JP2005209708A - トランス、フェライト磁心およびその製造方法 - Google Patents

トランス、フェライト磁心およびその製造方法 Download PDF

Info

Publication number
JP2005209708A
JP2005209708A JP2004011898A JP2004011898A JP2005209708A JP 2005209708 A JP2005209708 A JP 2005209708A JP 2004011898 A JP2004011898 A JP 2004011898A JP 2004011898 A JP2004011898 A JP 2004011898A JP 2005209708 A JP2005209708 A JP 2005209708A
Authority
JP
Japan
Prior art keywords
ferrite
processing
manufacturing
heat treatment
ferrite core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004011898A
Other languages
English (en)
Inventor
Yuji Sezai
勇司 瀬在
Masahiko Watanabe
雅彦 渡辺
Katsushi Yasuhara
克志 安原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2004011898A priority Critical patent/JP2005209708A/ja
Publication of JP2005209708A publication Critical patent/JP2005209708A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Magnetic Ceramics (AREA)

Abstract

【課題】 電磁気特性に優れたフェライト磁心、たとえば総高調波歪(THD)の小さいフェライト磁心を提供すること。
【解決手段】 フェライト成形体を焼成し、フェライト焼結体を得る焼成工程と、前記焼成工程の後に、フェライト焼結体を加工する加工工程と、前記加工工程の後に、前記加工を行ったフェライト焼結体を、不活性ガス雰囲気中、500℃以上、900℃以下の温度で、熱処理を行う熱処理工程とを含有することを特徴とするフェライト磁心の製造方法、および該方法で製造されるフェライト磁心。
【選択図】 無し






