JP2007298190A - Combustion device - Google Patents

Combustion device Download PDF

Info

Publication number
JP2007298190A
JP2007298190A JP2006124293A JP2006124293A JP2007298190A JP 2007298190 A JP2007298190 A JP 2007298190A JP 2006124293 A JP2006124293 A JP 2006124293A JP 2006124293 A JP2006124293 A JP 2006124293A JP 2007298190 A JP2007298190 A JP 2007298190A
Authority
JP
Japan
Prior art keywords
air
combustion
flame
ion current
current detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006124293A
Other languages
Japanese (ja)
Inventor
Hayashi Sha
林 謝
Masahiko Shimazu
政彦 嶋津
Takeshi Wakata
武志 若田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritz Corp
Original Assignee
Noritz Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritz Corp filed Critical Noritz Corp
Priority to JP2006124293A priority Critical patent/JP2007298190A/en
Priority to US11/783,461 priority patent/US20070251467A1/en
Priority to DE102007019086A priority patent/DE102007019086A1/en
Priority to CNA2007100976339A priority patent/CN101063522A/en
Publication of JP2007298190A publication Critical patent/JP2007298190A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/02Premix gas burners, i.e. in which gaseous fuel is mixed with combustion air upstream of the combustion zone
    • F23D14/04Premix gas burners, i.e. in which gaseous fuel is mixed with combustion air upstream of the combustion zone induction type, e.g. Bunsen burner
    • F23D14/08Premix gas burners, i.e. in which gaseous fuel is mixed with combustion air upstream of the combustion zone induction type, e.g. Bunsen burner with axial outlets at the burner head
    • F23D14/085Premix gas burners, i.e. in which gaseous fuel is mixed with combustion air upstream of the combustion zone induction type, e.g. Bunsen burner with axial outlets at the burner head with injector axis inclined to the burner head axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/34Burners specially adapted for use with means for pressurising the gaseous fuel or the combustion air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/02Regulating fuel supply conjointly with air supply
    • F23N1/022Regulating fuel supply conjointly with air supply using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N3/00Regulating air supply or draught
    • F23N3/08Regulating air supply or draught by power-assisted systems
    • F23N3/082Regulating air supply or draught by power-assisted systems using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/12Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods
    • F23N5/123Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/06041Staged supply of oxidant

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Combustion (AREA)
  • Gas Burners (AREA)
  • Regulation And Control Of Combustion (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a combustion device capable of surely detecting shortage of air volume to fuel gas volume. <P>SOLUTION: In this combustion device 1 where an air-fuel mixture of insufficient oxygen, prepared by mixing the primary air and the fuel gas is primarily burnt, and then secondarily burnt while receiving the supply of secondary air 67, a first ion electric current detecting member 65 is disposed in the flame of the primary combustion, a second ion electric current detecting member 66 is disposed near secondary air supply ports 20, 21, 63, 64 supplying the secondary air 67, and at least one of a ratio of the primary air volume and the secondary air volume, the total of the primary air volume and the secondary air volume, and the fuel gas volume, is controlled on the basis of detected values of the ion electric current detecting members 65, 66. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、燃焼装置に関するものであり、特に給湯器や風呂装置に採用することが推奨される燃焼装置に関するものである。   The present invention relates to a combustion apparatus, and more particularly to a combustion apparatus recommended for use in a water heater or a bath apparatus.

燃焼装置は、給湯器や風呂装置の主要な構成部品であり、工場はもとより一般家庭においても広く普及している。
ところで近年、酸性雨による環境破壊が深刻な社会問題となり、NOx(窒素酸化物)の総排出量を減少させることが急務となっている。
給湯装置の様な小型の装置に採用可能であり、かつNOxの発生量を抑制することができる構成として濃淡燃焼法と称される燃焼方式を採用した燃焼装置がある。
濃淡燃焼法とは、燃料ガスに理論空気量の1.6倍程度の空気を予混合した希薄な混合ガスから主炎を発生させ、この主炎の近辺に、空気の混合量が少なく燃料ガス濃度が高い混合ガスから発生する保炎を配置したものである。
濃淡燃焼を応用した燃焼装置には、例えば特許文献1,2に開示された様な構成が知られている。
Combustion devices are main components of water heaters and bath devices, and are widely used not only in factories but also in general households.
In recent years, environmental destruction caused by acid rain has become a serious social problem, and there is an urgent need to reduce the total amount of NOx (nitrogen oxide) emissions.
There is a combustion apparatus that employs a combustion method called a concentration combustion method as a configuration that can be employed in a small device such as a hot water supply device and that can suppress the amount of NOx generated.
In the lean combustion method, the main flame is generated from a dilute gas mixture that is premixed with about 1.6 times the theoretical air volume in the fuel gas, and there is little air mixing in the vicinity of the main flame. A flame holder generated from a mixed gas having a high concentration is arranged.
For example, Patent Documents 1 and 2 disclose a combustion apparatus that uses light and shade combustion.

またNOxの発生量が少ない燃焼方式には他に二段燃焼法と称される燃焼形式がある。二段燃焼法とは、酸素不足の状態で燃料ガスを噴射し、当該ガスに点火して一次火炎を発生させ、未燃ガスに二次空気を供給して二次火炎を発生させる燃焼形式である。
このような二段燃焼法を採用した燃焼装置は、特許文献3に開示されている。
特開平5−118516号公報 特開平6−126788号公報 特開昭52−143524号公報
In addition, there is another combustion method called a two-stage combustion method as a combustion method that generates little NOx. The two-stage combustion method is a combustion type in which fuel gas is injected in a state where oxygen is insufficient, the gas is ignited to generate a primary flame, and secondary air is supplied to unburned gas to generate a secondary flame. is there.
A combustion apparatus employing such a two-stage combustion method is disclosed in Patent Document 3.
Japanese Patent Laid-Open No. 5-118516 JP-A-6-126788 JP-A-52-143524

濃淡燃焼法を採用した燃焼装置は、NOxの発生量が少なく、市場において好評であるが、ターンダウン比(Turn Down Ratio T.D.R.)が小さいという欠点がある。特に濃淡燃焼法を採用した燃焼装置は、発熱量の小さい領域で燃焼させにくいという欠点がある。
即ち濃淡燃焼法では、前記した様に燃料ガスに理論空気量の1.6倍程度の空気を予混合した希薄な混合ガスから主炎を発生させる。この混合ガスは、希薄であるがために燃焼速度が遅い。
A combustion apparatus that employs the lean combustion method has a small amount of NOx generated and is well-received in the market, but has a drawback of a small turn-down ratio (Turn Down Ratio TDR). In particular, a combustion apparatus that employs the light and dark combustion method has a drawback that it is difficult to burn in a region where the calorific value is small.
That is, in the lean combustion method, as described above, the main flame is generated from a lean mixed gas obtained by premixing the fuel gas with about 1.6 times the theoretical air amount. Although this mixed gas is lean, its combustion speed is slow.

ところで濃淡燃焼法を採用する燃焼装置は、希薄な混合ガスを生成するために送風機を備えるが、送風機を長年に渡って使用し、送風機が老朽化すると次第に送風量が減少する。フィルターの目詰まりによって送風量が減少する場合もある。この様に経年変化によって送風量が減少すると、主炎を形成させる混合ガスの空気量が減少傾向となり、混合される空気量が理論空気量に近づく。その結果、主炎の燃焼速度が経年変化によって早まる傾向となり、経年変化によって火炎の基端部がしだいに炎孔に近づく傾向となる。そのため発熱量の小さい領域で燃焼させると火炎の基端部が炎孔に近接し、炎孔を傷めてしまう。そのため濃淡燃焼法を採用した燃焼装置は、経年変化を見越して発熱量の小さい領域での燃焼を制限せざるを得ない。   By the way, the combustion apparatus which employs the light and dark combustion method includes a blower for generating a lean mixed gas. However, the blower has been used for many years, and the amount of blown air gradually decreases as the blower ages. The amount of air flow may be reduced due to clogging of the filter. Thus, when the amount of blast decreases due to secular change, the amount of air of the mixed gas that forms the main flame tends to decrease, and the amount of air to be mixed approaches the theoretical amount of air. As a result, the combustion speed of the main flame tends to be accelerated by secular change, and the base end portion of the flame gradually approaches the flame hole due to secular change. Therefore, when burning in a region where the heat generation amount is small, the base end portion of the flame approaches the flame hole and damages the flame hole. Therefore, a combustion apparatus that employs the light and dark combustion method must limit combustion in a region where the calorific value is small in anticipation of secular change.

加えて、濃淡燃焼法は、使用可能なガスの範囲が狭いという不満がある。即ちガスメーカが供給する燃料ガスは単一の成分だけで構成されている場合もあるが、多くの場合、複数成分の燃料ガスが混在している。そのためたとえ発生する熱量(単位体積あたりの熱量)が同一であったとしても燃焼速度は燃料ガスのメーカごとに相違する。
これに対して濃淡燃焼法は、主炎を空気過剰状態で燃焼させるため、燃焼速度が遅い燃料ガスは火飛びが生じ、安定して燃焼させることができない。
In addition, the lean combustion method is unsatisfactory because the range of usable gases is narrow. That is, the fuel gas supplied by the gas manufacturer may be composed of only a single component, but in many cases, a fuel gas of a plurality of components is mixed. For this reason, even if the amount of heat generated (the amount of heat per unit volume) is the same, the combustion rate differs for each fuel gas manufacturer.
On the other hand, in the light / dark combustion method, the main flame is burned in an excess air state, so that the fuel gas having a low combustion speed is burned out and cannot be burned stably.

一方、二段燃焼法を採用する場合は、濃淡燃焼法を採用する場合に比べてターンダウン比を高くとることができる。また適用可能な燃料ガスの種類も幅広い。しかしながら二段燃焼法は、燃料ガスを酸素不足の状態で燃焼させるために燃焼状態が不安定である。そのため市販された実用的な給湯器等に二段燃焼法を採用したものはない。   On the other hand, when the two-stage combustion method is employed, the turndown ratio can be increased as compared with the case where the concentration combustion method is employed. There are also a wide variety of applicable fuel gases. However, in the two-stage combustion method, the combustion state is unstable because the fuel gas is burned in a state where oxygen is insufficient. For this reason, there are no commercially available hot water heaters that employ the two-stage combustion method.

二段燃焼形式の燃焼装置は、一次火炎を発生させる炎孔部材を、一次火炎の下流側に二次火炎を発生させる空気燃焼部材が挟み込む構成を備えている。   The combustion apparatus of the two-stage combustion type has a configuration in which a flame hole member that generates a primary flame is sandwiched by an air combustion member that generates a secondary flame downstream of the primary flame.

従来の燃焼装置では、燃焼状態を診断する手段として熱電対が使用されていたが、熱電対では供給される空気量の不足を検出することができないため、昨今は熱電対の代わりに火炎のイオン電流を検出するイオン電流検出部材(プローブ)が専ら採用されている。
ここで火炎中には、イオンが存在しており、火炎は電気的に導体である。
In a conventional combustion apparatus, a thermocouple is used as a means for diagnosing the combustion state. However, since a thermocouple cannot detect a shortage of the amount of air supplied, recently, a flame ion is used instead of a thermocouple. An ion current detection member (probe) for detecting current is exclusively employed.
Here, ions exist in the flame, and the flame is an electrical conductor.

ここで、イオン電流検出部材(プローブ)を、一次火炎に近い側と二次火炎に近い側の二箇所に設置して供給される空気量の不足を検出しようとしても、各プローブから得られる出力値が、送風機によって供給される空気量の減少に同調的に変化しては、供給される空気量の不足を確実に検出することができない。また、イオン電流検出部材(プローブ)が火炎に晒されて高温になると、耐久性が落ち、イオン電流検出部材(プローブ)の性能が低下する。   Here, even if an ion current detection member (probe) is installed at two locations on the side close to the primary flame and the side close to the secondary flame to detect the shortage of the supplied air amount, the output obtained from each probe If the value changes in synchronism with the decrease in the amount of air supplied by the blower, the shortage of the supplied air amount cannot be reliably detected. Further, when the ion current detection member (probe) is exposed to a flame and becomes high temperature, the durability is lowered, and the performance of the ion current detection member (probe) is deteriorated.

そこで本発明は、燃料ガス量に対する空気量の不足を確実に検出することができる燃焼装置を提供することを課題としている。   Then, this invention makes it a subject to provide the combustion apparatus which can detect the shortage of the air quantity with respect to the fuel gas quantity reliably.

上記課題を解決するため、請求項1の発明は、一次空気と燃料ガスが混合して成る酸素不足状態の混合気が一次燃焼し、さらに二次空気の供給を受けて二次燃焼を行う燃焼装置において、前記一次燃焼の火炎中に第一イオン電流検出部材を設け、且つ、前記二次空気を供給する二次空気供給口近傍に第二イオン電流検出部材を設け、両イオン電流検出部材の検出値を基に、供給する空気と燃料ガスのうちの少なくとも一つを制御することを特徴とする燃焼装置である。   In order to solve the above problems, the invention of claim 1 is directed to a combustion in which an oxygen-deficient mixture formed by mixing primary air and fuel gas undergoes primary combustion, and further receives secondary air to perform secondary combustion. In the apparatus, a first ion current detection member is provided in the flame of the primary combustion, and a second ion current detection member is provided in the vicinity of a secondary air supply port for supplying the secondary air. It is a combustion apparatus characterized by controlling at least one of supplied air and fuel gas based on a detected value.

請求項1の発明によると、一次燃焼の火炎中に第一イオン電流検出部材を設け、且つ、二次空気を供給する二次空気供給口近傍に第二イオン電流検出部材を設け、両イオン電流検出部材の検出値を基に、供給する空気と燃料ガスのうちの少なくとも一つを制御するようにした。
ここで第一イオン電流検出部材は、一次火炎の高温の火炎面を貫通して、先端部分が一次火炎の内部に配置される。一次火炎の内部には未燃の混合気があるため、温度が低い。従って、第一イオン電流検出部材は、全体としてあまり高温にはならない。また、第二イオン電流検出部材は二次空気によって冷却される。よって、第一イオン電流検出部材と第二イオン電流検出部材が高温になって変形することを回避できる。また、燃焼装置の燃焼状態を検出し、さらに異常な燃焼を適切に正常化させることができる。
上記のように両イオン電流検出部材を設けることにより、第一イオン電流検出部材と第二イオン電流検出部材から得られる出力値が、供給される空気量の減少に同調的に変化せず、供給される空気量が減少したことを確実に検出することができる。
供給する空気については、例えば供給量や、一次空気と二次空気の分配の割合を調整する制御を行うことができる。
According to the invention of claim 1, the first ion current detection member is provided in the flame of the primary combustion, and the second ion current detection member is provided in the vicinity of the secondary air supply port for supplying the secondary air. Based on the detection value of the detection member, at least one of the supplied air and fuel gas is controlled.
Here, the first ion current detection member penetrates the high-temperature flame surface of the primary flame, and the tip portion is disposed inside the primary flame. The temperature is low because there is an unburned mixture inside the primary flame. Therefore, the first ion current detection member does not become very hot as a whole. The second ion current detection member is cooled by secondary air. Therefore, it can avoid that a 1st ion current detection member and a 2nd ion current detection member become high temperature, and deform | transform. Further, it is possible to detect the combustion state of the combustion apparatus and to properly normalize abnormal combustion.
By providing both ion current detection members as described above, the output values obtained from the first ion current detection member and the second ion current detection member do not change synchronously with the decrease in the amount of supplied air, and supply It is possible to reliably detect that the amount of air that has been reduced.
For the air to be supplied, for example, it is possible to perform control for adjusting the supply amount and the distribution ratio of the primary air and the secondary air.

請求項2の発明は、一次空気と燃料ガスが混合して成る酸素不足状態の混合気が一次燃焼し、さらに二次空気の供給を受けて二次燃焼を行う燃焼装置において、一次燃焼の火炎中に第一イオン電流検出部材を設け、且つ、前記二次空気を供給する二次空気供給口近傍に第二イオン電流検出部材を設け、両イオン電流検出部材の検出値を基に、一次空気量と二次空気量の割合と、一次空気量と二次空気量の総量と、燃料ガス量のうちの少なくとも一つを制御することを特徴とする燃焼装置である。   According to a second aspect of the present invention, there is provided a combustion apparatus in which an oxygen-deficient mixture comprising primary air and fuel gas undergoes primary combustion and further receives secondary air to perform secondary combustion. A first ion current detection member is provided therein, a second ion current detection member is provided in the vicinity of the secondary air supply port for supplying the secondary air, and the primary air is determined based on the detection values of both ion current detection members. The combustion apparatus is characterized by controlling at least one of a ratio between the amount and the secondary air amount, a total amount of the primary air amount and the secondary air amount, and a fuel gas amount.

請求項2の発明によると、一次燃焼の火炎中に第一イオン電流検出部材を設け、且つ、二次空気供給口近傍に第二イオン電流検出部材を設けた。
ここで第一イオン電流検出部材は、一次火炎の高温の火炎面を貫通して、先端部分が一次火炎の内部に配置される。一次火炎の内部には未燃の混合気があるため、温度が低い。従って、第一イオン電流検出部材は、全体としてあまり高温にはならない。また、第二イオン電流検出部材は二次空気によって冷却される。よって、第二イオン電流検出部材が高温になって変形することを回避できる。また、通常燃焼時においては、二次空気によって第二イオン電流検出部材が火炎にさらされることを回避できるので、空気が不足した際の異常燃焼時の火炎を確実に検出することができる。
また、両イオン電流検出部材の検出値を基に、一次空気量と二次空気量の割合と、一次空気量と二次空気量の総量と、燃料ガス量のうちの少なくとも一つを制御するので、燃焼状態が異常になっても、適切に正常化させることができる。
上記のように両イオン電流検出部材を設けることにより、第一イオン電流検出部材と第二イオン電流検出部材から得られる出力値が、供給される空気量の減少に同調的に変化せず、供給される空気量が減少したことを確実に検出することができる。
According to the invention of claim 2, the first ion current detection member is provided in the primary combustion flame, and the second ion current detection member is provided in the vicinity of the secondary air supply port.
Here, the first ion current detection member penetrates the high-temperature flame surface of the primary flame, and the tip portion is disposed inside the primary flame. The temperature is low because there is an unburned mixture inside the primary flame. Therefore, the first ion current detection member does not become very hot as a whole. The second ion current detection member is cooled by secondary air. Therefore, it can avoid that a 2nd ion current detection member becomes high temperature and deform | transforms. In addition, during normal combustion, it is possible to avoid exposure of the second ion current detection member to the flame by the secondary air, so that it is possible to reliably detect the flame during abnormal combustion when the air is insufficient.
Further, at least one of the ratio of the primary air amount and the secondary air amount, the total amount of the primary air amount and the secondary air amount, and the fuel gas amount is controlled based on the detection value of both ion current detecting members. Therefore, even if the combustion state becomes abnormal, it can be properly normalized.
By providing both ion current detection members as described above, the output values obtained from the first ion current detection member and the second ion current detection member do not change synchronously with the decrease in the amount of supplied air, and supply It is possible to reliably detect that the amount of air that has been reduced.

