CN111875368B - 一种低磁导率铁氧体磁性介质材料、其制备方法及应用 - Google Patents

一种低磁导率铁氧体磁性介质材料、其制备方法及应用 Download PDF

Info

Publication number
CN111875368B
CN111875368B CN202010690666.XA CN202010690666A CN111875368B CN 111875368 B CN111875368 B CN 111875368B CN 202010690666 A CN202010690666 A CN 202010690666A CN 111875368 B CN111875368 B CN 111875368B
Authority
CN
China
Prior art keywords
ferrite magnetic
mol
ltcf
permeability
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010690666.XA
Other languages
English (en)
Other versions
CN111875368A (zh
Inventor
刘兴
吴江
孙小龙
王福海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CETC 9 Research Institute
Original Assignee
CETC 9 Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CETC 9 Research Institute filed Critical CETC 9 Research Institute
Priority to CN202010690666.XA priority Critical patent/CN111875368B/zh
Publication of CN111875368A publication Critical patent/CN111875368A/zh
Application granted granted Critical
Publication of CN111875368B publication Critical patent/CN111875368B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/265Compositions containing one or more ferrites of the group comprising manganese or zinc and one or more ferrites of the group comprising nickel, copper or cobalt
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • H01F1/344Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/36Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites in the form of particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/442Carbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Soft Magnetic Materials (AREA)
  • Magnetic Ceramics (AREA)

Abstract

本发明公开了一种低磁导率铁氧体磁性介质材料,属于铁氧体材料技术领域,其原料包括主成分和辅助成分,其中,所述主成分含量:NiO(0.45~0.65)mol%、ZnO(42~45)mol%、CuO(9~11)mol%、Fe2O3(45~47)mol%,所述辅助成分含量:Co2O3(0.15~0.25)wt%、MnCO3(0.2~0.4)wt%、Bi2O3(0.4~0.6)wt%;本发明所得的介质材料,磁导率μi≤3、收缩率12~20%、烧结温度850~910℃,具有高电阻率特性,与功率镍锌LTCF材料体系兼容,适于铁氧体磁性介质浆料研制,满足铁氧体磁性介质浆料高耐压(击穿电压>1500V/50μm)、高绝缘电阻(>1012Ω)、极低磁导率(μi≤3)及在900℃左右实现LTCF功率器件功率镍锌LTCF材料、Ag导体浆料等多异质材料匹配共烧要求。

