in FIG. 3b illustrated diagram illustrates. This shows the waveform for a flame with a flame resistance RF according to the equivalent circuit of FIG. 2 , The amplitude and the waveform of the AC voltage 25 are known, depending on the combustion of the ionization 26 and the smoothed DC component 21 set. In case A, the combustion of a high energy content gas is shown. Case B shows the case that the energy content of the gas during combustion becomes lower, ie lower calorie, than in case A. In this case, with the same AC voltage 25, the ionization current 26 decreases and, as a consequence, the signal level of the DC component 21 decreases FIG. 1 shown control unit 4 detected as a deviation of the controlled variable from the setpoint and then the control unit increases the amount of gas until the signal level of the DC component 21 has again adjusted to the setpoint as in A. The lower energy content of the gas B can be compensated by increasing the amount of gas or by reducing the amount of air, so that the gas-air ratio is equal again.

Die in Figur 4 gezeigte Signalverarbeitungsschaltung 3 besteht aus den Teilen 3a und 3c. Der Teil 3a ist in Figur 5 im Detail dargestellt. Der Teil 3c kann z. B. als Mikrocontroller ausgeführt sein, der das von der Schaltung 3a bereitgestellte Signal 3b zu einer Regelgrösse 21 für die Regeleinheit 4 verarbeitet.In the FIG. 4 shown signal processing circuit 3 consists of the parts 3a and 3c. Part 3a is in FIG. 5 shown in detail. The part 3c can z. B. be executed as a microcontroller, which processes the signal provided by the circuit 3a 3b to a controlled variable 21 for the control unit 4.

Bei der in Figur 5 gezeigten Schaltung 3a wird der Ionisationsstrom 26 von dem Verstärker, der den Operationsverstärker IC1 und den Widerstand R2 umfasst, zu einem Signal 3b verstärkt. Das Signal 3b ist z. B. der Spitzenwert des Ionisationsstromes 26. Dieser Wert wird dann als Regelgröße 21 von der Regeleinheit 4 verwendet. Alternativ kann jedoch auch der Effektivwert des Ionisationsstromes als Regelgrösse verwendet werden.At the in FIG. 5 3, the ionization current 26 from the amplifier comprising the operational amplifier IC1 and the resistor R2 is amplified to a signal 3b. The signal 3b is z. B. the peak value of the ionization current 26. This value is then used as a controlled variable 21 of the control unit 4. Alternatively, however, also the RMS value of the ionization current can be used as a controlled variable.

Figur 6 zeigt ein Ausführungsbeispiel einer Gas-Luftverbundregelung, die zusätzlich eine Verarbeitungseinheit 23 aufweist. Diese bestimmt ausgehend von den von der Signalverarbeitungsschaltung 3 erhaltenen Signalen bzw. Größen 21 und 22 den in Figur 2 dargestellten Flammenwiderstand RF. Der berechnete FIammenwiderstand RF wird dann als Regelgrösse 24 der Regeleinrichtung 4 zur Verfügung gestellt. Die in Figur 6 gezeigte Signalverarbeitungsschaltung 3 ist in Figur 7a im Detail dargestellt. Die Funktionsweise der Signalverarbeitungsschaltung 3 wird anhand des in Figur 7b gezeigten Diagramms in Zusammenhang mit dem Ersatzschaltbild gemäß Figur 2 verdeutlicht. FIG. 6 shows an embodiment of a gas-air composite control, which additionally has a processing unit 23. This determines, based on the signals or quantities 21 and 22 obtained from the signal processing circuit 3, the in FIG. 2 illustrated flame resistance RF. The calculated flame resistance RF is then made available to the control device 4 as a controlled variable 24. In the FIG. 6 shown signal processing circuit 3 is in Figure 7a shown in detail. The operation of the signal processing circuit 3 is based on the in FIG. 7b shown diagram in connection with the equivalent circuit diagram according to FIG. 2 clarified.