請求項3の発明は、予混合部材と、空気流路部材と、炎孔部材とを備え、前記予混合部材は一次空気と共に燃料ガスを導入して酸素不足状態の混合気を生成し、前記空気流路部材は壁状であって先端側に二次空気を供給する二次空気供給口を有し、前記炎孔部材は二つの空気流路部材の間或いは前記空気流路部材と他の壁面との間に配置され、炎孔部材と空気流路部材によって囲まれた空間によって燃焼部が形成され、前記混合気が炎孔部材から燃焼部に放出されて一次燃焼が行われ、さらに空気流路部材の二次空気供給口から二次空気の供給を受けて二次燃焼が行われる燃焼装置において、前記一次燃焼の火炎中に第一イオン電流検出部材を設け、且つ、前記二次空気供給口近傍に第二イオン電流検出部材を設け、両イオン電流検出部材の検出値を基に、一次空気量と二次空気量の割合と、一次空気量と二次空気量の総量と、燃料ガス量のうちの少なくとも一つを制御することを特徴とする燃焼装置である。   The invention of claim 3 includes a premixing member, an air flow path member, and a flame hole member, and the premixing member introduces fuel gas together with primary air to generate an oxygen-deficient mixture, The air flow path member is wall-shaped and has a secondary air supply port for supplying secondary air to the tip side, and the flame hole member is between the two air flow path members or the air flow path member and the other The combustion portion is formed by a space disposed between the wall surface and surrounded by the flame hole member and the air flow path member, and the air-fuel mixture is discharged from the flame hole member to the combustion portion to perform primary combustion, and further air In a combustion apparatus in which secondary combustion is performed by receiving secondary air supplied from a secondary air supply port of a flow path member, a first ion current detection member is provided in the flame of the primary combustion, and the secondary air A second ion current detection member is provided near the supply port, and both ion current detection members A combustion apparatus characterized by controlling at least one of a ratio of primary air amount and secondary air amount, a total amount of primary air amount and secondary air amount, and a fuel gas amount based on an output value. is there.

請求項3の発明では、一次燃焼の火炎中に第一イオン電流検出部材を設け、且つ、空気供給口近傍に第二イオン電流検出部材を設けたので、両イオン電流検出部材は、共に高温にはならず、特に第二イオン電流検出部材は、空気供給口から供給される二次空気で冷却され、高温変形を回避することができる。   In the invention of claim 3, since the first ion current detection member is provided in the flame of the primary combustion and the second ion current detection member is provided in the vicinity of the air supply port, both the ion current detection members are kept at a high temperature. In particular, the second ion current detection member is cooled by the secondary air supplied from the air supply port, and high temperature deformation can be avoided.

また、正常燃焼時においては、二次空気によって第二イオン電流検出部材が火炎から保護されるので、第一イオン電流検出部材と第二イオン電流検出部材との間に微弱なイオン電流が流れることを防止することができ、空気が不足した際の異常燃焼を確実に検出することができる。   In addition, during normal combustion, the second ion current detection member is protected from the flame by the secondary air, so that a weak ion current flows between the first ion current detection member and the second ion current detection member. Can be prevented, and abnormal combustion when air is insufficient can be reliably detected.

さらに、両イオン電流検出部材の検出値を基に、燃焼が異常であることが検出された際には、一次空気量と二次空気量の割合と、一次空気量と二次空気量の総量と、燃料ガス量のうちの少なくとも一つを制御するようにしたので、異常燃焼を正常化させることができる。   Further, when it is detected that the combustion is abnormal based on the detection values of the both ion current detection members, the ratio of the primary air amount and the secondary air amount, and the total amount of the primary air amount and the secondary air amount Since at least one of the fuel gas amounts is controlled, abnormal combustion can be normalized.

請求項4の発明は、請求項1乃至3のいずれかの発明において、第一イオン電流検出部材の先端部分を湾曲又は屈曲させたことを特徴とする燃焼装置である。   A fourth aspect of the present invention is the combustion apparatus according to any one of the first to third aspects of the present invention, wherein the tip portion of the first ion current detection member is curved or bent.

請求項5の発明は、請求項1乃至4のいずれかの発明において、第二イオン電流検出部材の先端部分を湾曲又は屈曲させたことを特徴とする燃焼装置である。   A fifth aspect of the present invention is the combustion apparatus according to any one of the first to fourth aspects of the present invention, wherein the tip portion of the second ion current detection member is curved or bent.

本発明の燃焼装置では、一次火炎の中に第一イオン電流検出部材を設け、二次空気供給口の近傍に第二イオン電流検出部材を設けて第二イオン電流検出部材に二次空気が当たるようにした。
ここで第一イオン電流検出部材は、一次火炎の高温の火炎面を貫通して、先端部分が一次火炎の内部に配置される。一次火炎の内部には未燃の混合気があるため、温度が低い。従って、第一イオン電流検出部材は、全体としてあまり高温にはならない。また、第二イオン電流検出部材は二次空気によって冷却されるので、第一イオン電流検出部材と第二イオン電流検出部材のいずれも高温変形せず、燃料ガス量に対して空気量が不足することによる燃焼の異常を確実に検出することができる。
In the combustion apparatus of the present invention, the first ion current detection member is provided in the primary flame, the second ion current detection member is provided in the vicinity of the secondary air supply port, and the secondary air hits the second ion current detection member. I did it.
Here, the first ion current detection member penetrates the high-temperature flame surface of the primary flame, and the tip portion is disposed inside the primary flame. The temperature is low because there is an unburned mixture inside the primary flame. Therefore, the first ion current detection member does not become very hot as a whole. Further, since the second ion current detection member is cooled by the secondary air, neither the first ion current detection member nor the second ion current detection member is deformed at a high temperature, and the air amount is insufficient with respect to the fuel gas amount. Therefore, it is possible to reliably detect abnormal combustion.

以下、本発明の実施例について説明する。最初に、本発明の概略構成と基本的な機能を図1の模式図を参照しつつ説明する。図1の実施例は、本発明を概念的に説明するものである。
以下の説明において、上下の関係は、燃焼装置1を縦置きして上部側に火炎を発生させる姿勢を基準とする。また上流側、下流側の表現は、空気又は燃料ガスの流れを基準としている。幅方向とは、燃焼装置の最も大きい面積を正面として左右方向に相当する方向(図面の矢印W方向)である。
Examples of the present invention will be described below. First, the schematic configuration and basic functions of the present invention will be described with reference to the schematic diagram of FIG. The embodiment of FIG. 1 conceptually illustrates the present invention.
In the following description, the vertical relationship is based on the posture in which the combustion apparatus 1 is placed vertically and a flame is generated on the upper side. The expressions on the upstream side and the downstream side are based on the flow of air or fuel gas. The width direction is a direction (in the direction of arrow W in the drawing) corresponding to the left-right direction with the largest area of the combustion device as the front.

本実施例の燃焼装置1は、ケースに並列に並べて使用されたり、単独で使用されるものである。本実施例の燃焼装置1は、予混合部材2と、炎孔部材3と、二つの空気流路部材5とを有する。本実施例の燃焼装置1では、予混合部材2と、炎孔部材3とが嵌合しあって一つの中間部材6を構成し、この中間部材6が二つの空気流路部材5の間に挟まった構成となっているが、実際に使用される場合には、空気流路部材5、中間部材6、空気流路部材5、中間部材6、空気流路部材5・・・と言ったように空気流路部材5と中間部材6とが交互に配置されて面状をなしている。   The combustion apparatus 1 of a present Example is used in parallel with a case, or is used independently. The combustion apparatus 1 of the present embodiment includes a premixing member 2, a flame hole member 3, and two air flow path members 5. In the combustion apparatus 1 of the present embodiment, the premixing member 2 and the flame hole member 3 are fitted together to constitute one intermediate member 6, and the intermediate member 6 is interposed between the two air flow path members 5. Although the structure is sandwiched, when actually used, the air flow path member 5, the intermediate member 6, the air flow path member 5, the intermediate member 6, the air flow path member 5. The air flow path members 5 and the intermediate members 6 are alternately arranged to form a planar shape.

燃焼装置1の構成部材たる予混合部材2は、内部で燃料ガスと空気とを予混合する機能を果たす部材である。予混合部材2は、曲路を有する混合部7と、開口8が列状に設けられた開口列部10を備える。開口列部10は、断面が略四角形をした空洞が長く直線的に延びた部位である。   The premixing member 2 that is a constituent member of the combustion apparatus 1 is a member that performs a function of premixing fuel gas and air inside. The premixing member 2 includes a mixing portion 7 having a curved path and an opening row portion 10 in which openings 8 are provided in a row. The opening row portion 10 is a portion in which a cavity having a substantially square cross section extends long and linearly.

空気流路部材5は概略形状が薄い壁状をした部材である。空気流路部材5は、表裏面11,12が薄板で作られ、この表裏面11,12が僅かな隙間を開けて接合され、さらに下面側を除く3辺が接合されたものであり、内部に空気流路13となる空隙が設けられている。
空気流路部材5は一枚の板を折り重ねて表裏面11,12を構成しており、先端部分には鋭角の折り曲げ部14があり、当該折り曲げ部14によって頂部9が構成されている。頂部9は稜線状に延びている。
一方、空気流路部材5の基端側は、表裏面11,12の板間が開放され、空気導入開口15が形成されている。
The air flow path member 5 is a member having a thin wall shape. The air flow path member 5 is made of thin plates on the front and back surfaces 11 and 12, the front and back surfaces 11 and 12 are joined with a slight gap therebetween, and three sides other than the lower surface side are joined. A gap serving as an air flow path 13 is provided.
The air flow path member 5 folds a single plate to constitute the front and back surfaces 11 and 12, and has a bent portion 14 with an acute angle at the tip portion, and the bent portion 14 forms the top portion 9. The top portion 9 extends in a ridgeline shape.
On the other hand, on the base end side of the air flow path member 5, the space between the front and back surfaces 11 and 12 is opened, and an air introduction opening 15 is formed.

空気流路部材5には、空気放出用の開口が3つの領域に設けられている。前記した様に予混合部材2と中間部材6とが交互に配置されて面状をなすものであるから、空気流路部材5の表裏面11,12の板には同一の部位に同一個数の開口が設けられている。
空気放出用の開口が設けられた領域は、大きく分けて先端部と、第一燃焼部に面した位置と、中間部材6に面した位置である。
The air flow path member 5 has air discharge openings in three regions. As described above, since the premixing members 2 and the intermediate members 6 are alternately arranged to form a plane, the same number of plates are provided in the same portion on the front and back surfaces 11 and 12 of the air flow path member 5. An opening is provided.
The region where the air discharge opening is provided is roughly divided into a front end portion, a position facing the first combustion portion, and a position facing the intermediate member 6.

即ち空気流路部材5の表裏面11,12の板は、大部分が平行に配置されているが、先端部分だけが山形に折り曲げられており、表面側と裏面側に傾斜面16,17が形成されている。そして当該傾斜面16,17に先端部開口20が設けられている。また最先端部分(稜線部分)にも先端部開口21が設けられている。先端部開口20,21は、二次火炎68に二次空気67を供給するために設けられている。図1では、紙面の都合上、二次火炎68を空気流路部材5の先端部分より中側にのみ描写しているが、実際には二次火炎68は、空気流路部材5の先端部分よりも外側(図1で見て上側)にはみ出して存在している。   That is, most of the plates of the front and back surfaces 11 and 12 of the air flow path member 5 are arranged in parallel, but only the tip portion is bent in a mountain shape, and the inclined surfaces 16 and 17 are formed on the front side and the back side. Is formed. A tip opening 20 is provided in the inclined surfaces 16 and 17. Further, a tip end opening 21 is also provided at the most distal portion (ridge line portion). The tip openings 20 and 21 are provided for supplying secondary air 67 to the secondary flame 68. In FIG. 1, the secondary flame 68 is depicted only on the inner side of the front end portion of the air flow path member 5 for the sake of space, but actually the secondary flame 68 is represented by the front end portion of the air flow path member 5. It protrudes outward (upper side in FIG. 1).

また空気流路部材5の表裏面11,12は、図1の様に先端側の空気流路13が基端部側に比べて幅狭く作られており、第一燃焼部46の基端部分に相当する部位に段部がある。この段部も傾斜面22となっている。そして前記段部に燃焼部向空気放出開口23が設けられている。燃焼部向空気放出開口23は第一燃焼部46の一次火炎24に二次空気を供給し、一次火炎24の一部を燃焼させて第一燃焼部46内の一部に二次火炎68を発生させるものである。   Further, the front and back surfaces 11 and 12 of the air flow path member 5 are formed such that the front-side air flow path 13 is narrower than the base end side as shown in FIG. There is a step in the part corresponding to. This step portion is also an inclined surface 22. The step portion is provided with an air discharge opening 23 for the combustion portion. The air discharge opening 23 for the combustion section supplies secondary air to the primary flame 24 of the first combustion section 46, burns a part of the primary flame 24, and places a secondary flame 68 in a part of the first combustion section 46. Is generated.

さらに中間部材6に面した位置にも空気放出開口(上流側空気放出開口)48が設けられている。空気放出開口(上流側空気放出開口)48は、炎孔部材3の側面部に空気を供給して保炎を安定化させるものである。   Further, an air discharge opening (upstream air discharge opening) 48 is also provided at a position facing the intermediate member 6. The air discharge opening (upstream air discharge opening) 48 supplies air to the side surface portion of the flame hole member 3 to stabilize flame holding.

炎孔部材3は、本体部材25と減圧壁26によって構成されている。炎孔部材3の本体部材25は、一枚の金属板を曲げ加工して作られたものであり、炎孔として機能する頂面30と、この両端から約90°折り曲げられた二つの側壁部31,32を有している。また炎孔部材3の左右両辺部は閉塞され、図面の下側に位置する面だけが開放されている。炎孔部材3の頂面30は、長尺状であり細長く広がっている。本体部材25の頂面30には、炎孔33となるスリットが規則的に配列されている。本体部材25に設けられた炎孔33は、「中央部開口」として機能する。
側壁部31,32の中間部分には外側(厚さ方向)に膨らんだ膨出部34が設けられている。膨出部34は、炎孔部材3の全幅に渡って設けられている。
The flame hole member 3 includes a main body member 25 and a decompression wall 26. The main body member 25 of the flame hole member 3 is made by bending a single metal plate, and includes a top surface 30 functioning as a flame hole and two side wall portions bent about 90 ° from both ends. 31 and 32. Further, the left and right sides of the flame hole member 3 are closed, and only the surface located on the lower side of the drawing is opened. The top surface 30 of the flame hole member 3 has a long shape and is elongated. On the top surface 30 of the main body member 25, slits to be the flame holes 33 are regularly arranged. The flame hole 33 provided in the main body member 25 functions as a “center opening”.
A bulging portion 34 bulging outward (in the thickness direction) is provided at an intermediate portion between the side wall portions 31 and 32. The bulging portion 34 is provided over the entire width of the flame hole member 3.

側壁部31,32の開放端側は、図の様に二度に渡って約90°折り返され、外側に嵌合用凹溝38が形成されている。嵌合用凹溝38の底壁36は、側壁部31,32に対して垂直であり、嵌合用凹溝38の外壁37は、側壁部31,32と平行である。   The open end sides of the side walls 31 and 32 are folded back by about 90 ° twice as shown in the figure, and a fitting concave groove 38 is formed on the outside. The bottom wall 36 of the fitting groove 38 is perpendicular to the side walls 31, 32, and the outer wall 37 of the fitting groove 38 is parallel to the side walls 31, 32.

本体部材25には前記した様に減圧壁26が取り付けられている。減圧壁26は、本体部材25の側壁部31,32に固定されており、本体部材25の側壁部31,32との間には空隙29がある。空隙29は、図面の上部側が開口している。この開口は、側面側開口27として機能する。
本体部材25の側壁部31,32であって、減圧壁26に面した部位には開口35が設けられており、本体部材25の内面と空隙29とを連通している。
As described above, the decompression wall 26 is attached to the main body member 25. The decompression wall 26 is fixed to the side wall portions 31 and 32 of the main body member 25, and there is a gap 29 between the side wall portions 31 and 32 of the main body member 25. The gap 29 is open on the upper side of the drawing. This opening functions as the side opening 27.
An opening 35 is provided in the side wall portions 31 and 32 of the main body member 25 facing the decompression wall 26, and the inner surface of the main body member 25 and the gap 29 are communicated with each other.

次に各部材同士の関係について説明する。
本実施例では、前記した様に予混合部材2と、炎孔部材3とが嵌合しあって一つ中間部材6を構成している。より具体的には、炎孔部材3の側壁部31,32の間に予混合部材2の開口列部10が挿入されている。実際の製作過程においては、炎孔部材3の側壁部31,32同士の開口(図面下部)から、予混合部材2を挿し込むことによって両者が接合される。
Next, the relationship between the members will be described.
In the present embodiment, as described above, the premixing member 2 and the flame hole member 3 are fitted together to constitute one intermediate member 6. More specifically, the opening row portion 10 of the premixing member 2 is inserted between the side wall portions 31 and 32 of the flame hole member 3. In the actual manufacturing process, the premixing member 2 is inserted through the opening (lower part of the drawing) between the side wall portions 31 and 32 of the flame hole member 3 to join them together.

側壁部31,32と開口列部10との間は図示しない凹凸形状によって部分的に接しており、両者は一体化されている。側壁部31,32と開口列部10との間は前記した様に凹凸形状によって部分的に接しているので、逆に言えば両者の間は部分的に離れている。図1の断面は、側壁部31,32と開口列部10が離れている部位における断面を図示している。
側壁部31,32の膨出部34に相当する部位については、内包される開口列部10とは離れている。膨出部34の部位は、開口列部10の開口8の列部に相当する。従って開口列部10の開口8の外側は、側壁部31,32とは離れており、他に比べて広い空間(混合空間)39がある。この空間は、全ての開口8に相当する部位に渡って連通している。
側壁部31,32の間であって開口列部10の頂部と炎孔部材3の頂面30部分との間には比較的大きな空間47がある。本実施例では、前記した混合空間39と、開口列部10の下流側の空間47によって炎孔上流側流路49が形成されている。
The side wall portions 31 and 32 and the opening row portion 10 are partially in contact with each other by an uneven shape (not shown), and both are integrated. Since the side wall portions 31 and 32 and the opening row portion 10 are partially in contact with each other due to the concavo-convex shape as described above, in other words, the two are partially separated. The cross section of FIG. 1 illustrates a cross section at a portion where the side wall portions 31 and 32 and the opening row portion 10 are separated.
About the site | part corresponded to the bulging part 34 of the side wall parts 31 and 32, it is separated from the opening row | line | column part 10 included. The portion of the bulging portion 34 corresponds to the row portion of the opening 8 of the opening row portion 10. Therefore, the outside of the opening 8 of the opening row portion 10 is separated from the side wall portions 31 and 32, and there is a wider space (mixing space) 39 than others. This space communicates over a portion corresponding to all the openings 8.
There is a relatively large space 47 between the side wall portions 31 and 32 and between the top portion of the opening row portion 10 and the top surface 30 portion of the flame hole member 3. In the present embodiment, the flame hole upstream flow path 49 is formed by the mixing space 39 and the space 47 downstream of the opening row portion 10.

中間部材6の両側に空気流路部材5が装着される。空気流路部材5は、基端側の空気導入開口15に、炎孔部材3の嵌合用凹溝38を嵌合させることによって中間部材6と結合される。即ち嵌合用凹溝38の外壁37を空気導入開口15の中に挿入し、空気流路部材5の突端を嵌合用凹溝38に挿入して嵌合用凹溝38の底壁36に当接させる。   Air flow path members 5 are mounted on both sides of the intermediate member 6. The air flow path member 5 is coupled to the intermediate member 6 by fitting the fitting concave groove 38 of the flame hole member 3 into the air introduction opening 15 on the proximal end side. That is, the outer wall 37 of the fitting groove 38 is inserted into the air introduction opening 15, and the projecting end of the air flow path member 5 is inserted into the fitting groove 38 and brought into contact with the bottom wall 36 of the fitting groove 38. .

