EP0764955B1 - Kompositmagnetmaterial mit reduzierte Permeabilität und Verluste - Google Patents

Kompositmagnetmaterial mit reduzierte Permeabilität und Verluste Download PDF

Info

Publication number
EP0764955B1
EP0764955B1 EP96401962A EP96401962A EP0764955B1 EP 0764955 B1 EP0764955 B1 EP 0764955B1 EP 96401962 A EP96401962 A EP 96401962A EP 96401962 A EP96401962 A EP 96401962A EP 0764955 B1 EP0764955 B1 EP 0764955B1
Authority
EP
European Patent Office
Prior art keywords
wafers
magnetic
magnetic material
material according
binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96401962A
Other languages
English (en)
French (fr)
Other versions
EP0764955A1 (de
Inventor
Jean-Pierre Delvinquier
Richard Lebourgeois
Michel Pate
Claude Rohart
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thomson CSF SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson CSF SA filed Critical Thomson CSF SA
Publication of EP0764955A1 publication Critical patent/EP0764955A1/de
Application granted granted Critical
Publication of EP0764955B1 publication Critical patent/EP0764955B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/36Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites in the form of particles
    • H01F1/37Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites in the form of particles in a bonding agent

Definitions

  • the present invention relates to a magnetic material composite with reduced permeability and losses at frequencies below about 100 MHz.
  • the material is intended to produce in particular cores inductors or transformers.
  • Magnetic materials with reduced permeability currently available on the market have strong induction (greater than around 10 mT) very high losses which mean that today magnetic components are the most bulky components of converters.
  • induction greater than around 10 mT
  • low permeability and low losses at high frequency are contradictory characteristics.
  • An inductance of a few micro-Henrys will include a few turns or a core with low permeability.
  • a small number of turns brought to a potential difference high generates high magnetic induction in the nucleus. Like the losses in the nucleus are at least proportional to the square of the induction, they grow very quickly when the number of turns decreases. To get reduced losses, it takes a large number of turns which imposes a core with low permeability.
  • inductors with a composite magnetic core with distributed air gap. These materials are made of ferromagnetic alloys powder dispersed in a dielectric binder. Radiation losses are reduced compared to the nuclei with localized air gap.
  • powders iron and iron carbonyl powders whose permeability ranges from approximately 5 to 250 and the powders based on iron-nickel alloys whose permeability ranges from about 14 to 550.
  • the losses in these materials are 15 to 20 times greater than those of massive power ferrites under the same conditions of frequency, induction and temperature.
  • Document DE-A-42 14 376 also discloses a material magnetic for power core composed of a homogeneous mixture of ferrite and synthetic material.
  • the present invention provides a composite magnetic material which, when subjected to a magnetic field, presents both reduced losses and permeability for frequencies below about 100 MHz.
  • This composite magnetic material has losses approximately three to five times weaker than that of magnetic materials composites available on the market and permeability around 10 to 100 times weaker than spinel type ferrites, at lower frequencies at around 100 MHz.
  • the composite magnetic material according to the invention comprises magnetic particles dispersed in a binder dielectric, these particles being magnetic ceramic plates polycrystalline oriented so that their main faces are substantially parallel to the magnetic field.
  • the binder is advantageously a resin, fluid in a first then hardening time, such as an epoxy, phenolic resin, polyimide or acrylic based.