Die Signalverarbeitungsschaltung 3 weist einen zweiten Verstärker auf, der z. B den Operationsverstärker IC2, die Diode D1 und den Widerstand R6 umfasst. Der Eingang des zweiten Verstärkers ist über einen Widerstand R4 mit dem ersten Verstärker, der einen Operationsverstärker IC1 und einen Rückkopplungswiderstand R2 umfasst, in Reihe geschaltet. Zwischen dem Widerstand R4 und der Spannungsquelle S ist ein Widerstand R5 geschaltet, der parallel zu dem von der Ionisationselektrode 2, der Flamme 1 und dem ersten Verstärker gebildeten Strompfad liegt. Der Widerstand R5 bewirkt, dass ein kleiner Wechselstromanteil mit Nulldurchgang durch den Widerstand R1 fließt.In der Sperr-Halbwelle der Flame 1 fließt durch R4 ausschliesslich der Wechselstromanteil aus dem Widerstand R5. In der Durchlass-Halbwelle der Flamme addiert sich zu diesem der von der Flamme 1 bzw. der Flammendiode DF stammende Gleichstromanteil. Am Widerstand R4 liegt die Spannung 27 an. Am Ausgang des zweiten Verstärkers sind ein Widerstand R7 und ein Kondensator C3 in Reihe geschaltet, wodurch das in Figur 7b gezeigte Signal 22 erhalten wird.The signal processing circuit 3 has a second amplifier, the z. B comprises the operational amplifier IC2, the diode D1 and the resistor R6. The input of the second amplifier is connected in series via a resistor R4 to the first amplifier comprising an operational amplifier IC1 and a feedback resistor R2. Between the resistor R4 and the voltage source S, a resistor R5 is connected, which is parallel to the current path formed by the ionization electrode 2, the flame 1 and the first amplifier. Resistor R5 causes a small alternating current component with zero crossing to flow through resistor R1. In the blocking half-wave of flame 1, only the alternating current component flows out of resistor R5 through R4. In the forward half-wave of the flame, the direct current component originating from the flame 1 or the flame diode DF adds to this. The voltage R 27 is applied to the resistor R4. At the output of the second amplifier, a resistor R7 and a capacitor C3 are connected in series, whereby the in FIG. 7b shown signal 22 is obtained.

Das in Figur 7b dargestellte Diagramm zeigt bei vorhandener Flamme die Wechselspannung 25, den Spitzenwert 22 der oberen Sperr-Halbwelle, den Ionisationsstrom 26, den geglätteten Gleichstromanteil 21 und die am Widerstand R4 liegende Spannung 27. Im vorliegenden Fall ist bei der Wechselspannung 25 nur die Kurvenform bekannt. Die Amplitude der Wechselspannung 25 kann jedoch aus dem Spitzenwert des Signals 22 berechnet werden. Der Flammenwiderstand RF kann dann ausgehend von dem Signal 21 zum jeweiligen Zeitpunkt bestimmt werden und wie in Figur 6 gezeigt von der Regeleinheit 4 als Regelgrösse 24 verwendet werden. Damit haben Schwankungen der Energieversorgung 13 oder Bauteiltoleranzen der Spannungsquelle S keine Auswirkungen auf die Regelgrösse 24.This in FIG. 7b shown diagram shows the AC voltage 25, the peak value 22 of the upper one with existing flame Blocking half-wave, the ionization current 26, the smoothed DC component 21 and the voltage applied to the resistor R4 27. In the present case, only the waveform is known in the AC voltage 25. However, the amplitude of the AC voltage 25 may be calculated from the peak value of the signal 22. The flame resistance RF can then be determined from the signal 21 at the respective time and as shown in FIG FIG. 6 shown used by the control unit 4 as a controlled variable 24. As a result, fluctuations in the power supply 13 or component tolerances of the voltage source S have no effect on the controlled variable 24.