空気流路部材5と中間部材6(炎孔部材3)との間は、図示しない凹凸形状によって部分的に接しており、両者は一体化されている。両者の間は前記した様に凹凸形状によって部分的に接しているので、逆に言えば部分的には離れている。図1の断面は機能を理解し易い様に空気流路部材5と中間部材6(炎孔部材3)と間が離れた部位を図示している。ただし、燃焼装置1の上流側の端部(図面下端側)においては、空気流路部材5と中間部材6との間の隙間40が嵌合用凹溝38の底壁36によって封鎖されている。従って空気流路部材5と中間部材6との間の隙間40は、直接的には基端側の外界と連通していない。   The air flow path member 5 and the intermediate member 6 (flame hole member 3) are partially in contact with each other by an uneven shape (not shown), and both are integrated. Since they are partially in contact with each other by the uneven shape as described above, in other words, they are partially apart. The cross section of FIG. 1 illustrates a portion where the air flow path member 5 and the intermediate member 6 (flame hole member 3) are separated so that the function can be easily understood. However, the gap 40 between the air flow path member 5 and the intermediate member 6 is blocked by the bottom wall 36 of the fitting concave groove 38 at the upstream end (the lower end in the drawing) of the combustion device 1. Therefore, the gap 40 between the air flow path member 5 and the intermediate member 6 does not directly communicate with the outside world on the base end side.

炎孔部材3は、前記した様に二つの空気流路部材5に挟まれた位置にあるが、炎孔部材3の頂面30は、空気流路部材5よりも図面下部側にあり、空気流路部材5の間に埋もれた位置にある。そのため炎孔部材3の頂面30よりも先端側の空間は、二つの空気流路部材5の壁よって仕切られている。本実施例では、炎孔部材3の頂面30と二つの空気流路部材5によって囲まれた空間が第一燃焼部46として機能する。   As described above, the flame hole member 3 is located between the two air flow path members 5, but the top surface 30 of the flame hole member 3 is on the lower side of the drawing relative to the air flow path member 5. It is in a position buried between the flow path members 5. Therefore, the space on the tip side of the top surface 30 of the flame hole member 3 is partitioned by the walls of the two air flow path members 5. In the present embodiment, the space surrounded by the top surface 30 of the flame hole member 3 and the two air flow path members 5 functions as the first combustion portion 46.

以上説明した燃焼装置1に、本発明の特徴的な構成である第一イオン電流検出部材65(プローブ)と第二イオン電流検出部材66(プローブ)とが設置される。すなわち、炎孔部材3の上で且つ対向する二つの空気流路部材5に挟まれた第一燃焼部46の中であって、燃焼時に発生する一次火炎24の中の位置には、燃焼装置1の長手方向に沿って第一イオン電流検出部材65が配置され、空気流路部材5の先端部分である折り曲げ部14の近傍に第二イオン電流検出部材66が配置される。第一イオン電流検出部材65及び第二イオン電流検出部材66は、第一燃焼部46を仕切る図示しない紙面の手前側又は向こう側の壁に固着される。
火炎中には燃焼成分のイオンが存在しているので、電気的に導通性がある。第一イオン電流検出部材65及び第二イオン電流検出部材66は、火炎のこの性質を利用するものである。
The combustion apparatus 1 described above is provided with a first ion current detection member 65 (probe) and a second ion current detection member 66 (probe) that are characteristic configurations of the present invention. That is, in the first combustion section 46 sandwiched between the two air flow path members 5 that are opposed to each other on the flame hole member 3, there is a combustion device at a position in the primary flame 24 that is generated during combustion. The first ion current detection member 65 is disposed along the longitudinal direction of 1, and the second ion current detection member 66 is disposed in the vicinity of the bent portion 14 that is the tip portion of the air flow path member 5. The first ion current detection member 65 and the second ion current detection member 66 are fixed to a wall on the near side or the other side of the paper (not shown) that partitions the first combustion unit 46.
Since there are combustion component ions in the flame, the flame is electrically conductive. The first ion current detection member 65 and the second ion current detection member 66 utilize this property of flame.

第一イオン電流検出部材65は、一次火炎24内に配置される。ここで第一イオン電流検出部材65は、一次火炎24の高温の火炎面を貫通して、先端部分が一次火炎24の内部に配置される。一次火炎24の内部には未燃の混合気があるため、温度が低い。従って、第一イオン電流検出部材65は、全体としてあまり高温にはならない。また、第二イオン電流検出部材66は、折り曲げ部14の先端部開口21(二次空気供給口)から供給(噴射)される二次空気67が当たる位置(すなわち、先端部開口21の近傍)に配置される。よって、第二イオン電流検出部材66は、二次火炎68に晒されることなく二次空気67で包まれる。   The first ion current detection member 65 is disposed in the primary flame 24. Here, the first ion current detection member 65 passes through the high-temperature flame surface of the primary flame 24, and the tip portion is disposed inside the primary flame 24. Since there is an unburned mixture inside the primary flame 24, the temperature is low. Therefore, the first ion current detection member 65 does not become very high as a whole. Further, the second ion current detection member 66 is in a position where the secondary air 67 supplied (injected) from the distal end opening 21 (secondary air supply port) of the bent portion 14 is hit (ie, in the vicinity of the distal end opening 21). Placed in. Therefore, the second ion current detection member 66 is encased in the secondary air 67 without being exposed to the secondary flame 68.

よって、二次空気67によって第二イオン電流検出部材66の温度上昇は抑制される。また、二次空気67によって、正常燃焼時における第一イオン電流検出部材65と第二イオン電流検出部材66の炎による電気的な接続が遮断され、両者の間にはイオン電流が流れないため、燃料ガス量に対する空気量が不足した際の異常燃焼を確実に検出することができる。   Accordingly, the temperature rise of the second ion current detection member 66 is suppressed by the secondary air 67. Further, the secondary air 67 blocks the electrical connection of the first ion current detection member 65 and the second ion current detection member 66 during normal combustion due to the flame, and no ion current flows between the two, Abnormal combustion when the amount of air relative to the amount of fuel gas is insufficient can be reliably detected.

第一イオン電流検出部材65と第二イオン電流検出部材66とを使用して、燃焼状態を診断する手順を、図21〜図23を参照しながら説明する。図21は、第一イオン電流検出部材65と第二イオン電流検出部材66の出力値(マイクロアンペア:μA)と一酸化炭素COの量(ppm)の関係を示すグラフである。図22は、空気量と燃料ガス量とを制御するための制御系統図である。また、図23は、燃焼装置の燃焼状態を診断する流れ図である。   A procedure for diagnosing the combustion state using the first ion current detection member 65 and the second ion current detection member 66 will be described with reference to FIGS. FIG. 21 is a graph showing the relationship between the output values (microampere: μA) of the first ion current detection member 65 and the second ion current detection member 66 and the amount (ppm) of carbon monoxide CO. FIG. 22 is a control system diagram for controlling the air amount and the fuel gas amount. FIG. 23 is a flowchart for diagnosing the combustion state of the combustion apparatus.

図21に示すように、一酸化炭素COの排出量の規制値を、環境基準に適合するように設定する。すなわち、この排出CO量の規制値(閾値)は、第二イオン電流検出部材66の出力値と第一イオン電流検出部材65の出力値の差(μA)に対応させている。   As shown in FIG. 21, the regulation value of the emission amount of carbon monoxide CO is set so as to conform to environmental standards. That is, the regulation value (threshold value) of the exhausted CO amount corresponds to the difference (μA) between the output value of the second ion current detection member 66 and the output value of the first ion current detection member 65.

図21において、正常燃焼時は、一次火炎24中には燃焼によって発生した一酸化炭素COイオンが多く存在しているため、第一イオン電流検出部材65の出力値(イオン電流検出値)は高くなる。一方、第二イオン電流検出部材66の大部分は二次空気67に包まれている上に、周囲におけるイオン発生量が極めて少なく、一酸化炭素COや水素Hの燃焼を主とする二次火炎68が存在しても、第二イオン電流検出部材66の出力値は第一イオン電流検出部材65の出力値よりかなり低くなる。   In FIG. 21, during normal combustion, there are a lot of carbon monoxide CO ions generated by combustion in the primary flame 24, so the output value (ion current detection value) of the first ion current detection member 65 is high. Become. On the other hand, most of the second ion current detection member 66 is encased in the secondary air 67, and the amount of generated ions in the surroundings is extremely small, and a secondary flame mainly composed of combustion of carbon monoxide CO and hydrogen H. Even if 68 is present, the output value of the second ion current detection member 66 is considerably lower than the output value of the first ion current detection member 65.

何らかの原因で送風機41によって供給される空気量のみが減少すると、第一燃焼部46における未燃CO成分の排出量が増加すると共に、一次火炎24の伸長によって一次火炎24内に設置される第一イオン電流検出部材65の未燃焼の混合気に包まれる部分が増えるばかりか、燃焼温度が低下して一次火炎24のイオン濃度が減少するため、第一イオン電流検出部材65の出力値は下がる。   If only the amount of air supplied by the blower 41 is reduced for some reason, the amount of unburned CO component in the first combustion section 46 increases, and the first flame 24 is installed in the primary flame 24 due to the extension of the primary flame 24. Not only does the portion of the ion current detection member 65 enclosed in the unburned mixture increase, but also the combustion temperature decreases and the ion concentration of the primary flame 24 decreases, so the output value of the first ion current detection member 65 decreases.

一方、一次火炎24で空気不足により発生した炭化水素CO成分が第二イオン電流検出部材66まで到達するため、第二イオン電流検出部材66の出力値は上昇する。したがって、第一イオン電流検出部材65の出力値と第二イオン電流検出部材66の出力値の差は送風機41によって供給される空気量(風量)の減少と共に増大するのがわかる。   On the other hand, since the hydrocarbon CO component generated by the air shortage in the primary flame 24 reaches the second ion current detection member 66, the output value of the second ion current detection member 66 increases. Therefore, it can be seen that the difference between the output value of the first ion current detection member 65 and the output value of the second ion current detection member 66 increases as the amount of air (air volume) supplied by the blower 41 decreases.

そこで、一酸化炭素COの排出濃度の規制値X(図21)に対応する両出力値の差D(図21)の演算値を予め実験によって求めておき、これを閾値として図22に示す制御装置69に備えたメモリ76に記憶させておく。   Therefore, an operation value of the difference D (FIG. 21) between the two output values corresponding to the regulation value X (FIG. 21) of the emission concentration of carbon monoxide CO is obtained in advance by experiment, and this is used as a threshold value for the control shown in FIG. The data is stored in the memory 76 provided in the device 69.

そして、CPU74は、第一イオン電流検出部材65と第二イオン電流検出部材66によって検出された各出力値の差を演算し、さらに演算値とメモリ76に記憶された閾値とを比較する。   Then, the CPU 74 calculates the difference between the output values detected by the first ion current detection member 65 and the second ion current detection member 66, and compares the calculated value with the threshold value stored in the memory 76.

仮に、演算値が閾値よりも小さければ、燃焼装置1の燃焼は正常であると判断し、逆に演算値が閾値に達するか、又は、演算値が閾値を超えていれば、燃焼装置1の燃焼は異常であると判断する。燃焼が異常であると判定(診断)した場合には、制御装置69は、送風機41の送風量を増加させるか、燃料ガス供給弁59又は燃料ガス比例弁18を絞り、図1に示すノズル42から噴射する燃料ガス量を減少させることにより、燃焼を正常化させる。ここで、閾値に幅dを持たせ、演算値が閾値領域(図21)に入ると燃焼が異常であると判定するようにしてもよい。すなわち、規制値Xよりも一酸化炭素CO濃度が小さい側に所定の幅dを設定し、演算値が規制値Xに達する以前に燃焼が異常であると判定するようにしてもよい。   If the calculated value is smaller than the threshold value, it is determined that the combustion of the combustion apparatus 1 is normal. Conversely, if the calculated value reaches the threshold value, or if the calculated value exceeds the threshold value, the combustion apparatus 1 It is determined that the combustion is abnormal. When it is determined (diagnosis) that the combustion is abnormal, the control device 69 increases the amount of air blown from the blower 41 or restricts the fuel gas supply valve 59 or the fuel gas proportional valve 18 and the nozzle 42 shown in FIG. By reducing the amount of fuel gas injected from the fuel, the combustion is normalized. Here, the threshold value may have a width d, and it may be determined that combustion is abnormal when the calculated value enters the threshold value region (FIG. 21). That is, a predetermined width d may be set on the side where the carbon monoxide CO concentration is smaller than the regulation value X, and it may be determined that the combustion is abnormal before the calculated value reaches the regulation value X.

制御装置69が、燃焼が異常であると判定し、上記の措置をとった後、燃焼が正常化されると、制御装置69は、演算値が閾値に達しないように送風機41や燃料ガス供給弁59又は燃料ガス比例弁18の開度を調整する。送風機41によって供給される空気の総量を増減させたり、後述する第一ルート、第二ルート、及び第三ルートに分配される空気量の配分を調整するようにしてもよい。また、ノズル42から噴射される燃料ガスの量を調整してもよい。そして、適正なメンテナンスを行うことができるように、制御装置69が燃焼異常であると判定した際に、警報ランプを点滅させるなどして、使用者に注意を喚起してもよい。   When the control device 69 determines that the combustion is abnormal and takes the above measures, and the combustion is normalized, the control device 69 supplies the blower 41 and the fuel gas so that the calculated value does not reach the threshold value. The opening degree of the valve 59 or the fuel gas proportional valve 18 is adjusted. The total amount of air supplied by the blower 41 may be increased or decreased, or the distribution of the amount of air distributed to the first route, the second route, and the third route, which will be described later, may be adjusted. Further, the amount of fuel gas injected from the nozzle 42 may be adjusted. Then, when the controller 69 determines that the combustion is abnormal, the user may be alerted by blinking an alarm lamp or the like so that proper maintenance can be performed.

以上の一連の流れを、図23の流れ図を参照しながら説明する。
燃焼装置1が稼働開始すると、まず、送風機41が駆動され、次に燃料ガスがノズル42(図1)から噴射され、予混合部材2内で混合気が生成される。そして、混合気はイグナイタ4(図22)によって点火されて着火し、その後、上述した一次燃焼及び二次燃焼を行う。
The above series of flows will be described with reference to the flowchart of FIG.
When the combustion apparatus 1 starts to operate, first, the blower 41 is driven, and then fuel gas is injected from the nozzle 42 (FIG. 1), and an air-fuel mixture is generated in the premixing member 2. The air-fuel mixture is ignited and ignited by the igniter 4 (FIG. 22), and then performs the primary combustion and the secondary combustion described above.

そして、制御装置69が、第一イオン電流検出部材65と第二イオン電流検出部材66によって検出された出力値から演算値(両出力値の差)を算出し、演算値とメモリ76に記憶した閾値とを比較する。仮に、演算値が閾値(又は閾値領域)に達していなければ燃焼は正常であると判定し、燃焼装置1が稼働している間、所定時間(例えば0.05秒〜3秒間隔、好ましくは0.1秒〜1秒間隔)毎に演算値が閾値に達しているか否かを判定する。演算値が閾値(又は閾値領域)に達していると、燃焼は異常であるため、制御装置69は、送風機41による送風量を増加させるか、又は、供給する燃料ガス量を減少させる。そして、さらに第一イオン電流検出部材65と第二イオン電流検出部材66でイオン電流値(出力値)を検出し、演算値を算出して、燃焼状態が改善されたことを確認する。燃焼状態が改善されていなければ、改善されるまでこの作業を繰り返す。燃焼状態が改善されると、所定時間が経過する毎に「演算値<閾値」であるか否かの判定を行い、燃焼装置1の稼働が停止されると、この判定作業も終了する。   Then, the control device 69 calculates a calculated value (difference between both output values) from the output values detected by the first ion current detecting member 65 and the second ion current detecting member 66, and stores the calculated value and the memory 76. Compare with the threshold. If the calculated value does not reach the threshold value (or threshold region), it is determined that the combustion is normal, and the combustion apparatus 1 is operating for a predetermined time (for example, an interval of 0.05 seconds to 3 seconds, preferably It is determined whether or not the calculated value has reached the threshold every 0.1 second to 1 second interval). When the calculated value reaches the threshold value (or threshold region), the combustion is abnormal, so the control device 69 increases the amount of air blown by the blower 41 or decreases the amount of fuel gas to be supplied. Further, the ion current value (output value) is detected by the first ion current detection member 65 and the second ion current detection member 66, and the calculated value is calculated to confirm that the combustion state has been improved. If the combustion condition has not improved, repeat this operation until it is improved. When the combustion state is improved, it is determined whether or not “calculated value <threshold value” every time a predetermined time elapses. When the operation of the combustion apparatus 1 is stopped, this determination operation is also ended.

図23の流れ図の制御は、出力値の差と閾値とを比較し、出力値の差が閾値を越えた場合に送風機の送風量を増加させる等の動作を行うが、送風量が過度に増加した場合には送風量を適切な量にまで減少させることが望ましい。
また燃料ガスの供給量を絞り過ぎた場合には燃料ガスの供給量を適切な量に増加させることが望ましい。
例えば図25に示す流れ図の様に、第二の閾値を設定し、出力値の差が第二の閾値を下回った場合に送風機の送風量を減少させたり、燃焼ガスの供給量を増加させる。
なお図25は、送風量を減少させる制御を含む構成の燃焼装置の燃焼状態を診断する流れ図である。
また送風量を増減させたり燃料ガスを増減させても第一イオン電流検出部材65と、第二イオン電流検出部材66の出力値が適正範囲内に収まらない場合は、燃焼を停止させることが望ましい。
第一イオン電流検出部材65と第二イオン電流検出部材66の出力値が閾値を越えた場合に、何らかの警報を発する構成を採用してもよい。
The control of the flowchart of FIG. 23 compares the difference between the output values and the threshold value, and performs an operation such as increasing the blower amount of the blower when the difference between the output values exceeds the threshold value. In such a case, it is desirable to reduce the blowing amount to an appropriate amount.
When the supply amount of fuel gas is excessively reduced, it is desirable to increase the supply amount of fuel gas to an appropriate amount.
For example, as shown in the flowchart of FIG. 25, the second threshold value is set, and when the difference between the output values falls below the second threshold value, the blower amount of the blower is decreased or the supply amount of the combustion gas is increased.
FIG. 25 is a flowchart for diagnosing the combustion state of the combustion apparatus configured to include control for reducing the air flow rate.
Further, if the output values of the first ion current detection member 65 and the second ion current detection member 66 do not fall within the proper range even if the air flow is increased or decreased or the fuel gas is increased or decreased, it is desirable to stop the combustion. .
You may employ | adopt the structure which issues a certain warning when the output value of the 1st ion current detection member 65 and the 2nd ion current detection member 66 exceeds a threshold value.

このような第一イオン電流検出部材65と第二イオン電流検出部材66を備えた燃焼装置1の機能を以下で詳述する。
燃焼装置1は、図3に示すようなケース54に多数配列され、図1で見て下部側から送風機41によって送風される。また燃料ガスがノズル42によって予混合部材2のガス導入口43から導入される。
まず送風の流れについて説明する。送風の流れは、図面に細線で示している。
送風機41によって発生された送風は、整流板44の開口45によって整流され、燃焼装置1の基端部(図面下側)から燃焼装置1の内部に入る。
燃焼装置1の中に入る送風のルートは、3ルートである。即ち第一ルートは、空気流路部材5を通るルートであり、送風は空気流路部材5の基端部に設けられた空気導入開口15から空気流路部材5に入り、内部の空気流路13を先端側に向かって真上に流れる。そして空気の大部分は、先端部開口20,21から外部に放出される。
The function of the combustion apparatus 1 including the first ion current detection member 65 and the second ion current detection member 66 will be described in detail below.
A large number of combustion apparatuses 1 are arranged in a case 54 as shown in FIG. 3, and are blown by a blower 41 from the lower side as seen in FIG. 1. Further, the fuel gas is introduced from the gas inlet 43 of the premixing member 2 by the nozzle 42.
First, the flow of air will be described. The flow of the blast is indicated by a thin line in the drawing.
The blown air generated by the blower 41 is rectified by the opening 45 of the rectifying plate 44 and enters the inside of the combustion device 1 from the base end (lower side of the drawing) of the combustion device 1.
There are three routes of blowing into the combustion device 1. That is, the first route is a route that passes through the air flow path member 5, and the air flow enters the air flow path member 5 from the air introduction opening 15 provided at the base end portion of the air flow path member 5, and the internal air flow path 13 flows directly upward toward the tip side. And most of the air is discharged to the outside through the tip openings 20 and 21.