Description

本発明は、フェライト磁心の製造方法、該方法で製造されるフェライト磁心、および該フェライト磁心を使用したトランスに係り、さらに詳しくは、各種通信機器等に好適に使用され、電磁気特性に優れたフェライト磁心、たとえば総高調波歪(THD:Total Harmonic Distortion)が小さいフェライト磁心に関する。
伝送トランスや電源用トランスの磁心としては、一般にフェライトから構成されるフェライト磁心が使用されている。これは、フェライトが他の軟磁性金属材料に比べ、高周波数帯域での初透磁率の低下や電力損失の増大が少なく、安価に製造できるためである。
このようなフェライト磁心については、更なる性能の向上への要求が強く、この要求に答えるために、電磁気特性の向上等が試みられている。たとえば、フェライトの低損失化を図ることを目的とし、フェライトの製造工程において、焼成後に熱処理を行う工程を有するフェライトの製造方法が開示されている(特許文献1〜4)。
特許文献1,2には、フェライト成形体を焼成した後に、900〜1100℃または、800〜1000℃で熱処理を行う工程を有するフェライト磁心の製造方法が開示されている。これらの文献において、該熱処理は、フェライト焼結体の粒界相を再酸化することを目的として行われている。
特許文献3には、フェライト成形体を10%以上の酸素分圧で焼成した後に、900〜1100℃で熱処理を行う工程を有するフェライトの製造方法が開示されている。この文献において、該熱処理は、焼成時の温度保持工程および冷却過程の酸素分圧を10%以上とすることにより析出するヘマタイト相を、再度スピネル化することを目的として行われている。
特許文献4には、フェライト成形体を焼成した後に、500〜800℃で1時間以上熱処理し、その後、200℃/時間以下で冷却する工程を有するフェライトの製造方法が開示されている。この文献において、該熱処理は、焼きなまし効果、すなわち、冷却歪みを低減することを目的としている。
また、特許文献5には、バレル研磨時の加工歪みにより発生する透磁率の低下を抑制することを目的として、フェライト成形体を焼成した後に、焼成により得られた焼結体をバレル研磨し、バレル研磨を行った焼結体をアニールする工程を含有するフェライト磁心の製造方法が開示されている。
上記バレル研磨は、トランス等に組み込んだときにトランス本体や、コイルの巻線等を傷つけないようにするために、焼成後のフェライト焼結体のエッジ部に存在するバリを除去したり、Rを付与することを目的として行われる研磨方法である。このバレル研磨は、通常、フェライト焼結体にアルミナ粒子等の硬質なメディアを用いて行われる。
特開平5−13212号公報 特開平10−135022号公報 特開平9−180927号公報 特開2002−367822号公報 特開2003−68549号公報
近年、各種電子機器分野では、更なる電子機器の小型化、薄型化および高性能化などの要求が高まっている。そして、その要求に応えるべく、フェライト磁心の更なる小型、高性能化を達成するために、たとえば、焼成後のフェライト焼結体に一定の高精度な加工を行うことが必要とされてきている。
このような高精度な加工としては、砥石等を使用した研磨加工や研削加工等が挙げられる。該加工は、電磁気特性を向上させるために、フェライト磁心の面精度の向上や、インダクタンス調整用のギャップの付与を目的として、行われる。このような高精度な加工を、焼成後のフェライト焼結体に行うことにより、電磁気特性を向上させることが可能である。しかし、同時に、加工時にフェライト磁心にかかる応力により、加工歪みが発生してしまい、加工歪みによる電磁気特性の劣化が、引き起こされる傾向にある。したがって、上記高精度な加工を行ったフェライト磁心の加工歪みを緩和することにより、フェライト磁心の電磁気特性の更なる向上が期待できる。
本発明の目的は、焼成後のフェライト焼結体に高精度な加工を行うフェライト磁心の製造方法において、上記加工により生ずる加工歪みを緩和し、優れた電磁気特性を有するフェライト磁心の製造方法、および該製造方法により得られるフェライト磁心を提供することである。さらに、本発明は、上記特性を有するフェライト磁心を含有するトランスを提供することも目的とする。
本発明者等は、焼成後のフェライト焼結体に高精度な加工を行うフェライト磁心の製造方法において、フェライト焼結体を所定条件下で熱処理することにより、焼成後の加工により発生する加工歪みを緩和することが可能であり、電磁気特性に優れたフェライト磁心、たとえば総高調波歪(THD:Total Harmonic Distortion)の小さいフェライト磁心が得られることを見出し、本発明を完成するに至った。
すなわち、本発明に係るフェライト磁心の製造方法は、
フェライト成形体を焼成し、フェライト焼結体を得る焼成工程と、
前記焼成工程の後に、フェライト焼結体を加工する加工工程と、
前記加工工程の後に、前記加工を行ったフェライト焼結体を、不活性ガス雰囲気中、500℃以上、900℃以下の温度で、熱処理を行う熱処理工程とを含有することを特徴とする。
本発明によると、焼成により得られるフェライト焼結体を加工した後に、このフェライト焼結体を上記所定条件で熱処理することにより、焼成後の加工により発生した加工歪みを緩和することが可能となる。そのため、電磁気特性に優れたフェライト磁心、たとえば総高調波歪(THD)の小さいフェライト磁心を得ることができる。
なお、上述した特許文献1〜4では、焼成後のフェライト焼結体について、加工は行われていない。したがって、これらの文献においては、フェライト焼結体について、焼成後に熱処理を行ってはいるが、この熱処理は、焼成後の加工により生じる加工歪みを解消するための熱処理ではない。そのため、本発明と特許文献1〜4記載の発明とは、目的および効果において、異なる発明である。
好ましくは、前記熱処理工程における前記不活性ガスが、Nガス、Heガス、NeガスおよびArガスから選ばれる1種または2種以上を、主として含有する。
好ましくは、前記熱処理工程における前記不活性ガス中のOの含有量が、体積含有率で500ppm以下、さらに好ましくは200ppm以下である。
好ましくは、前記熱処理工程における熱処理の温度が、600℃以上、800℃以下であり、より好ましくは600℃以上、700℃未満である。
好ましくは、前記加工工程における加工方法が、砥石を使用して行う加工方法であり、具体的には、砥石を使用して行う研磨加工や研削加工等が挙げられる。また、フェライト焼結体の加工は、フェライト焼結体の表面全体に対して行う加工でも良いし、表面の一部に対して行う加工でも良い。
好ましくは、前記加工工程における加工が、インダクタンス調整用のギャップを形成する加工を含有する。
好ましくは、前記加工工程における加工の加工深さが、10μm以上、より好ましくは50μm以上、さらに好ましくは100μm以上である。
好ましくは、前記加工工程における加工方法が、バレル研磨加工以外の加工方法である。
本発明においては、上記加工工程における加工は、砥石を使用した研磨加工や研削加工等の高精度な加工であることが好ましい。このような高精度な加工としては、たとえば、総高調波歪(THD)の低減等の電磁気特性の向上を目的とした面精度を向上させるための加工や、インダクタンスを高精度に調整するためのギャップ加工等が挙げられる。したがって、特許文献5に記載されているような、バリ取り等を目的としたバレル研磨と、本発明の加工工程における加工とは、目的、方法および効果が、異なる加工である。
好ましくは、前記熱処理工程前のフェライト焼結体の総高調波歪(THD)に対する、前記熱処理工程後のフェライト焼結体の総高調波歪(THD)の低下の幅が、1dB以上、さらに好ましくは2dB以上である。
