EP0164774B1 - Circuit device for controlling the running voltage of high-pressure gas-discharge lamps - Google Patents

Circuit device for controlling the running voltage of high-pressure gas-discharge lamps Download PDF

Info

Publication number
EP0164774B1
EP0164774B1 EP85200695A EP85200695A EP0164774B1 EP 0164774 B1 EP0164774 B1 EP 0164774B1 EP 85200695 A EP85200695 A EP 85200695A EP 85200695 A EP85200695 A EP 85200695A EP 0164774 B1 EP0164774 B1 EP 0164774B1
Authority
EP
European Patent Office
Prior art keywords
voltage
lamp
dependent
temperature
circuit arrangement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP85200695A
Other languages
German (de)
French (fr)
Other versions
EP0164774A1 (en
Inventor
Hans-Günther Ganser
Ralf Dr. Schäfer
Hans-Peter Dr. Stormberg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Philips Intellectual Property and Standards GmbH
Koninklijke Philips NV
Original Assignee
Philips Patentverwaltung GmbH
Philips Gloeilampenfabrieken NV
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Philips Patentverwaltung GmbH, Philips Gloeilampenfabrieken NV, Koninklijke Philips Electronics NV filed Critical Philips Patentverwaltung GmbH
Publication of EP0164774A1 publication Critical patent/EP0164774A1/en
Application granted granted Critical
Publication of EP0164774B1 publication Critical patent/EP0164774B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/36Controlling
    • H05B41/38Controlling the intensity of light
    • H05B41/39Controlling the intensity of light continuously
    • H05B41/392Controlling the intensity of light continuously using semiconductor devices, e.g. thyristor

Definitions

  • the invention relates to a circuit arrangement for regulating the operating voltage of high-pressure gas discharge lamps to a predetermined nominal value, consisting of a controllable current limiter connected upstream of the lamp and a control circuit controlling the latter, the output signal of which is determined by the difference between a predetermined nominal value which determines the nominal lamp lamp voltage and one of those current lamp voltage dependent actual value is determined.
  • Regulating the lamp burning voltage to a predetermined nominal value should therefore also be understood to mean that the same value of the burning voltage is set for each lamp of one type, when operated with the above circuit arrangement. This is not synonymous with power stabilization, since different power consumption of the individual lamps may be necessary due to manufacturing tolerances to achieve the same lamp operating voltage. For the same reason, it is not possible to only stabilize the lamp current.
  • the invention is therefore based on the object of providing a circuit arrangement for regulating the operating voltage of high-pressure gas discharge lamps, in particular sodium vapor high-pressure gas discharge lamps, which enables precise regulation of the lamp operating voltage to a predetermined nominal value without this resulting in instabilities during lamp operation. Both burning voltages above the nominal value and burning voltages below this nominal value should be regulated.
  • a heating element is connected in parallel with the lamp and is in thermal contact with a temperature-dependent electrical component which generates the actual value voltage which is dependent on the lamp lamp voltage in question.
  • the heating element is more or less heated.
  • the thermal time constant of the lamp i.e. the time between the likewise sudden change in the operating voltage and the subsequent running through of the output value, depending on the lamp type, between several seconds and a few minutes.
  • the thermal time constant of the unit consisting of the heating element and the temperature-dependent electrical component is in the order of magnitude of the thermal time constant of the lamp.
  • a control circuit is used in the circuit arrangement according to the invention, which does not have any electronic integrators, but whose necessary control time constant is achieved by the thermal inertia of the unit consisting of the heating element and the temperature-dependent electrical component.
  • the actual value voltage together with the setpoint voltage becomes a difference ver amplifier system supplied, the output signal controls the controllable current limiter.
  • the temperature-dependent component is preferably connected in series with a further electrical component and with a voltage source and the actual value voltage is tapped at the connection point of the two components. This arrangement is simple and inexpensive to implement.
  • the setpoint voltage is controlled as a function of the ambient temperature. Changes in the ambient temperature can also be compensated for if the further electrical component connected in series with the temperature-dependent component acted upon by the heating element is also temperature-dependent.
  • the temperature-dependent component can be a temperature-dependent resistor (NTC or PTC resistor), a silicon temperature sensor or a Zener diode with a temperature-dependent Zener voltage.
  • NTC temperature-dependent resistor
  • silicon temperature sensors have less variation in the temperature characteristics than temperature-dependent resistors.
  • the Zener diodes mentioned are even more precise than silicon temperature sensors.
  • a and B are input terminals for connection to an AC voltage network of e.g. 220V, 50 Hz.
  • a series circuit consisting of a high-pressure discharge lamp 1 and a controllable current limiter 2 is connected to these input terminals.
  • Parallel to the lamp 1, which is in particular a high-pressure sodium discharge lamp there is a control circuit 3 which is supplied with the lamp lamp voltage at its first input C, D and a predetermined setpoint voltage voltage which determines the nominal lamp lamp voltage and is supplied from a DC voltage source 4 at another input F, G is produced.
  • the control circuit 3 generates a voltage at its output H when the lamp lamp voltage averaged over time deviates from its nominal value. This output voltage is then fed to the controllable current limiter 2, which reduces the lamp power when the lamp lamp voltage is above its nominal value and increases when the lamp voltage is below its nominal value, so that the lamp lamp voltage is always returned to its nominal value.
  • Circuits with choke coils and triacs are suitable as controllable current limiters, e.g. in U.S. Patents 4162429, 3886405 and 4037148.
  • Electronic switching power supplies such as forward or flyback converters, can also be used.
  • the control circuit 3 shown in Fig. 2 will now be described.
  • the lamp voltage at the first input C, D is fed to a heating element 5, which is connected in parallel to the lamp 1 and is in thermal contact with a temperature-dependent resistor 6, in this case an NTC resistor.
  • a temperature-dependent resistor 6 in this case an NTC resistor.
  • Units of this type are commercially available under the name “indirectly heated thermistor” or can be produced in a simple manner from heating resistors and NTC resistors.
  • This arrangement has the advantage of a galvanic separation between the heating resistor 5 connected to the lamp 1 and the NTC resistor 6, as a result of which the control circuit 3 can be set to any potential, which facilitates the activation of the current limiter 2.
  • the time constant T with which the NTC resistor 6 reacts to changes in the lamp voltage applied to the heating resistor 5, can be set in a simple manner between a few seconds and a few minutes by changing the thermal coupling and thus be adapted to the thermal time constant of the lamp 1.
  • the NTC resistor 6 is connected in series with an ohmic resistor 7 and a DC voltage source of, for example, 10 V and thus forms a voltage divider, at the connection point 8 of the two resistors 6 and 7 a voltage dependent on the actual value of the lamp lamp voltage is tapped off.
  • This actual value voltage is then fed to the first input E, of a differential amplifier 9, while a nominal value determining the nominal lamp lamp voltage, which comes from the DC voltage source 4, is applied to its second input E2.
  • the differential amplifier 9 need not be a single amplifier, but can also consist of a suitable combination of several amplifiers. If the lamp voltage exceeds its nominal value, there is a greater heating of the heating resistor 5 and thus of the NTC resistor 6 thermally coupled to it.
  • a disadvantage of the control circuit shown in FIG. 1 is that the voltage divider consisting of the NTC resistor 6 and the ohmic resistor 7 changes even with fluctuations in the ambient temperature, which occurs in particular in the case of ballasts integrated in a lamp base. This disadvantage can be avoided, however, if an NTC resistor whose temperature characteristic matches that of the NTC resistor 6 is also used instead of the ohmic resistor 7. If one then arranges the second NTC resistor (7) far enough from the heating resistor 5, the voltage divider ratio remains constant with changes in the ambient temperature.
  • a silicon temperature sensor e.g. KTY 83 from Valvo
  • Such silicon temperature sensors generally have less variation in temperature characteristics than NTC resistors. Since silicon temperature sensors have a positive temperature coefficient, the inputs E, and E2 of the differential amplifier would have to be exchanged in this case.
  • a series connection of an ohmic resistor 7 and a Zener diode 10 with a temperature-dependent Zener voltage is provided (e.g. TBD0135 from Thomson CSF).
  • the heating resistor 5 increases the heating of the zener diode 10, causing its zener voltage to rise.
  • this leads to an increase in the voltage at input E, of differential amplifier 9.
  • a setpoint voltage supplied to input E2 of the differential amplifier is provided, which depends on the ambient temperature.
  • a further series circuit comprising a Zener diode 11 with a temperature-dependent Zener voltage, an ohmic resistor 12 and a DC voltage source is provided.