また空気流路部材5を流れる空気の一部は、燃焼部向空気放出開口23と空気放出開口(上流側空気放出開口)48からも放出される。
燃焼部向空気放出開口23から放出された空気は、段部の傾斜面22から燃焼装置1の軸線に対して斜め前方に向かって放出される。
また空気放出開口(上流側空気放出開口)48から放出された空気は、空気流路部材5と中間部材6との間の隙間40を流れ、炎孔部材3の側面部に至る。
A part of the air flowing through the air flow path member 5 is also discharged from the air discharge opening 23 for the combustion section and the air discharge opening (upstream air discharge opening) 48.
The air discharged from the air discharge opening 23 for the combustion part is discharged obliquely forward from the inclined surface 22 of the step part with respect to the axis of the combustion apparatus 1.
Further, the air discharged from the air discharge opening (upstream air discharge opening) 48 flows through the gap 40 between the air flow path member 5 and the intermediate member 6 and reaches the side surface portion of the flame hole member 3.

第二のルートは、中間部材6の中を流れるルートである。即ち中間部材6は、予混合部材2の開口列部10が炎孔部材3の側壁部31,32同士の間に挟まれたものであるが、開口列部10と炎孔部材3との間には隙間があり、この隙間の一部は、中間部材6の下部側に開口している。
そのため予混合部材2と炎孔部材3の側壁部31,32との間に開口部28から空気が侵入する。
この空気は、側壁部31,32と開口列部10の間の隙間を流れ、混合空間39に入る。続いて開口列部10と炎孔部材3の頂面30部分の間の空間47に流れる。即ち上記した空気は、炎孔上流側流路49を流れる。そして炎孔33たるスリットから第一燃焼部46に放出される。また空間47に入った空気の一部は、本体部材25の側壁部に設けられた開口35から本体部材25と側壁部31,32との間の空隙29に入り、側面側開口27から第一燃焼部46に放出される。
The second route is a route that flows through the intermediate member 6. That is, the intermediate member 6 is configured such that the opening row portion 10 of the premixing member 2 is sandwiched between the side wall portions 31 and 32 of the flame hole member 3, but between the opening row portion 10 and the flame hole member 3. There is a gap, and a part of this gap is open to the lower side of the intermediate member 6.
Therefore, air enters between the premixing member 2 and the side wall portions 31 and 32 of the flame hole member 3 from the opening 28.
This air flows through the gap between the side wall portions 31 and 32 and the opening row portion 10 and enters the mixing space 39. Subsequently, it flows into the space 47 between the opening row portion 10 and the top surface 30 portion of the flame hole member 3. That is, the above-described air flows through the flame hole upstream flow path 49. Then, it is discharged from the slit as the flame hole 33 to the first combustion section 46. Part of the air that has entered the space 47 enters the space 29 between the main body member 25 and the side wall portions 31 and 32 from the opening 35 provided in the side wall portion of the main body member 25, and the first side through the side surface side opening 27. It is discharged to the combustion unit 46.

次に、空気の第三のルートについて説明する。第三のルートは、一次空気のルートであり、予混合部材2のガス導入口43から燃料ガスと共に導入される。第三のルートは、燃料ガス(混合気)が流れるルートと同一であるから、以下は燃料ガスの流れとして説明する。燃料ガスの流れは実線の矢印で図示する。   Next, the third route of air will be described. The third route is a route for primary air, and is introduced from the gas introduction port 43 of the premixing member 2 together with the fuel gas. Since the third route is the same as the route through which the fuel gas (air mixture) flows, the following will be described as the flow of the fuel gas. The flow of fuel gas is illustrated by solid arrows.

予混合部材2のガス導入口43からは一次空気と共に燃料ガスが導入される。燃料ガスは、混合部7等で空気と混合され、開口列部10に流れ込む。開口列部10では、多数の開口8が直線状に並べて配置されているので、開口列部10に入った燃料ガス(混合気)は、各開口8から均等に放出される。開口列部10の開口8から放出された燃料ガス(混合気)は、炎孔部材3の側壁部31,32と開口列部10の開口8の間に形成された混合空間39に入り、炎孔上流側流路(混合空間39を含む)49を流れる空気と混合される。
ここで前記した炎孔上流側流路(混合空間39を含む)49を流れる空気は、燃焼装置1の高さ方向(下から上)に流れるのに対し、開口列部10の開口8から放出された燃料ガスは空気の流れに対して垂直方向に流れ込む。そのため開口列部10の開口8から放出された燃料ガスは、混合空間39の部位でも空気と激しく衝突し、空気との混合が促進される。また混合空間39は、開口列部10の長手方向全域に渡って連通しているから、圧力も平滑化される。
Fuel gas is introduced from the gas inlet 43 of the premixing member 2 together with the primary air. The fuel gas is mixed with air in the mixing unit 7 or the like and flows into the opening row unit 10. In the opening row portion 10, since a large number of openings 8 are arranged in a straight line, the fuel gas (air mixture) that has entered the opening row portion 10 is evenly discharged from each opening 8. The fuel gas (air mixture) discharged from the opening 8 of the opening row portion 10 enters the mixing space 39 formed between the side wall portions 31 and 32 of the flame hole member 3 and the opening 8 of the opening row portion 10, and the flame. It is mixed with the air flowing through the hole upstream flow path (including the mixing space 39) 49.
Here, the air flowing through the flame hole upstream flow path (including the mixing space 39) 49 flows in the height direction (from the bottom to the top) of the combustion apparatus 1 whereas it is discharged from the openings 8 of the opening row portion 10. The injected fuel gas flows in a direction perpendicular to the air flow. Therefore, the fuel gas discharged from the opening 8 of the opening row portion 10 collides violently with the air even at the portion of the mixing space 39, and the mixing with the air is promoted. Further, since the mixing space 39 communicates over the entire longitudinal direction of the opening row portion 10, the pressure is also smoothed.

燃料ガスは、混合空間39を通過し空間47に流れ込むが、この間においても燃料ガスと空気との混合は促進される。そしてその後は、前記した炎孔上流側流路49の流れと同一であり、開口列部10と炎孔部材3の頂面30部分の間の空間47に入り、多くの部分が炎孔33たるスリットから第一燃焼部46に放出される。また空間47に入った空気の一部は、本体部材25の側壁部31,32に設けられた開口35から減圧壁26と側壁部31,32との間の空隙29に入り、側面側開口27から第一燃焼部46に放出される。
炎孔33から放出される燃料ガスは、予混合部材2の中で空気と混合され、さらに混合空間39内で空気と混合されるので均質であり、且つ炎孔33から放出される時の速度も均一である。
しかしながら、炎孔33から放出される燃料ガス(混合気)は、空気が混合されてはいるものの、空気量は理論空気量に満たない。炎孔33から放出される燃料ガスは空気不足の状態であり、これだけでは完全燃焼することができない。
The fuel gas passes through the mixing space 39 and flows into the space 47, and the mixing of the fuel gas and air is also promoted during this period. After that, the flow is the same as the flow of the flame hole upstream flow path 49 described above, and enters the space 47 between the opening row portion 10 and the top surface 30 portion of the flame hole member 3, and many portions are the flame holes 33. It is discharged from the slit to the first combustion section 46. Part of the air that has entered the space 47 enters the gap 29 between the decompression wall 26 and the side walls 31, 32 from the opening 35 provided in the side walls 31, 32 of the main body member 25, and the side opening 27. To the first combustion section 46.
The fuel gas discharged from the flame hole 33 is mixed with air in the premixing member 2 and further mixed with air in the mixing space 39, so that the fuel gas is homogeneous and the speed at which the fuel gas is discharged from the flame hole 33. Is even.
However, although the fuel gas (air mixture) discharged from the flame hole 33 is mixed with air, the amount of air is less than the theoretical amount of air. The fuel gas released from the flame hole 33 is in an air-deficient state and cannot be burned completely.

燃料ガス(混合気)に点火すると、燃料ガスは、第一燃焼部46で一次火炎24を発生させ、一次燃焼が行われる。ただし燃料ガスは、前記した様に空気不足状態であるから完全燃焼することはできず、未燃成分が多く生成される。
未燃成分は、第一燃焼部46の開口から外部に放出される。ここで第一燃焼部46の外部には、空気流路部材5の先端部(先端部開口21)から空気が供給されている。そのため未燃成分は酸素(二次空気67)の供給を受けて二次燃焼する。即ち第一燃焼部46外側の領域は第二燃焼部として機能し、二次火炎68が発生する。
When the fuel gas (air-fuel mixture) is ignited, the fuel gas generates the primary flame 24 in the first combustion section 46, and primary combustion is performed. However, since the fuel gas is in an air-deficient state as described above, it cannot be burned completely, and many unburned components are generated.
Unburned components are discharged to the outside from the opening of the first combustion section 46. Here, air is supplied to the outside of the first combustion section 46 from the tip end portion (tip end opening 21) of the air flow path member 5. Therefore, the unburned component is supplied with oxygen (secondary air 67) and undergoes secondary combustion. That is, the area outside the first combustion part 46 functions as a second combustion part, and a secondary flame 68 is generated.

また本実施例では、前記した一次火炎24の基端部に空気が供給され、一次火炎24の基端部に保炎が発生する。
本実施例では、燃料ガスは、「中央部開口」たる炎孔33から放出されるだけではなく、側面側開口27からも第一燃焼部46に放出される。ただし、側面側開口27から放出される燃料ガスは「中央部開口」たる炎孔33から放出される燃料ガスに比べて流速が遅い。即ち燃料ガスは、本体部材25の側壁部31,32に設けられた開口35から減圧壁26と側壁部31,32との間の空隙29に入り、側面側開口27から第一燃焼部46に放出される。そのため空隙29に入る燃料ガスは量が制限され、側面側開口27から放出される量は少ない。これに対して側面側開口27は大きな開口面積を持つので、側面側開口27から放出される燃料ガスは流速が遅いものとなる。
In this embodiment, air is supplied to the base end portion of the primary flame 24 described above, and flame holding occurs at the base end portion of the primary flame 24.
In this embodiment, the fuel gas is not only released from the flame hole 33 which is the “center opening”, but also released from the side opening 27 to the first combustion part 46. However, the flow rate of the fuel gas discharged from the side opening 27 is slower than that of the fuel gas discharged from the flame hole 33 which is the “center opening”. That is, the fuel gas enters the gap 29 between the decompression wall 26 and the side walls 31, 32 from the opening 35 provided in the side walls 31, 32 of the main body member 25, and enters the first combustion unit 46 from the side opening 27. Released. Therefore, the amount of fuel gas entering the gap 29 is limited, and the amount released from the side opening 27 is small. On the other hand, since the side opening 27 has a large opening area, the fuel gas discharged from the side opening 27 has a low flow velocity.

さらに前記した様に、空気流路部材5の中を通過する空気の一部が、空気放出開口(上流側空気放出開口)48から空気流路部材5と中間部材6との間の隙間40に放出され、当該隙間40を通って炎孔部材3の側面部に至る。そのため炎孔部材3の側面部は他の部位に比べて酸素量が豊富であり、側面側開口27から放出される燃料ガス(混合気)は空気の供給を受けて比較的安定して燃焼する。
前記した様に燃料ガスの流速が低いことと相まって側面側開口27の近傍には、安定した保炎が発生する。そのため一次火炎24の基端部は側面側開口27の近傍に発生する小さな炎によって保持される。
Further, as described above, a part of the air passing through the air flow path member 5 enters the gap 40 between the air flow path member 5 and the intermediate member 6 from the air discharge opening (upstream air discharge opening) 48. It is discharged and reaches the side surface portion of the flame hole member 3 through the gap 40. Therefore, the side surface portion of the flame hole member 3 is rich in oxygen compared to other parts, and the fuel gas (air mixture) released from the side surface side opening 27 is supplied with air and burns relatively stably. .
As described above, stable flame holding is generated in the vicinity of the side opening 27 in combination with the low flow rate of the fuel gas. Therefore, the base end portion of the primary flame 24 is held by a small flame generated in the vicinity of the side opening 27.

また本実施例では、燃焼部向空気放出開口23から放出された空気によって二次火炎68が安定化する。即ち本実施例では、空気流路部材5の表裏面11,12であって第一燃焼部46の基端部分に相当する部位に傾斜面22があり、この傾斜面22に燃焼部向空気放出開口23が設けられているので、第一燃焼部46の基端部分から空気の進行方向に対して斜め方向に空気が供給される。そのため供給された空気は、一次火炎24や未燃ガスの流れを妨げることなく、第一燃焼部46の中に供給される。その結果、第一燃焼部46の内の未燃ガスの一部が燃焼を開始し、一部に二次火炎が生じる。そしてこの二次火炎は外部の二次火炎68と繋がるので外部に発生する二次火炎68についても安定している。
また本実施例では、燃焼部向空気放出開口23は斜め方向に開口し、前記した様に一次火炎24や未燃ガスの流れを妨げることがないので、二次火炎68は空気流路部材5から離れた位置で発生し、空気流路部材5を過度に加熱しない。
そのため本実施例の燃焼装置1は、一次火炎24及び二次火炎68が共に安定し、実用的である。
Further, in the present embodiment, the secondary flame 68 is stabilized by the air discharged from the combustion portion air discharge opening 23. That is, in the present embodiment, there is an inclined surface 22 in the front and back surfaces 11 and 12 of the air flow path member 5 and corresponding to the base end portion of the first combustion portion 46, and air is discharged to the combustion portion on the inclined surface 22. Since the opening 23 is provided, air is supplied from the base end portion of the first combustion section 46 in an oblique direction with respect to the air traveling direction. Therefore, the supplied air is supplied into the first combustion section 46 without hindering the flow of the primary flame 24 and unburned gas. As a result, part of the unburned gas in the first combustion section 46 starts to burn, and a secondary flame is generated in part. Since the secondary flame is connected to the external secondary flame 68, the secondary flame 68 generated outside is also stable.
In the present embodiment, the air discharge opening 23 for the combustion section opens in an oblique direction and does not obstruct the flow of the primary flame 24 and unburned gas as described above. The air flow path member 5 is not excessively heated.
Therefore, the combustion apparatus 1 of the present embodiment is practical because both the primary flame 24 and the secondary flame 68 are stable.

第一イオン電流検出部材65と第二イオン電流検出部材66は、酸素不足の状態で一次燃焼させ、さらに二次空気を供給して二次燃焼させる二段燃焼形式の燃焼装置に設置されるものである。   The first ion current detection member 65 and the second ion current detection member 66 are installed in a two-stage combustion type combustion apparatus that performs primary combustion in a state where oxygen is insufficient, and further supplies secondary air to perform secondary combustion. It is.

次に、本発明のより実用的な構成例について図2以下の図面を参照しつつ説明する。以下に説明する実施例は、本発明を実施するために実用的に設計されたものであり、最も推奨される構成である。
図2以降の図面で示す燃焼装置の基本構成及び基本的な機能は、前記した実施例と同一であるが、細部に実用的な工夫が施されている。先の実施例と同一の機能を果たす部材については同一の記号を付し、重複する機能の説明は簡単なものに止める。
Next, a more practical configuration example of the present invention will be described with reference to FIG. The embodiments described below are practically designed to implement the present invention and are the most recommended configurations.
The basic configuration and basic functions of the combustion apparatus shown in the drawings after FIG. 2 are the same as those of the above-described embodiment, but practical details are applied to the details. The members having the same functions as those of the previous embodiment are denoted by the same reference numerals, and the description of the overlapping functions will be simplified.

図2に示す燃焼装置1は、図3,4に示すようにケース54に並列に並べて使用されるものである。本実施例の燃焼装置1についても、予混合部材2と、炎孔部材3と、空気流路部材5とを有する。そして予混合部材2と、炎孔部材3とが嵌合しあって一つ中間部材6を構成し、この中間部材6が二つの空気流路部材5の間に挟まった構成となっている。   The combustion apparatus 1 shown in FIG. 2 is used in parallel with a case 54 as shown in FIGS. The combustion apparatus 1 of the present embodiment also has a premixing member 2, a flame hole member 3, and an air flow path member 5. The premixing member 2 and the flame hole member 3 are fitted together to constitute one intermediate member 6, and the intermediate member 6 is sandwiched between the two air flow path members 5.

予混合部材2の形状は、図9,10,11の通りである。予混合部材2は、一枚の鋼板をプレスして表面に凹凸を有する展開図形を成形し、これを曲げ加工した後、周囲をスポット溶接によって接合されたものである。スポット溶接は、周囲のフランジ部51で行われている。   The shape of the premixing member 2 is as shown in FIGS. The premixing member 2 is formed by pressing a single steel plate to form a developed figure having irregularities on the surface, bending it, and then joining the periphery by spot welding. Spot welding is performed at the surrounding flange portion 51.

組み立て後の予混合部材2の形状は、図8,9の様な正面板52と、これに対称形状の裏板53が重ね合わされたものである。予混合部材2の外観はずんぐりした形をしており、平坦な頂部50を有し、周囲はガスが漏れない様に閉塞されている。
そして内部には正面板52と裏板53の間によって一連の気体流路が形成されている。即ち正面板52と裏板53の凹凸が合致する部分では、金属板同士が隙間を形成して配列された状態となっており、この隙間によって気体流路が形成される。
The shape of the premixing member 2 after assembling is such that a front plate 52 as shown in FIGS. 8 and 9 and a symmetrical back plate 53 are superimposed on this. The external appearance of the premixing member 2 has a sharp shape, has a flat top 50, and is closed so that gas does not leak out.
A series of gas passages are formed between the front plate 52 and the back plate 53 inside. That is, in the part where the unevenness of the front plate 52 and the back plate 53 coincides, the metal plates are arranged in a gap, and a gas flow path is formed by this gap.

本実施例で採用する予混合部材2では、気体流路は、図9の様に大きく上下の部位に分かれている。具体的には気体流路は、大きく分けて混合流路19と開口列部10からなる。
混合流路19は、図9の様に予混合部材2の下部側にあり、気体流路の入口から開口列部10に至るまでの流路である。気体流路の入口から説明すると、燃焼装置1の下側角には、図9の様に、ガス導入口43が開口している。そしてガス導入口43の内部には、一時的に断面積が絞られた絞り部55があり、さらにその下流側は断面積が次第に大きくなっていく拡径部56がある。そしてその後は、断面積が一様な均一断面部57となっている。ガス導入口43から絞り部55、拡径部56を経て均一断面部57に至る迄の間は、流路が直線的である。
均一断面部57の末端部は、流路が垂直に曲がって開口列部10に繋がっている。
なお本実施例では、開口列部10の直前部分に絞りとなる部位はない。
In the premixing member 2 employed in the present embodiment, the gas flow path is largely divided into upper and lower parts as shown in FIG. Specifically, the gas flow path is roughly composed of a mixing flow path 19 and an opening row portion 10.
As shown in FIG. 9, the mixing channel 19 is on the lower side of the premixing member 2 and is a channel from the inlet of the gas channel to the opening row portion 10. If it demonstrates from the inlet_port | entrance of a gas flow path, the gas inlet 43 will open at the lower side corner of the combustion apparatus 1 like FIG. Inside the gas introduction port 43, there is a constricted part 55 whose sectional area is temporarily constricted, and further on the downstream side there is a diameter-enlarging part 56 whose sectional area gradually increases. After that, the uniform cross section 57 has a uniform cross section. The flow path is linear from the gas introduction port 43 to the uniform cross section 57 through the throttle portion 55 and the enlarged diameter portion 56.
The end of the uniform cross section 57 is connected to the opening row portion 10 with the flow path bent vertically.
In the present embodiment, there is no portion that becomes a stop immediately before the opening row portion 10.

開口列部10は、予混合部材2の上端部に位置し、図9の様に長手方向全域に渡って延びている。開口列部10の断面積、言い換えれば当該部分での正面板52と裏板53の隙間は、図10,11の様に大きい。
開口列部10の断面形状は、図10,11の様に二段形状となっており、頂部側は狭面積部58となっており、断面積がやや狭い。
即ち開口列部10の断面形状を説明すると、頂部50は平坦であり、頂部50の両辺から垂直に上部側垂直壁81がある。そして垂直壁81の端部は傾斜壁に繋がってやや外側にひろがっている。さらに傾斜壁の末端は下部側垂直壁82となっている。
The opening row | line | column part 10 is located in the upper end part of the premixing member 2, and is extended over the whole longitudinal direction like FIG. The cross-sectional area of the opening row 10, in other words, the gap between the front plate 52 and the back plate 53 at that portion is large as shown in FIGS.
The cross-sectional shape of the opening row portion 10 is a two-stage shape as shown in FIGS. 10 and 11, and the top side is a narrow area portion 58, and the cross-sectional area is slightly narrow.
That is, the cross-sectional shape of the opening row portion 10 will be described. The top portion 50 is flat, and the upper side vertical wall 81 is perpendicular to both sides of the top portion 50. The end of the vertical wall 81 is connected to the inclined wall and extends slightly outward. Further, the end of the inclined wall is a lower side vertical wall 82.

そして開口列部10の外表面であって、前記した狭面積部58には、正面板52と裏板53の双方に、それぞれ多数の開口8が設けられている。開口8は、一定の間隔を開けて直線状に並んで列状に設けられている。
本実施例では、開口8は開口列部10の正面側と裏面側にだけ設けられ、頂部50には開口は無い。
A large number of openings 8 are provided on both the front plate 52 and the back plate 53 in the narrow area 58 described above, which is the outer surface of the opening row portion 10. The openings 8 are provided in a line along a straight line with a certain interval.
In the present embodiment, the opening 8 is provided only on the front side and the back side of the opening row portion 10, and the top portion 50 has no opening.

次に空気流路部材5について図8,12,20を参照しつつ説明する。空気流路部材5についても一枚の鋼板をプレスして表面に凹凸を有する展開図形を成形し、これを曲げ加工した後スポット溶接によって接合されたものである。空気流路部材5では、図8の様に表裏面11,12が僅かな隙間を開けて接合され、内部に空気流路13となる空隙が設けられている。
空気流路部材5の先端部分には鋭角の折り曲げ部14があり、当該折り曲げ部14によって頂部9が構成されている。頂部9は稜線状に延びている。
空気流路部材5は、図12の様に折り曲げ部と接する二辺にフランジ部83が設けられ、当該フランジ部83がスポット溶接されている。
空気流路部材5の基端側は、図8の様に表裏面11,12の板間が開放され、空気導入開口15が形成されている。
Next, the air flow path member 5 will be described with reference to FIGS. The air flow path member 5 is also formed by pressing a single steel plate to form a developed figure having irregularities on the surface, bending it, and then joining it by spot welding. In the air flow path member 5, the front and back surfaces 11 and 12 are joined with a slight gap as shown in FIG. 8, and a gap serving as the air flow path 13 is provided inside.
The air flow path member 5 has an acute-angle bent portion 14 at the tip portion, and the apex portion 9 is configured by the bent portion 14. The top portion 9 extends in a ridgeline shape.
As shown in FIG. 12, the air flow path member 5 is provided with flange portions 83 on two sides in contact with the bent portion, and the flange portions 83 are spot-welded.
On the proximal end side of the air flow path member 5, the space between the front and back surfaces 11 and 12 is opened as shown in FIG. 8, and an air introduction opening 15 is formed.

空気流路部材5の外観形状は図12の様に薄い壁状である。空気流路部材5は、図12の様な縦置き状態を基準として高さ方向に対して大まかに3つの領域に分かれている。
即ち基端部から約1/3の高さまでが導入部60である。さらに高さ方向に約1/3の領域は中間部61である。そして先端側の約1/3の領域は第一燃焼部構成部62である。
The appearance of the air flow path member 5 is a thin wall as shown in FIG. The air flow path member 5 is roughly divided into three regions with respect to the height direction on the basis of the vertically placed state as shown in FIG.
That is, the introduction portion 60 extends from the base end portion to a height of about 1/3. Furthermore, the region of about 3 in the height direction is the intermediate portion 61. The approximately 1/3 region on the front end side is the first combustion portion constituting portion 62.

空気流路部材5は、空気導入開口15から先端部側に向かう流路を構成するものであるが、流路の断面積は、先端側に向かうほど狭くなっている。
即ち空気導入開口15から全高の約1/3までの部位(導入部60)は、図8の様に断面積が略一定である。言い換えれば導入部60は、図8の断面図の様に表裏面11,12が平行であり、間隔は変わらない。
The air flow path member 5 constitutes a flow path from the air introduction opening 15 toward the front end side, but the cross-sectional area of the flow path becomes narrower toward the front end side.
That is, the cross-sectional area of the portion (introduction portion 60) from the air introduction opening 15 to about 1/3 of the total height is substantially constant as shown in FIG. In other words, the introduction part 60 has the front and back surfaces 11 and 12 parallel to each other as shown in the cross-sectional view of FIG.

中間部61は、概ねテーパ状である。
即ち中間部61は図の様に下方が広く、上に向かうに連れて間隔が狭まるテーパ状である。ただし、テーパの先端側末端部分と第一燃焼部構成部62との境界部分には、膨出部84が設けられている。膨出部84を構成する外壁部分は、表裏部分が平行である。
The intermediate part 61 is generally tapered.
That is, the intermediate portion 61 has a tapered shape in which the lower portion is wide as shown in the figure and the interval is narrowed toward the upper portion. However, a bulging portion 84 is provided at a boundary portion between the distal end side end portion of the taper and the first combustion portion constituting portion 62. As for the outer wall part which comprises the bulging part 84, the front and back part is parallel.

第一燃焼部構成部62については断面積が略一定であるが(頂部9を除く)、この間の単位長さ当たりの断面積は導入部60のそれに比べて1/3程度である。
第一燃焼部構成部62と中間部61との間には傾斜面22からなる段部がある。
Although the cross-sectional area of the first combusting part constituting part 62 is substantially constant (excluding the top part 9), the cross-sectional area per unit length during this period is about 1/3 of that of the introducing part 60.
There is a step portion formed of the inclined surface 22 between the first combustion portion constituting portion 62 and the intermediate portion 61.

空気流路部材5には、3箇所の領域に空気放出用の開口が設けられている。
空気放出用の開口が設けられた位置は、大きく分けて先端部と、第一燃焼部46に面した位置と、中間部材6に面した位置である。
The air flow path member 5 is provided with air discharge openings in three regions.
The positions where the air discharge openings are provided are roughly divided into a front end portion, a position facing the first combustion portion 46, and a position facing the intermediate member 6.

即ち空気流路部材5の表裏面11,12の板の先端部分は山形に折り曲げられており、表面側と裏面側に傾斜面16,17が形成されている。そして当該傾斜面16,17に図12の様に円形の先端部開口20が設けられており、また最先端部分(稜線部分)にも円形の先端部開口21が設けられている。
さらに本実施例では、頂部及び傾斜面16,17にスリット状の先端部開口63,64が設けられている。スリットの長さは大小二種類あり、小さい方のスリット状の先端部開口63は、双方の傾斜面16,17の全てと頂部9とを連通するスリットである。大きい方のスリット(先端部開口)64は、さらに長く、表裏面11,12が平行である部位から頂部9にまで至っている。
That is, the front end portions of the front and back surfaces 11 and 12 of the air flow path member 5 are bent in a mountain shape, and inclined surfaces 16 and 17 are formed on the front surface side and the back surface side. The inclined surfaces 16 and 17 are provided with a circular tip opening 20 as shown in FIG. 12, and a circular tip opening 21 is also provided at the most distal portion (ridge line portion).
Further, in the present embodiment, slit-shaped tip openings 63 and 64 are provided on the top and the inclined surfaces 16 and 17. There are two types of slit lengths: the smaller slit-shaped tip opening 63 is a slit that connects all the inclined surfaces 16, 17 and the top 9. The larger slit (front end opening) 64 is longer and extends from the portion where the front and back surfaces 11 and 12 are parallel to the top portion 9.

大きいスリット(先端部開口)64の方が小さいスリット(先端部開口)63よりも数が多く、大きなスリット64が連続して2列または3列設けられ、次いで小さいスリット63が設けられ、さらにそれに続いて大きなスリット64が連続して2列または3列設けられ、これが空気流路部材5の長さ方向の全域に渡って連続している。
前記した円形の先端部開口20,21は、各スリット(先端部開口)63,64の間に設けられている。
The large slits (tip opening) 64 have a larger number than the small slits (tip opening) 63, and the large slits 64 are continuously provided in two or three rows, and then the small slits 63 are provided. Subsequently, two or three rows of large slits 64 are continuously provided, and these are continuous over the entire length direction of the air flow path member 5.
The circular tip openings 20 and 21 are provided between the slits (tip openings) 63 and 64.

これら先端部開口20,21とスリット状の先端部開口63,64の配列方向(すなわち、空気流路部材5の長手方向)に沿って、第二イオン電流検出部材66が近接配置されている。よって、第二イオン電流検出部材66には、円形の先端部開口20,21と、各スリット(先端部開口)63,64から噴射される二次空気が直接当たり、二次火炎68から保護される。   A second ion current detection member 66 is disposed in close proximity along the direction in which the tip openings 20 and 21 and the slit-like tip openings 63 and 64 are arranged (that is, the longitudinal direction of the air flow path member 5). Therefore, the secondary air injected from the circular tip openings 20 and 21 and the slits (tip openings) 63 and 64 directly hits the second ion current detection member 66 and is protected from the secondary flame 68. The

先端部開口20,21は、先の実施例と同様、二次火炎68に二次空気67を供給するために設けられたものである。   The tip openings 20 and 21 are provided to supply the secondary air 67 to the secondary flame 68 as in the previous embodiment.

また前記した第一燃焼部構成部62と中間部61との間の傾斜面22に燃焼部向空気放出開口23が設けられている。燃焼部向空気放出開口23は第一燃焼部46の一次火炎24に二次空気を供給し、一次火炎24の一部を燃焼させて一部に二次火炎を発生させるものである。   An air discharge opening 23 for the combustion part is provided on the inclined surface 22 between the first combustion part constituting part 62 and the intermediate part 61 described above. The air discharge opening 23 for the combustion part supplies secondary air to the primary flame 24 of the first combustion part 46 and burns a part of the primary flame 24 to generate a secondary flame in part.

さらに導入部60と中間部61との境界近傍にも空気放出開口(上流側空気放出開口)48が設けられている。空気放出開口(上流側空気放出開口)48は、炎孔部材3の側面部に空気を供給して保炎を安定化させるものである。   Further, an air discharge opening (upstream air discharge opening) 48 is also provided in the vicinity of the boundary between the introduction portion 60 and the intermediate portion 61. The air discharge opening (upstream air discharge opening) 48 supplies air to the side surface portion of the flame hole member 3 to stabilize flame holding.

空気流路部材5の表裏面11,12には、両者の間に隙間を設けるためや、他の部材との間に隙間を設けることを目的として各部に凹凸形状が設けられている。
順次説明すると、先端側の第一燃焼部構成部62を構成する壁面には、高さ方向に延びる凹溝70,71が複数設けられている。凹溝70,71は、いずれも表面側から見て凹んだ形状であり、高さ方向に延びている。凹溝70は凹溝71よりも短い。凹溝70,71は、いずれも平行に並べて配置されている。凹溝70,71は主として板体の補強のために設けられたものである。
本実施例では、複数の短い凹溝70が設けられ、続いて長い凹溝71が設けられ、さらに短い凹溝70が複数設けられるという配列で空気流路部材5の全幅に渡って凹溝70,71が配置されている。
The front and back surfaces 11 and 12 of the air flow path member 5 are provided with uneven shapes in each part for the purpose of providing a gap between them or for providing a gap between other members.
To explain sequentially, a plurality of concave grooves 70 and 71 extending in the height direction are provided on the wall surface constituting the first combustion portion constituting portion 62 on the front end side. The concave grooves 70 and 71 are both concave when viewed from the surface side, and extend in the height direction. The concave groove 70 is shorter than the concave groove 71. The concave grooves 70 and 71 are both arranged in parallel. The concave grooves 70 and 71 are provided mainly for reinforcing the plate.
In this embodiment, a plurality of short grooves 70 are provided, followed by a long groove 71, and a plurality of short grooves 70 are provided, and the grooves 70 are formed over the entire width of the air flow path member 5. , 71 are arranged.

また長い凹溝71同士の間は他の凹溝同士の間隔に比べて広い。
そして長い凹溝71同士の間であって、凹溝71の基端部近傍の位置には、図12,13の様な流線形の凹変部72が設けられている。凹変部72についても表面側から見て凹んだ形状である。凹変部72の形状は、具体的には、大円と小円とが中心を離れて配置され、両者を共通の接線で結んだものであり、大円側が空気流路の上流側に位置し、小円側が空気流路の下流側に位置している。二つの円の中心を結ぶ線は、空気の流れ方向に対して平行である。二つの円を結ぶ共通接線は、円の中心を結ぶ線に対して30°以下の傾きを持つ。
Further, the distance between the long grooves 71 is wider than the distance between the other grooves.
A streamlined recess 72 as shown in FIGS. 12 and 13 is provided between the long recesses 71 and in the vicinity of the base end of the recess 71. The concave deformation portion 72 is also a concave shape when viewed from the front side. Specifically, the shape of the concave change portion 72 is such that a large circle and a small circle are arranged apart from each other and connected by a common tangent line, and the large circle side is located upstream of the air flow path. However, the small circle side is located downstream of the air flow path. A line connecting the centers of the two circles is parallel to the air flow direction. A common tangent line connecting two circles has an inclination of 30 ° or less with respect to a line connecting the centers of the circles.

空気流路部材5の中間部61には、図12の様に6条の凸条73が設けられている。凸条73の方向は、空気の流れ方向に対して平行である。凸条73は、後記する様に中間部材6の外面と当接して両者の間に隙間を設けるものであり、凸条73の突端(稜線)の位置(空気流路部材5の中心線からの距離)は、どの部位においても等しい。即ち前記した様に中間部61は、流路の断面形状がテーパ状であるが、凸条73の高さ(出っ張りの大きさ)は逆テーパ状に変化し、突端部分の位置は揃っている。   The middle portion 61 of the air flow path member 5 is provided with six ridges 73 as shown in FIG. The direction of the ridges 73 is parallel to the air flow direction. As will be described later, the ridge 73 is in contact with the outer surface of the intermediate member 6 to provide a gap therebetween, and the position of the protrusion (ridgeline) of the ridge 73 (from the center line of the air flow path member 5). (Distance) is the same in any part. That is, as described above, in the intermediate portion 61, the cross-sectional shape of the flow path is tapered, but the height of the ridge 73 (the size of the bulge) changes to a reverse tapered shape, and the positions of the protruding end portions are aligned. .

空気流路部材5の導入部60にも複数の凹溝75が多数平行に設けられている。凹溝75は、いずれも空気流路部材5の基端側から先端側に延びている。凹溝75は、表面側から見て凹んだ形状である。   A plurality of concave grooves 75 are also provided in parallel in the introduction portion 60 of the air flow path member 5. Each of the concave grooves 75 extends from the proximal end side to the distal end side of the air flow path member 5. The concave groove 75 has a concave shape when viewed from the surface side.

空気流路部材5の導入部60近傍には、横方向(空気の流れに対して垂直方向)に延びる凹溝77が設けられている。
凹溝77は、主として位置決めのために設けられたものである。
A concave groove 77 extending in the lateral direction (perpendicular to the air flow) is provided in the vicinity of the introduction portion 60 of the air flow path member 5.
The concave groove 77 is provided mainly for positioning.

また空気流路部材5の側面部分に目を移すと、両側面の中央部分に略三角形の突起80が設けられている。   Further, when the eyes are moved to the side surface portion of the air flow path member 5, a substantially triangular protrusion 80 is provided at the center portion of both side surfaces.

次に炎孔部材3について説明する。炎孔部材3は、図8,14の様に本体部材25の側面に減圧壁26が溶接されたものである。
炎孔部材3の本体部材25についても一枚の鋼板をプレスして表面に凹凸を有する展開図形を成形し、これを曲げ加工した後スポット溶接して作られている。本体部材25についても図14の様に頂面30に繋がる2辺にフランジ85があり、当該フランジ85で接合され、頂面30と対向する面は解放されている。
Next, the flame hole member 3 will be described. The flame hole member 3 is formed by welding a decompression wall 26 to the side surface of the main body member 25 as shown in FIGS.
The main body member 25 of the flame hole member 3 is also formed by pressing a single steel plate to form a developed figure having irregularities on the surface, bending it, and spot welding. As shown in FIG. 14, the main body member 25 also has flanges 85 on two sides connected to the top surface 30, joined by the flange 85, and the surface facing the top surface 30 is released.

炎孔部材3の、本体部材25は、図8,14の様に炎孔として機能する頂面30と、この両端から約90°折り曲げられた二つの側壁部31,32を有している。炎孔部材3の頂面30は、長尺状であり細長く広がっている。また頂面30は屋根状であり、中央の稜線部86が最も高く、その両側は緩やかな傾斜壁87となっている。
炎孔部材3は、前記した様に鋼板を曲げ加工したものであるが、頂面30の稜線部86は、鋼板が折り込まれている。そのため図の様に内部の空洞には、折り込まれた部位が垂直壁88として垂下している。
The main body member 25 of the flame hole member 3 has a top surface 30 functioning as a flame hole as shown in FIGS. 8 and 14, and two side wall portions 31 and 32 bent about 90 ° from both ends. The top surface 30 of the flame hole member 3 has a long shape and is elongated. Further, the top surface 30 has a roof shape, the central ridge line portion 86 is the highest, and both sides are gently inclined walls 87.
The flame hole member 3 is formed by bending a steel plate as described above, but the ridge line portion 86 of the top surface 30 is folded into the steel plate. Therefore, as shown in the drawing, the folded portion hangs down as a vertical wall 88 in the internal cavity.

本体部材25の頂面30には炎孔(中央側開口)33となるスリット状の開口が設けられている。スリット(炎孔33)は、頂面30の幅方向に延びるものである。スリット状の開口は複数、平行に並んで、頂面30の長手方向の全域に設けられている。そして、図14の様に、複数のスリット状の開口を一組にして炎孔群89が構成されており、炎孔群89は頂面30に一定間隔毎に配置される構成となる。   The top surface 30 of the main body member 25 is provided with a slit-like opening serving as a flame hole (center side opening) 33. The slit (flame hole 33) extends in the width direction of the top surface 30. A plurality of slit-shaped openings are arranged in parallel, and are provided in the entire longitudinal direction of the top surface 30. Then, as shown in FIG. 14, a flame hole group 89 is configured with a plurality of slit-shaped openings as a set, and the flame hole group 89 is arranged on the top surface 30 at regular intervals.

本体部材25の断面形状に注目すると、本体部材25は、図8の様に2か所の絞り部78,79がある。逆に言えば基端部を除いて二箇所の膨出部90,91がある。
即ち前記した頂面30の部位を含む先端側膨出部90と、中間部に設けられた中間膨出部91とがある。そして中間膨出部91と先端側膨出部90との間に先端側絞り部78がある。また中間膨出部91の基端部側には基端部側絞り部79がある。
Paying attention to the cross-sectional shape of the main body member 25, the main body member 25 has two narrowed portions 78 and 79 as shown in FIG. In other words, there are two bulging portions 90 and 91 except for the base end portion.
In other words, there are a tip-side bulged portion 90 including the portion of the top surface 30 and an intermediate bulged portion 91 provided in the intermediate portion. A front end side narrowed portion 78 is provided between the intermediate bulging portion 91 and the front end side bulging portion 90. Further, a proximal end side throttle portion 79 is provided on the proximal end side of the intermediate bulging portion 91.

前記した膨出部90,91及び絞り部78,79の中で、先端側膨出部90と中間膨出部91は、共に炎孔部材3の全幅に渡って設けられている。
また先端側膨出部90の側面には図14の様に一列に開口35が設けられている。開口35は、小さな孔である。
基端部側絞り部79には、図14の様に複数の凸条92が設けられている。凸条92は、表面側から見て外側に突出するものであり、内部には図6の様に溝93が形成されている。凸条92は、炎孔部材3の高さ方向に延びる。そして凸条92は、炎孔部材3の幅方向に平行に複数個配置されている。
Among the bulging portions 90 and 91 and the narrowed portions 78 and 79, the tip-side bulging portion 90 and the intermediate bulging portion 91 are both provided over the entire width of the flame hole member 3.
Further, openings 35 are provided in a row on the side surface of the distal side bulging portion 90 as shown in FIG. The opening 35 is a small hole.
The proximal end side narrowed portion 79 is provided with a plurality of ridges 92 as shown in FIG. The ridge 92 protrudes outward as viewed from the surface side, and a groove 93 is formed inside as shown in FIG. The ridge 92 extends in the height direction of the flame hole member 3. A plurality of ridges 92 are arranged in parallel to the width direction of the flame hole member 3.

側壁部31,32の開放端側は、図6,8,16,17の様に二度に渡って約90°折り返され、外側に嵌合用凹溝38が形成されている。嵌合用凹溝38の底壁36は、側壁部31,32に対して垂直であり、嵌合用凹溝38の外壁37は、側壁部31,32と平行である。
嵌合用凹溝38を構成する外壁37は、正面形状が略台形である。即ち外壁37の両側の辺は図15の拡大図の様に傾斜しており、テーパ状に先側が細くなっている。また嵌合用凹溝38内における側壁部31,32には、図16,17の様に突起95が設けられている。突起95の位置は、嵌合用凹溝38の両端であり、両端に各1個ずつ突起95が設けられている。
The open end sides of the side wall portions 31 and 32 are folded back by about 90 ° twice as shown in FIGS. 6, 8, 16, and 17, and a fitting groove 38 is formed on the outside. The bottom wall 36 of the fitting groove 38 is perpendicular to the side walls 31, 32, and the outer wall 37 of the fitting groove 38 is parallel to the side walls 31, 32.
The outer wall 37 constituting the fitting groove 38 has a substantially trapezoidal front shape. That is, the sides on both sides of the outer wall 37 are inclined as shown in the enlarged view of FIG. 15, and the tip side is tapered in a tapered shape. Further, as shown in FIGS. 16 and 17, projections 95 are provided on the side wall portions 31 and 32 in the fitting concave groove 38. The positions of the protrusions 95 are at both ends of the fitting concave groove 38, and one protrusion 95 is provided at each end.

減圧壁26は、本体部材25の側壁部31,32の上端部に固定されている。減圧壁26は図14の様に長尺の板状であり、本体部材25の先端側膨出部90を全域に渡って覆う。本体部材25の側壁部31,32と減圧壁26との間には空隙29がある。空隙29は、図面上部側が開口している。この開口は、側面側開口27として機能する。なお減圧壁26の内面には図8の様に小さな突起97があり、当該突起97が本体部材25と当接して側面側開口27の間隔を規制している。   The decompression wall 26 is fixed to the upper end portions of the side wall portions 31 and 32 of the main body member 25. The decompression wall 26 is in the form of a long plate as shown in FIG. There is a gap 29 between the side wall portions 31, 32 of the main body member 25 and the decompression wall 26. The gap 29 is open on the upper side of the drawing. This opening functions as the side opening 27. Note that a small protrusion 97 is provided on the inner surface of the decompression wall 26 as shown in FIG. 8, and the protrusion 97 abuts the main body member 25 to regulate the interval between the side opening 27.

前記したように先端側膨出部90には一列に開口35(図14)があり、この開口35が本体部材25の内面と空隙29とを連通している。   As described above, the distal-side bulged portion 90 has the openings 35 (FIG. 14) in a row, and the openings 35 communicate the inner surface of the main body member 25 with the gap 29.

本体部材25の両端部は、側壁部31,32同士が重ね合わされてフランジ85を構成し、スポット溶接によって接合されているが、基端側から中間膨出部の近傍までの間は、側壁部31,32同士の間にスリット98がある。   Both end portions of the main body member 25 are overlapped with the side wall portions 31 and 32 to form a flange 85 and are joined by spot welding, but the side wall portion extends from the proximal end side to the vicinity of the intermediate bulge portion. There is a slit 98 between 31 and 32.

次に燃焼装置1本体の各部材同士の関係について、図5、6を参照しつつ説明する。
本実施例の燃焼装置についても、予混合部材2と、炎孔部材3とが嵌合しあって中間部材6を構成している。
炎孔部材3(中間部材6)は、前記した様に二つの空気流路部材5に挟まれた位置にあるが、炎孔部材3の頂面30は、空気流路部材5の上端よりも図面下部側にあり、空気流路部材5の間に埋もれた位置にある。そのため炎孔部材3の頂面30よりも先端側の空間は、二つの空気流路部材5の壁によって仕切られている。本実施例では、炎孔部材3の頂面30と二つの空気流路部材5によって囲まれた空間が第一燃焼部46として機能する。
Next, the relationship between each member of the combustion apparatus 1 main body will be described with reference to FIGS.
Also in the combustion apparatus of the present embodiment, the premixing member 2 and the flame hole member 3 are fitted together to constitute the intermediate member 6.
Although the flame hole member 3 (intermediate member 6) is located between the two air flow path members 5 as described above, the top surface 30 of the flame hole member 3 is more than the upper end of the air flow path member 5. It is on the lower side of the drawing and is in a position buried between the air flow path members 5. Therefore, the space on the tip side of the top surface 30 of the flame hole member 3 is partitioned by the walls of the two air flow path members 5. In the present embodiment, the space surrounded by the top surface 30 of the flame hole member 3 and the two air flow path members 5 functions as the first combustion portion 46.

中間部材6は、炎孔部材3に予混合部材2が装着されたものであり、予混合部材2の頂部50側が炎孔部材3の空洞部分に挿入されている。この時、予混合部材2の両端のフランジ部51が炎孔部材3の両端に形成されたスリット98に嵌まり込む。そして予混合部材2の突端とスリット98の奥端とが当接して挿入方向の位置決めがなされている。
また予混合部材2の開口列部10の下部側に設けられた垂直壁82が炎孔部材3の基端部側絞り部79の内壁と当接して厚み方向の位置決めがなされている。
予混合部材2の開口列部10の狭面積部58は炎孔部材3の中間膨出部91の位置となる。
The intermediate member 6 is obtained by mounting the premixing member 2 on the flame hole member 3, and the top 50 side of the premixing member 2 is inserted into a hollow portion of the flame hole member 3. At this time, the flange portions 51 at both ends of the premixing member 2 are fitted into the slits 98 formed at both ends of the flame hole member 3. Then, the protruding end of the premixing member 2 and the back end of the slit 98 come into contact with each other and positioning in the insertion direction is performed.
Further, the vertical wall 82 provided on the lower side of the opening row portion 10 of the premixing member 2 is brought into contact with the inner wall of the base end side restricting portion 79 of the flame hole member 3 so as to be positioned in the thickness direction.
The narrow area portion 58 of the opening row portion 10 of the premixing member 2 is the position of the intermediate bulging portion 91 of the flame hole member 3.

予混合部材2の開口列部10と、炎孔部材3の間の隙間に注目すると、前記した様に炎孔部材3の側壁部31,32の中間膨出部91に開口列部10の狭面積部58がある。即ち中間膨出部91の部位は、開口列部10の開口8の列部に相当する。従って開口列部10の開口8の外側は、側壁部31,32から離れており、開口8の外側には他に比べて広い空間(混合空間)39がある。この混合空間39は、全ての開口8に相当する部位に渡って連通している。   When attention is paid to the gap between the opening row portion 10 of the premixing member 2 and the flame hole member 3, the narrowness of the opening row portion 10 is narrowed to the intermediate bulging portion 91 of the side wall portions 31 and 32 of the flame hole member 3 as described above. There is an area 58. That is, the portion of the intermediate bulging portion 91 corresponds to the row portion of the openings 8 of the opening row portion 10. Therefore, the outer side of the opening 8 of the opening row part 10 is separated from the side wall parts 31 and 32, and there is a wider space (mixing space) 39 than the other on the outer side of the opening 8. The mixing space 39 communicates over a portion corresponding to all the openings 8.

一方、前記した様に予混合部材2の開口列部10の下部側が炎孔部材3の基端部側絞り部79の内壁と当接している。そのため当該部位については、幅方向の殆どの位置で開口列部10の外壁と炎孔部材3の内壁が接しており、隙間がない。しかしながら、基端部側絞り部79には、前記した様に複数の凸条92が設けられており、凸条92の内面側は凹溝93(図6)となっている。従って凸条92の部分については開口列部10の外壁と炎孔部材3の内壁との間が離れている。また凸条92は、炎孔部材3の高さ方向に延びているから、前記した混合空間39は炎孔部材3の基端側に連通している。   On the other hand, as described above, the lower side of the opening row portion 10 of the premixing member 2 is in contact with the inner wall of the base end side throttle portion 79 of the flame hole member 3. Therefore, the outer wall of the opening row portion 10 and the inner wall of the flame hole member 3 are in contact with each other at almost all positions in the width direction, and there is no gap. However, as described above, the base end side restricting portion 79 is provided with a plurality of protruding ridges 92, and the inner surface side of the protruding ridges 92 is a concave groove 93 (FIG. 6). Therefore, in the portion of the ridge 92, the outer wall of the opening row portion 10 and the inner wall of the flame hole member 3 are separated. Further, since the ridge 92 extends in the height direction of the flame hole member 3, the mixed space 39 communicates with the base end side of the flame hole member 3.

ここで凸条92の位置と予混合部材2の開口列部10に設けられた開口8との位置関係に注目すると、図18の様に凸条92の真上の位置に開口8がある。即ち凸条92を延長すると開口8の位置と交わる。本実施形態では、図18の様に凸条92と開口8とは一対一に対応する。ただし、開口8の数と凸条92の数は、必ずしも一対一に対応していなくてもよい。   Here, paying attention to the positional relationship between the position of the ridge 92 and the opening 8 provided in the opening row portion 10 of the premixing member 2, the opening 8 is at a position directly above the ridge 92 as shown in FIG. That is, when the ridge 92 is extended, it intersects with the position of the opening 8. In the present embodiment, the ridge 92 and the opening 8 correspond one-to-one as shown in FIG. However, the number of openings 8 and the number of ridges 92 do not necessarily correspond one-on-one.

炎孔部材3の基端部と予混合部材2との間には隙間がある。従って前記した混合空間39は、凸条92(凹溝93)及び基端部の隙間を介して外部と連通している。
一方、混合空間39のさらに先端側に注目すると、側壁部31,32の間であって開口列部10の頂部50と炎孔部材3の頂面30部分との間には比較的大きな空間47がある。本実施例では、前記した混合空間39と、開口列部10の下流側の空間47によって炎孔上流側流路49が形成されている。
There is a gap between the base end portion of the flame hole member 3 and the premixing member 2. Therefore, the mixing space 39 described above communicates with the outside through the protrusions 92 (concave grooves 93) and the gaps at the base end portions.
On the other hand, when attention is paid to the further front end side of the mixing space 39, a relatively large space 47 between the side wall portions 31 and 32 and between the top portion 50 of the opening row portion 10 and the top surface 30 portion of the flame hole member 3. There is. In the present embodiment, the flame hole upstream flow path 49 is formed by the mixing space 39 and the space 47 downstream of the opening row portion 10.

中間部材6の両側には図5,6の様に空気流路部材5が装着されている。空気流路部材5は、基端側の空気導入開口15に、炎孔部材3の嵌合用凹溝38を嵌合させて中間部材6に固定されている。即ち嵌合用凹溝38の外壁37を空気導入開口15の中に挿入し、空気流路部材5の突端を嵌合用凹溝38に入れて嵌合用凹溝38の底壁36に当接させる。
なお嵌合用凹溝38の外壁37は、前記した様に正面から見た形状が台形であり、両側の辺がテーパ状であるから、空気流路部材5を装着する際に空気導入開口15の内壁が嵌合用凹溝38外壁37のテーパに倣い、幅方向の位置決めが行われる。
空気流路部材5が炎孔部材3に対して正規の位置に納まると、図17に示すように空気流路部材5の開口近傍に設けられた凹溝77の外上端に、嵌合用凹溝38内に設けられた突起95が係合し、「カチッ」という節度感が得られる。
Air flow path members 5 are mounted on both sides of the intermediate member 6 as shown in FIGS. The air flow path member 5 is fixed to the intermediate member 6 by fitting the fitting concave groove 38 of the flame hole member 3 into the air introduction opening 15 on the proximal end side. That is, the outer wall 37 of the fitting groove 38 is inserted into the air introduction opening 15, and the projecting end of the air flow path member 5 is inserted into the fitting groove 38 and brought into contact with the bottom wall 36 of the fitting groove 38.
Since the outer wall 37 of the concave groove for fitting 38 has a trapezoidal shape when viewed from the front as described above, the sides on both sides are tapered, so that when the air flow path member 5 is mounted, The inner wall follows the taper of the outer wall 37 of the fitting concave groove 38, and positioning in the width direction is performed.
When the air flow path member 5 is housed in a normal position with respect to the flame hole member 3, the fitting groove is formed on the outer upper end of the groove 77 provided near the opening of the air flow path member 5 as shown in FIG. The protrusions 95 provided in the plate 38 are engaged with each other, and a “click” feeling of moderation is obtained.

空気流路部材5と中間部材6(炎孔部材3)との間の隙間40に注目すると、図5,6の様に空気流路部材5の上流側空気放出開口48の側面側には、炎孔部材3の先端側絞り部78が位置する。先端側絞り部78は炎孔部材3の表面が凹んだ部位であるから、上流側空気放出開口48の近傍においては、空気流路部材5と炎孔部材3との間に隙間がある。
またこの隙間は、第一燃焼部46に連通している。即ち空気流路部材5の上流側空気放出開口48よりも先端側は、空気流路がテーパ状となっており、空気流路部材5の外壁は、下流に向かうほど空気流路の内側に位置し炎孔部材3との間に隙間が生じる。なお空気流路部材5の外壁と炎孔部材3とは、空気流路部材5に設けられた凸条73によって部分的に当接している。
When attention is paid to the gap 40 between the air flow path member 5 and the intermediate member 6 (flame hole member 3), the side surface side of the upstream air discharge opening 48 of the air flow path member 5 as shown in FIGS. The leading end side throttle portion 78 of the flame hole member 3 is located. Since the front end side throttle portion 78 is a portion where the surface of the flame hole member 3 is recessed, there is a gap between the air flow path member 5 and the flame hole member 3 in the vicinity of the upstream air discharge opening 48.
Further, this gap communicates with the first combustion portion 46. That is, the air flow path is tapered on the front end side of the air flow path member 5 from the upstream side air discharge opening 48, and the outer wall of the air flow path member 5 is located inside the air flow path as it goes downstream. A gap is formed between the flame hole member 3 and the flame hole member 3. The outer wall of the air flow path member 5 and the flame hole member 3 are partially in contact with each other by a ridge 73 provided on the air flow path member 5.

次に燃焼装置1の機能について説明する。
燃焼装置1は、図3に示す様にケース54に多数配列され、図4の様に図面下部側から送風機41によって送風される。また燃料ガスがノズル42(図1)によって予混合部材2のガス導入口43から導入される。
送風の流れは、前記した実施例と略同一であり、送風機41によって発生された送風は、整流板44(図4)の開口によって整流され、燃焼装置1の基端部(図面下側)から燃焼装置1の内部に入る。
燃焼装置1の中に入る送風のルートは、先の実施例と同一であり、3ルートである。即ち第一ルートは、図6に示すように空気流路部材5を通るルートであり、送風は空気流路部材5の基端部に設けられた空気導入開口15から空気流路部材5に入り、内部の空気流路13を先端側に向かって流れる。そして空気の大部分は、先端部開口20,21から外部に放出される。
Next, the function of the combustion apparatus 1 will be described.
A large number of combustion apparatuses 1 are arranged in a case 54 as shown in FIG. 3, and are blown by a blower 41 from the lower side of the drawing as shown in FIG. Further, the fuel gas is introduced from the gas introduction port 43 of the premixing member 2 by the nozzle 42 (FIG. 1).
The flow of the blast is substantially the same as in the above-described embodiment, and the blast generated by the blower 41 is rectified by the opening of the rectifying plate 44 (FIG. 4), and from the base end (lower side of the drawing) of the combustion device 1. It enters the inside of the combustion apparatus 1.
The route of the air entering into the combustion apparatus 1 is the same as that in the previous embodiment, and there are three routes. That is, the first route is a route passing through the air flow path member 5 as shown in FIG. 6, and the air flow enters the air flow path member 5 from the air introduction opening 15 provided at the base end portion of the air flow path member 5. , Flows through the internal air flow path 13 toward the tip side. And most of the air is discharged to the outside through the tip openings 20 and 21.

実施例の説明に戻ると、本実施例の燃焼装置1では、空気流路部材5を流れる空気の一部は、燃焼部向空気放出開口23と空気放出開口(上流側空気放出開口)48からも放出される。
燃焼部向空気放出開口23から放出された空気は、段部の傾斜面22から、炎孔部材3の炎孔群89と炎孔群89との間に向けて、燃焼装置1の軸線に対して斜め前方に放出される。
また空気放出開口(上流側空気放出開口)48から放出された空気は、空気流路部材5と中間部材6との間の隙間40を流れ、炎孔部材3の側面部に至る。具体的には空気放出開口(上流側空気放出開口)48から放出された空気は、炎孔部材3の先端側絞り部78とによって構成される空隙に放出される。そしてこの空気は、空気流路部材5のテーパ状の壁面によって形成される隙間を流れ、炎孔部材3の側面部に放出される。
Returning to the description of the embodiment, in the combustion apparatus 1 of this embodiment, a part of the air flowing through the air flow path member 5 flows from the air discharge opening 23 for the combustion section and the air discharge opening (upstream air discharge opening) 48. Are also released.
The air discharged from the air discharge opening 23 for the combustion part is directed from the inclined surface 22 of the step part between the flame hole group 89 and the flame hole group 89 of the flame hole member 3 with respect to the axis of the combustion device 1. Is released diagonally forward.
Further, the air discharged from the air discharge opening (upstream air discharge opening) 48 flows through the gap 40 between the air flow path member 5 and the intermediate member 6 and reaches the side surface portion of the flame hole member 3. Specifically, the air discharged from the air discharge opening (upstream air discharge opening) 48 is discharged into a gap formed by the front end side throttle portion 78 of the flame hole member 3. This air flows through a gap formed by the tapered wall surface of the air flow path member 5 and is released to the side surface portion of the flame hole member 3.

第二のルートは、中間部材6の中を流れるルートであり、予混合部材2と炎孔部材3の側壁部31,32との間に開口部28から空気が侵入する。
この空気は、炎孔部材3の内面に形成された凹溝93(凸条92の裏側)を通過して
混合空間39に入る。そして開口列部10と炎孔部材3の頂面30部分の間の空間47に入る。即ち上記した空気は、炎孔上流側流路49を流れる。そして炎孔(中央側開口)33たるスリットから第一燃焼部46に放出される。また空間47に入った空気の一部は、本体部材25の側壁部に設けられた開口35から本体部材25と側壁部31,32との間の空隙29に入り、側面側開口27から第一燃焼部46に放出される。
The second route is a route that flows through the intermediate member 6, and air enters between the premixing member 2 and the side wall portions 31 and 32 of the flame hole member 3 from the opening 28.
This air passes through a concave groove 93 formed on the inner surface of the flame hole member 3 (the back side of the ridge 92) and enters the mixing space 39. And it enters the space 47 between the opening row | line | column part 10 and the top face 30 part of the flame hole member 3. FIG. That is, the above-described air flows through the flame hole upstream flow path 49. Then, the gas is discharged from the slit serving as the flame hole (center side opening) 33 to the first combustion unit 46. Part of the air that has entered the space 47 enters the space 29 between the main body member 25 and the side wall portions 31 and 32 from the opening 35 provided in the side wall portion of the main body member 25, and the first side through the side surface side opening 27. It is discharged to the combustion unit 46.

次に、空気の第三のルートについて説明する。第三のルートは、一次空気のルートであり、予混合部材2のガス導入口43から燃料ガスと共に導入される。第三のルートは、燃料ガスが流れるルートと同一であるから、以下は燃料ガスの流れとして説明する。燃料ガスの流れは実線の矢印で図示する。   Next, the third route of air will be described. The third route is a route for primary air, and is introduced from the gas introduction port 43 of the premixing member 2 together with the fuel gas. Since the third route is the same as the route through which the fuel gas flows, the following description will be given as the flow of the fuel gas. The flow of fuel gas is illustrated by solid arrows.

予混合部材2のガス導入口43からは一次空気と共に燃料ガスが導入され、混合部7等で空気と混合され、開口列部10に流れ込む。ここで本実施例では、混合部7の均一断面部57から開口列部10にかけての間に絞りとなる部位がない。従って燃料ガスは、突出して流速が異なる部分が無く開口列部10に入る。
開口列部10に入った燃料ガスは、各開口8から均等に放出される。即ち開口列部10は、相当の内容積を持つので予混合部材2の曲路等で発生した微小な渦は収斂している。また前記した様に開口列部10の直前に絞りとなる部位が無く、開口列部10に導入される燃料ガスは、流路の断面における流速のばらつきが小さい。そのため開口列部10の内部における圧力ばらつきは少なく、燃料ガスは、各開口8から均等に放出される。開口8の口径を噴出ガス量が均整化するように順次小さくしてもよい。
The fuel gas is introduced together with the primary air from the gas introduction port 43 of the premixing member 2, mixed with air by the mixing unit 7 and the like, and flows into the opening row unit 10. Here, in the present embodiment, there is no portion that becomes a diaphragm between the uniform section 57 of the mixing portion 7 and the opening row portion 10. Therefore, the fuel gas protrudes into the opening row portion 10 without any portion where the flow velocity is different.
The fuel gas that has entered the opening row 10 is evenly discharged from each opening 8. That is, since the opening row portion 10 has a considerable internal volume, minute vortices generated in the curved path of the premixing member 2 are converged. Further, as described above, there is no portion to be throttled immediately before the opening row portion 10, and the fuel gas introduced into the opening row portion 10 has a small variation in flow velocity in the cross section of the flow path. Therefore, there is little pressure variation in the inside of the opening row | line | column part 10, and fuel gas is discharge | released from each opening 8 equally. The diameter of the opening 8 may be sequentially reduced so that the amount of ejected gas is uniform.

開口列部10の開口8から放出された燃料ガスは、炎孔部材3の中間膨出部91によって構成される混合空間39に入り、炎孔上流側流路(混合空間39を含む)49を流れる空気と混合される。   The fuel gas discharged from the opening 8 of the opening row portion 10 enters the mixing space 39 constituted by the intermediate bulging portion 91 of the flame hole member 3, and passes through the flame hole upstream flow path (including the mixing space 39) 49. Mixed with flowing air.

一方、混合空間39を流れる空気は、図面下側から上方向に流れるものであり、整流されたものである。
即ち混合空間39に流れ込む空気は、予混合部材2と炎孔部材3の側壁部31,32との間の開口部28から導入されるものであるが、混合空間39に至る前に炎孔部材3の内面に形成された凹溝93(凸条92の裏側)を通過しているので、層流となっている。
より詳細に説明すると、本実施例では、炎孔部材3の基端部側絞り部79においては、大半の部位が予混合部材2の外壁と接しているが、基端部側絞り部79の内面には多数の凹溝93が形成されており、凹溝93の部位については空隙がある。そして各凹溝93は、混合空間39と連通している。そのため側壁部31,32との間の開口部28から導入された空気は、複数の凹溝93を通過し、混合空間39に至る。そして凹溝93は、細長い流路であり、且つ等間隔であって平行に設けられているので、導入された空気は、複数の凹溝93を流れることによって整流される。
On the other hand, the air flowing through the mixing space 39 flows upward from the lower side of the drawing and is rectified.
That is, the air flowing into the mixing space 39 is introduced from the opening 28 between the premixing member 2 and the side wall portions 31 and 32 of the flame hole member 3, but before reaching the mixing space 39, the flame hole member Since it passes through the concave groove 93 (the back side of the ridge 92) formed in the inner surface of No. 3, it is a laminar flow.
More specifically, in this embodiment, most of the portion of the base end side throttle portion 79 of the flame hole member 3 is in contact with the outer wall of the premixing member 2. A large number of concave grooves 93 are formed on the inner surface, and there are gaps in the concave groove 93 portions. Each groove 93 communicates with the mixing space 39. Therefore, the air introduced from the opening 28 between the side walls 31 and 32 passes through the plurality of concave grooves 93 and reaches the mixing space 39. And since the ditch | groove 93 is an elongate flow path and is provided in parallel at equal intervals, the introduce | transduced air is rectified by flowing through the some ditch | groove 93. FIG.

炎孔上流側流路(混合空間39を含む)49を流れる空気は、燃焼装置1の高さ方向に流れるのに対し、開口列部10の開口8から放出された燃料ガスは空気の流れに対して垂直方向に流れ込む。そのため開口列部10の開口8から放出された燃料ガスは、混合空間39の部位でも空気と激しく衝突し、空気との混合が促進される。
加えて本実施例では、凹溝93(凸条92の裏側)の延長線上に開口列部10の開口8があるから、凹溝93を出た空気はより確実に開口8から放出された燃料ガスと衝突する。
また混合空間39は、開口列部10の長手方向全域に渡って連通しているから、圧力も平滑化される。
The air flowing through the flame hole upstream side flow path (including the mixing space 39) 49 flows in the height direction of the combustion apparatus 1, whereas the fuel gas discharged from the opening 8 of the opening row portion 10 becomes the flow of air. In contrast, it flows vertically. Therefore, the fuel gas discharged from the opening 8 of the opening row portion 10 collides violently with the air even at the portion of the mixing space 39, and the mixing with the air is promoted.
In addition, in the present embodiment, since the opening 8 of the opening row portion 10 is on the extension line of the concave groove 93 (the back side of the ridge 92), the air that has exited the concave groove 93 is more reliably released from the opening 8. Collide with gas.
Further, since the mixing space 39 communicates over the entire longitudinal direction of the opening row portion 10, the pressure is also smoothed.

燃料ガスは、混合空間39を通過して上昇し、先端側膨出部90によって構成される空間に流れ込むが、この間においても燃料ガスと空気との混合は促進される。そして燃料ガスの大部分が炎孔33たるスリットから第一燃焼部46に放出される。
スリットから放出される燃料ガスは、予混合部材2の中で空気と混合され、さらに混合空間39内で空気と混合されるので均質であり、且つスリットから放出される時の速度も均一である。
空間47に入った空気の一部は、本体部材25の側壁部に設けられた開口35から本体部材25と側壁部31,32との間の空隙29に入り、側面側開口27から第一燃焼部46に放出される。
The fuel gas rises through the mixing space 39 and flows into the space formed by the tip-side bulging portion 90, but the mixing of the fuel gas and air is also promoted during this time. Most of the fuel gas is discharged from the slit that is the flame hole 33 to the first combustion section 46.
The fuel gas discharged from the slit is mixed with air in the premixing member 2 and further mixed with air in the mixing space 39, so that the fuel gas is uniform and the speed when discharged from the slit is also uniform. .
Part of the air that has entered the space 47 enters the gap 29 between the main body member 25 and the side wall portions 31 and 32 from the opening 35 provided in the side wall portion of the main body member 25, and first combustion from the side surface side opening 27. Released to the part 46.

燃料ガス(混合気)に点火すると、燃料ガスは、第一燃焼部46で一次火炎24を発生させ、一次燃焼が行われる。そして未燃成分は、第一燃焼部46の開口から外部に放出され、空気流路部材5の先端部から空気が供給されて二次燃焼する。   When the fuel gas (air-fuel mixture) is ignited, the fuel gas generates the primary flame 24 in the first combustion section 46, and primary combustion is performed. The unburned component is discharged to the outside from the opening of the first combustion unit 46, and air is supplied from the tip of the air flow path member 5 to perform secondary combustion.

また本実施例では、前記した一次火炎24の基端部に空気が供給され、一次火炎24の基端部に保炎が発生する。
即ち本実施例では、燃料ガスの一部が側面側開口27から第一燃焼部46に放出される。ただし、側面側開口27から放出される燃料ガスはスリットから放出される燃料ガスに比べて流速が遅い。即ち燃料ガスは、本体部材25の側壁部に設けられた開口35から本体部材25と側壁部31,32との間の空隙29に入り、側面側開口27から第一燃焼部46に放出される。そのため空隙29に入る燃料ガスは量が制限され、側面側開口27から放出される量は少ない。これに対して側面側開口27は大きな開口面積を持つので、側面側開口27から放出される燃料ガスは流速が遅いものとなる。
In this embodiment, air is supplied to the base end portion of the primary flame 24 described above, and flame holding occurs at the base end portion of the primary flame 24.
That is, in this embodiment, part of the fuel gas is discharged from the side opening 27 to the first combustion unit 46. However, the fuel gas discharged from the side opening 27 has a slower flow rate than the fuel gas discharged from the slit. That is, the fuel gas enters the gap 29 between the main body member 25 and the side wall portions 31 and 32 from the opening 35 provided in the side wall portion of the main body member 25, and is released from the side surface side opening 27 to the first combustion portion 46. . Therefore, the amount of fuel gas entering the gap 29 is limited, and the amount released from the side opening 27 is small. On the other hand, since the side opening 27 has a large opening area, the fuel gas discharged from the side opening 27 has a low flow velocity.

さらに前記した様に、空気流路部材5の中を通過する空気の一部が、側面側開口27から放出される燃料ガスに供給されて完全燃焼する。
即ち空気放出開口(上流側空気放出開口)48から放出された空気は、炎孔部材3の先端側絞り部78とによって構成される空隙から空気流路部材5のテーパ状の壁面によって形成される隙間に沿って流れ、炎孔部材3の側面部に至る。
Further, as described above, a part of the air passing through the air flow path member 5 is supplied to the fuel gas discharged from the side opening 27 and is completely burned.
That is, the air discharged from the air discharge opening (upstream air discharge opening) 48 is formed by the tapered wall surface of the air flow path member 5 from the gap formed by the tip side narrowed portion 78 of the flame hole member 3. It flows along the gap and reaches the side surface of the flame hole member 3.

前記した様に燃料ガスの流速が低いことと相まって側面側開口27の近傍には、安定した保炎が発生する。そのため一次火炎の基端部は側面側開口27の近傍に発生する小さな炎によって保持される。   As described above, stable flame holding is generated in the vicinity of the side opening 27 in combination with the low flow rate of the fuel gas. Therefore, the base end portion of the primary flame is held by a small flame generated in the vicinity of the side opening 27.

また本実施例においても、傾斜面22に設けられた燃焼部向空気放出開口23から斜め方向に空気が供給され、第一燃焼部46の内の未燃ガスの一部が燃焼を開始し、一部に二次火炎が生じる。そしてこの二次火炎は外部の二次火炎68と繋がる。
さらに本実施例では、炎孔部材3の炎孔群89と炎孔群89との間に空気が放出されるため、炎孔群89の周囲には空気が十分に供給されており、一次火炎24を確実に保炎することができる。
また本実施例においても燃焼部向空気放出開口23から供給された空気は、一次火炎24や未燃ガスの流れを妨げることなく、二次火炎68は空気流路部材5から離れた位置で発生し、空気流路部材5を過度に加熱しない。
そのため本実施例の燃焼装置は、一次火炎24及び二次火炎68が共に安定し、実用的である。
このような実用的な燃焼装置に、第一イオン電流検出部材65と第二イオン電流検出部材66とを設置し、燃焼状態の判定を行う。
Also in this embodiment, air is supplied in an oblique direction from the combustion part air discharge opening 23 provided on the inclined surface 22, and a part of the unburned gas in the first combustion part 46 starts to burn, A secondary flame is generated in part. This secondary flame is connected to an external secondary flame 68.
Further, in the present embodiment, since air is released between the flame hole group 89 and the flame hole group 89 of the flame hole member 3, the air is sufficiently supplied around the flame hole group 89, and the primary flame. The flame 24 can be reliably held.
Also in this embodiment, the air supplied from the air discharge opening 23 for the combustion section does not interfere with the flow of the primary flame 24 and unburned gas, and the secondary flame 68 is generated at a position away from the air flow path member 5. The air flow path member 5 is not excessively heated.
Therefore, the combustion apparatus of this embodiment is practical because both the primary flame 24 and the secondary flame 68 are stable.
The first ion current detection member 65 and the second ion current detection member 66 are installed in such a practical combustion apparatus, and the combustion state is determined.

上記した実施例では予混合部材の例として側面側に燃料ガスを放出する開口を設けた構成を示した。この構成によると、空気流に対して垂直方向に燃料ガスを放出するので燃料ガスと空気との衝突機会が多く、混合が促進される。   In the above-described embodiment, the configuration in which the opening for discharging the fuel gas is provided on the side surface as an example of the premixing member. According to this configuration, since the fuel gas is released in a direction perpendicular to the air flow, there are many opportunities for collision between the fuel gas and air, and mixing is promoted.

図2以下に示す実施例では、各部材の表面に多数の凹凸形状が設けられている。凹凸形状は流路を構成する機能の他、板体の剛性を向上させる機能を果たす。また流路を構成しない凹凸形状は、板体の剛性を向上させる機能のみを果たす。   In the embodiment shown in FIG. 2 and subsequent figures, a number of uneven shapes are provided on the surface of each member. The uneven shape fulfills the function of improving the rigidity of the plate body in addition to the function of constituting the flow path. Further, the uneven shape that does not constitute the flow path only fulfills the function of improving the rigidity of the plate.

上記した各実施例では、金属板同士の隙間によって一連の流路を構成している。すなわち一方又は双方の板に凹部を設け、他方の板との間に隙間を形成している。ここで流路を形成する際にいずれの板に凹溝等を設けるかは設計事項の一つであり、本発明は上記した実施例に限定されるものではない。例えば上記した実施例では、空気の第2ルートの一部に、炎孔部材3の内面と予混合部材の外周面との間を通過する流路があり、炎孔部材3の内面に凹溝93を設けて流路を確保した。しかしながら、逆に予混合部材側に凹溝等を設けて流路を構成してもよい。   In each of the above-described embodiments, a series of flow paths is formed by the gaps between the metal plates. That is, one or both plates are provided with a recess, and a gap is formed between the other plate. Here, it is one of the design matters to determine which plate is provided with the groove when forming the flow path, and the present invention is not limited to the above-described embodiment. For example, in the above-described embodiment, a part of the second route of the air has a flow path that passes between the inner surface of the flame hole member 3 and the outer peripheral surface of the premixing member. 93 was provided to secure the flow path. However, conversely, the flow path may be configured by providing a groove or the like on the premixing member side.

以上説明したような燃焼装置においては、燃料ガスと空気とが適宜理想的に分配され、安定した一次火炎24と二次火炎68とを生じさせるが、仮に、送風機41が故障して送風量が低下した場合には、燃料ガス量と空気量(酸素量)との比率(当量比)が変化し、燃焼状態が悪化してしまう。しかし、本発明の燃焼装置1では、第一イオン電流検出部材65と第二イオン電流検出部材66とで検出されたイオン電流値(出力値)から、燃焼状態の異常を確実に検出することができる。また、密室において燃焼装置1を稼働させると、空気中における酸素分圧が低下する(酸素が減少する)が、このような場合においても、本発明を実施した燃焼装置であれば、燃焼状態の異常を直ちに検出することができる。
よって、異常が検出された場合には、制御装置69によって直ちに送風機41の送風量を増加させたり、燃料ガス量を減少させるように燃料ガス比例弁18や燃料ガス供給弁59の開度を小さくし、燃焼を正常化させることができる。
In the combustion apparatus as described above, the fuel gas and air are ideally distributed as appropriate, and a stable primary flame 24 and secondary flame 68 are generated. When it falls, the ratio (equivalent ratio) of fuel gas quantity and air quantity (oxygen quantity) will change, and a combustion state will deteriorate. However, in the combustion apparatus 1 of the present invention, it is possible to reliably detect an abnormality in the combustion state from the ion current values (output values) detected by the first ion current detection member 65 and the second ion current detection member 66. it can. In addition, when the combustion device 1 is operated in a closed chamber, the oxygen partial pressure in the air decreases (oxygen decreases). Even in such a case, the combustion device according to the present invention is in a combustion state. Abnormalities can be detected immediately.
Therefore, when an abnormality is detected, the opening degree of the fuel gas proportional valve 18 or the fuel gas supply valve 59 is decreased so that the control device 69 immediately increases the air flow rate of the blower 41 or decreases the fuel gas amount. Thus, combustion can be normalized.

以上説明した燃焼装置に設置する第一イオン電流検出部材65及び第二イオン電流検出部材66は、直線形状のもの以外に、例えば図20に示すような先端部分が湾曲した又は折れ曲がった形状のものを採用することができる。先端部分を湾曲させる又は折れ曲がっていると、一次火炎24又は二次火炎68の燃焼状態の検出を、より確実に行うことができるようになる。   The first ion current detection member 65 and the second ion current detection member 66 installed in the combustion apparatus described above have a curved shape or a bent shape as shown in FIG. 20, for example, in addition to a linear shape. Can be adopted. If the tip portion is curved or bent, the detection of the combustion state of the primary flame 24 or the secondary flame 68 can be performed more reliably.

例えば、第一イオン電流検出部材65の湾曲した又は折れ曲がった先端部分65aは、スリット(炎孔)33の方(下方)に向け、第二イオン電流検出部材66の湾曲した又は折れ曲がった先端部分66aは、第一燃焼部46の中心方向で幾分下方に向ける。   For example, the curved or bent tip portion 65 a of the first ion current detection member 65 is directed toward the slit (flame) 33 (downward), and the curved or bent tip portion 66 a of the second ion current detection member 66. Is directed somewhat downward in the central direction of the first combustion section 46.

すなわち、一次火炎24が空気不足によって浮き上がる際に、第二イオン電流検出部材66の先端部分66aを湾曲させておく、又は折り曲げておくと、燃焼量が小さくて一次火炎24が小さい場合であっても、その一次火炎24の浮き上がりを、確実に検出することができる。また、第二イオン電流検出部材66の先端部分66aを水平より上方へ湾曲させると、上記効果を弱めてしまうため、一次火炎24の中央部に向かって、水平面において湾曲させるよりも水平面より下方へ湾曲させる方が、上記効果が発揮される。   That is, when the primary flame 24 floats due to air shortage, if the tip portion 66a of the second ion current detection member 66 is bent or bent, the amount of combustion is small and the primary flame 24 is small. However, the floating of the primary flame 24 can be reliably detected. In addition, if the tip portion 66a of the second ion current detection member 66 is bent upward from the horizontal, the above effect is weakened. Therefore, the curve is lowered from the horizontal plane toward the center of the primary flame 24 rather than from the horizontal plane. The above-described effect is exhibited by bending.