なお、総高調波歪(THD:Total Harmonic Distortion)は、データ通信時の入力データの基本信号に対する高調波成分とノイズ成分の割合のことを意味し、下記式(1)で算出される。伝送波形の高調波歪やノイズが小さいほど、THDは小さくなる。
THD(dB)=20×log[(高調波+ノイズ)/(基本波+高調波+ノイズ)]…式(1)
各周波数の総高調波歪(THD)を低減するためには、トランスの駆動条件におけるフェライト磁心のヒステリシス損失の低減や、B−H曲線における磁化曲線の直線性を良くすることが必要である。フェライト磁心においては、特にヒステリシス損失の低減が総高調波歪(THD)を小さくするために重要である。
好ましくは、前記フェライト磁心が、Feの酸化物、Mnの酸化物およびZnの酸化物を含有するMn−Zn系のフェライトから構成される。
本発明に係るフェライト磁心は、上記いずれかの方法により製造される。
本発明に係るトランスは、上記のフェライト磁心の回りにコイルを巻線することにより、作製される。
本発明によると、焼成後のフェライト焼結体に高精度な加工、たとえば、砥石を使用した研磨加工や研削加工等の加工を行い、加工を行ったフェライト焼結体を所定条件下で熱処理することにより、焼成後の加工により発生する加工歪みを緩和することが可能であるため、電磁気特性に優れたフェライト磁心、たとえば総高調波歪(THD)の小さいフェライト磁心を提供することができる。
また、本発明においては、上記高精度な加工は、たとえば、面精度を向上させるための加工やギャップ加工であることが好ましい。このような高精度な加工を行い、さらに、所定条件下で熱処理することにより、加工歪みによる電磁気特性の劣化を緩和することが可能となり、総高調波歪(THD)の小さいフェライト磁心を得ることができる。そのため、たとえば、通信トランスの磁心として、本発明の製造方法により製造されるフェライト磁心を使用することにより、データ伝送等において伝送波形の歪みやノイズを小さくすることができる。したがって、通信トランスの伝送エラーの発生を有効に防止することができ、高精度でデータ信号の伝送を行うことが可能となる。
以下、本発明を、図面に示す実施形態に基づき説明する。
図1(a)、図1(b)は本発明の一実施形態に係るギャップを有するEP型のフェライト磁心の斜視図および正面図、図1(c)、図1(d)はギャップを有しないEP型のフェライト磁心の斜視図および正面図、
図2(a)、図2(b)はギャップを有するEP型のフェライト磁心とギャップを有しないEP型のフェライト磁心を突き合わせ面で組み合わせる前後の状態を示す正面図、
図3は本発明の実施形態に係るフェライト磁心の加工方法の例を示す図、
図4は本発明の実施形態に係るフェライト磁心の加工方法の例を示す図、
図5(a)〜(e)は本発明の実施形態に係るフェライト磁心の例を示す図、
図6は本発明の実施形態に係るフェライト磁心の加工方法の例を示す図、
図7は本発明の実施形態に係るフェライト磁心の加工方法の例を示す図、
図8は本発明の実施例においてTHD測定を行った回路図、
図9は本発明の実施例におけるTHDの広周波数帯域特性を表すグラフ、
図10は本発明の実施例における各熱処理温度におけるXRDパターンを示す図である。
図2(a)、図2(b)に示すように、本発明の一実施形態に係るフェライト磁心1は、EP型のフェライト磁心11および12が組み合わされ、各フェライト磁心11、12は、中脚部2と外脚部3を底板部4で接続して構成される。
図1(a)、図1(b)に示すギャップを有する一方のEP型のフェライト磁心11は、中脚部2と外脚部3との高さの差であるギャップΔGを有する。
図1(c)、図1(d)に示すギャップを有しないEP型のフェライト磁心12は、中脚部2と外脚部3との高さが同じであり、中脚部2の上面と外脚部3の上面とが、略同一平面になっており、ギャップΔGを有しない。
本実施形態に係るフェライト磁心1は、図2(a)、図2(b)に示すようにギャップを有するEP型のフェライト磁心11と、ギャップを有しないEP型のフェライト磁心12とが、外脚部3を介して、お互いに重なるように組み合わされ、一対のフェライト磁心1として使用される。このように組み合わされたフェライト磁心1は、ギャップを有するEP型のフェライト磁心11の中脚部2と、ギャップを有しないEP型のフェライト磁心12の中脚部2との間にギャップΔGが形成される。本実施形態に係るフェライト磁心1は、ギャップΔGを有しており、このギャップΔGの深さを調整することによりインダクタンスを調整することができる。
フェライト磁心
本実施形態のフェライト磁心1(磁心11および12)を構成するフェライトとしては、特に限定されないが、たとえば、Mn-Zn系フェライト、Ni−Zn系フェライト、Ni−Cu−Zn系フェライト、Mn−Mg系フェライト等が挙げられる。これらのなかでも、Feの酸化物、Mnの酸化物およびFeの酸化物から構成されるMn-Zn系フェライトであることが好ましい。
また、本発明の目的を達成できる範囲において、上述したFeの酸化物、Mnの酸化物およびZnの酸化物以外にも、副成分として、種々の添加物を含有させることが可能である。たとえば、SiO、CaO、Nb、V、MoO、ZrO、Ta、Bi、SnO、NiO、TiO、LiO、CuO、Cr、MgO、Al、CoO、In、Sb、Pから選ばれる1種または2種以上を好適に使用することができる。
本実施形態のフェライト磁心1(磁心11および12)の製造方法としては、まず、各原料粉末を秤量・混合し、これを仮焼し、仮焼物を所定の平均粒径、粒度分布になるように粉砕し、次いで、粉砕材料を造粒し、造粒物を所定の形状に成形する。その後、この成形体を焼成し、焼成により得られた焼結体に加工を行い、この加工を行った焼結体を不活性ガス雰囲気中、所定の温度で熱処理を施すことにより製造される。
以下、製造方法について具体的に説明する。
まず、出発原料として、上記した各酸化物あるいは焼成後にこれらの酸化物となる原料を用意する。焼成後に酸化物になる化合物としては、たとえば、炭酸塩、ハロゲン化合物、シュウ酸塩、硝酸塩、水酸化物、有機金属化合物等が挙げられる。なお、必要に応じて、副成分として種々の化合物を添加することができる。このような副成分の添加時期としては、特に限定はされないが、たとえば仮焼時、仮焼後の粉砕時等が挙げられる。
用意した出発原料を秤量し、焼成後の最終的な組成において、目的の組成となるように調整する。
なお、原料混合物中には、原料中の不可避的不純物元素が含まれ得る。このような元素としては、B、Al、Si、P、Ca、Cr、Co、Na、K、S、Clなどが挙げられる。電力損失や磁気特性への影響を抑えるためには、これら各元素の組成物全体に対する重量比率が500ppm以下であることが好ましく、特にB、Pについては100ppm以下であることが好ましい。
秤量した出発原料を混合し、仮焼きを行う。仮焼きは、原料の熱分解、成分の均質化、フェライトの生成、焼結による超微粉の消失と適度の粒子サイズへの粒成長を起こさせ、原料混合物を後工程に適した形態に変換するために行われる。仮焼は酸化性雰囲気中、通常は空気中で行われる。仮焼温度は800〜1000℃、仮焼時間は1〜3時間とすることが好ましい。
次に、上記にて得られた仮焼き材料の粉砕を行い、粉砕材料を得る。粉砕は、仮焼き材料の凝集をくずして適度の焼結性を有する粉体を製造するために行われる。仮焼き材料が大きい塊を形成しているときには、粗粉砕を行ってからボールミルやアトライターなどを用いて湿式粉砕を行う。
次に、粉砕材料の造粒(顆粒)を行い、造粒物を得る。造粒は、粉砕材料を適度な大きさの凝集粒子とし、成形に適した形態に変換するために行われる。こうした造粒法としては、たとえば、加圧造粒法やスプレードライ法などが挙げられる。スプレードライ法は、粉砕材料に、ポリビニルアルコールなどの通常用いられる結合剤を加えた後、スプレードライヤー中で霧化し、乾燥する方法である。