Description

一种低磁导率铁氧体磁性介质材料、其制备方法及应用
技术领域
本发明涉及铁氧体材料技术领域,尤其涉及一种低磁导率铁氧体磁性介质材料、其制备方法及应用。
背景技术
LTCF功率器件介质浆料是实现LTCF功率器件如LTCF微磁变压器、功率电感、功率变压器等结构和功能的关键材料,用于构建磁路和气隙,提高变压器耦合系数和增强抗饱和能力,对LTCF功率器件结构和功能的实现具有至关重要的作用。
而铁氧体磁性介质材料是研制LTCF功率器件介质浆料和实现浆料特性的关键材料,其与常规用于LTCC工艺的介质材料有本质上的区别,除需要满足铁氧体磁性介质浆料高耐压(击穿电压>1500V/50μm)、高绝缘电阻(>1012Ω)和极低的磁导率(μi≤3)要求外,更重要的是在900℃左右实现和功率镍锌LTCF材料、Ag导体浆料匹配共烧要求,因此必须开发出与功率镍锌LTCF材料体系兼容的铁氧体磁性介质材料,然后才能进行满足多异质材料匹配共烧要求的铁氧体磁性介质浆料研制。
LTCF功率器件用LTCF材料采用功率型低温烧结NiZn铁氧体(NiCuZn系列)材料,烧结温度在900℃左右。低磁导率是铁氧体磁性介质材料磁介质特性的基本要求,低磁导率铁氧体磁性介质材料可在高磁导率LTCF材料制作的多层叠片变压器层与层间形成气隙,阻断磁力线穿透,明显降低基板内部的磁通密度,从而减小漏磁。
因此,LTCF功率器件介质浆料用μi≤3铁氧体磁性介质材料的基本要求为磁导率μi≤3、收缩率12~20%、烧结温度850~910℃。
一般来说,铁氧体磁性介质材料采用NiZn铁氧体(NiCuZn系列)材料,以使其与功率镍锌LTCF材料体系兼容。提高和降低磁导率基于畴壁位移理论:
Figure 220196DEST_PATH_IMAGE001
从式中可以看出,提高材料的磁导率除了提高材料的Ms外,更主要的是降低磁晶各向异性常数K1、磁致伸缩系数λS,力求使材料的K1→0、λS→0。而K1、λS来源于自旋—轨道耦合的机制,因此有两种方法可选择:一种是采用正负K1、λS进行补偿,另一种是加入非磁性金属离子冲淡磁性离子间的耦合作用。通过选择加入非磁性金属离子Cu2+、Zn2+冲淡磁性离子间的耦合作用,降低K1、λS以提高材料的磁导率;同时采用缺铁配方,使在烧结时出现较多的氧离子空位,促进离子扩散,利用单独或组合掺杂V2O5、Bi2O3等助熔剂降低烧结温度,在微量助熔剂和较低Cu含量的条件下,可在900℃左右烧成晶粒细小而且均匀,具有优异显微结构的铁氧体,选择最佳的工艺条件,以提高材料的磁导率等方法。根据畴壁位移理论,降低材料的磁导率可采用与提高磁导率相反的途径。
NiCuZn铁氧体最佳性能的主配方组成,如图1所示;
从图1中可以看出,要实现NiCuZn铁氧体磁导率最佳性能可调,主配方中NiO含量较高(35~40mol%),ZnO含量较低(17~40mol%),否则必须配合掺杂改性等其它方法;
通过上述方法调整控制NiCuZn系LTCF材料的磁导率,因低温烧结材料的高导磁率和低烧结温度是一对矛盾,兼顾综合性能,目前满足使用要求的低温烧结NiCuZn系铁氧体材料,其磁导率大多在15~400间可调,磁导率高于400、低于15就相当困难,尤其是要实现LTCF功率器件介质浆料用μi≤3铁氧体磁性介质材料的基本要求几乎不可能。本领域亟需一种满足LTCF功率器件介质浆料用μi≤3铁氧体磁性介质材料。
发明内容
本发明的目的之一,就在于提供一种LTCF功率器件介质浆料用μi≤3铁氧体磁性介质材料,以解决上述问题。
为了实现上述目的,本发明采用的技术方案是这样的:
主配方设计上,本发明以尖晶石NiCuZn系软磁铁氧体材料为μi≤3铁氧体磁性介质材料的配方基础,材料由主成分和辅助成分组成,所述主成分为粉末状氧化物NiO、ZnO、CuO、Fe2O3,采用摩尔百分含量标示,辅助成分为Co2O3、MnCO3、低熔点添加物Bi2O3等,采用质量百分含量标示;
材料性能设计上,为了降低磁导率μi,本发明采用NiCuZn欠铁(Fe2O3含量<50mol%)、高Cu含量(CuO含量8~12mol%)、高Zn含量(ZnO含量>40mol%)、适量Co配方,利用加入非磁性金属离子Cu2+、Zn2+冲淡磁性离子间的耦合作用,降低K1、λS,同时过多ZnO、CuO类似于掺杂沉积于铁氧体相中,高Cu含量有助于降低烧结温度并抑制Zn2+挥发的方法;提高电阻率采用添加辅助成分MnCO3以抑制Fe2+与Ni2+出现的方法;降低烧结温度、控制收缩率采用高Cu含量(CuO含量8~12mol%)配方;添加低熔点物Bi2O3并配合湿法磨料工艺细化粉料颗粒(粒度分布D90<2.5μm)的方法,使材料在900℃左右烧成后具有优异显微结构(晶粒细小、均匀、完整、内部气孔少而分散等)。