しかしながら、水平面より下方へ湾曲させると、先端部分66aと二次空気供給口との距離が短くなり、異常燃焼により第二イオン電流検出部材66が高温になり、下方へ垂れてしまう可能性を考慮して、水平面において一次火炎24の中央部に向かって湾曲させることが望ましい。   However, if it is bent downward from the horizontal plane, the distance between the tip portion 66a and the secondary air supply port is shortened, and the possibility that the second ion current detection member 66 becomes high temperature due to abnormal combustion and droops downward is considered. Then, it is desirable to bend toward the center of the primary flame 24 in the horizontal plane.

以上では、第二イオン電流検出部材66は、空気流路部材5の先端部分の二次空気噴出口(先端部開口20,21,63,64)近傍に設置する例を示したが、図24に示すように燃焼部向空気放出開口23の近傍に設けてもよい。第二イオン電流検出部材66を燃焼部向空気放出開口23の近傍に設けると、第二イオン電流検出部材66には燃焼部向空気放出開口23から供給される二次空気によって包まれるので、火炎に晒されずに済み、温度上昇が抑制されるので高温変形を回避することができる。また、燃焼部向空気放出開口23から供給される二次空気によって第二イオン電流検出部材66に火炎中のイオンが到達せず、第一イオン電流検出部材65と第二イオン電流検出部材66の間が導通することを防止することができ、空気量の不足を確実に検出することができる。   In the above description, the second ion current detection member 66 is installed in the vicinity of the secondary air outlet (tip opening 20, 21, 63, 64) at the tip of the air flow path member 5. FIG. May be provided in the vicinity of the air discharge opening 23 for the combustion section. If the second ion current detection member 66 is provided in the vicinity of the combustion portion air discharge opening 23, the second ion current detection member 66 is surrounded by the secondary air supplied from the combustion portion air discharge opening 23. Therefore, high temperature deformation can be avoided because the temperature rise is suppressed. Further, the secondary air supplied from the air discharge opening 23 for the combustion unit does not reach the ions in the flame to the second ion current detection member 66, and the first ion current detection member 65 and the second ion current detection member 66 It is possible to prevent conduction between the gaps, and it is possible to reliably detect a shortage of the air amount.

本発明の燃焼装置の構造を模式的に説明した燃焼装置の断面斜視図である。1 is a cross-sectional perspective view of a combustion apparatus schematically illustrating the structure of a combustion apparatus of the present invention. 本発明の実用的な実施例における燃焼装置の斜視図である。It is a perspective view of the combustion apparatus in the practical Example of this invention. 図2の燃焼装置をケースに収納した場合の平面図である。It is a top view at the time of accommodating the combustion apparatus of FIG. 2 in a case. 図3のA−A断面図である。It is AA sectional drawing of FIG. 図2の燃焼装置の断面図である。It is sectional drawing of the combustion apparatus of FIG. 図2の燃焼装置を段階的に破断して内部構造を示した斜視図である。It is the perspective view which fractured | ruptured the combustion apparatus of FIG. 2 in steps, and showed the internal structure. 図2の燃焼装置の分解斜視図である。It is a disassembled perspective view of the combustion apparatus of FIG. 図2の燃焼装置の分解断面図である。FIG. 3 is an exploded cross-sectional view of the combustion apparatus of FIG. 2. 図2の燃焼装置の予備混合部材の斜視図である。FIG. 3 is a perspective view of a premixing member of the combustion apparatus of FIG. 2. 図9のA−A断面図である。It is AA sectional drawing of FIG. 図9のB−B断面図である。It is BB sectional drawing of FIG. 図2の燃焼装置の空気流路部材の斜視図である。It is a perspective view of the air flow path member of the combustion apparatus of FIG. 図12の空気流路部材の凹変部の拡大図である。It is an enlarged view of the concave change part of the air flow path member of FIG. 図2の燃焼装置の炎孔部材の斜視図である。It is a perspective view of the flame hole member of the combustion apparatus of FIG. 図14の炎孔部材の嵌合用凹溝部の正面拡大図である。It is a front enlarged view of the concave groove part for fitting of the flame hole member of FIG. 炎孔部材と予混合部材とを結合した状態の側面図である。It is a side view of the state which combined the flame hole member and the premixing member. 図16の炎孔部材の基端部近傍の拡大図である。It is an enlarged view of the base end part vicinity of the flame hole member of FIG. 予混合部材の開口と空気流路部材の凸条との位置関係を示す説明図である。It is explanatory drawing which shows the positional relationship of the opening of a premixing member, and the protruding item | line of an air flow path member. 本実施例における空気流路部材内における空気の流れを示す説明図である。It is explanatory drawing which shows the flow of the air in the air flow path member in a present Example. 本発明を実施する際に使用可能な別のイオン電流検出部材を配置した燃焼装置の断面斜視図である。It is a cross-sectional perspective view of the combustion apparatus which has arrange | positioned another ion current detection member which can be used when implementing this invention. 第一イオン電流検出部材と第二イオン電流検出部材の出力値と一酸化炭素COの量の関係を示すグラフである。It is a graph which shows the relationship between the output value of a 1st ion current detection member and a 2nd ion current detection member, and the quantity of carbon monoxide CO. 空気量と燃料ガス量とを制御するための制御系統図である。It is a control system diagram for controlling the amount of air and the amount of fuel gas. 燃焼装置の燃焼状態を診断する流れ図である。It is a flowchart which diagnoses the combustion state of a combustion apparatus. 本発明を実施した図1とは別の燃焼装置の斜視図である。It is a perspective view of the combustion apparatus different from FIG. 1 which implemented this invention. 送風量を減少させる制御を含む構成の燃焼装置の燃焼状態を診断する流れ図である。It is a flowchart which diagnoses the combustion state of the combustion apparatus of the structure containing the control which reduces ventilation volume.

符号の説明Explanation of symbols

1 燃焼装置
2 予混合部材
3 炎孔部材
5 空気流路部材
6 中間部材
8 開口
10 開口列部
13 空気流路
15 空気導入開口
20、21 先端部開口
23 燃焼部向空気放出開口
25 本体部材
26 減圧壁
27 側面側開口
29 空隙
31、32 側壁部
35 開口
39 混合空間
41 送風機
46 第一燃焼部
48 空気放出開口(上流側空気放出開口)
49 炎孔上流側流路
63、64 スリット(先端部開口)
65 第一イオン電流検出部材
66 第二イオン電流検出部材
67 二次空気
69 制御装置
89 炎孔群
DESCRIPTION OF SYMBOLS 1 Combustion device 2 Premixing member 3 Flame hole member 5 Air flow path member 6 Intermediate member 8 Opening 10 Opening row | line | column part 13 Air flow path 15 Air introduction opening 20, 21 Tip part opening 23 Combustion part air discharge opening 25 Main body member 26 Depressurization wall 27 Side opening 29 Gap 31, 32 Side wall 35 Opening 39 Mixing space 41 Blower 46 First combustion section 48 Air discharge opening (upstream air discharge opening)
49 Flame hole upstream flow path 63, 64 Slit (tip opening)
65 First ion current detection member 66 Second ion current detection member 67 Secondary air 69 Controller 89 Flame hole group

Claims (5)

一次空気と燃料ガスが混合して成る酸素不足状態の混合気が一次燃焼し、さらに二次空気の供給を受けて二次燃焼を行う燃焼装置において、
前記一次燃焼の火炎中に第一イオン電流検出部材を設け、且つ、前記二次空気を供給する二次空気供給口近傍に第二イオン電流検出部材を設け、両イオン電流検出部材の検出値を基に、供給する空気と燃料ガスのうちの少なくとも一つを制御することを特徴とする燃焼装置。
In a combustion apparatus in which an oxygen-deficient mixture formed by mixing primary air and fuel gas undergoes primary combustion, and further receives secondary air supply to perform secondary combustion.
A first ion current detection member is provided in the flame of the primary combustion, and a second ion current detection member is provided in the vicinity of a secondary air supply port for supplying the secondary air, and the detection values of both ion current detection members are obtained. A combustion apparatus characterized by controlling at least one of air to be supplied and fuel gas.
一次空気と燃料ガスが混合して成る酸素不足状態の混合気が一次燃焼し、さらに二次空気の供給を受けて二次燃焼を行う燃焼装置において、
前記一次燃焼の火炎中に第一イオン電流検出部材を設け、且つ、前記二次空気を供給する二次空気供給口近傍に第二イオン電流検出部材を設け、両イオン電流検出部材の検出値を基に、一次空気量と二次空気量の割合と、一次空気量と二次空気量の総量と、燃料ガス量のうちの少なくとも一つを制御することを特徴とする燃焼装置。
In a combustion apparatus in which an oxygen-deficient mixture formed by mixing primary air and fuel gas undergoes primary combustion, and further receives secondary air supply to perform secondary combustion.
A first ion current detection member is provided in the flame of the primary combustion, and a second ion current detection member is provided in the vicinity of a secondary air supply port for supplying the secondary air, and the detection values of both ion current detection members are obtained. A combustion apparatus characterized by controlling at least one of a ratio between a primary air amount and a secondary air amount, a total amount of primary air amount and a secondary air amount, and a fuel gas amount.
予混合部材と、空気流路部材と、炎孔部材とを備え、
前記予混合部材は一次空気と共に燃料ガスを導入して酸素不足状態の混合気を生成し、前記空気流路部材は壁状であって先端側に二次空気を供給する二次空気供給口を有し、前記炎孔部材は二つの空気流路部材の間或いは前記空気流路部材と他の壁面との間に配置され、炎孔部材と空気流路部材によって囲まれた空間によって燃焼部が形成され、
前記混合気が炎孔部材から燃焼部に放出されて一次燃焼が行われ、さらに空気流路部材の二次空気供給口から二次空気の供給を受けて二次燃焼が行われる燃焼装置において、
前記一次燃焼の火炎中に第一イオン電流検出部材を設け、且つ、前記二次空気供給口近傍に第二イオン電流検出部材を設け、両イオン電流検出部材の検出値を基に、一次空気量と二次空気量の割合と、一次空気量と二次空気量の総量と、燃料ガス量のうちの少なくとも一つを制御することを特徴とする燃焼装置。
A premixing member, an air flow path member, and a flame hole member;
The premixing member introduces fuel gas together with primary air to generate an oxygen-deficient mixture, and the air flow path member has a wall shape and has a secondary air supply port for supplying secondary air to the tip side. The flame hole member is disposed between two air flow path members or between the air flow path member and another wall surface, and a combustion part is formed by a space surrounded by the flame hole member and the air flow path member. Formed,
In the combustion apparatus in which the air-fuel mixture is discharged from the flame hole member to the combustion portion, primary combustion is performed, and further, secondary air is supplied from the secondary air supply port of the air flow path member to perform secondary combustion.
A first ion current detection member is provided in the flame of the primary combustion, and a second ion current detection member is provided in the vicinity of the secondary air supply port. Based on the detection value of both ion current detection members, the amount of primary air And a ratio of the secondary air amount, a total amount of the primary air amount and the secondary air amount, and at least one of the fuel gas amounts.
第一イオン電流検出部材の先端部分を湾曲又は屈曲させたことを特徴とする請求項1乃至3のいずれかに記載の燃焼装置。   The combustion apparatus according to any one of claims 1 to 3, wherein a tip portion of the first ion current detection member is curved or bent. 第二イオン電流検出部材の先端部分を湾曲又は屈曲させたことを特徴とする請求項1乃至4のうちのいずれかに記載の燃焼装置。   The combustion apparatus according to any one of claims 1 to 4, wherein a tip portion of the second ion current detection member is curved or bent.
JP2006124293A 2006-04-27 2006-04-27 Combustion device Pending JP2007298190A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2006124293A JP2007298190A (en) 2006-04-27 2006-04-27 Combustion device
US11/783,461 US20070251467A1 (en) 2006-04-27 2007-04-10 Combustion apparatus
DE102007019086A DE102007019086A1 (en) 2006-04-27 2007-04-23 burner device
CNA2007100976339A CN101063522A (en) 2006-04-27 2007-04-24 Combustion apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006124293A JP2007298190A (en) 2006-04-27 2006-04-27 Combustion device

Publications (1)

Publication Number Publication Date
JP2007298190A true JP2007298190A (en) 2007-11-15

Family

ID=38608234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006124293A Pending JP2007298190A (en) 2006-04-27 2006-04-27 Combustion device

Country Status (4)

Country Link
US (1) US20070251467A1 (en)
JP (1) JP2007298190A (en)
CN (1) CN101063522A (en)
DE (1) DE102007019086A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080160467A1 (en) * 2006-01-30 2008-07-03 Noritz Corporation Combustion Apparatus
US20110223549A1 (en) * 2010-05-31 2011-09-15 Resource Rex, LLC Laminar Flow Combustion System and Method for Enhancing Combustion Efficiency
US20120216797A1 (en) * 2011-02-25 2012-08-30 Lennox Hearth Products LLC. Baffle for a fireplace
CN103615798A (en) * 2013-11-04 2014-03-05 广东万和新电气股份有限公司 Fully premixed combustion gas heating water heater
JP6632226B2 (en) * 2015-06-12 2020-01-22 三菱日立パワーシステムズ株式会社 Burner, combustion device, boiler and burner control method
CN108571825B (en) * 2017-03-08 2021-03-09 青岛经济技术开发区海尔热水器有限公司 Control method and control device for blockage of filtering device and gas water heater
US10344968B2 (en) * 2017-05-05 2019-07-09 Grand Mate Co., Ltd. Gas mixer
CN107655029A (en) * 2017-11-03 2018-02-02 广东摩德娜科技股份有限公司 The coefficient of excess air management system of kiln
CN111912110A (en) * 2020-08-06 2020-11-10 华帝股份有限公司 Burner, gas heat exchange equipment and combustion control method
IT202100023330A1 (en) * 2021-09-09 2023-03-09 Polidoro S P A PLATE GAS BURNER WITH LOW EMISSION OF POLLUTANTS
CN114396620A (en) * 2021-12-22 2022-04-26 重庆海尔热水器有限公司 Combustor and gas water heater
CN114396621A (en) * 2021-12-22 2022-04-26 重庆海尔热水器有限公司 Fire grate, combustor and gas water heater

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU541670B2 (en) * 1980-05-29 1985-01-17 Matsushita Electric Industrial Co., Ltd. Burner
US4588372A (en) * 1982-09-23 1986-05-13 Honeywell Inc. Flame ionization control of a partially premixed gas burner with regulated secondary air
US4956311A (en) * 1989-06-27 1990-09-11 National Semiconductor Corporation Double-diffused drain CMOS process using a counterdoping technique
KR950000141B1 (en) * 1990-04-03 1995-01-10 미쓰비시 뎅끼 가부시끼가이샤 Semiconductor device & manufacturing method thereof
US5516711A (en) * 1994-12-16 1996-05-14 Mosel Vitelic, Inc. Method for forming LDD CMOS with oblique implantation
US5759901A (en) * 1995-04-06 1998-06-02 Vlsi Technology, Inc. Fabrication method for sub-half micron CMOS transistor
US6004854A (en) * 1995-07-17 1999-12-21 Micron Technology, Inc. Method of forming CMOS integrated circuitry
US5960319A (en) * 1995-10-04 1999-09-28 Sharp Kabushiki Kaisha Fabrication method for a semiconductor device
US5971745A (en) * 1995-11-13 1999-10-26 Gas Research Institute Flame ionization control apparatus and method
US6346439B1 (en) * 1996-07-09 2002-02-12 Micron Technology, Inc. Semiconductor transistor devices and methods for forming semiconductor transistor devices
US6045353A (en) * 1996-05-29 2000-04-04 American Air Liquide, Inc. Method and apparatus for optical flame control of combustion burners
TW317653B (en) * 1996-12-27 1997-10-11 United Microelectronics Corp Manufacturing method of memory cell of flash memory
US5933741A (en) * 1997-08-18 1999-08-03 Vanguard International Semiconductor Corporation Method of making titanium silicide source/drains and tungsten silicide gate electrodes for field effect transistors
KR100568077B1 (en) * 1997-09-19 2006-04-05 가부시키가이샤 히타치세이사쿠쇼 Method for manufacturing semiconductor device
US5956584A (en) * 1998-03-30 1999-09-21 Texas Instruments - Acer Incorporated Method of making self-aligned silicide CMOS transistors
KR100265227B1 (en) * 1998-06-05 2000-09-15 김영환 Method for fabricating cmos transistor
US6074915A (en) * 1998-08-17 2000-06-13 Taiwan Semiconductor Manufacturing Company Method of making embedded flash memory with salicide and sac structure
JP3164076B2 (en) * 1998-08-28 2001-05-08 日本電気株式会社 Method for manufacturing semiconductor device
US6342422B1 (en) * 1999-04-30 2002-01-29 Tsmc-Acer Semiconductor Manufacturing Company Method for forming MOSFET with an elevated source/drain
US6124177A (en) * 1999-08-13 2000-09-26 Taiwan Semiconductor Manufacturing Company Method for making deep sub-micron mosfet structures having improved electrical characteristics
JP2001332630A (en) * 2000-05-19 2001-11-30 Sharp Corp Method of manufacturing semiconductor device
DE10029659A1 (en) * 2000-06-16 2002-01-03 Infineon Technologies Ag Method of manufacturing a field effect transistor
US6432781B2 (en) * 2000-06-19 2002-08-13 Texas Instruments Incorporated Inverted MOSFET process
DE10113468A1 (en) * 2000-09-05 2002-03-14 Siemens Building Tech Ag Burner control unit employs sensor for comparative measurement during control interval and produces alarm signal as function of difference
US6518136B2 (en) * 2000-12-14 2003-02-11 International Business Machines Corporation Sacrificial polysilicon sidewall process and rapid thermal spike annealing for advance CMOS fabrication
US6482660B2 (en) * 2001-03-19 2002-11-19 International Business Machines Corporation Effective channel length control using ion implant feed forward

Also Published As

Publication number Publication date
DE102007019086A1 (en) 2007-11-22
US20070251467A1 (en) 2007-11-01
CN101063522A (en) 2007-10-31

Similar Documents

Publication Publication Date Title
JP2007298190A (en) Combustion device
JP4743548B2 (en) Combustion device
US9927143B2 (en) Burner, combustion apparatus, water heating apparatus and combustion method
JP5380304B2 (en) Gas boiler burner
JP2017538912A (en) Improved swirl burner with fuel injectors upstream and downstream of the swirler
WO2009091115A2 (en) Bunsen burner using lean-rich combustion type
JP4551971B2 (en) Reactor using high temperature air combustion technology
JP2007225267A (en) Combustor
KR101025655B1 (en) Lean-rich burner
JP4898612B2 (en) Combustion plate burner
JP2007298191A (en) Combustion device
JP4089382B2 (en) Heater for hydrogen production equipment of fuel cell system
JP4803430B2 (en) Combustion device and combustion unit
JP4807571B2 (en) Combustion device
US20200096197A1 (en) Combustion apparatus and hot water apparatus
JP4947340B2 (en) Two-stage combustion device
JP2998421B2 (en) Combustion equipment
JP4616717B2 (en) Liquid fuel combustion equipment
JP3896591B2 (en) Two-stage combustion device
JP2622475B2 (en) Low nitrogen oxide burner
JP3072213B2 (en) Combustion equipment
JP3123277B2 (en) Combustion equipment
JP4461385B2 (en) Burner and burner unit
WO2023247690A1 (en) Retrofit kit assembly
JP4189348B2 (en) Low NOx combustor