Fall A und B zeigen die Verbrennung mit unterschiedlichen Energieinhalten. Fall B zeigt die Verbrennung mit einem Gas von geringem Energieinhalt und Fall A zeigt die Verbrennung von einem Gas, dessen Energieinhalt höher, d. h. hochkalorischer ist. Im Fall A steigt bei gleicher Wechselspannung 25 der Ionisationsstrom 26 gegenüber Fall B und infolge dessen steigt der Signalpegel des Gleichstromanteils 21. Diese Signaländerung wird von der in Figur 6 gezeigten Regeleinheit 4 als Abweichung vom Sollwert erfasst. Die Regeleinheit 4 reduziert daraufhin die Gasmenge, bis sich der Signalpegel des Gleichstromanteils 21 wieder dem Sollwert wie in B angeglichen hat. Der höhere Energieinhalt des Gases B kann alternativ auch durch eine Erhöhung der Luftmenge ausgeglichen werden.Case A and B show combustion with different energy contents. Case B shows the combustion with a gas of low energy content and Case A shows the combustion of a gas whose energy content is higher, ie higher calorific. In case A, with the same AC voltage 25, the ionization current 26 increases with respect to case B and as a result the signal level of the DC component 21 increases FIG. 6 shown control unit 4 detected as a deviation from the setpoint. The control unit 4 then reduces the amount of gas until the signal level of the DC component 21 has again adjusted to the setpoint as in B. The higher energy content of the gas B can alternatively be compensated by increasing the amount of air.

Claims (9)