具体而言,从配方上,本发明采用NiCuZn欠铁(Fe2O3含量<50mol%)、高Cu含量配方,主成分为粉末状氧化物NiO、ZnO、CuO、Fe2O3,辅助成分为Co2O3、MnCO3、低熔点添加物Bi2O3(湿法磨料时添加),并控制铁氧体磁性介质材料主成分含量:NiO(0.45~0.65)mol%、ZnO(42~45)mol%、CuO(9~11)mol%、Fe2O3(45~47)mol%,辅助成分含量Co2O3(0.15~0.25)wt%、MnCO3(0.2~0.4)wt%、Bi2O3(0.4~0.6)wt%。
作为优选的技术方案:所述主成分含量:NiO 0.50mol%、ZnO 43.50mol%、CuO10.00mol%、Fe2O3 46.00mol%;
所述辅助成分含量:Co2O3 0.20wt%、MnCO3 0.30wt%、Bi2O3 0.50wt%。
本发明的目的之二,在于提供上述的介质材料的制备方法,在传统的介质浆料制备工艺基础上,首先,采用高频振混系统有效提高各原材料氧化物的混和均匀性,达到高速破碎效果,完成干法混料,控制混料时间为40~70分钟;
然后进一步采用烧结窑炉进行预烧结,控制预烧结温度为(860~890)℃;
更进一步采用大流量循环砂磨机湿法磨料,一级磨料3~5小时,二级精细磨料3.5~5.5小时,进行粉料颗粒细化,以提高粉料活性、降低反应激活能并有效降低烧结温度,控制粉料颗粒粒度分布D90<2.5μm获得超精细铁氧体颗粒。
即本发明除了在原料配方上进行改进外,还在制备工艺方面进行了改进,工艺上采用陶瓷氧化物干法和湿法并用方案来获得2.5μm超精细铁氧体颗粒。因为传统的干法(采用高频振混系统混料D90:20μm~50μm,粒度大、分布范围宽,均匀性差)或湿法工艺技术(采用一级砂磨或球磨磨料D90:3μm~15μm,粒度大、分布范围宽,均匀性差,不适于LTCF器件多层叠片工艺)不能达到D90<2.5μm的粒度分布要求,因此本发明采用了能达到更小粒度分布要求的陶瓷氧化物干法和湿法并用方案。具体而言,采用高频振混系统有效提高各原材料氧化物的混和均匀性,达到高速初步破碎效果,完成干法混料,控制混料时间为40~70分钟,更进一步采用大流量循环砂磨机湿法磨料(一级磨料3~5小时,二级精细磨料3.5~5.5小时)进行粉料颗粒细化,以提高粉料活性、降低反应激活能并有效降低烧结温度,达到控制粉料颗粒粒度分布D90<2.5μm获得超精细铁氧体颗粒。
本发明的目的之三,在于提供上述的介质材料的应用,具体而言,将其应用于LTCF功率器件介质浆料,因为其性能能够满足LTCF功率器件功率镍锌LTCF材料、Ag导体浆料等多异质材料匹配共烧要求。
与现有技术相比,本发明的优点在于:本发明所得的介质材料,磁导率μi≤3、收缩率12~20%、烧结温度850~910℃,具有高电阻率特性,与功率镍锌LTCF材料体系兼容,适于铁氧体磁性介质浆料研制,满足铁氧体磁性介质浆料高耐压(击穿电压>1500V/50μm)、高绝缘电阻(>1012Ω)、极低磁导率(μi≤3)及在900℃左右实现LTCF功率器件功率镍锌LTCF材料、Ag导体浆料等多异质材料匹配共烧要求。
附图说明
图1为NiCuZn铁氧体最佳性能的主配方组成;
图2为ZnO含量与铁氧体磁性介质浆料磁导率关系。
具体实施方式
下面将结合实施例对本发明作进一步说明。
实施例1:
一种低磁导率铁氧体磁性介质材料,具体成分百分比为:主成分含量:NiO 0.65mol%、ZnO 42.00mol%、CuO 11.00mol%、Fe2O3 46.35mol%;辅助成分含量:Co2O3 0.25wt%、MnCO3 0.20wt%、Bi2O3 0.60wt%。
制备方法如下:
首先,采用高频振混系统有效提高各原材料氧化物的混和均匀性,达到高速破碎效果,完成干法混料,控制混料时间为70分钟;
然后,进一步采用烧结窑炉进行预烧结,控制预烧结温度为890℃;
更进一步采用大流量循环砂磨机湿法磨料(一级磨料4小时,二级精细磨料5小时)进行粉料颗粒细化,以提高粉料活性、降低反应激活能并有效降低烧结温度,控制粉料颗粒粒度分布D90<2.5μm获得超精细铁氧体颗粒。
实施例1铁氧体磁性介质材料性能为:磁导率μi:2.88、收缩率:15.50%、烧结温度900℃,制备的铁氧体磁性介质浆料性能为:耐压(击穿电压):1600V/50μm、绝缘电阻:1.48×1012Ω、磁导率μi:2.85,满足在900℃左右实现LTCF功率器件功率镍锌LTCF材料、Ag导体浆料等多异质材料匹配共烧要求。
实施例2:
一种低磁导率铁氧体磁性介质材料,具体成分百分比为:主成分含量:NiO0.60mol%、ZnO 43.00mol%、CuO 10.50mol%、Fe2O3 45.90mol%;辅助成分含量:Co2O30.21wt%、MnCO3 0.25wt%、Bi2O3 0.55wt%。