Abstract

1. A circuit arrangement for adjusting the operating voltage of high-pressure gas discharge lamps to a given nominal value comprising a controllable current limiter arranged in series with the lamp and an adjustment circuit controlling the latter, whose output signal is determined by the difference between a given desired value determining the nominal lamp operating voltage and an actual value dependent upon the instantaneous lamp operating voltage, characterized in that a heating element (5) is arranged parallel to the lamp (1), this element being in thermal contact with a temperature-dependent electrical element (6 and 10, respectively), which produces the actual voltage dependent upon the instantaneous lamp operating voltage.

Description

Die Erfindung bezieht sich auf eine Schaltungsanordnung zur Regelung der Brennspannung von Hochdruckgasentladungslampen auf einen vorgegebenen Nominalwert, bestehend aus einem der Lampe vorgeschalteten steuerbaren Strombegrenzer sowie einer diesen steuernden Regelschaltung, deren Ausgangssignal von der Differenz zwischen einem vorgegebenen, die nominale Lampenbrennspannung bestimmenden Sollwert und einem von der jeweiligen Lampenbrennspannung abhängigen Istwert bestimmt wird.The invention relates to a circuit arrangement for regulating the operating voltage of high-pressure gas discharge lamps to a predetermined nominal value, consisting of a controllable current limiter connected upstream of the lamp and a control circuit controlling the latter, the output signal of which is determined by the difference between a predetermined nominal value which determines the nominal lamp lamp voltage and one of those current lamp voltage dependent actual value is determined.

Beim Betrieb von Hochdruckgasentladungslampen treten Probleme auf durch Schwankungen der Lampenbrennspannung, z.B. infolge Änderung der Netzspannung, sowie durch Änderung der Lampenbrennspannung während der Lebensdauer der Lampe. Dies kann zu einer Überlastung der Lampe und damit zur Verkürzung ihrer Lebensdauer führen. Bei Natriumhochdruckentladungslampen mit erhöhtem Natriumdruck tritt darüber hinaus der unerwünschte Effekt auf, dass sich mit der Lampenbrennspannung auch die Farbeigenschaften der Lampe ändern. Unterschiede in der Lampenbrennspannung treten nicht nur durch die bereits erwähnten Alterungserscheinungen im Laufe der Lebensdauer auf, sondern können auch durch Fertigungstoleranzen verursacht sein. Vielfach erhöht sich die Lampenbrennspannung im Laufe ihrer Lebensdauer; es kann jedoch auch eine Verringerung der Brennspannung während dieser Zeit auftreten, oder eine Kombination von beiden.When operating high pressure gas discharge lamps, problems arise due to fluctuations in the lamp lamp voltage, e.g. as a result of a change in the mains voltage and a change in the lamp voltage during the life of the lamp. This can overload the lamp and thus shorten its lifespan. In the case of high-pressure sodium discharge lamps with increased sodium pressure, there is also the undesirable effect that the color properties of the lamp also change with the lamp operating voltage. Differences in the lamp burning voltage do not only occur due to the aging phenomena already mentioned in the course of the service life, but can also be caused by manufacturing tolerances. The lamp lamp voltage often increases over the course of its life; however, there may also be a decrease in the operating voltage during this time, or a combination of both.

Unter einer Regelung der Lampenbrennspannung auf einen vorgegebenen Nominalwert sei daher auch zu verstehen, dass für jede Lampe eines Typs, wenn mit obiger Schaltungsanordnung betrieben, derselbe Wert der Brennspannung eingestellt wird. Dies ist nicht gleichbedeutend mit einer Leistungsstabilisierung, da aufgrund von Fertigungstoleranzen zur Erzielung der gleichen Lampenbrennspannung unterschiedliche Leistungsaufnahmen der einzelnen Lampen nötig sein können. Aus demselben Grunde ist es auch nicht möglich, nur den Lampenstrom zu stabilisieren.Regulating the lamp burning voltage to a predetermined nominal value should therefore also be understood to mean that the same value of the burning voltage is set for each lamp of one type, when operated with the above circuit arrangement. This is not synonymous with power stabilization, since different power consumption of the individual lamps may be necessary due to manufacturing tolerances to achieve the same lamp operating voltage. For the same reason, it is not possible to only stabilize the lamp current.

Aus der EP-OS 0104687 ist eine eingangs erwähnte Schaltungsanordnung bekannt, bei der die Brennspannung von Hochdruckgasentladungslampen geregelt wird, wenn deren augenblickliche Brennspannung die gewünschte nominale Brennspannung um mehr als 10% übersteigt. Hierfür wird eine komplizierte und aufwendige Regelschaltung verwendet. Bei einer Erniedrigung der Lampenbrennspannung wird hierbei jedoch nicht nachgeregelt. Je Volt Änderung der Lampenbrennspannung ist bei der bekannten Schaltung nur maximal 1,5% Änderung der Lampenleistung zur Regelung der Lampenbrennspannung zulässig, da sonst Instabilitäten in der Lampe auftreten. Eine solche geringe Lampenleistungsänderung ist jedoch nicht bei allen Lampentypen ausreichend, um Änderungen der Lampenbrennspannung befriedigend ausgleichen zu können.From EP-OS 0104687 a circuit arrangement mentioned at the outset is known, in which the operating voltage of high-pressure gas discharge lamps is regulated when their instantaneous operating voltage exceeds the desired nominal operating voltage by more than 10%. A complicated and complex control circuit is used for this. If the lamp lamp voltage is lowered, however, this is not readjusted. For the known circuit, only a maximum of 1.5% change in lamp power for regulating lamp lamp voltage is permitted per volt change in lamp lamp voltage, since otherwise instabilities occur in the lamp. However, such a small change in lamp power is not sufficient for all lamp types in order to be able to compensate for changes in lamp lamp voltage in a satisfactory manner.

Der Erfindung liegt daher die Aufgabe zugrunde, eine Schaltungsanordnung zur Regelung der Brennspannung von Hochdruckgasentladungslampen, insbesondere von Natriumdampf-Hochdruckgasentladungslampen, zu schaffen, die eine genaue Regelung der Lampenbrennspannung auf einen vorgegebenen Nominalwert ermöglicht, ohne dass hierdurch Instabilitäten beim Lampenbetrieb auftreten. Dabei sollen sowohl Brennspannungen, die über dem Nominalwert liegen, als auch Brennspannungen unterhalb dieses Nominalwertes geregelt werden.The invention is therefore based on the object of providing a circuit arrangement for regulating the operating voltage of high-pressure gas discharge lamps, in particular sodium vapor high-pressure gas discharge lamps, which enables precise regulation of the lamp operating voltage to a predetermined nominal value without this resulting in instabilities during lamp operation. Both burning voltages above the nominal value and burning voltages below this nominal value should be regulated.

Diese Aufgabe wird bei einer Schaltungsanordnung eingangs erwähnter Art gemäss der Erfindung dadurch gelöst, dass parallel zur Lampe ein Heizelement geschaltet ist, das in Wärmekontakt mit einem temperaturabhängigen elektrischen Bauelement steht, das die von der jeweiligen Lampenbrennspannung abhängige Istwertspannung erzeugt.This object is achieved in a circuit arrangement of the type mentioned at the outset according to the invention in that a heating element is connected in parallel with the lamp and is in thermal contact with a temperature-dependent electrical component which generates the actual value voltage which is dependent on the lamp lamp voltage in question.

Je nach Lampenbrennspannung wird hierbei das Heizelement mehr oder weniger aufgeheizt. Die Widerstandsverluste P des Heizelementes R hängen entsprechend der Gleichung P = UL 2/R mit der Lampenbrennspannung UL zusammen und sind somit eine geeignete Grösse zur Brennspannungsstabilisierung. Diese Verluste werden dann durch Aufheizen eines temperaturabhängigen elektrischen Bauelementes in ein elektrisch messbares und damit elektronisch nachführbares Signal umgewandelt.Depending on the lamp voltage, the heating element is more or less heated. The resistive losses of the heating element R P hang according to the equation P = U L 2 / R with the lamp burning voltage U L together and thus are an appropriate size to the internal voltage stabilization. These losses are then converted into an electrically measurable and thus electronically trackable signal by heating a temperature-dependent electrical component.

Bei z.B. sprunghafter Änderung des Lampenstromes, hervorgerufen durch Netzspannungsschwankungen, beträgt die thermische Zeitkonstante der Lampe, d.h., die Zeit zwischen der ebenfalls sprunghaften anfänglichen Änderung der Brennspannung und dem danach erfolgenden Durchlaufen des Ausgangswertes, je nach Lampentyp zwischen mehreren Sekunden und einigen Minuten. Für ein stabiles Regelverhalten ist es daher vorteilhaft, wenn die thermische Zeitkonstante der aus dem Heizelement und dem temperaturabhängigen elektrischen Bauelement bestehenden Einheit in der Grössenordnung der thermischen Zeitkonstanten der Lampe liegt.With e.g. Sudden changes in the lamp current, caused by fluctuations in the mains voltage, the thermal time constant of the lamp, i.e. the time between the likewise sudden change in the operating voltage and the subsequent running through of the output value, depending on the lamp type, between several seconds and a few minutes. For stable control behavior, it is therefore advantageous if the thermal time constant of the unit consisting of the heating element and the temperature-dependent electrical component is in the order of magnitude of the thermal time constant of the lamp.

Würde man Spannungsänderungen mit derart grossen Zeitkonstanten elektronisch regeln wollen, so wären für derartige Regelschaltungen hochwertige und teure Kondensatoren und Operationsverstärker notwendig, um Leckströme möglichst gering zu halten. Aus diesem Grunde wird bei der Schaltungsanordnung nach der Erfindung eine Regelschaltung verwendet, die keine elektronischen Integratoren aufweist, sondern deren notwendige Regelzeitkonstante durch die thermische Trägheit der aus dem Heizelement und dem temperaturabhängigen elektrischen Bauelement bestehenden Einheit erreicht wird.If voltage changes with such large time constants were to be controlled electronically, high-quality and expensive capacitors and operational amplifiers would be necessary for such control circuits in order to keep leakage currents as low as possible. For this reason, a control circuit is used in the circuit arrangement according to the invention, which does not have any electronic integrators, but whose necessary control time constant is achieved by the thermal inertia of the unit consisting of the heating element and the temperature-dependent electrical component.

Bei einer schaltungsmässig einfachen Ausführungsform der Schaltungsanordnung nach der Erfindung wird die Istwertspannung zusammen mit der Sollwertspannung einem Differenzverstärkersystem zugeführt, dessen Ausgangssignal den steuerbaren Strombegrenzer steuert.In a circuit-type simple embodiment of the circuit arrangement according to the invention, the actual value voltage together with the setpoint voltage becomes a difference ver amplifier system supplied, the output signal controls the controllable current limiter.

Vorzugsweise ist das temperaturabhängige Bauelement mit einem weiteren elektrischen Bauelement sowie mit einer Spannungsquelle in Reihe geschaltet und wird die Istwertspannung an dem Verbindungspunkt der beiden Bauelemente abgegriffen. Diese Anordnung ist einfach und billig zu realisieren.The temperature-dependent component is preferably connected in series with a further electrical component and with a voltage source and the actual value voltage is tapped at the connection point of the two components. This arrangement is simple and inexpensive to implement.

Um die Regelung der Lampenbrennspannung von einer Änderung der Umgebungstemperatur unabhängig zu machen, wird gemäss einer Weiterbildung nach der Erfindung die Sollwertspannung in Abhängigkeit von der Umgebungstemperatur gesteuert. Änderungen der Umgebungstemperatur lassen sich ebenfalls kompensieren, wenn das mit dem vom Heizelement beaufschlagten temperaturabhängigen Bauelement in Reihe geschaltete weitere elektrische Bauelement ebenfalls temperaturabhängig ist.In order to make the regulation of the lamp lamp voltage independent of a change in the ambient temperature, according to a further development according to the invention the setpoint voltage is controlled as a function of the ambient temperature. Changes in the ambient temperature can also be compensated for if the further electrical component connected in series with the temperature-dependent component acted upon by the heating element is also temperature-dependent.

Das temperaturabhängige Bauelement kann ein temperaturabhängiger Widerstand (NTC-oder PTC-Widerstand), ein Siliziumtemperatursensor oder eine Zenerdiode mit temperaturabhängiger Zenerspannung sein. Ein temperaturabhängiger Widerstand ist die billigste und störunempfindlichste Lösung. Siliziumtemperatursensoren haben eine geringere Streuung der Temperaturcharakteristik als temperaturabhängige Widerstände. Noch genauer als Siliziumtemperatursensoren sind die erwähnten Zenerdioden.The temperature-dependent component can be a temperature-dependent resistor (NTC or PTC resistor), a silicon temperature sensor or a Zener diode with a temperature-dependent Zener voltage. A temperature-dependent resistor is the cheapest and most insensitive to interference. Silicon temperature sensors have less variation in the temperature characteristics than temperature-dependent resistors. The Zener diodes mentioned are even more precise than silicon temperature sensors.

Einige Ausführungsbeispiele nach der Erfindung werden nunmehr anhand der Zeichnung näher beschrieben. Es zeigen:

  • Fig. 1 eine Schaltungsanordnung zur Regelung der Brennspannung einer Hochdruckentladungslampe mit einer den der Lampe vorgeschalteten Strombegrenzer steuernden Regelschaltung,
  • Fig. 2 eine bei der Schaltungsanordnung nach Fig. 1 anwendbare Regelschaltung mit einem temperaturabhängigen Widerstand und
  • Fig. 3 eine bei der Schaltungsanordnung nach Fig. 1 ebenfalls anwendbare Regelschaltung mit einer Zenerdiode mit temperaturabhängiger Zenerspannung.
Some embodiments according to the invention will now be described with reference to the drawing. Show it:
  • 1 shows a circuit arrangement for regulating the operating voltage of a high-pressure discharge lamp with a control circuit which controls the current limiter upstream of the lamp,
  • Fig. 2 is a control circuit applicable to the circuit arrangement of Fig. 1 with a temperature-dependent resistor and
  • Fig. 3 is a control circuit also applicable to the circuit arrangement according to Fig. 1 with a zener diode with temperature-dependent Zener voltage.

Bei der Schaltungsanordnung nach Fig. 1 sind mit A und B Eingangsklemmen zum Anschliessen an ein Wechselspannungsnetz von z.B. 220V, 50 Hz, bezeichnet. An diese Eingangsklemmen ist eine aus einer Hochdruckentladungslampe 1 und einem steuerbaren Strombegrenzer 2 bestehende Reihenschaltung angeschlossen. Parallel zur Lampe 1, die insbesondere eine Natriumhochdruckentladungslampe ist, liegt eine Regelschaltung 3, der an ihrem ersten Eingang C, D die Lampenbrennspannung und an einem anderen Eingang F, G eine vorgegebene, die nominale Lampenbrennspannung bestimmende Sollwertspannung zugeführt wird, die von einer Gleichspannungsquelle 4 erzeugt wird. Die Regelschaltung 3 erzeugt an ihrem Ausgang H eine Spannung, wenn die zeitlich gemittelte Lampenbrennspannung von ihrem Nominalwert abweicht. Diese Ausgangsspannung wird dann dem steuerbaren Strombegrenzer 2 zugeführt, der die Lampenleistung verringert, wenn die Lampenbrennspannung oberhalb ihres Nominalwertes liegt, und erhöht, wenn die Brennspannung unterhalb ihres Nominalwertes liegt, so dass insgesamt immer eine Rückführung der Lampenbrennspannung auf ihren Nominalwert erfolgt.In the circuit arrangement according to Fig. 1, A and B are input terminals for connection to an AC voltage network of e.g. 220V, 50 Hz. A series circuit consisting of a high-pressure discharge lamp 1 and a controllable current limiter 2 is connected to these input terminals. Parallel to the lamp 1, which is in particular a high-pressure sodium discharge lamp, there is a control circuit 3 which is supplied with the lamp lamp voltage at its first input C, D and a predetermined setpoint voltage voltage which determines the nominal lamp lamp voltage and is supplied from a DC voltage source 4 at another input F, G is produced. The control circuit 3 generates a voltage at its output H when the lamp lamp voltage averaged over time deviates from its nominal value. This output voltage is then fed to the controllable current limiter 2, which reduces the lamp power when the lamp lamp voltage is above its nominal value and increases when the lamp voltage is below its nominal value, so that the lamp lamp voltage is always returned to its nominal value.

Als steuerbare Strombegrenzer sind Schaltungen mit Drosselspulen und Triacs geeignet, wie sie z.B. in den US-PS 4162429, 3886405 und 4037148 beschrieben sind. Ebenso können auch elektronische Schaltnetzteile, wie Durchfluss-oder Sperrwandler, benutzt werden.Circuits with choke coils and triacs are suitable as controllable current limiters, e.g. in U.S. Patents 4162429, 3886405 and 4037148. Electronic switching power supplies, such as forward or flyback converters, can also be used.

Nunmehr wird die in Fig. 2 dargestellte Regelschaltung 3 beschrieben. Die am ersten Eingang C, D liegende Lampenspannung wird einem als Heizwiderstand 5 ausgeführten Heizelement zugeführt, das parallel zur Lampe 1 geschaltet ist und in Wärmekontakt mit einem temperaturabhängigen Widerstand 6, in diesem Fall einem NTC-Widerstand, steht. Derartige Baueinheiten sind unter der Bezeichnung «indirekt geheizte Heissleiter» im Handel erhältlich oder lassen sich in einfacher Weise aus Heizwiderständen und NTC-Widerständen herstellen. Diese Anordnung hat den Vorteil einer galvanischen Trennung zwischen dem mit der Lampe 1 verbundenen Heizwiderstand 5 und dem NTC-Widerstand 6, wodurch die Regelschaltung 3 auf ein beliebiges Potential gelegt werden kann, was die Ansteuerung des Strombegrenzers 2 erleichtert.The control circuit 3 shown in Fig. 2 will now be described. The lamp voltage at the first input C, D is fed to a heating element 5, which is connected in parallel to the lamp 1 and is in thermal contact with a temperature-dependent resistor 6, in this case an NTC resistor. Units of this type are commercially available under the name “indirectly heated thermistor” or can be produced in a simple manner from heating resistors and NTC resistors. This arrangement has the advantage of a galvanic separation between the heating resistor 5 connected to the lamp 1 and the NTC resistor 6, as a result of which the control circuit 3 can be set to any potential, which facilitates the activation of the current limiter 2.

Die Zeitkonstante T, mit der der NTC-Widerstand 6 auf Änderungen der am Heizwiderstand 5 anliegenden Lampenspannung reagiert, kann durch Änderung der thermischen Kopplung in einfacher Weise zwischen einige Sekunden und einige Minuten eingestellt und damit der thermischen Zeitkonstanten der Lampe 1 angepasst werden.The time constant T, with which the NTC resistor 6 reacts to changes in the lamp voltage applied to the heating resistor 5, can be set in a simple manner between a few seconds and a few minutes by changing the thermal coupling and thus be adapted to the thermal time constant of the lamp 1.

Der NTC-Widerstand 6 liegt mit einem ohmschen Widerstand 7 sowie einer Gleichspannungsquelle von z.B. 10 V in Reihe und bildet somit einen Spannungsteiler, an dessen Verbindungspunkt 8 der beiden Widerstände 6 und 7 eine vom Istwert der Lampenbrennspannung abhängige Spannung abgegriffen wird. Diese Istwertspannung wird dann dem ersten Eingang E, eines Differenzverstärkers 9 zugeführt, während auf dessen zweiten Eingang E2 eine die nominale Lampenbrennspannung bestimmende Sollwertspannung gegeben wird, welche von der Gleichspannungsquelle 4 stammt. Der Differenzverstärker 9 braucht nicht ein einzelner Verstärker zu sein, sondern kann auch aus einer geeigneten Kombination mehrerer Verstärker bestehen. Wenn die Lampenbrennspannung ihren Nominalwert übersteigt, so erfolgt eine grössere Erwärmung des Heizwiderstandes 5 und damit des mit ihm thermisch gekoppelten NTC-Widerstandes 6. Infolgedessen erniedrigt sich dessen Widerstand mit der Zeitkonstanten T, wodurch die Spannung am Eingang E, des Differenzverstärkers 9 den die nominale Lampenbrennspannung bestimmenden Sollwert überschreitet. Dies führt dann zu einer Änderung der Ausgangsspannung am Ausgang H des Differenzverstärkers 9, die ebenfalls mit der Zeitkonstanten T erfolgt. Diese Ausgangsspannung steuert den Strombegrenzer 2, der wiederum eine die Überspannung der Lampe 1 herabsetzende Leistungsänderung bewirkt. Ein analoger Ablauf mit vertauschten Vorzeichen ergibt sich, wenn die Lampenbrennspannung ihren Nominalwert unterschreitet. Die Regelschaltung 3 verhält sich praktisch wie ein Integralregler.The NTC resistor 6 is connected in series with an ohmic resistor 7 and a DC voltage source of, for example, 10 V and thus forms a voltage divider, at the connection point 8 of the two resistors 6 and 7 a voltage dependent on the actual value of the lamp lamp voltage is tapped off. This actual value voltage is then fed to the first input E, of a differential amplifier 9, while a nominal value determining the nominal lamp lamp voltage, which comes from the DC voltage source 4, is applied to its second input E2. The differential amplifier 9 need not be a single amplifier, but can also consist of a suitable combination of several amplifiers. If the lamp voltage exceeds its nominal value, there is a greater heating of the heating resistor 5 and thus of the NTC resistor 6 thermally coupled to it. As a result, its resistance decreases with the time constant T, as a result of which the voltage at the input E, the differential amplifier 9, the nominal Lamp fuel setpoint. This then leads to a change in the output voltage at the output H of the differential amplifier 9, which likewise takes place with the time constant T. This output voltage controls the current limiter 2, which in turn causes a change in power that reduces the overvoltage of the lamp 1. An analogous procedure with reversed sign results if the lamp voltage falls below its nominal value. The control circuit 3 behaves practically like an integral controller.

Ein Nachteil der in Fig. dargestellten Regelschaltung besteht darin, dass sich der Spannungsteiler aus dem NTC-Widerstand 6 und dem ohmschen Widerstand 7 auch bei Schwankungen der Umgebungstemperatur ändert, was insbesondere bei in einem Lampenfuss integrierten Vorschaltgeräten auftritt. Dieser Nachteil lässt sich jedoch vermeiden, wenn an Stelle des ohmschen Widerstandes 7 ebenfalls ein NTC-Widerstand benutzt wird, dessen Temperaturcharakteristik mit der des NTC-Widerstandes 6 übereinstimmt. Wenn man dann den zweiten NTC-Widerstand (7) weit genug entfernt vom Heizwiderstand 5 anordnet, bleibt das Spannungsteilerverhältnis bei Änderungen der Umgebungstemperatur konstant.A disadvantage of the control circuit shown in FIG. 1 is that the voltage divider consisting of the NTC resistor 6 and the ohmic resistor 7 changes even with fluctuations in the ambient temperature, which occurs in particular in the case of ballasts integrated in a lamp base. This disadvantage can be avoided, however, if an NTC resistor whose temperature characteristic matches that of the NTC resistor 6 is also used instead of the ohmic resistor 7. If one then arranges the second NTC resistor (7) far enough from the heating resistor 5, the voltage divider ratio remains constant with changes in the ambient temperature.

Anstelle des NTC-Widerstandes 6 kann auch ein Siliziumtemperatursensor (z.B. KTY 83 von Valvo) verwendet werden. Derartige Siliziumtemperatursensoren haben im allgemeinen eine geringere Streuung derTemperaturcharakteristik als NTC-Widerstände. Da Siliziumtemperatursensoren einen positiven Temperaturkoeffizienten haben, müssten in diesem Fall jedoch die Eingänge E, und E2 des Differenzverstärkers vertauscht werden.Instead of the NTC resistor 6, a silicon temperature sensor (e.g. KTY 83 from Valvo) can also be used. Such silicon temperature sensors generally have less variation in temperature characteristics than NTC resistors. Since silicon temperature sensors have a positive temperature coefficient, the inputs E, and E2 of the differential amplifier would have to be exchanged in this case.

Bei der Regelschaltung nach Fig. 3 ist eine Reihenschaltung aus einem ohmschen Widerstand 7 und einer Zenerdiode 10 mit temperaturabhängiger Zenerspannung vorgesehen (z.B. TBD0135 von Thomson CSF). Wenn die Lampenbrennspannung steigt, so erfolgt über den Heizwiderstand 5 eine erhöhte Heizung der Zenerdiode 10, wodurch ihre Zenerspannung steigt. Dies führt analog zur Schaltung mit NTC-Widerständen (Fig. 2) zu einer Erhöhung der Spannung am Eingang E, des Differenzverstärkers 9. Ferner ist in dieser Regelschaltung eine dem Eingang E2 des Differenzverstärkers zugeführte Sollwertspannung vorgesehen, die von der Umgebungstemperatur abhängt. Zu diesem Zweck ist eine weitere Reihenschaltung aus einer Zenerdiode 11 mit temperaturabhängiger Zenerspannung, einem ohmschen Widerstand 12 und einer Gleichspannungsquelle vorgesehen. Am Verbindungspunkt zwischen der Zenerdiode 11 und dem Widerstand 12 wird eine von der Umgebungstemperatur abhängige Sollwertspannung abgegriffen. Hierdurch erreicht man, dass bei Änderungen der Umgebungstemperatur sich die Spannungen an den Eingängen E, und E2 des Differenzverstärkers 9 in etwa gleicher Weise ändern. Somit ist das am Ausgang H erzeugte Ausgangssignal annähernd unabhängig von der Umgebungstemperatur, so dass auch die geregelte Lampenbrennspannung nicht von der Umgebungstemperatur beeinflusst wird.3, a series connection of an ohmic resistor 7 and a Zener diode 10 with a temperature-dependent Zener voltage is provided (e.g. TBD0135 from Thomson CSF). When the lamp voltage rises, the heating resistor 5 increases the heating of the zener diode 10, causing its zener voltage to rise. Analogously to the circuit with NTC resistors (FIG. 2), this leads to an increase in the voltage at input E, of differential amplifier 9. Furthermore, in this control circuit a setpoint voltage supplied to input E2 of the differential amplifier is provided, which depends on the ambient temperature. For this purpose, a further series circuit comprising a Zener diode 11 with a temperature-dependent Zener voltage, an ohmic resistor 12 and a DC voltage source is provided. At the connection point between the Zener diode 11 and the resistor 12, a setpoint voltage dependent on the ambient temperature is tapped. This means that when the ambient temperature changes, the voltages at the inputs E, and E2 of the differential amplifier 9 change in approximately the same way. Thus, the output signal generated at output H is almost independent of the ambient temperature, so that the regulated lamp voltage is not influenced by the ambient temperature.

Claims (9)

1. A circuit arrangement for adjusting the operating voltage of high-pressure gas discharge lamps to a given nominal value comprising a controllable current limiter arranged in series with the lamp and an adjustment circuit controlling the latter, whose output signal is determined by the difference between a given desired value determining the nominal lamp operating voltage and an actual value dependent upon the instantaneous lamp operating voltage, characterized in that a heating element (5) is arranged parallel to the lamp (1), this element being in thermal contact with a temperature-dependent electrical element (6 and 10, respectively), which produces the actual voltage dependent upon the instantaneous lamp operating voltage.
2. A circuit arrangement as claimed in Claim 1, characterized in that the thermal time constant of the unit comprising the heat element (5) and the temperature-dependent electrical element (6; 10) is of the order of the thermal time constant of the lamp (1).
3. A circuit arrangement as claimed in Claim 1 or 2, characterized in that the actual voltage is supplied together with the desired voltage to a differential amplifier (9), whose output signal controls the controllable current limiter (2).
4. A circuit arrangement as claimed in Claims 1 to 3, characterized in that the temperature-dependent element (6; 10) is connected in series with a further electrical element (7) and with a voltage source and the actual voltage is derived at the junction (8) of the two elements.
5. A circuit arrangement as claimed in any one of Claims 1 to 4, characterized in that the desired voltage is controlled in dependence upon the ambient temperature.
6. A circuit arrangement as claimed in Claim 4, characterized in that the further electrical element is also temperature-dependent.
7. A circuit arrangement as claimed in Claims 1 to 6, characterized in that the temperature-dependent element is a temperature-dependent resistor (6).
8. A circuit arrangement as claimed in Claims 1 to 6, characterized in that the temperature-dependent element is a silicon temperature sensor.
9. A circuit arrangement as claimed in Claims 1 to 6, characterized in that the temperature-dependent element is a Zener diode (10) having a temperature-dependent Zener voltage.
EP85200695A 1984-05-14 1985-05-03 Circuit device for controlling the running voltage of high-pressure gas-discharge lamps Expired EP0164774B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3417794 1984-05-14
DE19843417794 DE3417794A1 (en) 1984-05-14 1984-05-14 CIRCUIT ARRANGEMENT FOR CONTROLLING THE BURN VOLTAGE OF HIGH PRESSURE GAS DISCHARGE LAMPS

Publications (2)

Publication Number Publication Date
EP0164774A1 EP0164774A1 (en) 1985-12-18
EP0164774B1 true EP0164774B1 (en) 1989-01-18

Family

ID=6235758

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85200695A Expired EP0164774B1 (en) 1984-05-14 1985-05-03 Circuit device for controlling the running voltage of high-pressure gas-discharge lamps

Country Status (6)

Country Link
US (1) US4891563A (en)
EP (1) EP0164774B1 (en)
JP (1) JPS60250596A (en)
CA (1) CA1256935A (en)
DE (2) DE3417794A1 (en)
HU (1) HU191780B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4015399A1 (en) * 1990-05-14 1991-11-21 Hella Kg Hueck & Co CIRCUIT ARRANGEMENT FOR A MOTOR VEHICLE HEADLAMP
JP3196206B2 (en) * 1990-09-25 2001-08-06 東芝ライテック株式会社 Discharge lamp lighting device
US5136476A (en) * 1991-05-23 1992-08-04 Horn Donald E Toilet bowl illuminator
US5517089A (en) * 1993-10-28 1996-05-14 Abbott Laboratories Regulated electroluminescent panel power supply
DE69823155T2 (en) * 1997-12-15 2005-03-17 Ceramet Technologies Pte. Ltd. Moldable composition and method for producing sintered bodies therefrom
US6489879B1 (en) * 1999-12-10 2002-12-03 National Semiconductor Corporation PTC fuse including external heat source
JP6135267B2 (en) * 2013-04-16 2017-05-31 ソニー株式会社 LIGHTING DEVICE, LIGHTING SYSTEM, AND CONTROL METHOD

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3284664A (en) * 1959-10-01 1966-11-08 Sylvania Electric Prod Pressure regulation of fluorescent lamps by peltier cooling means
US3591828A (en) * 1968-08-12 1971-07-06 New Nippon Electric Co Discharge lamp device and its operating apparatus
DE1945267B2 (en) * 1969-09-06 1971-11-18 PROCEDURE FOR CONNECTING A LIGHT SENSOR TO AN ENERGY CONTROL UNIT
US3886405A (en) * 1972-02-07 1975-05-27 Mamiya Camera Device for operating discharge lamps
US4039895A (en) * 1975-02-20 1977-08-02 U.S. Philips Corporation Device for starting and feeding a discharge lamp
US4037148A (en) * 1975-08-15 1977-07-19 General Electric Company Ballast control device
FR2379226A1 (en) * 1977-01-31 1978-08-25 Radiotechnique Compelec ELECTRONIC STARTER FOR PRIMING A DISCHARGE TUBE
US4162429A (en) * 1977-03-11 1979-07-24 Westinghouse Electric Corp. Ballast circuit for accurately regulating HID lamp wattage
US4253046A (en) * 1978-12-11 1981-02-24 Datapower, Inc. Variable intensity control apparatus for operating a gas discharge lamp
US4162430A (en) * 1978-05-30 1979-07-24 Westinghouse Electric Corp. Compact ballast for fluorescent lamp which provides excellent lamp power regulation
GB2034948B (en) * 1978-11-13 1983-01-06 King G A Monitoring circuits more particularly for monitoring lamp circuits
DE3047289A1 (en) * 1980-12-16 1982-07-29 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH, 8000 München IGNITION DEVICE FOR A LOW-PRESSURE DISCHARGE LAMP
US4475065A (en) * 1982-09-02 1984-10-02 North American Philips Lighting Corporation Method of operating HID sodium lamp to minimize lamp voltage variation throughout lamp life

Also Published As

Publication number Publication date
DE3567788D1 (en) 1989-02-23
HU191780B (en) 1987-04-28
US4891563A (en) 1990-01-02
HUT38026A (en) 1986-03-28
JPS60250596A (en) 1985-12-11
EP0164774A1 (en) 1985-12-18
CA1256935A (en) 1989-07-04
DE3417794A1 (en) 1985-11-14

Similar Documents

Publication Publication Date Title
DE3903520C2 (en)
DE3407067A1 (en) CONTROL CIRCUIT FOR GAS DISCHARGE LAMPS
DE19708783C1 (en) Method and device for regulating the operating behavior of gas discharge lamps
EP0119452B1 (en) Heat power regulation circuit arrangement for a heating element
EP0164774B1 (en) Circuit device for controlling the running voltage of high-pressure gas-discharge lamps
DE1512711B2 (en) ARRANGEMENT FOR PILOT-CONTROLLED GAIN CONTROL OF AMPLIFIERS, IN PARTICULAR INTERAMPLIFIER OF CARRIER FREQUENCY TECHNOLOGY
DE1941123A1 (en) Control system
EP0003528B1 (en) Electronic device for controlling the light intensity of a gaseous discharge lamp without a heated cathode
DE3402341C2 (en)
DE3932399C1 (en) Operating series length regulating loop - switching in adjuster again during delay time if current falls again below threshold value
EP1047286B1 (en) Ballast for discharge lamp in automobile
EP0402367B1 (en) Active filter
DE2002405A1 (en) Heat-missing control circuit
DE3009439A1 (en) BURNER CONTROL
DE2545193A1 (en) CONTROL DEVICE
EP0224227B1 (en) Phase chopping control for operating a resistive charge connected to an ac network
DE2439459C3 (en) Power supply device
DE1763847A1 (en) Electrical control system, on-off
DE2451120A1 (en) BALLAST WITH THERMAL REGULATOR
DE1463140B2 (en) Device for speed control
DE2242276C3 (en) Series control device equipped with an electronic short-circuit and overcurrent protection
DE1137793B (en) Method and device for the automatic shutdown and restart of the consumer current in stabilized transistor feeders
DE3236703A1 (en) Circuit arrangement for operating high-pressure gas-discharge lamps
DE3926352A1 (en) Current supply circuit for electric consumer appliance - has bipolar transistor emitter-collector path in current feed track and PTC conductor in resistance branch
DE1271213B (en) Mains-fed power supply circuit for supplying the DC operating voltage for a high-frequency transmitter tube

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE FR GB NL

17P Request for examination filed

Effective date: 19860527

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: N.V. PHILIPS' GLOEILAMPENFABRIEKEN

Owner name: PHILIPS PATENTVERWALTUNG GMBH

17Q First examination report despatched

Effective date: 19880412

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB NL

REF Corresponds to:

Ref document number: 3567788

Country of ref document: DE

Date of ref document: 19890223

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19900522

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19900531

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19900725

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19910501

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19911201

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19920131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19920303

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19920503

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19920503