次に、造粒物を所定形状に成形し、成形体を得る。造粒物の成形としては、たとえば、乾式成形、湿式成形、押出成形などが挙げられる。乾式成形法は、造粒物を、金型に充填して圧縮加圧(プレス)することにより行う成形法である。
成形体の形状は、特に限定されず、用途に応じて適宜決定すれば良いが、本実施形態においては、図1(a)〜図1(d)に示すようなEP型のフェライト磁心とすることが好ましい。
本実施形態においては、まず、図1(c)、図1(d)に示す中脚部2と外脚部3の高さが同じであるギャップを有しないEP型のフェライト磁心12を複数個成形し、焼成を行い、ギャップを有しないEP型のフェライト磁心12の焼結体を得る。
焼成は、多くの空隙を含んでいる成形体の粉体粒子間に、融点以下の温度で粉体が凝着する焼結を起こさせ、緻密なフェライト焼結体を得るために行われる。焼成は、好ましくは、50〜300℃/hrで昇温し、安定温度1200〜1400℃で、2〜8時間程度、酸素濃度を制御した雰囲気下で行う。
本実施形態においては、焼成することにより得られるフェライト焼結体(EP型のフェライト磁心12の焼結体)について、まず、加工を行う。次いで、加工を行ったフェライト焼結体に熱処理を施す。
本実施形態においては、焼成後のフェライト焼結体について行う加工は、電磁気特性の向上を目的とする加工であることが好ましい。電磁気特性の向上を目的とする加工としては、フェライト磁心の面精度を向上させるための加工およびインダクタンス調整用のギャップを付与するための加工であることが好ましい。
まず、EP型のフェライト磁心12の焼結体の中脚部2および外脚部3の上面について、面精度を向上させるための加工を行う。なお、外脚部3の上面は、2個のフェライト磁心を突き合わせて使用する際に、直接他方の磁心と接触する突き合わせ面となり、その面精度は、高い方が好ましい。また、中脚部2の上面は、直接他方の磁心と接触しないが、同様に、その面精度は、高い方が好ましい。
次に、加工を行ったEP型のフェライト磁心12の中脚部2の上面にギャップを形成するためのギャップ加工を行い、ギャップを有するEP型のフェライト磁心11を作製する。ギャップ加工は、インダクタンスの調整を行うことを目的としている。ギャップ加工は、上述した面精度の向上を目的とした加工と同様の方法により行うことができる。また、ギャップを有するEP型のフェライト磁心11の中脚部2の上面、すなわち、ギャップ加工面は、直接他方の磁心と接触しないが、その面精度は、高い方が好ましい。
焼成後のフェライト焼結体について行う加工の方法としては、砥石を使用した研磨加工や研削加工等の高精度な加工であることが好ましく、砥石を使用した研磨加工や研削加工としては、たとえば、図3,4に示すような加工方法が挙げられる。
図3に示す加工方法においては、下面および側面に研磨砥粒面を有する円柱状の研削砥石5を回転させながら、ギャップ深さ分降下させ、EP型のフェライト磁心11の中脚部2を研削するように前後に動かし、ギャップ加工面を形成する。
また、図4に示す加工方法においては、研削台7の上に、EP型のフェライト磁心11を中脚部2の上面が下向きになるように固定し、上面に研磨砥粒面を有する研削砥石6およびEP型のフェライト磁心11を回転させ、研削砥石6を昇降させることにより、中脚部2の上面を研削し、ギャップ加工面を形成する。なお、EP型のフェライト磁心11は、研削台7を回転させることにより、回転させてもよい。
上記加工における加工深さ(加工量)としては、10μm以上であることが好ましく、より好ましくは50μm以上であり、さらに好ましくは100μm以上である。加工深さの上限については、特に限定されないが、通常100mm程度である。加工深さが小さすぎる、すなわち加工量が少なすぎると十分な面精度が得られない傾向にある。
上記加工により形成される加工面(突き合わせ面およびギャップ加工面)の面精度、つまり表面粗さは、1.0μm以下とすることが好ましく、さらに好ましくは、0.5μm以下とする。本実施形態においては、面精度、つまり表面粗さをこのような範囲とすることにより、優れた電磁気特性を有するフェライト磁心、たとえば総高調波歪(THD)の小さいフェライト磁心を得ることができる。なお、ここで、表面粗さとは、JIS−B0601に準拠した表面粗さ(算術表面高さ:Ra)をいう。また、表面粗さの測定は、たとえば、表面粗さ計等を使用して行うことができる。
本実施形態において、焼成後のフェライト焼結体について行う加工は、上述した面精度の向上やギャップの形成を目的とした加工であることが好ましい。このような加工の方法としては、上述したような砥石を使用した研磨加工や研削加工等の高精度な加工であることが好ましく、バリ取りが主たる目的であるバレル研磨とは、異なる。
バレル研磨は、コアのエッジ部のバリ取りや、Rの付与が主たる目的であるため、バレル研磨を行うフェライト磁心においては、上述したような高い面精度は要求されない。さらに、バレル研磨によりギャップ形成をすることは、その加工方法の性質上、現実的ではない。
次いで、上記にて加工を行ったフェライト焼結体について、熱処理を行う。
本発明の特徴点は、焼成後に上述のような電磁気特性の向上を目的とした加工を行ったフェライト焼結体について、所定の条件下で熱処理を行う点にある。このようにすることにより、加工により発生した加工歪みを緩和することができ、フェライト磁心の電磁気特性、たとえば総高調波歪(THD)を、熱処理を行う前と比較して、改善することが可能となる。なお、この理由については、必ずしも明らかではないが、熱処理による加工歪みの緩和により、ヒステリシス損失が低減するためであると考えられる。
熱処理を行う際には、以下の条件で行うことが好ましい。
熱処理を行う際の熱処理温度は、500℃以上、900℃以下であり、好ましくは600℃以上、800℃以下、より好ましくは600℃以上、700℃未満である。熱処理の温度が低すぎると熱処理を行う効果が得られなくなる傾向にあり、高すぎると焼結体の微細構造の変化が起こり、総高調波歪(THD)が悪化する傾向にある。
熱処理を行う際の熱処理時間は、0.5時間〜10時間であることが好ましく、さらに好ましくは1時間〜8時間である。熱処理時間が短すぎると熱処理を行う効果が得られなくなる傾向にあり、長すぎると製造コストが高くなるだけで、特性的な効果は少ない。
熱処理を行う際の雰囲気は、不活性ガス雰囲気とすることが望ましい。
不活性ガスとしては、Nガス、Heガス、NeガスおよびArガスから選ばれる1種または2種以上を使用することが好ましい。また、不活性ガス中のOガスの含有量は、体積含有率で500ppm以下に制御することが好ましく、さらに好ましくは200ppm以下とする。不活性ガス中のOガスの含有量は少ない方が好ましい。不活性ガス中のOガスの含有量が体積含有率で500ppmを超えると、フェライト焼結体の再酸化が起こり、電磁気特性が劣化する傾向にある。
本実施形態においては、焼成後に加工を行ったフェライト焼結体について、上記所定条件で熱処理を行うことにより、熱処理を行う前と比較して、熱処理後のフェライト焼結体の総高調波歪(THD)等の電磁気特性を改善することができ、特に総高調波歪(THD)を低減することができる。本発明によれば、熱処理を行う前と比較して、熱処理後のフェライト焼結体の総高調波歪(THD)を、好ましくは1dB以上、さらに好ましくは2dB以上低減することができる。なお、総高調波歪(THD)は、データ通信時の入力データの基本信号に対する高調波成分とノイズ成分の割合のことを意味する。
トランス
本実施形態に係るトランスは、図2に示すようにギャップを有するEP型のフェライト磁心11とギャップを有しないEP型のフェライト磁心12を、外脚部3を介し、お互いに重なるように組み合わせ、一対のフェライト磁心とし、中脚部2の周囲に所定巻数だけ巻線することにより形成される。
本実施形態に係るトランスは、ギャップを有するEP型のフェライト磁心11およびギャップを有しないEP型のフェライト磁心12の中脚部2の間に形成されるギャップΔGの深さを調整することによりインダクタンスを調整することが可能となっている。
なお、本発明は、上述した実施形態に限定されるものではなく、本発明の範囲内で種々に改変することができる。
たとえば、上述した実施形態においては、熱処理による電磁気特性の改善効果として、フェライト磁心のTHDを例示したが、他の電磁気特性、たとえば透磁率や磁気損失等についても同様に、改善することが可能である。
また、上述した実施形態においては、フェライト磁心としてEP型のフェライト磁心を例示したが、本発明に係るフェライト磁心としては、EP型のフェライト磁心に限定されず、焼成後に、たとえば研磨加工や研削加工等の高精度な加工を行う工程を経て製造されるフェライト磁心であれば何でも良い。このようなフェライト磁心としては、たとえば、図5(a)〜(e)に示す各形状を有する磁心が挙げられる。
図5(a)は、非分割型の磁心であり、磁心の一部を研磨砥粒面を有するファインカッターやサーフェイス等で切断し、ギャップを形成することにより得られる、ギャップΔGを有するトロイダル型磁心である。
図5(b)も、非分割型の磁心であり、同様に、磁心の一部を研磨砥粒面を有するファインカッターやサーフェイス等で切断し、ギャップを形成することにより得られる、ギャップΔGを有するFT型磁心である。
図5(c)は、分割型の磁心であり、E型の磁心とI型の磁心が組み合わされて構成されるEI型磁心である。この磁心においては、たとえば、E型の磁心の真ん中の脚についてギャップ加工を行いギャップ加工面を形成する。そして、このギャップ加工面を有するE型の磁心とI型の磁心とを組み合わせることによりギャップΔGが形成される。
なお、E型の磁心において、フェライト焼結体について行う加工としては、EP型の磁心と同様に、砥石を使用した研磨加工や研削加工等の高精度な加工であることが好ましく、砥石を使用した研磨加工や研削加工としては、たとえば、図6または7に示す方法で加工を行うことができる。
図6は、突き合わせ面およびギャップ加工面についての加工を、連続して行う方法である。この方法においては、まず、E型の磁心13の外脚部132および中脚部131の上面と、下面および側面に研磨砥粒面を有する円板状の研削砥石8aの下面とを接触させ、円板状の研削砥石8aを回転させることにより、外脚部132および中脚部131の上面の研削を行う。次いで、E型の磁心13の中脚部131の上面と、側面に研磨砥粒面を有する円板状の研削砥石8bの側面とを接触させ、円板状の研削砥石8bを回転させることにより、中脚部131の上面について研削を行い、ギャップ加工面を形成する。なお、図6に示した加工方法においては、E型の磁心を固定させた状態でそれぞれ研削を行う。また、研削砥石8aの回転軸と研削砥石8bの回転軸とは、垂直な関係にある。
図7に示す加工方法も、図6に示す加工方法と同様に、突き合わせ面およびギャップ加工面についての加工を、連続して行う方法であるが、図6に示した加工方法と異なり、E型の磁心をマグネットチャック9の上に固定し、マグネットチャック9が動くことにより連続的に研削を行う方法である。なお、図6および7に示す加工方法は、いずれも突き合わせ面およびギャップ加工面について、連続して加工を行う方法であるが、突き合わせ面または、ギャップ加工面の研削を別々に行う方法としても良い。すなわち、図6,7において、研削砥石8aを使用しない加工方法、または、研削砥石8bを使用しない加工方法とすることも可能である。
図5(d)も、分割型の磁心であり、二つのU型の磁心が組み合わされて構成されるUU型の磁心である。この磁心においては、たとえば、両方のU型の磁心の二つの脚の側面部をギャップ加工面とし、両磁心のギャップ加工面間に誘電体フィルムを挟むことにより、ギャップΔGが形成される。
図5(e)も、分割型の磁心であり、二つのE型の磁心が組み合わされて構成されるEE型の磁心である。この磁心においては、たとえば、二つのE型の磁心のうち一方の磁心の真ん中の脚についてギャップ加工を行いギャップ加工面を形成する。そして、このギャップ加工面を有するE型の磁心とギャップ加工面を有しないE型の磁心とを組み合わせることによりギャップΔGが形成される。または、ギャップ加工面を有するコア同士での組み合わせでも良い。
以下、本発明を、さらに詳細な実施例に基づき説明するが、本発明は、これら実施例に限定されない。
実施例1
[磁心の作製]
まず、主成分原料を準備した。主成分の出発原料としては、Fe、Mn、ZnOを用いた。次に、これらの主成分原料を、以下の条件で湿式混合し、乾燥を行い、乾燥後、仮焼成を行い仮焼成体を得た。
配合用ポットとしては、ステンレスボールミルポットを使用し、配合用メディアとしては、スチールボール使用し、配合時間は、16時間とした。また、仮焼きは、大気中、温度900℃、2時間の条件で行った。
次いで、仮焼成により得られた仮焼成体に、フェライト組成物全体に対して、各種副成分を添加し、粉砕(混合)を行い、焼成前のフェライト材料を得た。粉砕用ポットとしては、ステンレスボールミルポットを使用し、粉砕用メディアとしては、スチールボールを使用し、粉砕時間は8時間とした。
得られたフェライト材料100重量部にバインダーとしてのポリビニルアルコールを1.0重量部添加し、スプレードライヤーにて造粒して造粒物とし、EP型の形状に加圧成形し、1250〜1400℃で焼成することにより、図1(c)、図1(d)に示す中脚部および外脚部を有するEP型のフェライト磁心を得た。
次に、上記にて得られた焼結体の中脚部および外脚部の上面をバーチカル加工機により表面加工を行い、図1(c)、図1(d)に示すギャップを有しないEP型の焼結体を得た。なお、このときの加工深さは、約500μmとし、バーチカル加工の際に使用した研削砥石としては、研磨砥粒の粒度が#400(JIS−R6001)である研削砥石を使用した。
次に、ギャップを有しないEP型の焼結体試料のうち半分の試料について、中脚部の上面について、ギャップ加工を行い、図1(a)、図1(b)に示すギャップを有するEP型の焼結体を得た。なお、このときのギャップ深さは、約30μmとし、ギャップ加工の際に使用した研削砥石としては、研磨砥粒の粒度が#300(JIS−R6001)である研削砥石を使用した。
次に、上記にて研削加工を行ったEP型の焼結体(ギャップを有しないEP型の焼結体、ギャップを有するEP型の焼結体)について、表1に示す各温度で熱処理を行うことにより、EP型のフェライト磁心試料2〜11を作製した。なお、EP型のフェライト磁心試料1は、熱処理を行わなかった試料である。
[トランスの作製]
上記にて作製した各EP型のフェライト磁心試料1〜11のギャップを有しないEP型のフェライト磁心とギャップを有するEP型のフェライト磁心とを、図2に示すように外脚部3を介して、お互いに重なる状態とし、かつ両磁心の中脚部2を1次巻線と2次巻線とが巻回されたボビンに挿入することによりトランス試料を作製した。なお、本実施例においては、測定時の応力の影響を極力少なくするために、2個の磁心の固定には、テープで巻く方法を用いた。また、巻線は、リーケージインダクタンスを小さくするために、1次巻線を2分割して、1次巻線(70ターン)−2次巻線(140ターン)−1次巻線(70ターン)というサンドイッチ巻きとした。
総高調波歪(THD)の測定
上記にて作製したトランス試料をオーディオアナライザ(Precision社製 System2)に接続し、THDの測定を行った。なお、総高調波歪(THD)は、下記式(1)で算出される。
THD(dB)=20×log[(高調波+ノイズ)/(基本波+高調波+ノイズ)]…式(1)
図8は、THD測定を行った回路図である。図8に示すように、1次巻線Npは10Ωの抵抗を直列に接続して、ジェネレータ側の端子t1、t2に接続し、2次巻線Nsは50Ωの抵抗を並列に接続して、アナライザー側の端子t3、t4に接続する。なお測定器のジェネレータ側には40Ωの抵抗が直列に接続されているため、1次巻線には合計で50Ωの抵抗が直列に接続されていることになる。
測定は、端子t1、t2より、トランスの1次巻線Npに、周波数5kHzのデータ信号を、1次巻線の両端の電圧が1.8Vとなるように入力し、このとき、1次巻線Np側から2次巻線Ns側に出力される伝送波形を端子t3、t4より入力し、分析することにより行った。このとき、トランスを図8に示すように、恒温槽THに格納し、25℃に保持して測定した。THDの値は小さい方が好ましい。
本実施例において、THDの測定周波数を5kHzとしたのは以下の理由による。図9はTHDの広周波数帯域特性を表すグラフであり、図9に示すように、一般に、高周波数でTHDの測定を行うと、低周波数で測定した場合と比較して、THDの値が小さくなり、良好な結果となりやすくなる傾向にある。そのため、高周波数でTHDの測定を行うと、トランスのTHD特性に有意差が現れにくい。したがって、トランスのTHD特性に有意差が現れるためには、低周波数で測定を行うことが必要であり、本実施例では、5kHzでTHDの測定を行った。
比抵抗の測定
比抵抗(単位:Ω・m)は、直径10mm×厚さ10mmの円柱形の試料を作製し、インジウム−ガリウム電極を塗り、直流抵抗値を測定することにより求めた。測定は、TOA Electronics社製のSUPER MEGOHMMETER MODEL SM−5Eにて行った。結果を表1に示す。
X線回折(XRD)測定
上記にて作製したEP型のフェライト磁心試料1,2,4および8についてX線回折(XRD)測定より評価を行った。X線回折(XRD)測定は、島津製作所製のX線回折装置(XRD−6000)を使用して行った。X線の条件は、ターゲットにCu、管電圧=40kV、管電流=30mAとし、スリット条件は、ダイバージェンススリット(DS)=1.0度、スキャッタースリット(SS)=1.0度、レシービングスリット(RS)=0.15mmとした。X線回折(XRD)測定の結果の評価は、2θ=125度付近における回折ピークの半価幅を評価することにより行った。半価幅が小さいほど、加工歪みは緩和されていると考えられる。表2および図10に結果を示す。
Figure 2005209708
評価1
表1にEP型のフェライト磁心試料1〜11の熱処理工程における熱処理温度、THDの変化量(ΔTHD)および比抵抗を示す。THDの変化量(ΔTHD)は、各試料のTHDの値の、熱処理を行っていない試料1のTHDの値に対する各試料のTHDの値の差である。すなわち、ΔTHDの値が正の値である試料は、熱処理を行うことにより、熱処理を行う前と比較してTHDの値が増大しており、逆に、ΔTHDの値が負の値である試料は、熱処理により、THDの値が低減している。なお、加工後の熱処理を行わなかった実施例の試料1のTHDの値は、−85.0dBであった。
表1より、熱処理温度が、500℃以上、900℃以下である実施例の試料3〜9は、ΔTHDの値が、負の値となっており、熱処理によりTHDの値が低減する結果となった。THDの改善の幅については、試料3〜9はΔTHDの値が、いずれも−1.0dB以下となり、THDの値が1.0dB以上改善されていることが確認できた。特に、試料4〜8のΔTHDの値は、いずれも−2.0dB以下となり、THDの値を2.0dB以上低減することが可能であり、さらに、試料4〜6のΔTHDの値は、いずれも−2.5dB以下となり、THDの値を2.5dB以上低減することが可能であった。また、実施例の試料3〜9は、比抵抗が熱処理を行っていない試料1と同等か、あるいは、高くなる結果となった。特に、実施例の試料4〜8は、比抵抗が2.0Ω・m以上となった。
一方、熱処理温度を400℃とした比較例の試料2は、ΔTHDの値が+0.4dBであり、熱処理前と比較して若干増加する傾向にあった。この理由としては、400℃では、熱処理温度が低すぎて加工歪みの緩和効果が不十分であったためであると考えられる。
熱処理温度を1000℃、1100℃とした比較例の試料10,11は、ΔTHDの値が、+3.0dB、+13.8dBとなり、熱処理によりTHDの値が大幅に増大する傾向にあった。また、試料10,11は、比抵抗についても、それぞれ1.4Ω・m、0.3Ω・mとなり、熱処理前と比較して低下する傾向にあった。試料10,11において、熱処理により、THDの値が大幅に劣化した原因としては、これらの試料の比抵抗が低下していることから、熱処理による加工歪みの緩和効果以外に、熱処理によるフェライトの微細粒界構造の変化等が起こったためであると考えられる。
この結果より、熱処理によりTHDの値を低減させたフェライト磁心を得るためには、熱処理温度は、500℃以上、900℃以下であり、好ましくは600℃以上、800℃以下、より好ましくは600℃以上、700℃未満であることが確認できた。
Figure 2005209708
評価2
表2に、EP型のフェライト磁心試料1,2,4および8の熱処理工程における熱処理温度、X線回折(XRD)測定の2θ=125度付近における回折ピークの半価幅を示す。また、図10は、各試料の2θ=125度付近のX線回折(XRD)パターンを示す図である。
表2より、600℃および800℃で熱処理を行った試料4,8は、2θ=125度付近における回折ピークの半価幅が、0.157、0.148となり、熱処理を行わなかった試料1と比較して低い値となった。一方、400℃で熱処理を行った試料2の2θ=125度付近における回折ピークの半価幅は、熱処理を行わなかった試料1と、ほぼ同等であった。また、図10より、試料4,8の2θ=125度付近における回折ピークの強度は、試料1,2と比較して、大きくなる結果となった。この結果より、熱処理温度を600℃、800℃とすることにより、熱処理前と比較して、X線回折(XRD)による回折ピークの半価幅が減少することが確認でき、これは加工歪みが緩和したためであると考えられる。
図1(a)、図1(b)は本発明の一実施形態に係るギャップを有するEP型のフェライト磁心の斜視図および正面図、図1(c)、図1(d)はギャップを有しないEP型のフェライト磁心の斜視図および正面図である。 図2(a)、図2(b)はギャップを有するEP型のフェライト磁心とギャップを有しないEP型のフェライト磁心を突き合わせ面で組み合わせる前後の状態を示す正面図である。 図3は本発明の実施形態に係るフェライト磁心の加工方法の例を示す図である。 図4は本発明の実施形態に係るフェライト磁心の加工方法の例を示す図である。 図5(a)〜(e)は本発明の実施形態に係るフェライト磁心の例を示す図 図6は本発明の実施形態に係るフェライト磁心の加工方法の例を示す図である。 図7は本発明の実施形態に係るフェライト磁心の加工方法の例を示す図である。 図8は本発明の実施例においてTHD測定を行った回路図である。 図9は本発明の実施例におけるTHDの広周波数帯域特性を表すグラフである。 図10は本発明の実施例における各熱処理温度におけるXRDパターンを示す図である。
符号の説明
1… フェライト磁心
11… ギャップを有するEP型のフェライト磁心
12… ギャップを有しないEP型のフェライト磁心
13… E型の磁心
131… 中脚部
132… 外脚部
2… 中脚部
3… 外脚部
4… 底板
5,6… 研削砥石
7… 研削台
8a,8b… 研削砥石
9… マグネットチャック

Claims (15)

  1. フェライト磁心の製造方法であって、
    フェライト成形体を焼成し、フェライト焼結体を得る焼成工程と、
    前記焼成工程の後に、フェライト焼結体を加工する加工工程と、
    前記加工工程の後に、前記加工を行ったフェライト焼結体を、不活性ガス雰囲気中、500℃以上、900℃以下の温度で、熱処理を行う熱処理工程とを含有することを特徴とするフェライト磁心の製造方法。
  2. 前記熱処理工程における前記不活性ガスが、Nガス、Heガス、NeガスおよびArガスから選ばれる1種または2種以上を、主として含有する請求項1に記載のフェライト磁心の製造方法。
  3. 前記熱処理工程における前記不活性ガス中のOの含有量が、体積含有率で500ppm以下である請求項1または2に記載のフェライト磁心の製造方法。
  4. 前記熱処理工程における熱処理の温度が、600℃以上、800℃以下である請求項1〜3のいずれかに記載のフェライト磁心の製造方法。
  5. 前記熱処理工程における熱処理の温度が、600℃以上、700℃未満である請求項1〜4のいずれかに記載のフェライト磁心の製造方法。
  6. 前記加工工程における加工方法が、砥石を使用して行う加工方法である請求項1〜5のいずれかに記載のフェライト磁心の製造方法。
  7. 前記加工工程における加工が、インダクタンス調整用のギャップを形成する加工を含有する請求項1〜6のいずれかに記載のフェライト磁心の製造方法。
  8. 前記加工工程における加工の加工深さが、10μm以上である請求項1〜7のいずれかに記載のフェライト磁心の製造方法。
  9. 前記加工深さが、50μm以上である請求項8に記載のフェライト磁心の製造方法。
  10. 前記加工深さが、100μm以上である請求項8または9に記載のフェライト磁心の製造方法。
  11. 前記加工工程における加工方法が、バレル研磨加工以外の加工方法である請求項1〜10のいずれかに記載のフェライト磁心の製造方法。
  12. 前記熱処理工程前のフェライト焼結体の総高調波歪に対する、前記熱処理工程後のフェライト焼結体の総高調波歪の低下の幅が、1dB以上である請求項1〜11のいずれかに記載のフェライト磁心の製造方法。
  13. 前記フェライト磁心が、Feの酸化物、Mnの酸化物およびZnの酸化物を含有するMn−Zn系のフェライトから構成される請求項1〜12のフェライト磁心の製造方法。
  14. 請求項1〜13のいずれかに記載の方法により製造されるフェライト磁心。
  15. 請求項14に記載のフェライト磁心の周囲にコイルを巻回してあるトランス。
JP2004011898A 2004-01-20 2004-01-20 トランス、フェライト磁心およびその製造方法 Withdrawn JP2005209708A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004011898A JP2005209708A (ja) 2004-01-20 2004-01-20 トランス、フェライト磁心およびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004011898A JP2005209708A (ja) 2004-01-20 2004-01-20 トランス、フェライト磁心およびその製造方法

Publications (1)

Publication Number Publication Date
JP2005209708A true JP2005209708A (ja) 2005-08-04

Family

ID=34898447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004011898A Withdrawn JP2005209708A (ja) 2004-01-20 2004-01-20 トランス、フェライト磁心およびその製造方法

Country Status (1)

Country Link
JP (1) JP2005209708A (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007088215A (ja) * 2005-09-22 2007-04-05 Doshisha 磁性体材料及びその製造方法
WO2008026281A1 (fr) * 2006-08-31 2008-03-06 Mitsubishi Electric Corporation Dispositif de couplage inductif
JP2014513436A (ja) * 2011-05-05 2014-05-29 ホガナス アクチボラグ (パブル) 誘導鉄心、圧縮装置、及び製造方法
JP2016067088A (ja) * 2014-09-24 2016-04-28 東芝ライテック株式会社 電源装置及びインダクタ素子
CN108364779A (zh) * 2017-12-22 2018-08-03 山东恒瑞磁电科技有限公司 一种提高铁氧体磁芯磁导率的烧结系统及其方法
CN108428543A (zh) * 2017-12-22 2018-08-21 山东恒瑞磁电科技有限公司 一种提高铁氧体磁芯磁导率的筛选方法
CN109087801A (zh) * 2017-12-22 2018-12-25 山东恒瑞磁电科技有限公司 一种“e”型磁芯的磨削装置及其方法
CN109727762A (zh) * 2017-10-30 2019-05-07 中山市天文电子有限公司 一种用于软磁铁氧体磁芯拆分快速取料装置
CN113400187A (zh) * 2021-07-21 2021-09-17 合肥麦可一科技有限公司 一种ep型铁氧体磁芯中柱研磨装置及砂轮进刀控制方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007088215A (ja) * 2005-09-22 2007-04-05 Doshisha 磁性体材料及びその製造方法
WO2008026281A1 (fr) * 2006-08-31 2008-03-06 Mitsubishi Electric Corporation Dispositif de couplage inductif
JP2014513436A (ja) * 2011-05-05 2014-05-29 ホガナス アクチボラグ (パブル) 誘導鉄心、圧縮装置、及び製造方法
JP2016067088A (ja) * 2014-09-24 2016-04-28 東芝ライテック株式会社 電源装置及びインダクタ素子
CN109727762A (zh) * 2017-10-30 2019-05-07 中山市天文电子有限公司 一种用于软磁铁氧体磁芯拆分快速取料装置
CN108364779A (zh) * 2017-12-22 2018-08-03 山东恒瑞磁电科技有限公司 一种提高铁氧体磁芯磁导率的烧结系统及其方法
CN108428543A (zh) * 2017-12-22 2018-08-21 山东恒瑞磁电科技有限公司 一种提高铁氧体磁芯磁导率的筛选方法
CN109087801A (zh) * 2017-12-22 2018-12-25 山东恒瑞磁电科技有限公司 一种“e”型磁芯的磨削装置及其方法
CN113400187A (zh) * 2021-07-21 2021-09-17 合肥麦可一科技有限公司 一种ep型铁氧体磁芯中柱研磨装置及砂轮进刀控制方法

Similar Documents

Publication Publication Date Title
JP4244193B2 (ja) MnZnフェライトの製造方法及びMnZnフェライト
JP5332254B2 (ja) フェライト焼結体
TWI722151B (zh) 錳鋅系鐵氧體的製造方法及錳鋅系鐵氧體
JP3584438B2 (ja) Mn−Znフェライトおよびその製造方法
JP2004217452A (ja) フェライト材料およびその製造方法
JP3584439B2 (ja) Mn−Znフェライトおよびその製造方法
JP5089963B2 (ja) MnZnNiフェライトの製造方法
JP2007238339A (ja) Mn−Zn系フェライト材料
JP2005150425A (ja) トランス、トランス用磁心およびその製造方法
JP2005209708A (ja) トランス、フェライト磁心およびその製造方法
JP3588693B2 (ja) Mn−Zn系フェライトおよびその製造方法
JP2007269502A (ja) Mn−Zn系フェライト材料
JP3597673B2 (ja) フェライト材料
JP5734078B2 (ja) フェライト焼結体およびこれを備えるノイズフィルタ
JP5828308B2 (ja) フェライトコア及びトランス
CN111848148B (zh) 一种高Bs的镍锌铁氧体及其制备方法
JP5041480B2 (ja) MnZnフェライト
JP2006165479A (ja) フェライトコア、およびラインフィルタ
JP3446082B2 (ja) Mn−Znフェライトおよびその製造方法
JP2005108977A (ja) Mn−Zn系フェライト、トランス用磁心およびトランス
JPWO2020189035A1 (ja) MnCoZn系フェライトおよびその製造方法
JP3584437B2 (ja) Mn−Znフェライトの製造方法
JP2007031210A (ja) MnZnフェライト
JP2005194134A (ja) フェライトコアおよびその製造方法
JP7160720B2 (ja) 耐熱性高透磁率MnZnフェライト

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070403