  • the plates are oriented in strata, separated by binder.
  • Each layer can have several plates separated by binder forming an air gap or a single plate.
  • Platelets belonging to neighboring strata are preferably either staggered or in columns.
  • platelets including square, the torus or the torus portion. The choice depends on the final form of the magnetic core made with the material thus obtained.
  • the pouring slip can be obtained by mixing the ceramic powder, at least one binder, at least one solvent and optionally a deflocculent.
  • the orientation of the plates can be manual. We can stack the pads on top of each other then compress them to break them.
  • Orientation can also be done by vibration or by a field magnetic.
  • the invention also relates to a core produced with such a material. magnetic composite as well as an inductor or transformer having such a core.
  • the composite magnetic material according to the invention comprises polycrystalline magnetic ceramic plates dispersed in a binder.
  • the main faces of the plates are oriented substantially parallel to the magnetic field.
  • the process for developing the composite magnetic material makes it possible to control the shape of the platelets and their positioning in the composite so as to control its permeability and his losses.
  • magnetic ceramic plates can be to do it by a classic technique of making ceramics. This technique is used in particular for the manufacture of alumina substrates, of multilayer ceramic boxes or capacitors.
  • the raw materials necessary to obtain magnetic ceramic can be mixed and ground in a jar containing steel balls in aqueous phase. This operation has for purpose of mixing and reducing the grain size of the different constituents so as to make them more responsive.
  • the mixture is then dried and Thames.
  • the powder thus obtained can be pre-sintered in an oven so to obtain the desired crystalline phase. This operation is often called chamotte.
  • a second grinding can follow the chamotte to reduce the grains which have grown during the chamotte operation. This second grinding can be done under the same conditions as the first grinding.
  • a casting slip can be obtained by mixing the powder regrind with organic binders, solvents and possibly a deflocculent. This mixture can be done in a jar with beads steel using a mechanical stirrer. The slip after a rest for allow the air bubbles formed during agitation to rise again strip casting on a bench on which a strip of mylar slides, by example, driven at constant speed. The bench is covered with a tunnel to avoid dust deposits and to slow down the evaporation of solvents. A knife held parallel to the mylar strip by screws micrometric forms an opening through which the slip passes. This opening determines the thickness of the cast strip. After evaporation and drying, the casting strip can be peeled off and cut using a cookie cutters. This ease of obtaining complex parts, toroids by example, is very interesting. Machining of massive ferrites is slow and expensive because it requires diamond tools.
  • These plates can be cut into squares, for example, 2mm x 2mm or 4mm x 4mm or 7mm x 7mm. Thin toroids or portions of thin toroids (eighth, quarter, half) can also be cut.
  • the inserts are sintered to ensure cohesion of the powder grains.
  • Sintering is done, especially for Mn-Zn ferrites under partial pressure of oxygen controlled in order to fix the level of divalent iron in platelets.
  • the plates are oriented and incorporated into a fluid binder, an Araldite type resin (registered trademark) for example, which ensures the mechanical cohesion of the composite material after hardening.
  • a fluid binder an Araldite type resin (registered trademark) for example, which ensures the mechanical cohesion of the composite material after hardening.
  • the grinding is done with steel balls in water deionized.
  • the mixture is dried in an oven and sieved through a 400 ⁇ m opening sieve.
  • Chamotte is done at 1100 ° C with a bearing time in air 3 hours.
  • the new grinding is carried out under the same conditions as the first. It is followed by a new drying and sieving.
  • the wafers are cut and then sintered.
  • the thickness of the plates varies between 100 ⁇ m and 130 ⁇ m.
  • the resin is poured before or after orientation, it depends on the orientation method used.
  • Orientation can be manual. This method applies for larger wafers, in particular the toroids, the portions of torus, the squares of 7 mm x 7 mm.
  • Figures 2a, 2b show an O-ring of material magnetic according to the invention. It is made from plates 10 in torus shape. We stack several on top of each other in strata. The stack is placed in a mold and the binder 20, type resin epoxy, phenolic, polyimide or acrylic based, for example, is paid.
  • the binder 20 fills the spaces between the different strata.
  • FIG. 2c is a top view of an O-ring obtained with this method and Figure 2d is a section.
  • the different strata bear the reference 2.
  • the binder fills the spaces on the one hand between the broken pieces 1 of the same torus and on the other hand between the different strata 2 of tori.
  • the pieces 1 are then separated by air gaps 3 in resin.
  • Two layers 2 are also separated by a layer 4 of resin.
  • the binder is fluid at first, and then hardens.
  • Figures 3a, 3b show a variant of an O-ring according to the invention. It is obtained from square plates 5. They are arranged layer by layer next to each other flat in a crown leaving a space 6 or between them. Two pads neighboring strata are staggered.
  • FIGs 4a, 4b again show a variant of a core toroid according to the invention.
  • the plates 7 are eighths of a torus. They are arranged layer by layer next to each other flat, in crown by leaving a space or gap between them. Platelets 7 of two neighboring strata coincide, they form columns. They could also have been staggered as in the figures 3a, 3b.
  • the plates are placed in a closed transparent container by a holey plug.
  • the container is placed in the air gap of a electro magnet.
  • a magnetic field is created in the air gap. Doing turn the container on itself in the magnetic field, the plates are regularly arranged in several strata and visual control is easy.
  • the position of the pads can be fixed by pushing in the plug to keep the strata in contact.
  • the binder can be added before or after orientation.
  • the losses of an iron-carbonyl composite toroid at 30 mT amount to at least 2.5 W / cm 3 at 80 ° C.
  • a core according to the invention has losses equal to 0.5 W / cm 3 as illustrated in FIG. 5b, hence a gain of a factor of 5.
  • Figures 6a, 6b schematically show a inductor and a transformer according to the invention.
  • the inductance of FIG. 6a comprises an O-ring core made of composite magnetic material according to the invention.
  • This core is formed of plates 70 in quarter torus dispersed in the dielectric binder. There are several layers separated by the binder and each layer has four plates 70 separated by an air gap 71.
  • Around the core is a coil 72.
  • the magnetic field H establishing itself in the nucleus is materialized by the circle in dotted lines.
  • the transformer of Figure 6b has an E-shaped core with rectangular legs including a central 760 and two ends 761, made of composite magnetic material according to the invention.
  • This core comprises square plates 73 embedded in the binder.
  • Two windings 74, 75 around the extreme legs 761 contribute to forming the primary and the secondary of the transformer.
  • the two coils could have been around the central leg 760.
  • the magnetic field H establishing itself in the nucleus is materialized by the dotted lines.
  • the main faces of the plates are substantially parallel to the magnetic field H .
  • the cores according to the invention have been represented in torus or in E but the invention is not limited to these types. It applies to others types in U, in pots etc ...

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Soft Magnetic Materials (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Magnetic Ceramics (AREA)

Claims (18)

  1. Magnetisches Verbundmaterial, das verringerte Verluste und eine reduzierte Permeabilität besitzt, wenn es einem Magnetfeld bei Frequenzen unter etwa 100 MHz ausgesetzt ist, dadurch gekennzeichnet, daß das Material mehrere Schichten (2) aus einem oder mehreren Plättchen (10) besitzt, die ausgehend von einem polykristallinen magnetischen Keramikpulver hergestellt, in einem Bindemittel (20) dispergiert und so ausgerichtet sind, daß ihre Hauptseiten im wesentlichen parallel zum Magnetfeld verlaufen und ohne gegenseitige Berührung sind.
  2. Magnetisches Verbundmaterial nach Anspruch 1, dadurch gekennzeichnet, daß das polykristalline magnetische Keramikmaterial ein Ferrit vom Spinell-Typ ist, das der Formel MxZnyFe2+εO4 entspricht, wobei x+y+ε=1 gilt und wobei M ein Mangan- oder Nickelion ist.
  3. Magnetisches Material nach einem der Ansprüche 1 und 2, dadurch gekennzeichnet, daß das Bindemittel ein Epoxidharz, ein Phenolharz, ein Polyimidharz oder ein Harz auf Akrylbasis ist.
  4. Magnetisches Material nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß, wenn eine Schicht mehrere Plättchen (5) enthält, diese durch das Bindemittel voneinander getrennt sind, das einen Magnetspalt (6) ergibt.
  5. Magnetisches Material nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Plättchen (5) von benachbarten Schichten auf Lücke zueinander angeordnet sind.
  6. Magnetmaterial nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Plättchen (7) von benachbarten Schichten säulenartig übereinander liegen.
  7. Magnetisches Material nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die Plättchen die Form eines Quadrats, eines Rings oder eines Teils eines Rings besitzen.
  8. Magnetisches Material nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die Plättchen (10) in Stücke (1) zerbrochen sind.
  9. Verfahren zur Herstellung des magnetischen Verbundmaterials nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß es folgende Schritte aufweist:
    Herstellung eines magnetischen Keramikpulvers,
    Herstellung eines Gießschlickers ausgehend von dem magnetischen Keramikpulver,
    Ausschneiden von Plättchen aus einer getrockneten Schlickerschicht,
    Sintern der Plättchen,
    Bildung des magnetischen Verbundmaterials ausgehend von den in einem Bindemittel verteilt angeordneten gesinterten Plättchen, wobei die Hauptseiten der Plättchen bezüglich des Magnetfelds ausgerichtet sind.
  10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß der Gießschlicker durch Mischen des Keramikpulvers mit mindestens einem Bindemittel, mindestens einem Lösungsmittel und gegebenenfalls einem flockenhemmenden Mittel erhalten wird.
  11. Verfahren nach einem der Ansprüche 9 und 10, dadurch gekennzeichnet, daß die Ausrichtung der Plättchen von Hand erfolgt.
  12. Verfahren nach einem der Ansprüche 9 bis 11, dadurch gekennzeichnet, daß die Plättchen übereinander gestapelt und dann komprimiert werden, bis sie brechen.
  13. Verfahren nach einem der Ansprüche 9 bis 12, dadurch gekennzeichnet, daß die Plättchen übereinander Schicht für Schicht aufgebracht werden.
  14. Verfahren nach einem der Ansprüche 9 oder 10, dadurch gekennzeichnet, daß die Plättchen durch Vibration ausgerichtet werden.
  15. Verfahren nach einem der Ansprüche 9 und 10, dadurch gekennzeichnet, daß die Plättchen durch ein Magnetfeld ausgerichtet werden.
  16. Magnetkern, dadurch gekennzeichnet, daß er aus einem magnetischen Material gemäß einem der Ansprüche 1 bis 8 gefertigt ist.
  17. Induktivität, dadurch gekennzeichnet, daß sie einen Kern gemäß Anspruch 16 enthält.
  18. Transformator, dadurch gekennzeichnet, daß er einen Kern gemäß Anspruch 16 enthält.
EP96401962A 1995-09-19 1996-09-13 Kompositmagnetmaterial mit reduzierte Permeabilität und Verluste Expired - Lifetime EP0764955B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9510952A FR2738949B1 (fr) 1995-09-19 1995-09-19 Materiau magnetique composite a permeabilite et pertes reduites
FR9510952 1995-09-19

Publications (2)

Publication Number Publication Date
EP0764955A1 EP0764955A1 (de) 1997-03-26
EP0764955B1 true EP0764955B1 (de) 2000-11-29

Family

ID=9482685

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96401962A Expired - Lifetime EP0764955B1 (de) 1995-09-19 1996-09-13 Kompositmagnetmaterial mit reduzierte Permeabilität und Verluste

Country Status (7)

Country Link
US (1) US6120916A (de)
EP (1) EP0764955B1 (de)
JP (1) JPH09129434A (de)
AT (1) ATE197855T1 (de)
CA (1) CA2185930A1 (de)
DE (1) DE69611072T2 (de)
FR (1) FR2738949B1 (de)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002520844A (ja) 1998-07-10 2002-07-09 エプコス アクチエンゲゼルシャフト 磁化可能な製品、その使用ならびにその製造方法
FR2795855B1 (fr) * 1999-06-29 2001-10-05 Thomson Csf Ferrites a faibles pertes
DE10000523A1 (de) * 2000-01-08 2001-07-26 Inst Maschinen Antriebe Und El Ferrit-Compound-Material mit hoher elektromagnetischer Absorption im Frequenzbereich von 20 MHz bis 40 GHz
US20030112110A1 (en) * 2001-09-19 2003-06-19 Mark Pavier Embedded inductor for semiconductor device circuit
JP2003124538A (ja) * 2001-10-16 2003-04-25 Sony Corp 情報記憶装置およびその情報記憶装置を実装した電子機器
US6610415B2 (en) * 2001-10-26 2003-08-26 Koslow Technologies Corporation Magnetic or magnetizable composite product and a method for making and using same
US7353587B2 (en) * 2004-11-01 2008-04-08 Vlt, Inc. Forming distributed gap magnetic cores
FR2879593B1 (fr) * 2004-12-20 2007-03-02 Thales Sa Materiau ferrite a faibles pertes en hyperfrequence et procede de fabrication
US20100059258A1 (en) * 2008-08-19 2010-03-11 Xu Yang Ferrite Mosaic and Magnetic Core Structure for Passive Substrate for Switched-Mode Power Supply Module
JP2011222727A (ja) * 2010-04-08 2011-11-04 Iq Four:Kk トロイダルコアとこれを用いた高周波トロイダルコイル及び高周波トロイダルトランス
JP5374537B2 (ja) * 2010-05-28 2013-12-25 住友電気工業株式会社 軟磁性粉末、造粒粉、圧粉磁心、電磁部品及び圧粉磁心の製造方法
DE102013225875A1 (de) * 2013-12-13 2015-07-02 Siemens Aktiengesellschaft Führung eines magnetischen Flusses
DE102014202531A1 (de) * 2014-02-12 2015-08-13 Siemens Aktiengesellschaft Hochspannungstransformatorvorrichtung mit einstellbarer Streuung, Wechselrichterschaltung mit einer Hochspannungstransformatorvorrichtung und Verwendung einer Hochspannungstransformatorvorrichtung
WO2020170783A1 (ja) * 2019-02-22 2020-08-27 三菱電機株式会社 コイル装置および電力変換装置
CN111875368B (zh) * 2020-07-17 2022-08-09 中国电子科技集团公司第九研究所 一种低磁导率铁氧体磁性介质材料、其制备方法及应用
JP7428098B2 (ja) * 2020-07-31 2024-02-06 Tdk株式会社 インダクタ部品及びこれを用いたdcdcコンバータ
CN112538253A (zh) * 2020-12-07 2021-03-23 陕西生益科技有限公司 一种磁介电树脂组合物、包含其的层压板及其印刷电路板

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3255052A (en) * 1963-12-09 1966-06-07 Magnetics Inc Flake magnetic core and method of making same
US3535200A (en) * 1967-09-18 1970-10-20 Gen Motors Corp Multilayered mechanically oriented ferrite
US3927930A (en) * 1972-07-10 1975-12-23 Polaroid Corp Light polarization employing magnetically oriented ferrite suspensions
NL8004200A (nl) * 1980-07-22 1982-02-16 Philips Nv Kunststofgebonden electromagnetische component en werkwijze voor het vervaardigen daarvan.
JPS5996532A (ja) * 1982-11-25 1984-06-04 Fuji Photo Film Co Ltd 磁気記録体
US4595440A (en) * 1983-12-08 1986-06-17 Memron Inc. Transfer process for forming magnetic disk memories
DE4214376A1 (de) * 1992-04-30 1993-11-04 Siemens Matsushita Components Magnetisches material fuer leistungsuebertragerkerne
US5413903A (en) * 1993-10-12 1995-05-09 Eastman Kodak Company Element having a transparent magnetic recording layer containing barium ferrite particles
US5643686A (en) * 1994-01-06 1997-07-01 Tokyo Magnetic Printing Co., Ltd. Magnetic recording medium and method for manufacturing the same
US5700594A (en) * 1995-02-09 1997-12-23 Eastman Kodak Company Magnetic medium capable of supporting both longitudinal and perpendicular recording, and method of making same
FR2740259B1 (fr) * 1995-10-24 1997-11-07 Thomson Csf Noyau magnetique mixte

Also Published As

Publication number Publication date
FR2738949B1 (fr) 1997-10-24
US6120916A (en) 2000-09-19
CA2185930A1 (fr) 1997-03-20
EP0764955A1 (de) 1997-03-26
JPH09129434A (ja) 1997-05-16
DE69611072T2 (de) 2001-05-10
FR2738949A1 (fr) 1997-03-21
DE69611072D1 (de) 2001-01-04
ATE197855T1 (de) 2000-12-15

Similar Documents

Publication Publication Date Title
EP0764955B1 (de) Kompositmagnetmaterial mit reduzierte Permeabilität und Verluste
EP0800183B1 (de) Ferrit mit niedrigen Verlusten zwischen 1MHz und 100 MHz und Herstellungsverfahren
CA2188382A1 (fr) Noyau magnetique mixte
JP2004349585A (ja) 圧粉磁心およびナノ結晶磁性粉末の製造方法
JPS59211549A (ja) 稀土類―鉄ボンド磁石
CN108503349B (zh) 一种耐大电流低温烧结NiCuZn铁氧体材料及其制备方法
JPH10163018A (ja) インダクター用軟磁性材料およびそれを用いたインダクターの製造方法
EP1829061A1 (de) Ferritmaterial mit geringen hyperfrequenzverlusten und herstellungsverfahren
EP3380438B1 (de) Granatartiges ferritmaterial mit sehr geringer sättigungsmagnetisierung und komponente mit diesem material mit sehr geringer sättigungsmagnetisierung
WO2013149574A1 (en) Nickel-zinc soft ferrite and method of producing the same
WO2012042168A1 (fr) Ferrite grenat d' yttrium - fer, composant hyperfréquences l'incluant et leurs procédés de fabrication.
JP2002528929A (ja) 磁気セラミック・トロイド複合体
EP1065676A1 (de) Ferrite mit niedrigen Verlusten
JPH10163017A (ja) 低温焼成用高周波軟磁性材料およびそれを用いたインダクターの製造方法
CN111925201A (zh) Sc掺杂六角晶系Zn2W铁氧体材料及制备方法
JP2005150425A (ja) トランス、トランス用磁心およびその製造方法
JPH06310320A (ja) 酸化物磁性体材料
EP3033755B1 (de) Ferritbauteil für leistungsverwendung und herstellungsverfahren des bauteils
FR2899579A1 (fr) Materiau ferrite a faibles pertes et a basse temperature de frittage, procede de fabrication et composant magnetique comportant ledit materiau ferrite
CN113539610B (zh) 层叠型线圈部件
JP2005209708A (ja) トランス、フェライト磁心およびその製造方法
JPH03150810A (ja) ラインフィルタ
WO2004102595A2 (fr) Materiau ferrite pour aimant permanent et procede de fabrication
JP2020136665A (ja) 複合磁性材料、磁心および電子部品
CN102050620B (zh) 一种甚高频软磁钡铁氧体材料及其制备方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT DE FR GB NL

17P Request for examination filed

Effective date: 19970426

17Q First examination report despatched

Effective date: 19990311

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19990311

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT DE FR GB NL

REF Corresponds to:

Ref document number: 197855

Country of ref document: AT

Date of ref document: 20001215

Kind code of ref document: T

REF Corresponds to:

Ref document number: 69611072

Country of ref document: DE

Date of ref document: 20010104

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20010302

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20010821

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20010822

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20010830

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20010925

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20010927

Year of fee payment: 6

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: THALES

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: THALES

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020913

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020913

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030401

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030401

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20020913

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030603

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST