EP1186831A1 - Apparatus controlling the air/fuel ratio of a burner - Google Patents

Apparatus controlling the air/fuel ratio of a burner Download PDF

Info

Publication number
EP1186831A1
EP1186831A1 EP01117153A EP01117153A EP1186831A1 EP 1186831 A1 EP1186831 A1 EP 1186831A1 EP 01117153 A EP01117153 A EP 01117153A EP 01117153 A EP01117153 A EP 01117153A EP 1186831 A1 EP1186831 A1 EP 1186831A1
Authority
EP
European Patent Office
Prior art keywords
signal
control
control device
burner
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP01117153A
Other languages
German (de)
French (fr)
Other versions
EP1186831B1 (en
Inventor
Rainer Dr. Lochschmied
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Building Technologies AG
Original Assignee
Siemens Building Technologies AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Building Technologies AG filed Critical Siemens Building Technologies AG
Publication of EP1186831A1 publication Critical patent/EP1186831A1/en
Application granted granted Critical
Publication of EP1186831B1 publication Critical patent/EP1186831B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/24Preventing development of abnormal or undesired conditions, i.e. safety arrangements
    • F23N5/242Preventing development of abnormal or undesired conditions, i.e. safety arrangements using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/02Regulating fuel supply conjointly with air supply
    • F23N1/022Regulating fuel supply conjointly with air supply using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/12Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods
    • F23N5/123Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2223/00Signal processing; Details thereof
    • F23N2223/04Memory
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2233/00Ventilators
    • F23N2233/06Ventilators at the air intake
    • F23N2233/08Ventilators at the air intake with variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2235/00Valves, nozzles or pumps
    • F23N2235/12Fuel valves
    • F23N2235/16Fuel valves variable flow or proportional valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N3/00Regulating air supply or draught
    • F23N3/08Regulating air supply or draught by power-assisted systems
    • F23N3/082Regulating air supply or draught by power-assisted systems using electronic means

Definitions

  • the invention relates to a control device according to the preamble of Claim 1.
  • the ratio of the amount of air to the amount of fuel must be given Air ratio or lambda, in the entire performance range either by a controller or be coordinated with one another by means of a regulation.
  • lambda be slightly above the stoichiometric value 1, for example 1.3.
  • Air-controlled burners unlike controlled burners, react to external ones Influences that change the combustion.
  • the combustion readjusted after changing the fuel type or air density. she have a higher efficiency, hence a higher efficiency as well as lower Pollutant and soot emissions.
  • the environmental impact is lower, the lifespan will be extended.
  • Controlling the air ratio is particularly effective when using a sensor to check the quality the combustion can be observed.
  • Recent developments are based on the ionization electrode, which has long been standard for monitoring the Flame is used in burners.
  • Air-controlled burners that use an ionization electrode as a flame sensor are known from DE-PS 196 18 573. Such burners check the control loop among other things in that the measurement signal has a safety margin around the Should not leave the control setpoint in the long term during normal operation. Do this nevertheless, the burner switches off.
  • the ratio of air to fuel is first controlled, for example during the first minute after commissioning. First after that it will be adjusted exactly.
  • the tax period should be as short as possible due to outside influences during this Time cannot be corrected.
  • the quality of the control should monitored at least marginally and for plausibility in the specific circumstances become. Will the position of the fuel valve or air blower during the Tax period is not monitored by additional measures, so with one Defect, the permissible emission values are greatly exceeded.
  • the invention has for its object the quality monitoring during such To improve tax periods inexpensively and in a simple manner.
  • 1 means the flame of an air number-controlled gas burner.
  • a Ionization electrode 2 protrudes into the area of the flame 1.
  • the flame 1 is from an adjustable air blower 3 and an adjustable gas valve 4 fed.
  • On Safety valve 5 in the gas supply ensures faultless shutdown in the event of a Error message.
  • the air is blown through in some atmospheric burners the burner cable is fed and can be controlled by an adjustable air flap.
  • a control device 6 provides the air blower 3, the gas valve 4 and the Safety valve 5 as follows.
  • the actuator of the air blower 3 is operated by means of a power request signal 7 driven to a speed which corresponds to a speed signal 8, which as Input parameters for the performance request is used.
  • a different size e.g. B. the measurement signal Differential pressure meter in the ventilation duct, can be used as a performance variable.
  • the adjustable gas valve 4 is a control signal 9 via a not shown Motor driven.
  • a mechanical pressure regulator is not shown interposed.
  • the safety valve 5 is opened against spring pressure as long as a release signal 10 is applied.
  • the air ratio is regulated via the ionization electrode 2.
  • the Adjustment of the control signal 9 to the speed signal 8 takes place by observation of current and voltage at the ionization electrode 2 as a measure of the flame quality.
  • the speed signal 8 is fed via a filter 11 to a control unit 12 which is implemented as a program part in a microprocessor.
  • a control unit 12 which is implemented as a program part in a microprocessor.
  • characteristics stored which are the characteristics of a first and a second control signal 13 or 14 respectively. These characteristics represent one for each speed under their respective circumstances desired size of the control signal 9, here for two Types of gas with different specific energy values.
  • the control signals 13, 14 are fed to a controller 15, where they are based on the flame quality in one Control module 16 are weighted and added to form the control signal 9.
  • the Controller 15 is implemented as a program part in a microprocessor.
  • a sensor evaluator 17 processes two signals therefrom.
  • a sensor signal 18 is a measure of the quality of the flame 1.
  • a monitoring signal 19 inputs The flame 1 of a monitoring unit 20 in the controller 15 continues to go out.
  • the monitoring unit 20 interrupts a corresponding monitoring signal 19 out the release signal 10 and thereby closes the safety valve 5. So hear the gas supply on.
  • the sensor signal 18 is also fed to the controller 15. There it is first by means of a low-pass filter 21 smoothed to suppress glitches and flickering.
  • a comparison unit 22 is one generated by the control unit 12 and via a Correction unit 23 subtracted setpoint signal 24.
  • the setpoint signal 24 represents a desired size of the Sensor signal 18. The difference becomes a proportional controller 25 and one parallel integrating unit 26, the internal control value x newly determined, the two Control signals 13 and 14 re-weighted and thus the control signal 9 changed.
  • control value x can of course be set by other controller types, for example a PID controller or a status controller.
  • the sensor signal 18 is thus in normal operation at its current power associated setpoint and the combustion receives via the setpoint signal 24th set quality.
  • the air ratio is programmed during a starting process controlled until the burner and the ionization electrode 2 reach their operating temperature have approximated or reached. Only then does normal operation follow, in which the Air ratio is regulated.
  • the reason for the control at the start is, among other things, the inertia of the sensor, that measures the quality of combustion.
  • ionization electrodes not only ionization electrodes have such a delay.
  • an ionization signal can only be used for regulation about 30 s after the ignition.
  • Other sensors, such as ZrO 2 oxygen sensors in the exhaust duct, may take more than a minute, depending on the design, before reliable control signals can be obtained.
  • the control unit 12 During a starting process, the control unit 12 generates a start signal 27, which is fed to the controller 15 and causes it to be linear in time to generate increasing control signal 9.
  • a switching unit 28 chooses as long as that Start signal 27, instead of the control value x, off. Because the air blower 3 meanwhile generates a constant air flow, the air ratio is initially large Values always smaller. As soon as the mixture of air and gas is enough fat, you can the flame 1 is ignited.
  • the air blower 3 After a possibly pre-purge time has been programmed, the air blower 3 must have reached a fixed ignition speed at time T 1 so that combustion air is present. An ignition device already begins to generate ignition pulses periodically.
  • the controller 15 opens the safety valve 5 by means of the release signal 10 and generates an actuating signal 9 which sets the position of the gas valve 4 to its starting position S 1 .
  • the control unit 12 supplies the controller 15 with a start signal 27.
  • the start-up signal 27 determines a control value x 'as a provisional replacement for the control value x when weighting the two control signals 13 and 14. Their size is fixed at the above-mentioned ignition speed of the air blower 3.
  • the controller 15 weights the control signals 13 and 14 on the basis of the start signal 27, so that a control signal 9 corresponding to the start position S 1 appears at the output of the controller.
  • control unit 12 increases the control signal 9 in the above-mentioned manner according to a programmed sequence, the amount of gas per unit time being increased linearly.
  • the gas-air mixture is initially very lean and becomes fatter during the ignition process until ignition T 2 occurs.
  • the linear increase in the control signal 9 is stopped and the position of the gas valve 4 at its ignition position S 2 is kept constant.
  • the control unit 12 can then estimate the gas range on the basis of the ignition position S 2 and the required ignition time T 2 - T 1 and reselects the control value x 'so that it matches the estimated gas range.
  • the new control value x ' is, depending on the gas type, e.g. B. at 0.9 or 0.1. This leads to a re-setting of the gas valve 4 to a correction position S 3 .
  • the control signal 9 in FIG. 2 is therefore quickly corrected to the correction position S 3 at the time T 3 .
  • a fixed ignition position for the Gas valve 4 can be selected.
  • the control value x 'for the tax phase would then the ignition as a programmed value or as a learning value from the last shutdown determined and saved.
  • FIG. 2 represents the control signal 9 if it is calculated on the basis of the sensor signal 18.
  • This fictitious control signal S E would therefore be the control signal 9 if the control loop is not broken up during a starting process.
  • the monitoring unit 20 must of course, by means of an analog circuit or a program part, approximately simulate the behavior of the flame in response to the fictitious control signal S E and set the fictitious control signal S E so that the instantaneous measured value of the ionization signal 18 results.
  • the fictitious control signal S E is not suitable in this phase for the reasons mentioned above in order to enable regulation. Nevertheless, it has been shown that the fictitious control signal S E comes relatively quickly, for example 2 seconds after opening the gas valve 4, so close to the value that is optimally regulated later that it forms a reliable means of comparison for serious errors of harmless Differentiate inaccuracies of the control.
  • the monitoring unit 20 continuously checks whether the fictitious control signal S E or the associated control value X E is within a limit range around the actual control signal 9.
  • the limits are denoted by S 3min and S 3max in FIG. 2 and have, for example, the values of 0.90 times S 3 and 1.25 times S 3 .
  • the monitoring unit 20 also checks the otherwise unused control value x by comparing it with the control value x '. This comparison is equivalent to a comparison between the fictitious control signal S E and the control signal (9). The only difference is the previous or subsequent processing by the control module 16.
  • the monitoring unit 20 As soon as the fictitious control signal S E leaves the above-mentioned limit range, the monitoring unit 20 generates a fault signal (not shown) and issues the release signal 10 so that the safety valve 5 is closed.
  • the control device 6 stores the detection of a fault signal in a EEPROM, so the event after a possible failure of the supply current is recognizable again.
  • An unlocking signal, not shown, by the Burner operator can reverse the consequences of an earlier fault signal.
  • the monitoring unit 20 only switches off the combustion when the fictitious control signal S E has left the limit range for a predetermined time.
  • the monitoring does not necessarily have to be continuous, but could also be carried out discretely at one or more specified times.
  • the end of the tax period at time T 5 could of course also be preprogrammed.
  • the generation of the actuating signal 9 is carried out by processing the sensor signal 18.
  • the control signal 9 quickly adjusts to its control value S 4 .
  • the performance of the burner can be reduced to one during the control period other value in the entire permissible range.
  • FIG. 1 also shows that the monitoring unit 20 alternatively does this Ionization signal 18 instead of the control signal 9 or the control value x processed.
  • the monitoring unit 20 is compared with its setpoint signal 24 and may for example be one Do not leave the pre-programmed limit range, which can also be time-dependent.
  • a sole application of this alternative would be a very simple configuration enable the monitoring unit 20.
  • a comparison signal is in the form anyway of the setpoint signal 24 and the comparison is already through the Comparison unit 22 in the form of the difference signal 35 from the monitoring unit 20 fed.
  • Monitoring begins at time T 4 , shortly after time T 3 or even simultaneously.
  • the monitoring unit 20 checks permanently or at discrete points in time whether the ionization signal I E does not leave its limit values, which are drawn as I SOLLmin and I SOLLmax .
  • the control process begins at time T 5 on the basis of the ionization signal 18.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Regulation And Control Of Combustion (AREA)
  • Control Of Combustion (AREA)