Regeleinrichtung mit einer im Flammenbereich (1) eines Gasbrenners angeordneten Ionisationselektrode (2), die einen von der Verbrennung abhängigen Ionisationsstrom (26) erfasst, mit einer Signalverarbeitungsschaltung (3), die in Abhängigkeit vom Ionisationsstrom (26) eine Regelgrösse (21, 24) für eine Regeleinheit (4) bereitstellt, wobei die Regeleinheit (4) das Verhältnis von Luft zu Gas für die Verbrennung nach einem Sollwert einstellt, dadurch gekennzeichnet, dass die Signalverarbeitungsschaltung (3) einen Verstärker (IC1, R2) aufweist, der mit einem Massepotential (15) des Gasbrenners verbunden ist und dass die Ionisationselektrode (2) an eine Spannungsquelle (S) angeschlossen ist, die eine Wechselspannung (25) erzeugt, die von einer Energieversorgung (13) der Spannungsquelle (S) galvanisch getrennt ist und dass die Wechselspannung (25) der Ionisationselektrode (2) aufgeschaltet ist, wobei von der Ionisationselektrode (2) durch die Flamme (1) ein Ionisationsstrom (26) mit einem von der Flamme (1) verursachten Gleichstromanteil zum Verstärker (IC1, R2) fliesst und dass der Verstärker (IC1, R2) den Ionisationsstrom (26) oder den von der Flamme (1) verursachten Gleichstromanteil verstärkt, wobei der Gleichstromanteil durch die Spannungsquelle (S) zur Ionisationselektrode (2) fliesst und mit der Flamme (1) einen geschlossenen Stromkreis bildet.Control device with an ionization electrode (2) arranged in the flame region (1) of a gas burner, which detects an ionization current (26) dependent on the combustion, with a signal processing circuit (3) which, depending on the ionization current (26), controls a controlled variable (21, 24). for a control unit (4), wherein the control unit (4) adjusts the ratio of air to gas for combustion according to a setpoint, characterized in that the signal processing circuit (3) comprises an amplifier (IC1, R2) having a ground potential (15) of the gas burner is connected and that the ionization electrode (2) is connected to a voltage source (S) which generates an AC voltage (25) which is galvanically isolated from a power supply (13) of the voltage source (S) and that the AC voltage (25) of the ionization electrode (2) is connected, wherein of the ionization electrode (2) through the flame (1) an ionization current (26) with egg a direct current component caused by the flame (1) flows to the amplifier (IC1, R2) and that the amplifier (IC1, R2) amplifies the ionisation current (26) or the direct current component caused by the flame (1), the direct current component being divided by the voltage source (1). S) flows to the ionization electrode (2) and forms a closed circuit with the flame (1). Regeleinrichtung nach Anspruch 1, dadurch gekennzeichnet, dass im geschlossenen Stromkreis ein Widerstand (R1) vorgesehen ist, der im Falle eines Kurzschlusses der Ionisationselektrode (2) zum Massepotential (15) den im Stromkreis fliessenden Strom begrenzt.Control device according to claim 1, characterized in that in the closed circuit, a resistor (R1) is provided, which limits the current flowing in the circuit in the event of a short circuit of the ionization electrode (2) to the ground potential (15). Regeleinrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Spannungsquelle (S) ein Transformator ist, dessen Primärkreis an die Energieversorgung (13) angeschlossen ist und dass der Sekundärkreis des Transformators (S) die Wechselspannung (25) liefert.Control device according to claim 1 or 2, characterized in that the voltage source (S) is a transformer whose primary circuit is connected to the power supply (13) and that the Secondary circuit of the transformer (S) supplies the AC voltage (25). Regeleinrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass parallel zu dem Widerstand (R2) des Verstärkers (IC1, R2) ein Kondensator (C1) geschaltet ist, wodurch nur der Gleichstromanteil des Ionisationsstromes (26) verstärkt wird.Control device according to one of Claims 1 to 3, characterized in that a capacitor (C1) is connected in parallel with the resistor (R2) of the amplifier (IC1, R2), whereby only the DC component of the ionization current (26) is amplified. Regeleinrichtung nach Anspruch 4, dadurch gekennzeichnet, dass am Ausgang des Verstärkers (IC1, R2) wenigstens ein Widerstand (R3) und ein Kondensator (C2) in Reihe geschaltet sind, wodurch der vom Verstärker (IC1, R2) verstärkte Gleichstromanteil geglättet wird.Control device according to claim 4, characterized in that at the output of the amplifier (IC1, R2) at least one resistor (R3) and a capacitor (C2) are connected in series, whereby the amplified by the amplifier (IC1, R2) DC component is smoothed. Regeleinrichtung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Signalverarbeitungsschaltung (3) einen zweiten Verstärker (IC2, D1, R6) aufweist, dessen Eingang über einen Widerstand (R4) mit dem ersten Verstärker (IC1, R2) in Reihe geschaltet ist und dass zwischen dem Widerstand (R4) und der Spannungsquelle (S) ein Widerstand (R5) geschaltet ist, der parallel zu dem von der Ionisationselektrode (2), der Flamme (1) und dem ersten Verstärker (IC1, R2) gebildeten Strompfad liegt und dass am Ausgang des zweiten Verstärkers (IC2, D1, R6) ein Widerstand (R7) und ein Kondensator (C3) in Reihe geschaltet sind, wodurch ein Signal (22) für eine Verarbeitungseinheit (23) bereitgestellt wird.Control device according to one of Claims 1 to 5, characterized in that the signal processing circuit (3) has a second amplifier (IC2, D1, R6) whose input is connected in series via a resistor (R4) to the first amplifier (IC1, R2) and that between the resistor (R4) and the voltage source (S), a resistor (R5) is connected in parallel with the current path formed by the ionization electrode (2), the flame (1) and the first amplifier (IC1, R2) and that at the output of the second amplifier (IC2, D1, R6) a resistor (R7) and a capacitor (C3) are connected in series, whereby a signal (22) for a processing unit (23) is provided. Regeleinrichtung nach Anspruch 6, dadurch gekennzeichnet, dass die Verarbeitungseinheit (23) ausgehend von dem verstärkten Gleichstromanteil oder Ionisationsstrom (26) und dem Signal (22) einen Flammenwiderstand (RF) bestimmt, der von der Verarbeitungseinheit (23) als Regelgrösse (24) für die Regeleinheit (4) bereitgestellt wird.Control device according to Claim 6, characterized in that the processing unit (23) determines, based on the amplified direct current component or ionization current (26) and the signal (22), a flame resistance (RF) which is determined by the processing unit (23) as controlled variable (24) the control unit (4) is provided. Regeleinrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der vom Verstärker (IC1, R2) verstärkte Ionisationsstrom (26) von einem Mikrocontroller (3c) zu der Regelgrösse (21) verarbeitet wird.Control device according to one of Claims 1 to 3, characterized in that the ionization current (26) amplified by the amplifier (IC1, R2) is processed by a microcontroller (3c) into the controlled variable (21). Verwendung der Regeleinrichtung nach einem der Ansprüche 1 bis 8 für einen Vormischbrenner mit einem Mischer (7), der eine durch ein Gebläse (6) erhaltene Luftmenge (10) mit einer durch ein Gasventil (5) erhaltenen Gasmenge (11) mischt und dass die Regeleinheit (4) das Verhältnis der Luft- und Gasmenge (10, 11) in Abhängigkeit von einer Abweichung der Regelgrösse (21, 24)) vom Sollwert regelt, wobei die Regeleinheit (4) zur Einstellung der Luft- und Gasmenge (10, 11) entsprechende Steuersignale (16, 17 ) für das Gasventil (5) und das Gebläse (6) generiert.Use of the control device according to one of claims 1 to 8 for a premix burner with a mixer (7) which mixes a quantity of air (10) obtained by a blower (6) with a quantity of gas (11) obtained by a gas valve (5) and wherein the Control unit (4) controls the ratio of the amount of air and gas (10, 11) in response to a deviation of the controlled variable (21, 24)) from the setpoint, wherein the control unit (4) for adjusting the amount of air and gas (10, 11 ) generates corresponding control signals (16, 17) for the gas valve (5) and the blower (6).
EP08105048.6A 2008-08-15 2008-08-15 Control device for a gas burner, and use of the control device Active EP2154430B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP08105048.6A EP2154430B1 (en) 2008-08-15 2008-08-15 Control device for a gas burner, and use of the control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP08105048.6A EP2154430B1 (en) 2008-08-15 2008-08-15 Control device for a gas burner, and use of the control device

Publications (2)

Publication Number Publication Date
EP2154430A1 true EP2154430A1 (en) 2010-02-17
EP2154430B1 EP2154430B1 (en) 2015-09-30

Family

ID=40380767

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08105048.6A Active EP2154430B1 (en) 2008-08-15 2008-08-15 Control device for a gas burner, and use of the control device

Country Status (1)

Country Link
EP (1) EP2154430B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2495496A1 (en) 2011-03-03 2012-09-05 Siemens Aktiengesellschaft Burner assembly
CN111396869A (en) * 2020-03-16 2020-07-10 济南红烛科技有限公司 Low-calorific-value gas burner and combustion technology
DE102020126788A1 (en) 2020-10-13 2022-04-14 Ebm-Papst Landshut Gmbh Flame amplifier for flame monitoring and associated method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2153126A (en) * 1983-12-14 1985-08-14 Landis & Gyr Ag Self-monitoring flame monitor
WO2002095295A1 (en) * 2001-05-25 2002-11-28 Siemens Building Technologies Ag Flame-monitoring device
EP1293727A1 (en) * 2001-09-13 2003-03-19 Siemens Building Technologies AG Control apparatus for a burner and a method for adjustment
EP1519114A1 (en) 2003-09-26 2005-03-30 Betronic Design B.V. Flame guarding system
EP1154203B1 (en) 2000-05-12 2006-08-23 Siemens Schweiz AG Measuring device for a flame

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2153126A (en) * 1983-12-14 1985-08-14 Landis & Gyr Ag Self-monitoring flame monitor
EP1154203B1 (en) 2000-05-12 2006-08-23 Siemens Schweiz AG Measuring device for a flame
WO2002095295A1 (en) * 2001-05-25 2002-11-28 Siemens Building Technologies Ag Flame-monitoring device
EP1293727A1 (en) * 2001-09-13 2003-03-19 Siemens Building Technologies AG Control apparatus for a burner and a method for adjustment
EP1519114A1 (en) 2003-09-26 2005-03-30 Betronic Design B.V. Flame guarding system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2495496A1 (en) 2011-03-03 2012-09-05 Siemens Aktiengesellschaft Burner assembly
US9062882B2 (en) 2011-03-03 2015-06-23 Siemens Aktiengesellschaft Burner system
CN111396869A (en) * 2020-03-16 2020-07-10 济南红烛科技有限公司 Low-calorific-value gas burner and combustion technology
DE102020126788A1 (en) 2020-10-13 2022-04-14 Ebm-Papst Landshut Gmbh Flame amplifier for flame monitoring and associated method
EP3985308A1 (en) 2020-10-13 2022-04-20 ebm-papst Landshut GmbH Flame amplifier for flame monitoring and associated method

Also Published As

Publication number Publication date
EP2154430B1 (en) 2015-09-30

Similar Documents

Publication Publication Date Title
EP2495496B1 (en) Burner assembly
EP0770824A2 (en) Method and circuit for controlling a gas burner
DE10023273A1 (en) Measuring device for a flame
EP0876742B1 (en) Method and control circuit for regulation of the operational characteristics of gas discharge lamps
DE19539568C1 (en) Gas burner regulation system
DE19502901C2 (en) Control device for a gas burner
DE2829135C2 (en) Monitoring device for the lamp failure in the case of an airport lighting system
DE3311540A1 (en) METHOD FOR MONITORING BURNER OPERATION USING THE FLAME RECTIFIER EFFECT AND DEVICE FOR CARRYING OUT THIS METHOD
EP2154430B1 (en) Control device for a gas burner, and use of the control device
DE102010002201B4 (en) Inductive proximity switch
DE2622834A1 (en) FLAME DETECTOR
DE19839160A1 (en) Method for regulating the gas supply in a gas-fired forced air burner has an ionization electrode providing a signal which is compared to a reference value, gives improved control
EP2398137A2 (en) Alternating current positioner
DE19632983A1 (en) Control system especially for forced draught gas fired burner
EP0164774A1 (en) Circuit device for controlling the running voltage of high-pressure gas-discharge lamps
DE4337461A1 (en) Switching power supply
DE2654881C2 (en) Monitoring device with adjustable response threshold for monitoring physical parameters, especially flame monitors
DE102016115980B4 (en) Ignition generator and method for generating electrical sparks for igniting plasmas in microsystems
DE3139405A1 (en) CONTROL AND REGULATION CIRCUIT FOR RESISTANCE WELDING MACHINE
DE4124344A1 (en) Current monitor for LV lighting systems - has reference value forming circuit producing at least one level varying according to supply voltage
DE102010054381B4 (en) Method for powering a discharge lamp, circuit arrangement with an electronic ballast and a discharge lamp and ballast
DE19726169C2 (en) Control device for a gas burner
DE19613257A1 (en) Method and electronic control circuit for regulating the operating behavior of gas discharge lamps
DE3025249A1 (en) Brightness control circuit for fluorescent lamps - has controllable shunt, parallel to lamp discharge path, and in series with heating electrode
DE4313575A1 (en) Monitoring device for the permanent pilot (igniting, lighting) flame in gas-consuming devices

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

17P Request for examination filed

Effective date: 20100816

17Q First examination report despatched

Effective date: 20100909

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140519

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150318

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 752651

Country of ref document: AT

Kind code of ref document: T

Effective date: 20151015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008013422

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151230

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151231

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160130

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160201

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008013422

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

26N No opposition filed

Effective date: 20160701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160831

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160831

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160815

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160815

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 752651

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160815

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160815

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20080815

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230807

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230828

Year of fee payment: 16

Ref country code: GB

Payment date: 20230904

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230822

Year of fee payment: 16

Ref country code: BE

Payment date: 20230821

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231019

Year of fee payment: 16