制备方法如下:
首先,采用高频振混系统有效提高各原材料氧化物的混和均匀性,达到高速破碎效果,完成干法混料,控制混料时间为65分钟;
然后,进一步采用烧结窑炉进行预烧结,控制预烧结温度为885℃;
更进一步采用大流量循环砂磨机湿法磨料(一级磨料4小时,二级精细磨料4.5小时)进行粉料颗粒细化,以提高粉料活性、降低反应激活能并有效降低烧结温度,控制粉料颗粒粒度分布D90<2.5μm获得超精细铁氧体颗粒。
实施例2铁氧体磁性介质材料性能为:磁导率μi:2.65、收缩率:15.48%、烧结温度900℃,制备的铁氧体磁性介质浆料性能为:耐压(击穿电压):1680V/50μm、绝缘电阻:2.12×1012Ω、磁导率μi:2.60,满足在900℃左右实现LTCF功率器件功率镍锌LTCF材料、Ag导体浆料等多异质材料匹配共烧要求。
实施例3:
一种低磁导率铁氧体磁性介质材料,具体成分百分比为:主成分含量:NiO0.50mol%、ZnO 43.50mol%、CuO 10.00mol%、Fe2O3 46.00mol%;辅助成分含量:Co2O30.20wt%、MnCO3 0.30wt%、Bi2O3 0.50wt%。
制备方法如下:
首先,采用高频振混系统有效提高各原材料氧化物的混和均匀性,达到高速破碎效果,完成干法混料,控制混料时间为60分钟;
然后,进一步采用烧结窑炉进行预烧结,控制预烧结温度为880℃;
更进一步采用大流量循环砂磨机湿法磨料(一级磨料4小时,二级精细磨料4小时)进行粉料颗粒细化,以提高粉料活性、降低反应激活能并有效降低烧结温度,控制粉料颗粒粒度分布D90<2.5μm获得超精细铁氧体颗粒。
实施例3铁氧体磁性介质材料性能为:磁导率μi:2.26、收缩率:15.43%、烧结温度900℃,制备的铁氧体磁性介质浆料性能为:耐压(击穿电压):1780V/50μm、绝缘电阻:2.36×1012Ω、磁导率μi:2.18,满足在900℃左右实现LTCF功率器件功率镍锌LTCF材料、Ag导体浆料等多异质材料匹配共烧要求。
实施例4:
一种低磁导率铁氧体磁性介质材料,具体成分百分比为:主成分含量:NiO0.50mol%、ZnO 44.00mol%、CuO 9.50mol%、Fe2O3 46.00mol%;辅助成分含量:Co2O3 0.17wt%、MnCO3 0.35wt%、Bi2O3 0.45wt%。
制备方法如下:
首先,采用高频振混系统有效提高各原材料氧化物的混和均匀性,达到高速破碎效果,完成干法混料,控制混料时间为50分钟;
然后,进一步采用烧结窑炉进行预烧结,控制预烧结温度为870℃;
更进一步采用大流量循环砂磨机湿法磨料(一级磨料3.5小时,二级精细磨料4.5小时)进行粉料颗粒细化,以提高粉料活性、降低反应激活能并有效降低烧结温度,控制粉料颗粒粒度分布D90<2.5μm获得超精细铁氧体颗粒。
实施例4铁氧体磁性介质材料性能为:磁导率μi:2.20、收缩率:15.42%、烧结温度900℃,制备的铁氧体磁性介质浆料性能为:耐压(击穿电压):1750V/50μm、绝缘电阻:2.22×1012Ω、磁导率μi:2.15,满足在900℃左右实现LTCF功率器件功率镍锌LTCF材料、Ag导体浆料等多异质材料匹配共烧要求。
实施例5:
一种低磁导率铁氧体磁性介质材料,具体成分百分比为:主成分含量:NiO0.45mol%、ZnO 45.00mol%、CuO 9.00mol%、Fe2O3 45.55mol%;辅助成分含量:Co2O3 0.15wt%、MnCO3 0.40wt%、Bi2O3 0.40wt%;
制备方法如下:
首先,采用高频振混系统有效提高各原材料氧化物的混和均匀性,达到高速破碎效果,完成干法混料,控制混料时间为45分钟;
然后,进一步采用烧结窑炉进行预烧结,控制预烧结温度为860℃;
更进一步采用大流量循环砂磨机湿法磨料(一级磨料3.5小时,二级精细磨料4小时)进行粉料颗粒细化,以提高粉料活性、降低反应激活能并有效降低烧结温度,控制粉料颗粒粒度分布D90<2.5μm获得超精细铁氧体颗粒。
实施例5铁氧体磁性介质材料性能为:磁导率μi:2.17、收缩率:15.43%、烧结温度900℃,制备的铁氧体磁性介质浆料性能为:耐压(击穿电压):1710V/50μm、绝缘电阻:2.10×1012Ω、磁导率μi:2.14,满足在900℃左右实现LTCF功率器件功率镍锌LTCF材料、Ag导体浆料等多异质材料匹配共烧要求。
采用本发明实施例1、2、3、4、5低磁导率铁氧体磁性介质材料,ZnO含量与制备的铁氧体磁性介质浆料磁导率关系如图2。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的构思和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (4)