Abstract

The controller produces a comparison signal (SE) during the control period as a function of the sensor signal. The controller ascertains the difference between the comparison signal (SE, IE) and a corresponding signal. An alarm signal is produced as a function of the difference, by the controller.

Description

Die Erfindung bezieht sich auf eine Regeleinrichtung gemäß dem Oberbegriff des Anspruchs 1.The invention relates to a control device according to the preamble of Claim 1.

In einem Brenner muss das Verhältnis der Luftmenge zur Brennstoffmenge, genannt Luftzahl oder Lambda, im gesamten Leistungsbereich entweder durch eine Steuerung oder durch eine Regelung aufeinander abgestimmt sein. In der Regel soll Lambda leicht über dem stöchiometrischen Wert 1 sein, zum Beispiel 1,3.In a burner, the ratio of the amount of air to the amount of fuel must be given Air ratio or lambda, in the entire performance range either by a controller or be coordinated with one another by means of a regulation. As a rule, lambda be slightly above the stoichiometric value 1, for example 1.3.

Luftzahlgeregelte Brenner reagieren, anders als gesteuerte Brenner, auf äußere Einflüsse, welche die Verbrennung verändern. Beispielsweise kann die Verbrennung nach einer Änderung der Brennstoffart oder der Luftdichte nachgeregelt werden. Sie haben einen höheren Wirkungsgrad, damit eine höhere Effizienz sowie niedrigere Schadstoff- und Russemissionen. Die Umweltbelastung ist geringer, die Lebensdauer wird verlängert.Air-controlled burners, unlike controlled burners, react to external ones Influences that change the combustion. For example, the combustion readjusted after changing the fuel type or air density. she have a higher efficiency, hence a higher efficiency as well as lower Pollutant and soot emissions. The environmental impact is lower, the lifespan will be extended.

Eine Regelung der Luftzahl ist besonders effektiv, wenn mit einem Sensor die Qualität der Verbrennung beobachtet werden kann. Typisch werden bei bekannten Brennern Sauerstoffsensoren im Abgaskanal, Temperatursensoren auf der Brenneroberfläche oder UV-Sensoren in der Brennkammer verwendet. Neuere Entwicklungen basieren auf der Ionisationselektrode, die schon lange standardmäßig zur Überwachung der Flamme in Brennern eingesetzt wird.Controlling the air ratio is particularly effective when using a sensor to check the quality the combustion can be observed. Become typical with known burners Oxygen sensors in the flue gas duct, temperature sensors on the burner surface or UV sensors used in the combustion chamber. Recent developments are based on the ionization electrode, which has long been standard for monitoring the Flame is used in burners.

Luftzahlgeregelte Brenner, die eine lonisationselektrode als Flammensensor benutzen, sind aus der DE-PS 196 18 573 bekannt. Solche Brenner überprüfen den Regelkreis unter anderem dadurch, dass das Messsignal eine Sicherheitsmarge um den Regelsollwert während des Regelbetriebes nicht langfristig verlassen soll. Trifft dies dennoch zu, so schaltet der Brenner ab.Air-controlled burners that use an ionization electrode as a flame sensor, are known from DE-PS 196 18 573. Such burners check the control loop among other things in that the measurement signal has a safety margin around the Should not leave the control setpoint in the long term during normal operation. Do this nevertheless, the burner switches off.

Es ist zumeist wenig sinnvoll, die Luftzahl sofort nach der Zündung zu regeln, da das lonisationssignal erst im thermisch eingeschwungenen Zustand repräsentativ für die Verbrennung ist. Daher wird das Verhältnis von Luft und Brennstoff zunächst gesteuert, beispielsweise während der ersten Minute nach der Inbetriebsetzung. Erst danach wird es genau ausgeregelt.It usually makes little sense to regulate the air ratio immediately after ignition, since that ionization signal only in the thermally steady state representative of the Combustion is. Therefore, the ratio of air to fuel is first controlled, for example during the first minute after commissioning. First after that it will be adjusted exactly.

Weiterhin ist es bekannt, dass während des Zündvorgangs die Luftzahl variiert wird, damit ein für die gelieferte Brennstoffart gutes Gemisch gefunden werden kann. Auf diesen Luftzahlwert wird im weiteren Startvorgang gesteuert. Auch davon ist ein Beispiel in der DE-PS 196 18 573 beschrieben. Ein solcher Brenner fährt während des Zündvorgangs den Gasanteil bei festem Luftvolumenstrom solange hoch, bis die lonisationselektrode eine Flamme detektiert. Die Anfahrsteuerung behält die der Zündung entsprechende Gasventilstellung bei, obwohl das Gas-Luft-Gemisch typisch etwas zu fett ist. Erst nachdem das System seine Betriebstemperatur erreicht hat, wird auf Regelung mittels lonisationssignal umgeschaltet.Furthermore, it is known that the air ratio is varied during the ignition process, so that a good mixture can be found for the type of fuel supplied. On this air ratio is controlled in the further starting process. There is also one of them Example described in DE-PS 196 18 573. Such a burner runs during the Ignition the gas portion with a fixed air volume flow high until the ionization electrode detects a flame. The start control keeps the Ignition appropriate gas valve position, although the gas-air mixture is typical is a little too fat. Only after the system has reached its operating temperature switched to regulation by means of ionization signal.

Neben dem Startverhalten des Brenners ist es denkbar, dass später aus anderen Gründen das lonisationssignal nicht repräsentativ für die Verbrennung ist oder der Regelkreis durch äußere Einflüsse instabil wird. Auch dann kann die Regelung zeitweise abgeschaltet und die Luftzahl während dieser Zeit gesteuert werden.In addition to the starting behavior of the burner, it is conceivable that later from others Reasons the ionization signal is not representative of the combustion or the Control loop becomes unstable due to external influences. Even then, the scheme temporarily switched off and the air ratio can be controlled during this time.

Die Steuerperiode sollte so kurz wie möglich sein, da äußere Einflüsse während dieser Zeit nicht ausgeregelt werden können. Zudem sollte die Qualität der Steuerung unter den konkreten Umständen wenigstens marginal und auf Plausibilität überwacht werden. Wird die Stellung des Brennstoffsventils oder des Luftgebläses während der Steuerperiode nicht durch zusätzliche Maßnahmen überwacht, so können bei einem Defekt die zulässigen Emissionswerte stark überschritten werden.The tax period should be as short as possible due to outside influences during this Time cannot be corrected. In addition, the quality of the control should monitored at least marginally and for plausibility in the specific circumstances become. Will the position of the fuel valve or air blower during the Tax period is not monitored by additional measures, so with one Defect, the permissible emission values are greatly exceeded.

Der Erfindung liegt die Aufgabe zugrunde, die Qualitätsüberwachung während solcher Steuerperioden kostengünstig und in einfacher Art zu verbessern.The invention has for its object the quality monitoring during such To improve tax periods inexpensively and in a simple manner.

Die genannte Aufgabe wird erfindungsgemäß durch die Merkmale des Anspruchs 1 gelöst. Vorteilhafte Weiterbildungen ergeben sich aus den abhängigen Ansprüchen.According to the invention, this object is achieved by the features of claim 1 solved. Advantageous further developments result from the dependent claims.

Nachfolgend wird ein Ausführungsbeispiel der Erfindung anhand der Zeichnung näher erläutert. An exemplary embodiment of the invention is described in more detail below with reference to the drawing explained.

Es zeigenShow it

Figur 1Figure 1
ein Blockschaltbild einer Regeleinrichtung gemäß der Erfindung,2 shows a block diagram of a control device according to the invention,
Figur 2Figure 2
den zeitlichen Ablauf des Aufstarten des Brenners mit der Regeleinrichtung undthe timing of starting the burner with the control device and
Figur 3Figure 3
einen alternativen zeitlichen Ablauf des Aufstarten des Brenners mit der Regeleinrichtung.an alternative timing of starting the burner with the Control device.

In der Figur 1 bedeutet 1 die Flamme eines luftzahlgeregelten Gasbrenners. Eine lonisationselektrode 2 ragt in den Bereich der Flamme 1. Die Flamme 1 wird von einem stellbaren Luftgebläse 3 und einem stellbaren Gasventil 4 gespeist. Ein Sicherheitsventil 5 in der Gaszufuhr sorgt für ein fehlerfreies Abschalten im Falle einer Störungsmeldung.In FIG. 1, 1 means the flame of an air number-controlled gas burner. A Ionization electrode 2 protrudes into the area of the flame 1. The flame 1 is from an adjustable air blower 3 and an adjustable gas valve 4 fed. On Safety valve 5 in the gas supply ensures faultless shutdown in the event of a Error message.

Statt eines Luftgebläses wird bei manchen atmosphärischen Brennern die Luft durch den Brennerzug zugeführt und kann durch eine stellbare Luftklappe kontrolliert werden.Instead of an air blower, the air is blown through in some atmospheric burners the burner cable is fed and can be controlled by an adjustable air flap.

Eine Regeleinrichtung 6 stellt das Luftgebläse 3, das Gasventil 4 und das Sicherheitsventil 5 wie folgt.A control device 6 provides the air blower 3, the gas valve 4 and the Safety valve 5 as follows.

Das Stellglied des Luftgebläses 3 wird mittels eines Leistungsanforderungssignals 7 auf eine Drehzahl angesteuert, welche einem Drehzahlsignal 8 entspricht, das als Eingabeparameter für die Leistungsanforderung verwendet wird.The actuator of the air blower 3 is operated by means of a power request signal 7 driven to a speed which corresponds to a speed signal 8, which as Input parameters for the performance request is used.

Natürlich kann auch eine andere Größe, z. B. das Messsignal eines Differenzdruckmessers im Belüftungskanal, als Leistungsgröße verwendet werden.Of course, a different size, e.g. B. the measurement signal Differential pressure meter in the ventilation duct, can be used as a performance variable.

Das stellbare Gasventil 4 wird von einem Stellsignal 9 über einen nicht gezeichneten Motor angetrieben. Ein nicht gezeichneter mechanischer Druckregler ist zwischengeschaltet. The adjustable gas valve 4 is a control signal 9 via a not shown Motor driven. A mechanical pressure regulator is not shown interposed.

Das Sicherheitsventil 5 wird gegen Federdruck geöffnet, solange ein Freigabesignal 10 anliegt.The safety valve 5 is opened against spring pressure as long as a release signal 10 is applied.

Im Normalbetrieb wird die Luftzahl über die lonisationselektrode 2 geregelt. Die Abstimmung des Stellsignals 9 auf das Drehzahlsignal 8 erfolgt durch Beobachtung von Strom und Spannung an der lonisationselektrode 2 als Maß der Flammenqualität.In normal operation, the air ratio is regulated via the ionization electrode 2. The Adjustment of the control signal 9 to the speed signal 8 takes place by observation of current and voltage at the ionization electrode 2 as a measure of the flame quality.

Das Drehzahlsignal 8 wird über ein Filter 11 zu einer Steuereinheit 12 geführt, welche als Programmteil in einem Mikroprozessor realisiert ist. Dort sind Kenndaten gespeichert, welche die Kennlinien eines ersten und eines zweiten Steuersignals 13 beziehungsweise 14 festlegen. Diese Kennlinien repräsentieren zu jeder Drehzahl eine unter ihren respektiven Umständen erwünschte Größe des Stellsignals 9, hier für zwei Gasarten mit unterschiedlichen spezifischen Energiewerten. Die Steuersignale 13, 14 werden einem Regler 15 zugeführt, wo sie anhand der Flammenqualität in einem Stellmodul 16 gewichtet und aufaddiert werden um das Stellsignal 9 zu bilden. Der Regler 15 ist als Programmteil in einem Mikroprozessor realisiert.The speed signal 8 is fed via a filter 11 to a control unit 12 which is implemented as a program part in a microprocessor. There are characteristics stored, which are the characteristics of a first and a second control signal 13 or 14 respectively. These characteristics represent one for each speed under their respective circumstances desired size of the control signal 9, here for two Types of gas with different specific energy values. The control signals 13, 14 are fed to a controller 15, where they are based on the flame quality in one Control module 16 are weighted and added to form the control signal 9. The Controller 15 is implemented as a program part in a microprocessor.

Zugleich wird die Qualität und Präsenz der Flamme 1 von der lonisationselektrode 2 ermittelt. Ein Sensorauswerter 17 bereitet daraus zwei Signale auf. Ein Sensorsignal 18 ist ein Maß für die Qualität der Flamme 1. Ein Überwachungssignal 19 gibt ein Erlöschen der Flamme 1 einer Überwachungseinheit 20 im Regler 15 weiter.At the same time, the quality and presence of the flame 1 is determined by the ionization electrode 2 determined. A sensor evaluator 17 processes two signals therefrom. A sensor signal 18 is a measure of the quality of the flame 1. A monitoring signal 19 inputs The flame 1 of a monitoring unit 20 in the controller 15 continues to go out.

Die Überwachungseinheit 20 unterbricht auf ein entsprechendes Überwachungssignal 19 hin das Freigabesignal 10 und schließt dadurch das Sicherheitsventil 5. Somit hört die Gaszufuhr auf.The monitoring unit 20 interrupts a corresponding monitoring signal 19 out the release signal 10 and thereby closes the safety valve 5. So hear the gas supply on.

Auch das Sensorsignal 18 wird dem Regler 15 zugeführt. Dort wird es zuerst mittels eines Tiefpassfilters 21 geglättet, um Störimpulse und Flackern zu unterdrücken. In einer Vergleichseinheit 22 wird ein von der Steuereinheit 12 erzeugtes und über eine Korrektureinheit 23 geführtes Sollwertsignal 24 subtrahiert. Das Sollwertsignal 24 repräsentiert über eine Kennlinie zu jeder Drehzahl eine erwünschte Größe des Sensorsignals 18. Aus der Differenz wird von einem Proportionalregler 25 und einer parallelen Integriereinheit 26 der interne Regelwert x neu ermittelt, der die beiden Steuersignale 13 und 14 neu gewichtet und damit das Stellsignal 9 verändert.The sensor signal 18 is also fed to the controller 15. There it is first by means of a low-pass filter 21 smoothed to suppress glitches and flickering. In a comparison unit 22 is one generated by the control unit 12 and via a Correction unit 23 subtracted setpoint signal 24. The setpoint signal 24 represents a desired size of the Sensor signal 18. The difference becomes a proportional controller 25 and one parallel integrating unit 26, the internal control value x newly determined, the two Control signals 13 and 14 re-weighted and thus the control signal 9 changed.

Alternativ kann der Regelwert x natürlich durch andere Reglertypen, beispielsweise einen PID-Regler oder einen Zustandsregler, erzeugt werden.Alternatively, the control value x can of course be set by other controller types, for example a PID controller or a status controller.

Das Sensorsignal 18 wird somit im Normalbetrieb auf seinen zur aktuellen Leistung gehörigen Sollwert geregelt und die Verbrennung erhält die über das Sollwertsignal 24 eingestellte Qualität.The sensor signal 18 is thus in normal operation at its current power associated setpoint and the combustion receives via the setpoint signal 24th set quality.

Dem entgegen wird die Luftzahl während eines Startvorganges programmiert gesteuert, bis der Brenner und die lonisationselektrode 2 ihre Betriebstemperatur angenähert oder erreicht haben. Erst danach folgt der Normalbetrieb, in dem die Luftzahl geregelt wird.In contrast, the air ratio is programmed during a starting process controlled until the burner and the ionization electrode 2 reach their operating temperature have approximated or reached. Only then does normal operation follow, in which the Air ratio is regulated.

Der Grund für die Steuerung am Start liegt unter anderem in der Trägheit des Sensors, der die Verbrennungsqualität misst.The reason for the control at the start is, among other things, the inertia of the sensor, that measures the quality of combustion.

Nicht nur lonisationselektroden weisen übrigens eine solche Verzögerung auf. Ein lonisationssignal kann je nach Brenner erst ungefähr 30 s nach der Zündung zum Regeln verwendet werden. Andere Sensoren, wie zum Beispiel ZrO2-Sauerstoffsensoren im Abgaskanal, benötigen je nach Bauart mehr als eine Minute, bis zuverlässige Regelsignale gewonnen werden können.Incidentally, not only ionization electrodes have such a delay. Depending on the burner, an ionization signal can only be used for regulation about 30 s after the ignition. Other sensors, such as ZrO 2 oxygen sensors in the exhaust duct, may take more than a minute, depending on the design, before reliable control signals can be obtained.

Während eines Startvorganges erzeugt die Steuereinheit 12 ein Aufstartsignal 27, welches dem Regler 15 zugeführt wird und ihn veranlasst, ein in der Zeit linear zunehmendes Stellsignal 9 zu erzeugen. Eine Schalteinheit 28 wählt solange das Aufstartsignal 27, anstatt des Regelwertes x, aus. Weil das Luftgebläse 3 indessen einen gleichbleibenden Luftstrom erzeugt, wird die Luftzahl von zunächst großen Werten immer kleiner. Sobald das Gemisch von Luft und Gas genügend Fett ist, kann eine Zündung der Flamme 1 erfolgen. During a starting process, the control unit 12 generates a start signal 27, which is fed to the controller 15 and causes it to be linear in time to generate increasing control signal 9. A switching unit 28 chooses as long as that Start signal 27, instead of the control value x, off. Because the air blower 3 meanwhile generates a constant air flow, the air ratio is initially large Values always smaller. As soon as the mixture of air and gas is enough fat, you can the flame 1 is ignited.

Der zeitliche Verlauf des Stellsignals 9 für das Gasventil 4 während eines Startvorgangs ist in der Figur 2 skizziert. Zum Zeitpunkt t = 0 tritt eine Leistungsanforderung auf.The time course of the control signal 9 for the gas valve 4 during a Starting process is outlined in Figure 2. One occurs at time t = 0 Performance request on.

Nach einer eventuell programmierten Vorspülzeit muss das Luftgebläse 3 zum Zeitpunkt T1 auf eine festen Zünddrehzahl gefahren sein, damit Verbrennungsluft vorhanden ist. Eine Zündeinrichtung beginnt schon damit, periodisch Zündimpulse zu erzeugen.After a possibly pre-purge time has been programmed, the air blower 3 must have reached a fixed ignition speed at time T 1 so that combustion air is present. An ignition device already begins to generate ignition pulses periodically.

Zum Zeitpunkt T1 muss auch Gas vorhanden sein. Dazu öffnet der Regler 15 mittels des Freigabesignals 10 das Sicherheitsventil 5 und erzeugt ein Stellsignal 9, das die Stellung des Gasventils 4 auf seine Startposition S1 stellt.Gas must also be present at time T1. For this purpose, the controller 15 opens the safety valve 5 by means of the release signal 10 and generates an actuating signal 9 which sets the position of the gas valve 4 to its starting position S 1 .

Zur Bestimmung der Startposition S1 führt die Steuereinheit 12 dem Regler 15 ein Aufstartsignal 27 zu. Das Aufstartsignal 27 bestimmt in dieser Phase einen Steuerwert x' als vorläufiger Ersatz für den Regelwert x bei der Gewichtung der beiden Steuersignale 13 und 14. Deren Größe liegt bei der oben genannten Zünddrehzahl des Luftgebläses 3 fest. Der Regler 15 gewichtet die Steuersignale 13 und 14 anhand des Aufstartsignals 27, so dass am Ausgang des Reglers ein der Startposition S1 entsprechendes Stellsignal 9 erscheint.To determine the starting position S 1 , the control unit 12 supplies the controller 15 with a start signal 27. In this phase, the start-up signal 27 determines a control value x 'as a provisional replacement for the control value x when weighting the two control signals 13 and 14. Their size is fixed at the above-mentioned ignition speed of the air blower 3. The controller 15 weights the control signals 13 and 14 on the basis of the start signal 27, so that a control signal 9 corresponding to the start position S 1 appears at the output of the controller.

Unmittelbar nach dem Zeitpunkt T1 erhöht die Steuereinheit 12 in obengenannter Weise das Stellsignal 9 nach einem programmierten Ablauf, wobei die Gasmenge pro Zeiteinheit linear erhöht wird. Das Gas-Luft-Gemisch ist zunächst sehr mager und wird während des Zündvorganges immer fetter, bis zum Zeitpunkt T2 eine Zündung erfolgt.Immediately after the time T1, the control unit 12 increases the control signal 9 in the above-mentioned manner according to a programmed sequence, the amount of gas per unit time being increased linearly. The gas-air mixture is initially very lean and becomes fatter during the ignition process until ignition T 2 occurs.

Sobald das Überwachungssignal 19 das Vorhandensein der Flamme 1 bestätigt, wird der lineare Anwachs des Stellsignals 9 gestoppt und die Stellung des Gasventils 4 auf ihre Zündposition S2 konstant gehalten. Die Steuereinheit 12 kann dann anhand der Zündposition S2 und der benötigten Zündungszeit T2 - T1 den Gasbereich abschätzen und wählt den Steuerwert x' neu, so dass er zum geschätzten Gasbereich passt. Der neue Steuerwert x' liegt, je nach Gasart, z. B. bei 0,9 oder 0,1. Dies führt zu einer Neustellung des Gasventils 4 auf eine Korrekturposition S3. As soon as the monitoring signal 19 confirms the presence of the flame 1, the linear increase in the control signal 9 is stopped and the position of the gas valve 4 at its ignition position S 2 is kept constant. The control unit 12 can then estimate the gas range on the basis of the ignition position S 2 and the required ignition time T 2 - T 1 and reselects the control value x 'so that it matches the estimated gas range. The new control value x 'is, depending on the gas type, e.g. B. at 0.9 or 0.1. This leads to a re-setting of the gas valve 4 to a correction position S 3 .

Das Stellsignal 9 in der Figur 2 wird daher schnell zum Zeitpunkt T3 auf die Korrekturposition S3 korrigiert.The control signal 9 in FIG. 2 is therefore quickly corrected to the correction position S 3 at the time T 3 .

Alternativ zu dieser Startrampe könnte natürlich eine feste Zündstellung für das Gasventil 4 gewählt werden. Dabei würde der Steuerwert x' für die Steuerphase nach der Zündung als programmierter Wert vorgegeben oder aber als Lernwert aus der letzten Außerbetriebsetzung ermittelt und abgespeichert.As an alternative to this starting ramp, a fixed ignition position for the Gas valve 4 can be selected. The control value x 'for the tax phase would then the ignition as a programmed value or as a learning value from the last shutdown determined and saved.

In der Figur 2 ist auch eine strichpunktierte Kurve gezeichnet, die das Stellsignal 9 darstellt, falls es auf Grund des Sensorsignals 18 berechnet wird. Dieses fiktive Stellsignal SE wäre also das Stellsignal 9, wenn der Regelkreis während eines Startvorganges nicht aufgebrochen wird.A dash-dotted curve is also drawn in FIG. 2, which represents the control signal 9 if it is calculated on the basis of the sensor signal 18. This fictitious control signal S E would therefore be the control signal 9 if the control loop is not broken up during a starting process.

Dazu muss die Überwachungseinheit 20 natürlich mittels einer Analogschaltung oder eines Programmteils das Verhalten der Flamme als Antwort auf das fiktive Stellsignal SE annäherend simulieren und das fiktive Stellsignal SE so einstellen, dass sich der momentane Messwert des lonisationssignals 18 ergibt.For this purpose, the monitoring unit 20 must of course, by means of an analog circuit or a program part, approximately simulate the behavior of the flame in response to the fictitious control signal S E and set the fictitious control signal S E so that the instantaneous measured value of the ionization signal 18 results.

Das fiktive Stellsignal SE ist aus oben genannten Gründen in diese Phase nicht geeignet, um eine Regelung zu ermöglichen. Es hat sich trotzdem gezeigt, dass das fiktive Stellsignal SE relativ schnell, beispielsweise schon 2 Sekunden nach dem Öffnen des Gasventils 4, so sehr in der Nähe des später optimal geregelten Wert kommt, dass es ein zuverlässiges Vergleichsmittel bildet, um ernsthafte Fehler von ungefährlichen Ungenauigkeiten der Steuerung zu unterscheiden.The fictitious control signal S E is not suitable in this phase for the reasons mentioned above in order to enable regulation. Nevertheless, it has been shown that the fictitious control signal S E comes relatively quickly, for example 2 seconds after opening the gas valve 4, so close to the value that is optimally regulated later that it forms a reliable means of comparison for serious errors of harmless Differentiate inaccuracies of the control.

Ab einem Zeitpunkt T4 bis zum Ende der Steuerperiode zum Zeitpunkt T5 überprüft die Überwachungseinheit 20 dauerhaft, ob das fiktive Stellsignal SE oder der zugehörige Regelwert XE innerhalb eines Grenzbereichs um das tatsächliche Stellsignal 9 herum liegt. Die Grenzen sind in der Figur 2 mit S3min und S3max bezeichnet und weisen beispielsweise die Werte von 0,90 mal S3 und 1,25 mal S3 auf.From a time T 4 to the end of the control period at time T 5 , the monitoring unit 20 continuously checks whether the fictitious control signal S E or the associated control value X E is within a limit range around the actual control signal 9. The limits are denoted by S 3min and S 3max in FIG. 2 and have, for example, the values of 0.90 times S 3 and 1.25 times S 3 .

In der Tat überprüft die Überwachungseinheit 20 übrigend den sonst unbenutzten Regelwert x in dem sie ihn mit dem Steuerwert x' vergleicht. Dieser Vergleich ist einem Vergleich zwischen das fiktive Stellsignal SE und das Stellsignal (9) gleichwertig. Der Unterschied ist lediglich die vorherige oder die nachherige Bearbeitung durch das Stellmodul 16.In fact, the monitoring unit 20 also checks the otherwise unused control value x by comparing it with the control value x '. This comparison is equivalent to a comparison between the fictitious control signal S E and the control signal (9). The only difference is the previous or subsequent processing by the control module 16.

Sobald das fiktive Stellsignal SE den genannten Grenzbereich verlässt, erzeugt die Überwachungseinheit 20 ein nicht dargestelltes Störungssignal und stellt das Freigabesignal 10 aus, damit das Sicherheitsventil 5 geschlossen wird.As soon as the fictitious control signal S E leaves the above-mentioned limit range, the monitoring unit 20 generates a fault signal (not shown) and issues the release signal 10 so that the safety valve 5 is closed.

Die Regeleinrichtung 6 speichert die Feststellung eines Störungssignals in einem EEPROM, damit das Ereignis nach einem etwaiger Ausfall der Versorgungsstrom wieder erkennbar ist. Ein nicht dargestelltes Entriegelungssignal durch den Brennerbetreiber kann die Konsequenzen eines früheren Störungssignals aufheben.The control device 6 stores the detection of a fault signal in a EEPROM, so the event after a possible failure of the supply current is recognizable again. An unlocking signal, not shown, by the Burner operator can reverse the consequences of an earlier fault signal.

In einer Alternative schaltet die Überwachungseinheit 20 die Verbrennung erst ab, wenn das fiktive Stellsignal SE während einer vorgegebenen Zeit den Grenzbereich verlassen hat. Ebenso muss die Überwachung nicht unbedingt kontinuierlich sein, sondern könnte auch diskret zu einem oder mehreren festgelegten Zeitpunkten erfolgen.In an alternative, the monitoring unit 20 only switches off the combustion when the fictitious control signal S E has left the limit range for a predetermined time. Likewise, the monitoring does not necessarily have to be continuous, but could also be carried out discretely at one or more specified times.

Nach Erreichen einer unteren Differenz zwischen dem fiktiven Stellsignal SE und S3 wird die Steuerperiode beendet und der Verbund von Luft und Gas anhand des Sensorsignals 18 geregelt.After a lower difference between the fictitious control signal S E and S 3 has been reached , the control period is ended and the combination of air and gas is regulated using the sensor signal 18.

Das Ende der Steuerperiode zum Zeitpunkt T5 könnte natürlich auch vorprogrammiert sein.The end of the tax period at time T 5 could of course also be preprogrammed.

Nach dem Zeitpunkt T5 wird die Erzeugung des Stellsignals 9 durch die Verarbeitung des Sensorsignals 18 übernommen. Das Stellsignal 9 verstellt sich schnell zu seinem Regelwert S4.After the time T 5 , the generation of the actuating signal 9 is carried out by processing the sensor signal 18. The control signal 9 quickly adjusts to its control value S 4 .

Alternativ kann die Leistung des Brenners während der Steuerperiode auf einen anderen Wert im gesamten zulässigen Bereich gestellt werden.Alternatively, the performance of the burner can be reduced to one during the control period other value in the entire permissible range.

Die Figur 1 zeigt zudem, dass die Überwachungseinheit 20 alternativ das lonisationssignal 18 statt des Stellsignals 9 oder des Regelwertes x verarbeitet. Dabei wird es mit seinem Sollwertsignal 24 verglichen und darf beispielsweise einen vorprogrammierten Grenzbereich, der auch zeitabhängig sein kann, nicht verlassen. Eine alleinige Anwendung dieser Alternative würde eine sehr einfache Ausgestalltung der Überwachungseinheit 20 ermöglichen. Ein Vergleichssignal ist ohnehin im Form des Sollwertsignals 24 vorhanden und der Vergleich wird schon durch die Vergleichseinheit 22 in Form des Differenzsignals 35 der Überwachungseinheit 20 zugeführt.FIG. 1 also shows that the monitoring unit 20 alternatively does this Ionization signal 18 instead of the control signal 9 or the control value x processed. there it is compared with its setpoint signal 24 and may for example be one Do not leave the pre-programmed limit range, which can also be time-dependent. A sole application of this alternative would be a very simple configuration enable the monitoring unit 20. A comparison signal is in the form anyway of the setpoint signal 24 and the comparison is already through the Comparison unit 22 in the form of the difference signal 35 from the monitoring unit 20 fed.

In der Figur 3 wird diese Alternative näher erläutert. Der zeitliche Verlauf des lonisationssignals 18 während eines Startvorgangs ist als strichpunktierte Kurve IE gezeichnet. Der Wert des Sollwertsignals 24 ist mit ISOLL angedeutet.This alternative is explained in more detail in FIG. The time course of the ionization signal 18 during a starting process is drawn as a dash-dotted curve I E. The value of the setpoint signal 24 is indicated by I SHOULD .

Zum Zeitpunkt T4, kurz nach dem Zeitpunkt T3 oder sogar gleichzeitig, fängt die Überwachung an. Die Überwachungseinheit 20 überprüft dauerhaft oder zu diskreten Zeitpunkten, ob das lonisationssignal IE seine Grenzwerte, welche als ISOLLmin und als ISOLLmax gezeichnet sind, nicht verlässt.Monitoring begins at time T 4 , shortly after time T 3 or even simultaneously. The monitoring unit 20 checks permanently or at discrete points in time whether the ionization signal I E does not leave its limit values, which are drawn as I SOLLmin and I SOLLmax .

Zum Zeitpunkt T5 beginnt der Regelvorgang auf Grund des lonisationssignals 18.The control process begins at time T 5 on the basis of the ionization signal 18.

Claims (8)

Regeleinrichtung (6) für einen luftzahlgeregelten Brenner,
welcher Brenner ausgestattet ist mit einem Sensor (2), der die Qualität der Verbrennung erfasst, mit einem Stellglied, das die Brennstoffzufuhrmenge oder die Luftzufuhrmenge in Abhängigkeit von einem Stellsignal (9) beeinflusst, welche Regeleinrichtung (6) ausgestattet ist mit einem dem Sensor (2) nachgeschalteten Sensorauswerter (17), der ein Sensorsignal (18) erzeugt, mit einer Steuereinheit (12), in der Kenndaten zur Bestimmung von mindestens einem Verhalten des Stellgliedes gespeichert sind und die zumindest zeitweise mindestens ein Steuersignal (13, 14) erzeugt, und mit einem Regler (15), der das Stellsignal (9) während zumindest einer Steuerperiode in Abhängigkeit vom Steuersignal und nicht in Abhängigkeit vom Sensorsignal (18), und sonst in Abhängigkeit vom Sensorsignal (18) erzeugt, dadurch gekennzeichnet, dass der Regler (15) zumindest zeitweise während der Steuerperiode ein Vergleichssignal (SE) in Abhängigkeit vom Sensorsignal (18) erzeugt, die Regeleinrichtung (6) die Differenz zwischen Vergleichssignal (SE, IE) und einem korrespondierenden Signal feststellt und die Regeleinrichtung (6) in Abhängigkeit von der Differenz ein Störungssignal erzeugen kann.
Control device (6) for an air-flow controlled burner,
which burner is equipped with a sensor (2) that detects the quality of the combustion, with an actuator which influences the fuel supply quantity or the air supply quantity as a function of an actuating signal (9), which control device (6) is equipped with a sensor evaluator (17) connected downstream of the sensor (2), which generates a sensor signal (18), with a control unit (12) in which characteristic data for determining at least one behavior of the actuator are stored and which at least temporarily generates at least one control signal (13, 14), and with a controller (15) which generates the control signal (9) during at least one control period as a function of the control signal and not as a function of the sensor signal (18) and otherwise as a function of the sensor signal (18), characterized in that the controller (15) generates a comparison signal (S E ) depending on the sensor signal (18) at least temporarily during the control period, the control device (6) determines the difference between the comparison signal (S E , I E ) and a corresponding signal and the control device (6) can generate a fault signal depending on the difference.
Regeleinrichtung nach Anspruch 1,
dadurch gekennzeichnet, dass
der Sensor (2) eine im Flammenbereich des Brenners angeordnete lonisationselektrode ist.
Control device according to claim 1,
characterized in that
the sensor (2) is an ionization electrode arranged in the flame area of the burner.
Regeleinrichtung nach Anspruch 2,
dadurch gekennzeichnet, dass
die Regeleinrichtung (6) eine Zeiterfassung aufweist und die Regeleinrichtung (6) frühestens ab 2 Sekunden nach Beginn der Steuerperiode ein Störungssignal erzeugen kann.
Control device according to claim 2,
characterized in that
the control device (6) has a time recording and the control device (6) can generate a fault signal at the earliest from 2 seconds after the start of the control period.
Regeleinrichtung nach einem der vorangehenden Ansprüchen,
dadurch gekennzeichnet, dass
in der Regeleinrichtung (6) ein positiver Grenzwert und ein negativer Grenzwert gespeichert sind, und
die Regeleinrichtung (6) ein Störungssignal erzeugt, falls die Differenz einen positiven Grenzwert überstiegen oder einen negativen Grenzwert unterschritten hat.
Control device according to one of the preceding claims,
characterized in that
a positive limit value and a negative limit value are stored in the control device (6), and
the control device (6) generates a fault signal if the difference has exceeded a positive limit value or has fallen below a negative limit value.
Regeleinrichtung nach Anspruch 4,
dadurch gekennzeichnet, dass
die Regeleinrichtung (6) unmittelbar nachdem die Differenz den positiven Grenzwert überstiegen oder den negativen Grenzwert unterschritten hat ein Störungssignal erzeugt.
Control device according to claim 4,
characterized in that
the control device (6) generates an error signal immediately after the difference has exceeded the positive limit value or fallen below the negative limit value.
Regeleinrichtung nach Anspruch 4 oder 5,
dadurch gekennzeichnet, dass
der positiven Grenzwert bis zu +30 % des Wertes des korrespondierenden Signals, und der negativen Grenzwert bis zu - 13 % dieses Wertes beträgt.
Control device according to claim 4 or 5,
characterized in that
the positive limit is up to +30% of the value of the corresponding signal, and the negative limit is up to - 13% of this value.
Regeleinrichtung nach einem der vorangehenden Ansprüchen,
dadurch gekennzeichnet, dass die Steuereinheit (12) beim Zünden des Brenners den Regler (15) das Stellsignal (9) so erzeugen lässt, dass sich die Luftzahl von unterstöchiometrisch zu überstöchiometrisch bewegt, die Regeleinrichtung (6) aus dem Verhalten des Stellglieds bei der Flammenzündung den spezifischen Energieinhalt des Brennstoffs abschätzt und die Steuereinheit (12) nach dem Zünden des Brenners den Regler (15) ein dementsprechendes Stellsignal (9) erzeugen lässt.
Control device according to one of the preceding claims,
characterized in that the control unit (12) when the burner is ignited, the controller (15) can generate the control signal (9) in such a way that the air ratio moves from substoichiometric to overstoichiometric, the control device (6) estimates the specific energy content of the fuel from the behavior of the actuator during flame ignition and the control unit (12), after igniting the burner, has the controller (15) generate a corresponding control signal (9).
Regeleinrichtung nach einem der vorangehenden Ansprüchen,
dadurch gekennzeichnet, dass die Regeleinrichtung (6) zumindest einmal während einer Regelperiode die Größe des Stellsignals (9), welches während der Steuerperiode geeignet ist, ermittelt und in der Steuereinheit (12) speichert, und die Steuereinheit (12) nach einem Zünden des Brenners den Regler (15) ein dementsprechendes Stellsignal (9) erzeugen lässt.
Control device according to one of the preceding claims,
characterized in that the control device (6) at least once during a control period determines the size of the control signal (9) which is suitable during the control period and stores it in the control unit (12), and the control unit (12) has the controller (15) generate a corresponding actuating signal (9) after the burner has been ignited.
EP01117153A 2000-09-05 2001-07-14 Apparatus controlling the air/fuel ratio of a burner Expired - Lifetime EP1186831B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10044633 2000-09-05
DE10044633 2000-09-05

Publications (2)

Publication Number Publication Date
EP1186831A1 true EP1186831A1 (en) 2002-03-13
EP1186831B1 EP1186831B1 (en) 2003-12-17

Family

ID=7655635

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01117153A Expired - Lifetime EP1186831B1 (en) 2000-09-05 2001-07-14 Apparatus controlling the air/fuel ratio of a burner

Country Status (5)

Country Link
US (1) US6527541B2 (en)
EP (1) EP1186831B1 (en)
JP (1) JP2002130667A (en)
AT (1) ATE256844T1 (en)
DE (2) DE10113468A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1396681A1 (en) * 2002-09-04 2004-03-10 Siemens Building Technologies AG Burner controller and method of setting a burner controller
EP1746345A3 (en) * 2005-07-21 2008-05-07 Honeywell Technologies Sarl Method for operating a gas burner
AT510002A4 (en) * 2010-12-20 2012-01-15 Vaillant Group Austria Gmbh METHOD FOR REGULATING A GAS / AIR MIXTURE
FR2975173A1 (en) * 2011-05-12 2012-11-16 Snecma Thermal energy generating installation for heating system used in e.g. domestic application, has regulation unit controlling opening of valve when variable reaches preset value and closing of valve when variable reaches another preset value
WO2021165051A1 (en) * 2020-02-17 2021-08-26 Ebm-Papst Landshut Gmbh Method for monitoring and controlling a process of a gas boiler, and gas boiler

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7424442B2 (en) * 2004-05-04 2008-09-09 Utbk, Inc. Method and apparatus to allocate and recycle telephone numbers in a call-tracking system
US20050208443A1 (en) * 2004-03-17 2005-09-22 Bachinski Thomas J Heating appliance control system
CA2571522C (en) * 2004-06-23 2013-11-12 Ebm-Papst Landshut Gmbh Method for setting the air ratio on a firing device and a firing device
US7241135B2 (en) * 2004-11-18 2007-07-10 Honeywell International Inc. Feedback control for modulating gas burner
CA2552492C (en) * 2005-07-19 2010-06-01 Cfm U.S. Corporation Heat activated air shutter for fireplace
JP2007298190A (en) * 2006-04-27 2007-11-15 Noritz Corp Combustion device
DE102008021164B4 (en) * 2008-04-28 2011-08-25 Mertik Maxitrol GmbH & Co. KG, 06502 Method and gas control fitting for monitoring the ignition of a gas appliance, in particular a gas-fired stove
DE102008038949A1 (en) * 2008-08-13 2010-02-18 Ebm-Papst Landshut Gmbh Safety system in and method of operation of an incinerator
IT1399076B1 (en) * 2010-03-23 2013-04-05 Idea S R L Ora Idea S P A DEVICE AND METHOD OF CONTROL OF THE COMBUSTIBLE AIR FLOW OF A BURNER IN GENERAL
DE102019110976A1 (en) * 2019-04-29 2020-10-29 Ebm-Papst Landshut Gmbh Method for checking a gas mixture sensor and ionization sensor in a fuel gas operated heater
DE102019110977A1 (en) * 2019-04-29 2020-10-29 Ebm-Papst Landshut Gmbh Method for checking a gas mixture sensor in a fuel gas operated heater
DE102020204647B3 (en) * 2020-04-09 2021-07-29 Viessmann Werke Gmbh & Co Kg BURNER ARRANGEMENT, METHOD OF OPERATING A BURNER ARRANGEMENT, AND WIND FUNCTION
DE102022101305A1 (en) * 2022-01-20 2023-07-20 Ebm-Papst Landshut Gmbh Procedure for failsafe and lean ignition of a combustible gas-air mixture on a gas burner
EP4397907A1 (en) * 2023-01-04 2024-07-10 Siemens Aktiengesellschaft Combustion sensor control

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4436505A (en) * 1980-07-01 1984-03-13 Mitsubishi Denki Kabushiki Kaisha Device for detecting flame in open-type combustor and oxygen density of indoor air
DE3937290A1 (en) * 1988-11-10 1990-05-17 Vaillant Joh Gmbh & Co METHOD AND DEVICE FOR PRODUCING A FUEL-COMBUSTION AIR MIXTURE TO BE COMBUSED FOR COMBUSTION
DE19631821A1 (en) * 1996-08-07 1998-02-12 Stiebel Eltron Gmbh & Co Kg Gas burner operating method for gas heater

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5253475A (en) * 1992-06-22 1993-10-19 General Motors Corporation Combustion detection
TW294771B (en) * 1995-01-30 1997-01-01 Gastar Co Ltd
JPH11503817A (en) * 1995-04-19 1999-03-30 ボウィン テクノロジー ピーティーワイ リミテッド Heating equipment
DE59604283D1 (en) * 1995-10-25 2000-03-02 Stiebel Eltron Gmbh & Co Kg Method and circuit for regulating a gas burner
EP0861402A1 (en) * 1995-11-13 1998-09-02 Gas Research Institute Flame ionization control apparatus and method
JP3193316B2 (en) * 1996-03-19 2001-07-30 リンナイ株式会社 Forced supply and exhaust combustion system
ES2158400T3 (en) * 1996-05-09 2001-09-01 Stiebel Eltron Gmbh & Co Kg PROCEDURE FOR THE OPERATION OF A GAS BURNER.

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4436505A (en) * 1980-07-01 1984-03-13 Mitsubishi Denki Kabushiki Kaisha Device for detecting flame in open-type combustor and oxygen density of indoor air
DE3937290A1 (en) * 1988-11-10 1990-05-17 Vaillant Joh Gmbh & Co METHOD AND DEVICE FOR PRODUCING A FUEL-COMBUSTION AIR MIXTURE TO BE COMBUSED FOR COMBUSTION
DE19631821A1 (en) * 1996-08-07 1998-02-12 Stiebel Eltron Gmbh & Co Kg Gas burner operating method for gas heater

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1396681A1 (en) * 2002-09-04 2004-03-10 Siemens Building Technologies AG Burner controller and method of setting a burner controller
EP1746345A3 (en) * 2005-07-21 2008-05-07 Honeywell Technologies Sarl Method for operating a gas burner
AT510002A4 (en) * 2010-12-20 2012-01-15 Vaillant Group Austria Gmbh METHOD FOR REGULATING A GAS / AIR MIXTURE
AT510002B1 (en) * 2010-12-20 2012-01-15 Vaillant Group Austria Gmbh METHOD FOR REGULATING A GAS / AIR MIXTURE
FR2975173A1 (en) * 2011-05-12 2012-11-16 Snecma Thermal energy generating installation for heating system used in e.g. domestic application, has regulation unit controlling opening of valve when variable reaches preset value and closing of valve when variable reaches another preset value
WO2021165051A1 (en) * 2020-02-17 2021-08-26 Ebm-Papst Landshut Gmbh Method for monitoring and controlling a process of a gas boiler, and gas boiler

Also Published As

Publication number Publication date
JP2002130667A (en) 2002-05-09
DE10113468A1 (en) 2002-03-14
ATE256844T1 (en) 2004-01-15
DE50101177D1 (en) 2004-01-29
EP1186831B1 (en) 2003-12-17
US20020048737A1 (en) 2002-04-25
US6527541B2 (en) 2003-03-04

Similar Documents

Publication Publication Date Title
EP1186831B1 (en) Apparatus controlling the air/fuel ratio of a burner
EP0806610B1 (en) Method for operating a gas burner
DE19618573C1 (en) Gas burner regulating method controlled by ionisation electrode signal
EP0030736A2 (en) Device for controlling the combustion mixture of a burner
DE3888327T2 (en) Fuel burner device and a control method.
EP1154202B1 (en) Control device for a burner
EP0770824A2 (en) Method and circuit for controlling a gas burner
WO2003023283A1 (en) Control device for a burner and adjusting method
DE102004048986B4 (en) Method for controlling a gas burner
EP1331444B1 (en) Method for regulating a gas burner
WO2007093312A1 (en) Method for starting a firing device in unknown general conditions
DE19539568C1 (en) Gas burner regulation system
EP3690318B1 (en) Method for regulating a fuel-air mixture in a heating device
DE102019119186A1 (en) Method and device for controlling a fuel gas-air mixture in a heater
DE2822770A1 (en) CONTROL SYSTEM FOR ONE BURNER
DE19627857C2 (en) Process for operating a gas fan burner
EP0615095B1 (en) Burner controller
DE4224893B4 (en) Method for fuel metering for an internal combustion engine in conjunction with a hot start
DE4312801A1 (en) Method of controlling a gas forced draft burner
DE10300602B4 (en) Method for controlling a gas burner
EP1207340A2 (en) Method of controling a burner
AT505064B1 (en) REGULATION OF THE FUEL GAS AIR MIXTURE ON THE BURNER OR FLAME TEMPERATURE OF A HEATER
EP0614051B1 (en) Burner automat
DE3116847C2 (en)
DE3037936C2 (en)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20020905

AKX Designation fees paid

Free format text: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

17Q First examination report despatched

Effective date: 20030124

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031217

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031217

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031217

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031217

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50101177

Country of ref document: DE

Date of ref document: 20040129

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20040225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040317

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040317

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040328

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040714

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040714

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040731

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040731

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040920

BERE Be: lapsed

Owner name: *SIEMENS BUILDING TECHNOLOGIES A.G.

Effective date: 20040731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050731

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

BERE Be: lapsed

Owner name: *SIEMENS BUILDING TECHNOLOGIES A.G.

Effective date: 20040731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040517

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50101177

Country of ref document: DE

Owner name: SIEMENS SCHWEIZ AG, CH

Free format text: FORMER OWNER: SIEMENS BUILDING TECHNOLOGIES AG, ZUERICH, CH

Effective date: 20130506

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20130620 AND 20130626

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: SIEMENS SCHWEIZ AG, CH

Effective date: 20131029

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20200702

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20200813

Year of fee payment: 20

Ref country code: DE

Payment date: 20200921

Year of fee payment: 20

Ref country code: FR

Payment date: 20200720

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20200727

Year of fee payment: 20

REG Reference to a national code

Ref country code: NL

Ref legal event code: MK

Effective date: 20210713

Ref country code: DE

Ref legal event code: R071

Ref document number: 50101177

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20210713

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20210713