1.一种低磁导率铁氧体磁性介质材料,其特征在于:其原料包括主成分和辅助成分,其中,
所述主成分含量:NiO(0.45~0.65)mol%、ZnO(42~45)mol%、CuO(9~11)mol%、Fe2O3(45~47)mol%;
所述辅助成分含量:Co2O3(0.15~0.25)wt%、MnCO3(0.2~0.4)wt%、Bi2O3(0.4~0.6)wt%。
2.根据权利要求1所述的低磁导率铁氧体磁性介质材料,其特征在于:所述主成分含量:NiO 0.50mol%、ZnO 43.50mol%、CuO 10.00mol%、Fe2O3 46.00mol%;
所述辅助成分含量:Co2O3 0.20wt%、MnCO3 0.30wt%、Bi2O3 0.50wt%。
3.权利要求1或2的低磁导率铁氧体磁性介质材料的制备方法,其特征在于:采用高频振混系统对原料氧化物进行干法混料,混料时间为40~70min;
采用烧结窑炉进行预烧结,控制预烧结温度为860~890℃;
采用大流量循环砂磨机湿法磨料,一级磨料3~5小时,二级精细磨料3.5~5.5小时。
4.权利要求1或2的低磁导率铁氧体磁性介质材料的应用,其特征在于:应用于LTCF功率器件介质浆料。
CN202010690666.XA 2020-07-17 2020-07-17 一种低磁导率铁氧体磁性介质材料、其制备方法及应用 Active CN111875368B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010690666.XA CN111875368B (zh) 2020-07-17 2020-07-17 一种低磁导率铁氧体磁性介质材料、其制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010690666.XA CN111875368B (zh) 2020-07-17 2020-07-17 一种低磁导率铁氧体磁性介质材料、其制备方法及应用

Publications (2)

Publication Number Publication Date
CN111875368A CN111875368A (zh) 2020-11-03
CN111875368B true CN111875368B (zh) 2022-08-09

Family

ID=73156068

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010690666.XA Active CN111875368B (zh) 2020-07-17 2020-07-17 一种低磁导率铁氧体磁性介质材料、其制备方法及应用

Country Status (1)

Country Link
CN (1) CN111875368B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114823042A (zh) * 2022-04-12 2022-07-29 西安锐磁电子科技有限公司 一种NFC用低损耗NiZn软磁铁氧体磁片及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106278224A (zh) * 2016-08-19 2017-01-04 横店集团东磁股份有限公司 一种低温共烧用软磁铜锌铁氧体材料及其制备方法
CN107382300A (zh) * 2016-05-17 2017-11-24 全球能源互联网研究院 一种镍锌软磁铁氧体材料及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2738949B1 (fr) * 1995-09-19 1997-10-24 Thomson Csf Materiau magnetique composite a permeabilite et pertes reduites

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107382300A (zh) * 2016-05-17 2017-11-24 全球能源互联网研究院 一种镍锌软磁铁氧体材料及其制备方法
CN106278224A (zh) * 2016-08-19 2017-01-04 横店集团东磁股份有限公司 一种低温共烧用软磁铜锌铁氧体材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"掺杂对Ni Zn 铁氧体品质因数的影响";乔妙杰;《材料导报》;20061130;第20卷;第345-346页 *
"过渡金属掺杂ZnFe2O4的制备和磁性能研究";谢柱;《中国优秀博硕士学位论文全文数据库(硕士)工程科技Ⅱ辑》;20180215(第02期);C042-47 *

Also Published As

Publication number Publication date
CN111875368A (zh) 2020-11-03

Similar Documents

Publication Publication Date Title
CN101236819B (zh) 一种镍铜锌铁氧体及其制造方法
Huq et al. Ni-Cu-Zn ferrite research: A brief review
EP2707883B1 (en) Procedure for magnetic grain boundary engineered ferrite core materials
CN108530050B (zh) 宽温低损耗高阻抗MnZn软磁铁氧体材料及制备方法
TWI722151B (zh) 錳鋅系鐵氧體的製造方法及錳鋅系鐵氧體
CN105198395B (zh) 一种耐热冲击功率镍锌铁氧体及其制备方法
CN114133233B (zh) 一种高频高Bs复合铁氧体材料及其制备方法
Deka et al. Enhanced permeability and dielectric constant of NiZn ferrite synthesized in nanocrystalline form by a combustion method
CN109485403A (zh) 一种高Bs低损耗软磁铁氧体材料及其制备方法
KR101218998B1 (ko) 세라믹 전자부품용 자성체 조성물, 그 제조방법 및 이를 이용한 세라믹 전자부품
CN109354488A (zh) 一种低成本永磁铁氧体材料及其制备方法
Costa et al. Combustion synthesis, sintering and magnetical properties of nanocristalline Ni-Zn ferrites doped with samarium
CN104402424A (zh) 高饱和磁通密度、高直流叠加、高居里温度的镍锌铁氧体材料及其制备方法
CN111875368B (zh) 一种低磁导率铁氧体磁性介质材料、其制备方法及应用
KR20120053920A (ko) 세라믹 전자부품용 자성체 조성물, 그 제조방법 및 이를 이용한 세라믹 전자부품
Yang et al. Effects of Bi 2 O 3–MnO 2 additives on tunable microstructure and magnetic properties of low temperature co-fired NiCuZn ferrite ceramics
CN114436636A (zh) 一种差共模电感用高磁导率锰锌铁氧体材料及其制备方法
CN104409189A (zh) 复合软磁材料及其制备方法
JP2017045892A (ja) 複合軟磁性材料及びその製造方法
CN115626820B (zh) 一种异质叠层共烧铁氧体陶瓷的制备方法
CN111792925B (zh) 一种高磁导率宽温功率型镍锌ltcf材料、其制备方法及应用
JP2005330126A (ja) MnZnフェライト及びその製造方法
Wang et al. Effect of BiVO 4 doping on the magnetic properties and microstructure of NiCuZn ferrites
CN110342922A (zh) 一种复合铁氧体材料及其制备方法、叠层电感
JPWO2018168974A1 (ja) Ni系フェライト焼結体、コイル部品、及びNi系フェライト焼結体の製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant