EP0764955B1 - Composite magnetic material with reduced permeability and losses - Google Patents

Composite magnetic material with reduced permeability and losses Download PDF

Info

Publication number
EP0764955B1
EP0764955B1 EP96401962A EP96401962A EP0764955B1 EP 0764955 B1 EP0764955 B1 EP 0764955B1 EP 96401962 A EP96401962 A EP 96401962A EP 96401962 A EP96401962 A EP 96401962A EP 0764955 B1 EP0764955 B1 EP 0764955B1
Authority
EP
European Patent Office
Prior art keywords
wafers
magnetic
magnetic material
material according
binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96401962A
Other languages
German (de)
French (fr)
Other versions
EP0764955A1 (en
Inventor
Jean-Pierre Delvinquier
Richard Lebourgeois
Michel Pate
Claude Rohart
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thomson CSF SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson CSF SA filed Critical Thomson CSF SA
Publication of EP0764955A1 publication Critical patent/EP0764955A1/en
Application granted granted Critical
Publication of EP0764955B1 publication Critical patent/EP0764955B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/36Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites in the form of particles
    • H01F1/37Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites in the form of particles in a bonding agent

Definitions

  • the present invention relates to a magnetic material composite with reduced permeability and losses at frequencies below about 100 MHz.
  • the material is intended to produce in particular cores inductors or transformers.
  • Magnetic materials with reduced permeability currently available on the market have strong induction (greater than around 10 mT) very high losses which mean that today magnetic components are the most bulky components of converters.
  • induction greater than around 10 mT
  • low permeability and low losses at high frequency are contradictory characteristics.
  • An inductance of a few micro-Henrys will include a few turns or a core with low permeability.
  • a small number of turns brought to a potential difference high generates high magnetic induction in the nucleus. Like the losses in the nucleus are at least proportional to the square of the induction, they grow very quickly when the number of turns decreases. To get reduced losses, it takes a large number of turns which imposes a core with low permeability.
  • inductors with a composite magnetic core with distributed air gap. These materials are made of ferromagnetic alloys powder dispersed in a dielectric binder. Radiation losses are reduced compared to the nuclei with localized air gap.
  • powders iron and iron carbonyl powders whose permeability ranges from approximately 5 to 250 and the powders based on iron-nickel alloys whose permeability ranges from about 14 to 550.
  • the losses in these materials are 15 to 20 times greater than those of massive power ferrites under the same conditions of frequency, induction and temperature.
  • Document DE-A-42 14 376 also discloses a material magnetic for power core composed of a homogeneous mixture of ferrite and synthetic material.
  • the present invention provides a composite magnetic material which, when subjected to a magnetic field, presents both reduced losses and permeability for frequencies below about 100 MHz.
  • This composite magnetic material has losses approximately three to five times weaker than that of magnetic materials composites available on the market and permeability around 10 to 100 times weaker than spinel type ferrites, at lower frequencies at around 100 MHz.
  • the composite magnetic material according to the invention comprises magnetic particles dispersed in a binder dielectric, these particles being magnetic ceramic plates polycrystalline oriented so that their main faces are substantially parallel to the magnetic field.
  • the binder is advantageously a resin, fluid in a first then hardening time, such as an epoxy, phenolic resin, polyimide or acrylic based.
  • the plates are oriented in strata, separated by binder.
  • Each layer can have several plates separated by binder forming an air gap or a single plate.
  • Platelets belonging to neighboring strata are preferably either staggered or in columns.
  • platelets including square, the torus or the torus portion. The choice depends on the final form of the magnetic core made with the material thus obtained.
  • the pouring slip can be obtained by mixing the ceramic powder, at least one binder, at least one solvent and optionally a deflocculent.
  • the orientation of the plates can be manual. We can stack the pads on top of each other then compress them to break them.
  • Orientation can also be done by vibration or by a field magnetic.
  • the invention also relates to a core produced with such a material. magnetic composite as well as an inductor or transformer having such a core.
  • the composite magnetic material according to the invention comprises polycrystalline magnetic ceramic plates dispersed in a binder.
  • the main faces of the plates are oriented substantially parallel to the magnetic field.
  • the process for developing the composite magnetic material makes it possible to control the shape of the platelets and their positioning in the composite so as to control its permeability and his losses.
  • magnetic ceramic plates can be to do it by a classic technique of making ceramics. This technique is used in particular for the manufacture of alumina substrates, of multilayer ceramic boxes or capacitors.
  • the raw materials necessary to obtain magnetic ceramic can be mixed and ground in a jar containing steel balls in aqueous phase. This operation has for purpose of mixing and reducing the grain size of the different constituents so as to make them more responsive.
  • the mixture is then dried and Thames.
  • the powder thus obtained can be pre-sintered in an oven so to obtain the desired crystalline phase. This operation is often called chamotte.
  • a second grinding can follow the chamotte to reduce the grains which have grown during the chamotte operation. This second grinding can be done under the same conditions as the first grinding.
  • a casting slip can be obtained by mixing the powder regrind with organic binders, solvents and possibly a deflocculent. This mixture can be done in a jar with beads steel using a mechanical stirrer. The slip after a rest for allow the air bubbles formed during agitation to rise again strip casting on a bench on which a strip of mylar slides, by example, driven at constant speed. The bench is covered with a tunnel to avoid dust deposits and to slow down the evaporation of solvents. A knife held parallel to the mylar strip by screws micrometric forms an opening through which the slip passes. This opening determines the thickness of the cast strip. After evaporation and drying, the casting strip can be peeled off and cut using a cookie cutters. This ease of obtaining complex parts, toroids by example, is very interesting. Machining of massive ferrites is slow and expensive because it requires diamond tools.
  • These plates can be cut into squares, for example, 2mm x 2mm or 4mm x 4mm or 7mm x 7mm. Thin toroids or portions of thin toroids (eighth, quarter, half) can also be cut.
  • the inserts are sintered to ensure cohesion of the powder grains.
  • Sintering is done, especially for Mn-Zn ferrites under partial pressure of oxygen controlled in order to fix the level of divalent iron in platelets.
  • the plates are oriented and incorporated into a fluid binder, an Araldite type resin (registered trademark) for example, which ensures the mechanical cohesion of the composite material after hardening.
  • a fluid binder an Araldite type resin (registered trademark) for example, which ensures the mechanical cohesion of the composite material after hardening.
  • the grinding is done with steel balls in water deionized.
  • the mixture is dried in an oven and sieved through a 400 ⁇ m opening sieve.
  • Chamotte is done at 1100 ° C with a bearing time in air 3 hours.
  • the new grinding is carried out under the same conditions as the first. It is followed by a new drying and sieving.
  • the wafers are cut and then sintered.
  • the thickness of the plates varies between 100 ⁇ m and 130 ⁇ m.
  • the resin is poured before or after orientation, it depends on the orientation method used.
  • Orientation can be manual. This method applies for larger wafers, in particular the toroids, the portions of torus, the squares of 7 mm x 7 mm.
  • Figures 2a, 2b show an O-ring of material magnetic according to the invention. It is made from plates 10 in torus shape. We stack several on top of each other in strata. The stack is placed in a mold and the binder 20, type resin epoxy, phenolic, polyimide or acrylic based, for example, is paid.
  • the binder 20 fills the spaces between the different strata.
  • FIG. 2c is a top view of an O-ring obtained with this method and Figure 2d is a section.
  • the different strata bear the reference 2.
  • the binder fills the spaces on the one hand between the broken pieces 1 of the same torus and on the other hand between the different strata 2 of tori.
  • the pieces 1 are then separated by air gaps 3 in resin.
  • Two layers 2 are also separated by a layer 4 of resin.
  • the binder is fluid at first, and then hardens.
  • Figures 3a, 3b show a variant of an O-ring according to the invention. It is obtained from square plates 5. They are arranged layer by layer next to each other flat in a crown leaving a space 6 or between them. Two pads neighboring strata are staggered.
  • FIGs 4a, 4b again show a variant of a core toroid according to the invention.
  • the plates 7 are eighths of a torus. They are arranged layer by layer next to each other flat, in crown by leaving a space or gap between them. Platelets 7 of two neighboring strata coincide, they form columns. They could also have been staggered as in the figures 3a, 3b.
  • the plates are placed in a closed transparent container by a holey plug.
  • the container is placed in the air gap of a electro magnet.
  • a magnetic field is created in the air gap. Doing turn the container on itself in the magnetic field, the plates are regularly arranged in several strata and visual control is easy.
  • the position of the pads can be fixed by pushing in the plug to keep the strata in contact.
  • the binder can be added before or after orientation.
  • the losses of an iron-carbonyl composite toroid at 30 mT amount to at least 2.5 W / cm 3 at 80 ° C.
  • a core according to the invention has losses equal to 0.5 W / cm 3 as illustrated in FIG. 5b, hence a gain of a factor of 5.
  • Figures 6a, 6b schematically show a inductor and a transformer according to the invention.
  • the inductance of FIG. 6a comprises an O-ring core made of composite magnetic material according to the invention.
  • This core is formed of plates 70 in quarter torus dispersed in the dielectric binder. There are several layers separated by the binder and each layer has four plates 70 separated by an air gap 71.
  • Around the core is a coil 72.
  • the magnetic field H establishing itself in the nucleus is materialized by the circle in dotted lines.
  • the transformer of Figure 6b has an E-shaped core with rectangular legs including a central 760 and two ends 761, made of composite magnetic material according to the invention.
  • This core comprises square plates 73 embedded in the binder.
  • Two windings 74, 75 around the extreme legs 761 contribute to forming the primary and the secondary of the transformer.
  • the two coils could have been around the central leg 760.
  • the magnetic field H establishing itself in the nucleus is materialized by the dotted lines.
  • the main faces of the plates are substantially parallel to the magnetic field H .
  • the cores according to the invention have been represented in torus or in E but the invention is not limited to these types. It applies to others types in U, in pots etc ...

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Soft Magnetic Materials (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Magnetic Ceramics (AREA)

Abstract

Composite magnetic material having reduction in the permeability when exposed to a magnetic field of frequencies lower than approximately 100 MHz, consisting of ceramic polycrystalline magnetic plates (5) dispersed in a dielectric binder (6) and orientated so that their faces are parallel to the magnetic field and are in contact with each other. Also claimed are: (i) prodn. of the magnetic material; (ii) a magnetic core consisting of the magnetic material; (iii) inductor comprising the magnetic core; and (iv) a transformer comprising the magnetic core.

Description

La présente invention concerne un matériau magnétique composite à perméabilité et pertes réduites à des fréquences inférieures à environ 100 MHz.The present invention relates to a magnetic material composite with reduced permeability and losses at frequencies below about 100 MHz.

Le matériau est destiné à réaliser notamment des noyaux d'inductances ou de transformateurs.The material is intended to produce in particular cores inductors or transformers.

Les développements des systèmes électroniques cherchent à miniaturiser les sources d'alimentation. Le passage des régulateurs à structure linéaire aux convertisseurs à découpage a constitué un pas décisif pour la diminution de l'encombrement et l'amélioration des performances des sources d'alimentation. La fréquence de découpage n'a cessé d'augmenter dans le but de poursuivre la miniaturisation. Les convertisseurs actuels atteignent et même dépassent un mégahertz. Les architectures d'inductances de faibles valeurs (quelques micro-Henry) devraient présenter des pertes totales (pertes du conducteur et du circuit magnétique) faibles sous forte induction et une faible perméabilité (inférieure à environ 200).Electronic systems developments seek to miniaturize power sources. The transition from regulators to linear structure to switching converters was a decisive step for reducing bulk and improving performance power sources. The switching frequency has not stopped increase in order to continue miniaturization. Converters current ones reach and even exceed a megahertz. Architectures low value inductors (some micro-Henrys) should have low total losses (conductor and magnetic circuit losses) under strong induction and low permeability (less than about 200).

Les matériaux magnétiques à perméabilité réduite actuellement disponibles sur le marché présentent sous forte induction (supérieure à environ 10 mT) des pertes très élevées qui font qu'aujourd'hui les composants magnétiques sont les composants les plus encombrants des convertisseurs. Pour les matériaux magnétiques existants la faible perméabilité et les faibles pertes à haute fréquence sont des caractéristiques contradictoires.Magnetic materials with reduced permeability currently available on the market have strong induction (greater than around 10 mT) very high losses which mean that today magnetic components are the most bulky components of converters. For existing magnetic materials the low permeability and low losses at high frequency are contradictory characteristics.

Une inductance de quelques micro-Henry comportera quelques spires ou un noyau à faible perméabilité.An inductance of a few micro-Henrys will include a few turns or a core with low permeability.

Un faible nombre de spires porté à une différence de potentiel élevée génère une induction magnétique élevée dans le noyau. Comme les pertes dans le noyau sont au moins proportionnelles au carré de l'induction, elles croissent très vite lorsque le nombre de spires décroít. Pour obtenir des pertes réduites, il faut un grand nombre de spires ce qui impose un noyau à faible perméabilité.A small number of turns brought to a potential difference high generates high magnetic induction in the nucleus. Like the losses in the nucleus are at least proportional to the square of the induction, they grow very quickly when the number of turns decreases. To get reduced losses, it takes a large number of turns which imposes a core with low permeability.

Il existe des inductances à air, à noyau amagnétique. Leur perméabilité est égale à un et les pertes dans le noyau sont nulles. Leur encombrement est important à cause de la perméabilité égale à un du noyau amagnétique. Les pertes "cuivre" dissipées par le bobinage sont importantes. Les perturbations électromagnétiques générées sont gênantes pour le voisinage et difficiles à éliminer.There are air inductors with a non-magnetic core. Their permeability is equal to one and the losses in the nucleus are zero. Their size is important because of the permeability equal to one of the core nonmagnetic. The "copper" losses dissipated by the winding are significant. The electromagnetic disturbances generated are troublesome for the neighborhood and difficult to eliminate.

Il existe des inductances à noyau magnétique en ferrite massif de type spinelle à entrefer localisé à air. Le ferrite malgré ses pertes de l'ordre du centième ou du dixième de W/cm3, selon l'induction et la fréquence, présente des perméabilités proche de 1000 ce qui est beaucoup trop élevé pour l'application des convertisseurs. Les ferrites à faible perméabilité comme le ferrite de nickel qui présente une perméabilité égale à 10 ont des pertes trop élevées pour l'application des convertisseurs.There are inductors with a magnetic core in solid ferrite of the spinel type with localized air gap. Ferrite despite its losses of the order of a hundredth or a tenth of W / cm 3 , depending on the induction and the frequency, has permeabilities close to 1000 which is much too high for the application of converters. Ferrites with low permeability such as nickel ferrite, which has a permeability of 10, have losses that are too high for the application of converters.

Il existe aussi des inductances à noyau magnétique composite à entrefer réparti. Ces matériaux sont constitués d'alliages ferromagnétiques en poudre dispersée dans un liant diélectrique. Les pertes par rayonnement sont diminuées par rapport aux noyaux à entrefer localisé. Il y a essentiellement deux catégories de poudres : les poudres de fer et de fer-carbonyle dont la perméabilité va de 5 à 250 environ et les poudres à base d'alliages de fer-nickel dont la perméabilité va de 14 à 550 environ.There are also inductors with a composite magnetic core with distributed air gap. These materials are made of ferromagnetic alloys powder dispersed in a dielectric binder. Radiation losses are reduced compared to the nuclei with localized air gap. There is essentially two categories of powders: iron and iron carbonyl powders whose permeability ranges from approximately 5 to 250 and the powders based on iron-nickel alloys whose permeability ranges from about 14 to 550.

Les pertes dans ces matériaux sont 15 à 20 fois plus fortes que celles des ferrites de puissance massifs dans les mêmes conditions de fréquence, d'induction et de température.The losses in these materials are 15 to 20 times greater than those of massive power ferrites under the same conditions of frequency, induction and temperature.

Par exemple, les meilleurs matériaux magnétiques composites du marché ont les caractéristiques suivantes (données catalogue fournisseur) pour des échantillons toriques de diamètre moyen égal à 10 mm, à température ambiante, pour une induction de 30 mT à 1 MHz :

  • fer-carbonyle : pertes supérieures à 1,5 W/cm3
  • fer-nickel : pertes supérieures à 2 W/cm3
For example, the best composite magnetic materials on the market have the following characteristics (supplier catalog data) for toric samples with an average diameter of 10 mm, at room temperature, for an induction of 30 mT at 1 MHz:
  • iron-carbonyl: losses greater than 1.5 W / cm 3
  • iron-nickel: losses greater than 2 W / cm 3

On connaít aussi par le document DE-A-42 14 376 un matériau magnétique pour noyau de puissance composé d'un mélange homogène de ferrite et de matériau synthétique.Document DE-A-42 14 376 also discloses a material magnetic for power core composed of a homogeneous mixture of ferrite and synthetic material.

La présente invention propose un matériau magnétique composite qui, lorsqu'il est soumis à un champ magnétique, présente à la fois des pertes et une perméabilité réduites pour des fréquences inférieures à environ 100 MHz.The present invention provides a composite magnetic material which, when subjected to a magnetic field, presents both reduced losses and permeability for frequencies below about 100 MHz.

Ce matériau magnétique composite présente des pertes environ trois à cinq fois plus faibles que celles des matériaux magnétiques composites disponibles sur le marché et une perméabilité environ 10 à 100 fois plus faible que les ferrites de type spinelle, à des fréquences inférieures à environ 100 MHz. This composite magnetic material has losses approximately three to five times weaker than that of magnetic materials composites available on the market and permeability around 10 to 100 times weaker than spinel type ferrites, at lower frequencies at around 100 MHz.

Plus précisément, le matériau magnétique composite selon l'invention comporte des particules magnétiques dispersées dans un liant diélectrique, ces particules étant des plaquettes en céramique magnétique polycristalline orientées de manière à ce que leurs faces principales soient sensiblement parallèles au champ magnétique.More specifically, the composite magnetic material according to the invention comprises magnetic particles dispersed in a binder dielectric, these particles being magnetic ceramic plates polycrystalline oriented so that their main faces are substantially parallel to the magnetic field.

La céramique magnétique polycristalline est avantageusement un ferrite de type spinelle répondant à la formule MxZnyFe2+εO4 avec x+y+ε = 1 où M est un ion manganèse ou nickel.The polycrystalline magnetic ceramic is advantageously a ferrite of the spinel type corresponding to the formula M x Zn y Fe 2 + ε O 4 with x + y + ε = 1 where M is a manganese or nickel ion.

Le liant est avantageusement une résine, fluide dans un premier temps durcissant ensuite, telle qu'une résine époxyde, phénolique, polyimide ou à base acrylique.The binder is advantageously a resin, fluid in a first then hardening time, such as an epoxy, phenolic resin, polyimide or acrylic based.

Les plaquettes sont orientées en strates, séparées par du liant. Chaque strate peut comporter plusieurs plaquettes séparées par du liant formant un entrefer ou une seule plaquette.The plates are oriented in strata, separated by binder. Each layer can have several plates separated by binder forming an air gap or a single plate.

Les plaquettes appartenant à des strates voisines sont de préférence soit en quinconce soit en colonne.Platelets belonging to neighboring strata are preferably either staggered or in columns.

Plusieurs formes de plaquettes sont envisageables, notamment le carré, le tore ou la portion de tore. Le choix dépend de la forme finale du noyau magnétique réalisé avec le matériau ainsi obtenu.Several forms of platelets are possible, including square, the torus or the torus portion. The choice depends on the final form of the magnetic core made with the material thus obtained.

La présente invention concerne aussi un procédé d'élaboration d'un tel matériau magnétique composite. Ce procédé comprend les étapes suivantes :

  • la réalisation d'une poudre magnétique céramique ;
  • la réalisation, à partir de la poudre magnétique céramique d'une barbotine de coulage ;
  • la découpe des plaquettes dans une pellicule de la barbotine séchée ;
  • le frittage des plaquettes ;
  • l'élaboration du matériau magnétique composite à partir des plaquettes frittées, dispersées dans le liant et dont les faces principales sont orientées par rapport au champ magnétique.
The present invention also relates to a method for producing such a composite magnetic material. This process includes the following steps:
  • the production of a ceramic magnetic powder;
  • the production, from ceramic magnetic powder, of a casting slip;
  • cutting the wafers from a film of the dried slip;
  • sintering of platelets;
  • the development of the composite magnetic material from sintered wafers, dispersed in the binder and whose main faces are oriented relative to the magnetic field.

La barbotine de coulage peut être obtenue en mélangeant la poudre céramique, au moins un liant, au moins un solvant et éventuellement un défloculent. The pouring slip can be obtained by mixing the ceramic powder, at least one binder, at least one solvent and optionally a deflocculent.

L'orientation des plaquettes peut être manuelle. On peut empiler les plaquettes les unes sur les autres puis les comprimer pour les casser.The orientation of the plates can be manual. We can stack the pads on top of each other then compress them to break them.

On peut les déposer les unes à côté des autres, strates par strates.They can be placed next to each other, strata by strata.

L'orientation peut aussi se faire par vibration ou par un champ magnétique.Orientation can also be done by vibration or by a field magnetic.

L'invention concerne aussi un noyau réalisé avec un tel matériau magnétique composite ainsi qu'une inductance ou transformateur comportant un tel noyau.The invention also relates to a core produced with such a material. magnetic composite as well as an inductor or transformer having such a core.

L'invention sera mieux comprise et d'autres avantages apparaítront à la lecture de la description qui suit donnée à titre d'exemple non limitatif et des figures annexées qui représentent :

  • la figure 1 illustre l'évolution du pourcentage en oxygène de l'atmosphère pendant la phase de refroidissement du frittage des plaquettes ;
  • les figures 2a, 2b, 2c, 2d deux exemples d'un noyau selon l'invention en vue de dessus et en coupe réalisé à partir de plaquettes en forme de tore ;
  • les figures 3a, 3b un autre exemple d'un noyau selon l'invention en vue de dessus et de face ;
  • les figures 4a, 4b, encore un exemple d'un noyau selon l'invention en vue de dessus et de face ;
  • les figures 5a, 5b l'évolution des pertes totales d'un noyau selon l'invention en fonction de la température et de l'induction respectivement à 300 kHz et à 1 MHz ; (mesures réalisées en laboratoire)
  • les figures 6a, 6b respectivement une inductance et un transformateur selon l'invention.
The invention will be better understood and other advantages will appear on reading the following description given by way of non-limiting example and the appended figures which represent:
  • FIG. 1 illustrates the evolution of the oxygen percentage of the atmosphere during the cooling phase of the sintering of the wafers;
  • Figures 2a, 2b, 2c, 2d two examples of a core according to the invention in top view and in section made from wafers in the form of a torus;
  • Figures 3a, 3b another example of a core according to the invention in top view and front view;
  • Figures 4a, 4b, yet another example of a core according to the invention in top view and front view;
  • FIGS. 5a, 5b the evolution of the total losses of a core according to the invention as a function of the temperature and of the induction at 300 kHz and 1 MHz respectively; (laboratory measurements)
  • Figures 6a, 6b respectively an inductor and a transformer according to the invention.

Le matériau magnétique composite selon l'invention comporte des plaquettes de céramique magnétique polycristalline dispersées dans un liant. Les faces principales des plaquettes sont orientées sensiblement parallèlement au champ magnétique.The composite magnetic material according to the invention comprises polycrystalline magnetic ceramic plates dispersed in a binder. The main faces of the plates are oriented substantially parallel to the magnetic field.

La céramique magnétique peut être un ferrite de type spinelle répondant à la formule MxZnyFe2+εO4 avec x+y+ε = 1 où M est un ion manganèse ou nickel. The magnetic ceramic can be a spinel type ferrite corresponding to the formula M x Zn y Fe 2 + ε O 4 with x + y + ε = 1 where M is a manganese or nickel ion.

Lorsqu'ils sont massifs, ces ferrites ont une perméabilité comprise entre 500 et 3000.When massive, these ferrites have a permeability understood between 500 and 3000.

Le procédé d'élaboration du matériau magnétique composite, selon l'invention, permet de contrôler la forme des plaquettes et leur positionnement dans le composite de manière à contrôler sa perméabilité et ses pertes.The process for developing the composite magnetic material, according to the invention, makes it possible to control the shape of the platelets and their positioning in the composite so as to control its permeability and his losses.

L'élaboration des plaquettes de céramique magnétique peut se faire par une technique classique d'élaboration de céramiques. Cette technique est utilisée notamment pour la fabrication de substrats d'alumine, de boítier ou de condensateurs céramiques multicouches.The development of magnetic ceramic plates can be to do it by a classic technique of making ceramics. This technique is used in particular for the manufacture of alumina substrates, of multilayer ceramic boxes or capacitors.

Après pesage, les matières premières nécessaires à l'obtention de la céramique magnétique peuvent être mélangées et broyées dans une jarre contenant des billes d'acier en phase aqueuse. Cette opération a pour but de mélanger et de réduire la taille des grains des différents constituants de manière à les rendre plus réactifs. Le mélange est ensuite séché puis tamisé. La poudre ainsi obtenue peut être préfrittée dans un four de manière à obtenir la phase cristalline recherchée. Cette opération est souvent dénommée chamottage.After weighing, the raw materials necessary to obtain magnetic ceramic can be mixed and ground in a jar containing steel balls in aqueous phase. This operation has for purpose of mixing and reducing the grain size of the different constituents so as to make them more responsive. The mixture is then dried and Thames. The powder thus obtained can be pre-sintered in an oven so to obtain the desired crystalline phase. This operation is often called chamotte.

Un second broyage peut suivre le chamottage pour réduire les grains ayant grossi pendant l'opération de chamottage. Ce second broyage peut être fait dans les mêmes conditions que le premier broyage.A second grinding can follow the chamotte to reduce the grains which have grown during the chamotte operation. This second grinding can be done under the same conditions as the first grinding.

Une barbotine de coulage peut être obtenue en mélangeant la poudre rebroyée avec des liants organiques, des solvants et éventuellement un défloculent. Ce mélange peut se faire dans une jarre avec des billes d'acier à l'aide d'un agitateur mécanique. La barbotine après un repos pour laisser aux bulles d'air formées pendant l'agitation le temps de remonter est coulée en bande sur un banc sur lequel coulisse une bande de mylar, par exemple, entraínée à vitesse constante. Le banc est recouvert d'un tunnel pour éviter un dépôt de poussière et pour ralentir l'évaporation des solvants. Un couteau maintenu parallèle à la bande de mylar par des vis micrométriques forme une ouverture par laquelle passe la barbotine. Cette ouverture détermine l'épaisseur de la bande coulée. Après évaporation et séchage, la bande coulée peut être décollée et découpée à l'aide d'un emporte-pièces. Cette facilité d'obtenir des pièces complexes, des tores par exemple, est très intéressante. L'usinage de ferrites massifs est lent et coûteux car il nécessite des outils diamantés.A casting slip can be obtained by mixing the powder regrind with organic binders, solvents and possibly a deflocculent. This mixture can be done in a jar with beads steel using a mechanical stirrer. The slip after a rest for allow the air bubbles formed during agitation to rise again strip casting on a bench on which a strip of mylar slides, by example, driven at constant speed. The bench is covered with a tunnel to avoid dust deposits and to slow down the evaporation of solvents. A knife held parallel to the mylar strip by screws micrometric forms an opening through which the slip passes. This opening determines the thickness of the cast strip. After evaporation and drying, the casting strip can be peeled off and cut using a cookie cutters. This ease of obtaining complex parts, toroids by example, is very interesting. Machining of massive ferrites is slow and expensive because it requires diamond tools.

Ces plaquettes peuvent être découpées en carrés, par exemple, de 2 mm x 2 mm ou de 4 mm x 4 mm ou de 7 mm x 7 mm. Des tores minces ou des portions de tores minces (huitième, quart, demi) peuvent aussi être découpés.These plates can be cut into squares, for example, 2mm x 2mm or 4mm x 4mm or 7mm x 7mm. Thin toroids or portions of thin toroids (eighth, quarter, half) can also be cut.

Après la découpe, les plaquettes sont frittées pour assurer la cohésion des grains de poudre.After cutting, the inserts are sintered to ensure cohesion of the powder grains.

Le frittage se fait, notamment pour les ferrites Mn-Zn sous pression partielle d'oxygène contrôlée afin de fixer le taux de fer divalent dans les plaquettes.Sintering is done, especially for Mn-Zn ferrites under partial pressure of oxygen controlled in order to fix the level of divalent iron in platelets.

Dans une étape finale, les plaquettes sont orientées et incorporées à un liant fluide, une résine de type Araldite (marque déposée) par exemple, qui assure la cohésion mécanique du matériau composite après durcissement.In a final step, the plates are oriented and incorporated into a fluid binder, an Araldite type resin (registered trademark) for example, which ensures the mechanical cohesion of the composite material after hardening.

Exemple de réalisationExample of realization

Réalisation d'un matériau magnétique composite selon l'invention destiné à fonctionner à des fréquences inférieures à environ 100 MHz.Production of a composite magnetic material according to the invention intended to operate at frequencies below about 100 MHz.

Les composants initiaux sont pesés :

  • 193,37 g de Fe2O3
  • 95,75 g de MnCO3
  • 17,52 g de ZnO
  • 0,53 g de TiO2
  • 1000 ppm de CaO
  • The initial components are weighed:
  • 193.37 g Fe 2 O 3
  • 95.75 g MnCO 3
  • 17.52 g of ZnO
  • 0.53 g TiO 2
  • 1000 ppm CaO
  • Le broyage se fait avec des billes d'acier dans de l'eau désionisée.The grinding is done with steel balls in water deionized.

    Après broyage, le mélange est séché en étuve et tamisé à travers un tamis d'ouverture 400 µm.After grinding, the mixture is dried in an oven and sieved through a 400 µm opening sieve.

    Le chamottage se fait à 1100°C avec un temps de palier sous air de 3 heures.Chamotte is done at 1100 ° C with a bearing time in air 3 hours.

    Le nouveau broyage s'effectue dans les mêmes conditions que le premier. Il est suivi d'un nouveau séchage et tamisage.The new grinding is carried out under the same conditions as the first. It is followed by a new drying and sieving.

    La barbotine de coulage est préparée avec :

    • la poudre précédemment obtenue ;
    • deux solvants : éthanol et trichloréthylène ;
    • des liants organiques : polyéthylène-glycol, diéthyl-hexylephtalate et polyvinyl-butyral ;
    • un défloculent éventuel.
    The pouring slip is prepared with:
    • the powder previously obtained;
    • two solvents: ethanol and trichlorethylene;
    • organic binders: polyethylene glycol, diethylhexylephthalate and polyvinyl butyral;
    • a possible deflocculent.

    Ces constituants sont mélangés et agités avec des billes d'acier pendant trois heures. Un repos d'environ une demie-heure précède le coulage.These constituents are mixed and stirred with steel balls During three hours. A rest of about half an hour precedes the casting.

    Après séchage, les plaquettes sont découpées puis frittées.After drying, the wafers are cut and then sintered.

    Le frittage est assuré selon le cycle suivant :

    • une montée en température à 600°C en 12 heures sous air ;
    • une montée en température de 600°C à 1220°C en 6 heures ;
    • un palier à 1220°C pendant 1 heure 30 ;
    • une descente en température de 1220°C à 1200°C avec ajustement du pourcentage d'oxygène à 2,6 % dans l'atmosphère en 15 minutes ;
    • un palier à 1200°C pendant 15 minutes avec le même pourcentage d'oxygène ;
    • un refroidissement de 100°C par heure avec baisse du pourcentage d'oxygène suivant la loi Log(PO2) = f(1/T) représentée sur la figure 1. PO2 est le pourcentage d'oxygène et T la température.
    Sintering is carried out according to the following cycle:
    • a temperature rise to 600 ° C in 12 hours in air;
    • a temperature rise from 600 ° C to 1220 ° C in 6 hours;
    • a plateau at 1220 ° C for 1 hour 30 minutes;
    • a temperature drop from 1220 ° C to 1200 ° C with adjustment of the percentage of oxygen to 2.6% in the atmosphere in 15 minutes;
    • a plateau at 1200 ° C for 15 minutes with the same percentage of oxygen;
    • cooling to 100 ° C. per hour with a drop in the percentage of oxygen according to the Log law (PO 2 ) = f (1 / T) represented in FIG. 1. PO 2 is the percentage of oxygen and T the temperature.

    Après frittage, l'épaisseur des plaquettes varie entre 100 µm et 130 µm.After sintering, the thickness of the plates varies between 100 µm and 130 µm.

    La résine est versée avant ou après l'orientation, cela dépend de la méthode d'orientation utilisée.The resin is poured before or after orientation, it depends on the orientation method used.

    L'orientation peut être manuelle. Cette méthode s'applique pour des plaquettes de plus grande dimension notamment les tores, les portions de tore, les carrés de 7 mm x 7 mm.Orientation can be manual. This method applies for larger wafers, in particular the toroids, the portions of torus, the squares of 7 mm x 7 mm.

    Les figures 2a, 2b montrent un noyau torique en matériau magnétique conforme à l'invention. Il est réalisé à partir de plaquettes 10 en forme de tore. On en empile plusieurs les unes sur les autres en strates. L'empilement est placé dans un moule et le liant 20, de la résine de type époxyde, phénolique, polyimide ou à base acrylique, par exemple, est versée.Figures 2a, 2b show an O-ring of material magnetic according to the invention. It is made from plates 10 in torus shape. We stack several on top of each other in strata. The stack is placed in a mold and the binder 20, type resin epoxy, phenolic, polyimide or acrylic based, for example, is paid.

    Le liant 20 comble les espaces entre les différentes strates. The binder 20 fills the spaces between the different strata.

    Pour améliorer les performances d'un tel noyau, il est possible, après avoir empilé les plaquettes 10 de les comprimer de manière à les casser en morceaux 1. Il est préférable, au préalable, de solidariser les plaquettes 10 à l'aide par exemple de ruban adhésif double face. Le liant est ajouté ensuite. La figure 2c est une vue de dessus d'un noyau torique obtenu avec cette méthode et la figure 2d en est une coupe. Les différentes strates portent la référence 2. Le liant vient combler les espaces d'une part entre les morceaux 1 cassés d'un même tore et d'autre part entre les différentes strates 2 de tores.To improve the performance of such a kernel, it is possible, after having stacked the plates 10 to compress them so as to break into pieces 1. It is preferable, beforehand, to join the plates 10 using for example double-sided adhesive tape. The binder is then added. Figure 2c is a top view of an O-ring obtained with this method and Figure 2d is a section. The different strata bear the reference 2. The binder fills the spaces on the one hand between the broken pieces 1 of the same torus and on the other hand between the different strata 2 of tori.

    Les morceaux 1 sont alors séparés par des entrefers 3 en résine. Deux strates 2 sont aussi séparées par une couche 4 de résine.The pieces 1 are then separated by air gaps 3 in resin. Two layers 2 are also separated by a layer 4 of resin.

    Le liant est fluide dans un premier temps, et durcit ensuite.The binder is fluid at first, and then hardens.

    Les figures 3a, 3b représentent une variante d'un noyau torique selon l'invention. Il est obtenu à partir de plaquettes carrées 5. Elles sont disposées strate par strate les unes à côté des autres à plat en couronne en ménageant un espace 6 ou entrefer entre elles. Les plaquettes de deux strates voisines sont en quinconce.Figures 3a, 3b show a variant of an O-ring according to the invention. It is obtained from square plates 5. They are arranged layer by layer next to each other flat in a crown leaving a space 6 or between them. Two pads neighboring strata are staggered.

    Les figures 4a, 4b montrent encore une variante d'un noyau torique selon l'invention. Les plaquettes 7 sont des huitièmes de tore. Elles sont disposées strate par strate les unes à côté des autres à plat, en couronne en ménageant un espace ou entrefer entre elles. Les plaquettes 7 de deux strates voisines coincident, elles forment des colonnes. Elles auraient pu être disposées également en quinconce comme sur les figures 3a, 3b.Figures 4a, 4b again show a variant of a core toroid according to the invention. The plates 7 are eighths of a torus. They are arranged layer by layer next to each other flat, in crown by leaving a space or gap between them. Platelets 7 of two neighboring strata coincide, they form columns. They could also have been staggered as in the figures 3a, 3b.

    Au lieu d'effectuer l'orientation des plaquettes manuellement, il est possible de le faire par vibration à l'aide d'une spatule vibrante par exemple. Cette méthode utilisable pour une application industrielle convient à des plaquettes plus petites.Instead of manually orienting the platelets, it is possible to do it by vibration using a vibrating spatula by example. This method usable for an industrial application is suitable to smaller platelets.

    Une autre méthode utilisable pour une application industrielle et convenant à des plaquettes de petite taille est l'orientation magnétique. Elle conduit à une meilleure précision que l'orientation par vibration.Another method usable for industrial application and suitable for small wafers is the magnetic orientation. She leads to better accuracy than orientation by vibration.

    Les plaquettes sont placées dans un récipient transparent fermé par un bouchon troué. Le récipient est placé dans l'entrefer d'un électroaimant. Un champ magnétique est crée dans l'entrefer. En faisant tourner le récipient sur lui-même dans le champ magnétique, les plaquettes se disposent régulièrement en plusieurs strates et le contrôle visuel est aisé. La position des plaquettes peut être figée en enfonçant le bouchon pour maintenir les strates en contact.The plates are placed in a closed transparent container by a holey plug. The container is placed in the air gap of a electro magnet. A magnetic field is created in the air gap. Doing turn the container on itself in the magnetic field, the plates are regularly arranged in several strata and visual control is easy. The position of the pads can be fixed by pushing in the plug to keep the strata in contact.

    Dans ces deux dernières méthodes, le liant peut être ajouté avant ou après l'orientation.In the latter two methods, the binder can be added before or after orientation.

    Suivant les fréquences d'utilisation et la perméabilité apparente désirée du matériau magnétique composite, on choisit un ferrite massif optimisé en fréquence et on détermine les dimensions des entrefers entre plaquettes.According to the frequencies of use and the apparent permeability desired magnetic composite material, we choose a solid ferrite optimized in frequency and the dimensions of the air gaps between platelets.

    Des mesures de pertes totales par unité de volume d'un noyau selon l'invention en matériau magnétique composite en fonction de la température et de l'induction sont consignées sur les diagrammes des figures 5a et 5b. Ces mesures sont faites pour un tore à plaquettes en ferrite MnZn à une fréquence de 300 kHz pour la figure 5a et à une fréquence de 1MHz pour la figure 5b. Dans les deux cas, le taux de charge volumique des plaquettes magnétiques est de 42 %.Total loss measurements per unit volume of a nucleus according to the invention in composite magnetic material depending on the temperature and induction are recorded on the diagrams of Figures 5a and 5b. These measurements are made for a ferrite plate toroid MnZn at a frequency of 300 kHz for Figure 5a and at a frequency of 1MHz for Figure 5b. In both cases, the volume loading rate of magnetic wafers is 42%.

    On observe des pertes très faibles sur une large gamme de température, et ces pertes sont compatibles avec la majorité des applications des convertisseurs. Les noyaux magnétiques présentent en plus une grande stabilité en température comme l'illustre les figures 5a, 5b.Very low losses are observed over a wide range of temperature, and these losses are compatible with the majority of converter applications. The magnetic cores present in plus high temperature stability as illustrated in Figures 5a, 5b.

    Dans les mêmes conditions, à 1 MHz, les pertes d'un tore composite fer-carbonyle à 30 mT s'élèvent à au moins 2,5 W/cm3 à 80°C.Under the same conditions, at 1 MHz, the losses of an iron-carbonyl composite toroid at 30 mT amount to at least 2.5 W / cm 3 at 80 ° C.

    Un noyau selon l'invention a des pertes égales à 0,5 W/cm3 comme l'illustre la figure 5b, d'où un gain d'un facteur 5.A core according to the invention has losses equal to 0.5 W / cm 3 as illustrated in FIG. 5b, hence a gain of a factor of 5.

    Les tableaux suivants consignent les valeurs des pertes totales par unité de volume (W/cm3) en fonction de l'induction B, à 1 MHz pour différentes variantes de noyaux toriques selon l'invention.

    • plaquettes 4 mm x 4 mm en quinconce
      • taux de charge volumique compris entre 21 et 29 %
      • perméabilité 17
        Figure 00110001
    • plaquettes 4 mm x 4 mm en colonnes
      • taux de charge volumique compris entre 18 et 25 %
      • perméabilité 17
      • T = 30°C
        Figure 00110002
    • plaquettes 7 mm x 7 mm en quinconce
      • taux de charge compris entre 28 et 40 %
      • perméabilité 60
      • T = 60°C
        Figure 00110003
    • plaquettes 2 mm x 2 mm orientées sous champ magnétique
      • taux de charge volumique compris entre 30 et 42 %
      • perméabilité 40
      • T = 60°C
        Figure 00120001
    • plaquettes en 1/8 de tore, 8 strates
      • taux de charge volumique compris entre 39 et 55 %
      • perméabilité 60
      • T = 60°C
        Figure 00120002
    • plaquettes en tore 12 strates
      • taux de charge volumique compris entre 59 et 83 %
      • perméabilité 60
      • T = 60°C
        Figure 00120003
    • Plaquettes en tore empilées, cassées, imprégnées
      • taux de charge volumique compris entre 40 et 56 %
      • perméabilité 60
      • T = 60°C
        Figure 00130001
    The following tables record the values of the total losses per unit of volume (W / cm 3 ) as a function of the induction B, at 1 MHz for different variants of toric cores according to the invention.
    • 4 mm x 4 mm staggered plates
      • volume loading rate between 21 and 29%
      • permeability 17
        Figure 00110001
    • 4 mm x 4 mm plates in columns
      • volume loading rate between 18 and 25%
      • permeability 17
      • T = 30 ° C
        Figure 00110002
    • 7 mm x 7 mm staggered plates
      • charge rate between 28 and 40%
      • permeability 60
      • T = 60 ° C
        Figure 00110003
    • 2 mm x 2 mm plates oriented under magnetic field
      • volume loading rate between 30 and 42%
      • permeability 40
      • T = 60 ° C
        Figure 00120001
    • 1/8 torus plates, 8 strata
      • volume loading rate between 39 and 55%
      • permeability 60
      • T = 60 ° C
        Figure 00120002
    • torus plates 12 strata
      • volume loading rate between 59 and 83%
      • permeability 60
      • T = 60 ° C
        Figure 00120003
    • Stacked, broken, impregnated torus plates
      • volume loading rate between 40 and 56%
      • permeability 60
      • T = 60 ° C
        Figure 00130001

    Les figures 6a, 6b montrent de manière schématique une inductance et un transformateur selon l'invention.Figures 6a, 6b schematically show a inductor and a transformer according to the invention.

    L'inductance de la figure 6a comporte un noyau torique en matériau magnétique composite selon l'invention. Ce noyau est formé de plaquettes 70 en quarts de tore dispersées dans le liant diélectrique. Il y a plusieurs strates séparées par le liant et chaque strate comporte quatre plaquettes 70 séparées par un entrefer 71. Autour du noyau se trouve un bobinage 72. Le champ magnétique H s'établissant dans le noyau est matérialisé par le cercle en traits pointillés.The inductance of FIG. 6a comprises an O-ring core made of composite magnetic material according to the invention. This core is formed of plates 70 in quarter torus dispersed in the dielectric binder. There are several layers separated by the binder and each layer has four plates 70 separated by an air gap 71. Around the core is a coil 72. The magnetic field H establishing itself in the nucleus is materialized by the circle in dotted lines.

    Le transformateur de la figure 6b comporte un noyau en E à jambes rectangulaires dont une centrale 760 et deux extrêmes 761, en matériau magnétique composite selon l'invention. Ce noyau comporte des plaquettes carrées 73 noyées dans le liant. Deux bobinages 74, 75 autour des jambes extrêmes 761 contribuent à former le primaire et le secondaire du transformateur. Les deux bobinages auraient pu être autour de la jambe centrale 760. Le champ magnétique H s'établissant dans le noyau est matérialisé par les pointillés. Les faces principales des plaquettes sont sensiblement parallèles au champ magnétique H .The transformer of Figure 6b has an E-shaped core with rectangular legs including a central 760 and two ends 761, made of composite magnetic material according to the invention. This core comprises square plates 73 embedded in the binder. Two windings 74, 75 around the extreme legs 761 contribute to forming the primary and the secondary of the transformer. The two coils could have been around the central leg 760. The magnetic field H establishing itself in the nucleus is materialized by the dotted lines. The main faces of the plates are substantially parallel to the magnetic field H .

    Les noyaux selon l'invention ont été représentés en tore ou en E mais l'invention n'est pas limitée à ces types. Elle s'applique aux autres types en U, en pots etc...The cores according to the invention have been represented in torus or in E but the invention is not limited to these types. It applies to others types in U, in pots etc ...

    Claims (18)

    1. Composite magnetic material having reduced losses and a reduced permeability when it is subjected to a magnetic field at frequencies below approximately 100 MHz, characterized in that it comprises several strata (2) formed from one or more wafers (10) made of a polycrystalline magnetic ceramic powder, the wafers being dispersed in a binder (20) and oriented so that their main faces are substantially parallel to the magnetic field and not in contact with one another.
    2. Magnetic material according to Claim 1, characterized in that the polycrystalline magnetic ceramic is a spinel-type ferrite satisfying the formula MxZnyFe2+εO4 with x+y+ε = 1, where M is a manganese or nickel ion.
    3. Magnetic material according to either of Claims 1 and 2, characterized in that the binder is an epoxy, phenolic, polyimide or acrylic-based resin.
    4. Magnetic material according to one of Claims 1 to 3, characterized in that, when a stratum comprises several wafers (5), they are separated by a binder constituting an airgap (6).
    5. Magnetic material according to one of Claims 1 to 4, characterized in that the wafers (5) belonging to neighbouring strata are in a staggered configuration.
    6. Magnetic material according to one of Claims 1 to 5, characterized in that the wafers (7) belonging to neighbouring strata are in a column configuration.
    7. Magnetic material according to one of Claims 1 to 6, characterized in that the wafers are squares, tori or portions of a torus.
    8. Magnetic material according to one of Claims 1 to 7, characterized in that the wafers (10) are broken into pieces (1).
    9. Process for producing the composite magnetic material according to one of Claims 1 to 8, characterized in that it comprises the following steps:
      the production of a ceramic magnetic powder;
      the production of a casting slip from the ceramic magnetic powder;
      the cutting-out of the wafers from a film of the dried slip;
      the sintering of the wafers;
      the formation of the composite magnetic material from the sintered wafers which are dispersed in the binder and the main faces of which are oriented with respect to the magnetic field.
    10. Process according to Claim 9, characterized in that the casting slip is obtained by mixing together the ceramic powder, at least one binder, at least one solvent and optionally a deflocculant.
    11. Process according to either of Claims 9 and 10, characterized in that the wafers are oriented manually.
    12. Process according to one of Claims 9 to 11, characterized in that the wafers are stacked on one another and then compressed in order to break them.
    13. Process according to one of Claims 9 to 12, characterized in that the wafers are deposited one beside another, strata by strata.
    14. Process according to either of Claims 9 and 10, characterized in that the wafers are oriented by vibration.
    15. Process according to either of Claims 9 and 10, characterized in that the wafers are oriented by a magnetic field.
    16. Magnetic core, characterized in that it is made of a magnetic material according to one of Claims 1 to 8.
    17. Inductor, characterized in that it includes a core according to Claim 16.
    18. Transformer, characterized in that it includes a core according to Claim 16.
    EP96401962A 1995-09-19 1996-09-13 Composite magnetic material with reduced permeability and losses Expired - Lifetime EP0764955B1 (en)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    FR9510952 1995-09-19
    FR9510952A FR2738949B1 (en) 1995-09-19 1995-09-19 COMPOSITE MAGNETIC MATERIAL WITH REDUCED PERMEABILITY AND LOSSES

    Publications (2)

    Publication Number Publication Date
    EP0764955A1 EP0764955A1 (en) 1997-03-26
    EP0764955B1 true EP0764955B1 (en) 2000-11-29

    Family

    ID=9482685

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP96401962A Expired - Lifetime EP0764955B1 (en) 1995-09-19 1996-09-13 Composite magnetic material with reduced permeability and losses

    Country Status (7)

    Country Link
    US (1) US6120916A (en)
    EP (1) EP0764955B1 (en)
    JP (1) JPH09129434A (en)
    AT (1) ATE197855T1 (en)
    CA (1) CA2185930A1 (en)
    DE (1) DE69611072T2 (en)
    FR (1) FR2738949B1 (en)

    Families Citing this family (17)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    ATE228711T1 (en) 1998-07-10 2002-12-15 Epcos Ag MAGNETIZABLE PRODUCT, ITS USE AND A METHOD FOR THE PRODUCTION THEREOF
    FR2795855B1 (en) * 1999-06-29 2001-10-05 Thomson Csf LOW LOSS FERRITES
    DE10000523A1 (en) * 2000-01-08 2001-07-26 Inst Maschinen Antriebe Und El Ferrite compound material with high electromagnetic absorption in the frequency range from 20-40 gigahertz for applying to cabling is produced in spinel or other crystal forms for example as hexagonal or garnet
    US20030112110A1 (en) * 2001-09-19 2003-06-19 Mark Pavier Embedded inductor for semiconductor device circuit
    JP2003124538A (en) * 2001-10-16 2003-04-25 Sony Corp Information storage device and electronic equipment mounted with the same information storage device
    US6610415B2 (en) * 2001-10-26 2003-08-26 Koslow Technologies Corporation Magnetic or magnetizable composite product and a method for making and using same
    US7353587B2 (en) * 2004-11-01 2008-04-08 Vlt, Inc. Forming distributed gap magnetic cores
    FR2879593B1 (en) * 2004-12-20 2007-03-02 Thales Sa FERRITE MATERIAL WITH LOW HYPERFREQUENCY LOSSES AND METHOD OF MANUFACTURE
    US20100059258A1 (en) * 2008-08-19 2010-03-11 Xu Yang Ferrite Mosaic and Magnetic Core Structure for Passive Substrate for Switched-Mode Power Supply Module
    JP2011222727A (en) * 2010-04-08 2011-11-04 Iq Four:Kk Toroidal core, and high frequency toroidal coil and high frequency toroidal transformer using the same
    JP5374537B2 (en) * 2010-05-28 2013-12-25 住友電気工業株式会社 Soft magnetic powder, granulated powder, dust core, electromagnetic component, and method for manufacturing dust core
    DE102013225875A1 (en) * 2013-12-13 2015-07-02 Siemens Aktiengesellschaft Guiding a magnetic flux
    DE102014202531A1 (en) * 2014-02-12 2015-08-13 Siemens Aktiengesellschaft A high voltage transformer device with adjustable dispersion, inverter circuit with a high voltage transformer device and use of a high voltage transformer device
    US20220093321A1 (en) * 2019-02-22 2022-03-24 Mitsubishi Electric Corporation Power converter and coil apparatus
    CN111875368B (en) * 2020-07-17 2022-08-09 中国电子科技集团公司第九研究所 Low-permeability ferrite magnetic medium material, and preparation method and application thereof
    JP7428098B2 (en) * 2020-07-31 2024-02-06 Tdk株式会社 Inductor parts and DC/DC converters using the same
    CN112538253A (en) * 2020-12-07 2021-03-23 陕西生益科技有限公司 Magnetic dielectric resin composition, laminated board containing same and printed circuit board containing laminated board

    Family Cites Families (11)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US3255052A (en) * 1963-12-09 1966-06-07 Magnetics Inc Flake magnetic core and method of making same
    US3535200A (en) * 1967-09-18 1970-10-20 Gen Motors Corp Multilayered mechanically oriented ferrite
    US3927930A (en) * 1972-07-10 1975-12-23 Polaroid Corp Light polarization employing magnetically oriented ferrite suspensions
    NL8004200A (en) * 1980-07-22 1982-02-16 Philips Nv PLASTIC-BONDED ELECTROMAGNETIC COMPONENT AND METHOD FOR MANUFACTURING THE SAME
    JPS5996532A (en) * 1982-11-25 1984-06-04 Fuji Photo Film Co Ltd Magnetic recording body
    US4595440A (en) * 1983-12-08 1986-06-17 Memron Inc. Transfer process for forming magnetic disk memories
    DE4214376A1 (en) * 1992-04-30 1993-11-04 Siemens Matsushita Components Magnetic material for power transmission cores - comprising homogeneous compsn. of ferrite and plastic
    US5413903A (en) * 1993-10-12 1995-05-09 Eastman Kodak Company Element having a transparent magnetic recording layer containing barium ferrite particles
    US5643686A (en) * 1994-01-06 1997-07-01 Tokyo Magnetic Printing Co., Ltd. Magnetic recording medium and method for manufacturing the same
    US5700594A (en) * 1995-02-09 1997-12-23 Eastman Kodak Company Magnetic medium capable of supporting both longitudinal and perpendicular recording, and method of making same
    FR2740259B1 (en) * 1995-10-24 1997-11-07 Thomson Csf MIXED MAGNETIC CORE

    Also Published As

    Publication number Publication date
    DE69611072D1 (en) 2001-01-04
    FR2738949B1 (en) 1997-10-24
    CA2185930A1 (en) 1997-03-20
    ATE197855T1 (en) 2000-12-15
    FR2738949A1 (en) 1997-03-21
    EP0764955A1 (en) 1997-03-26
    JPH09129434A (en) 1997-05-16
    DE69611072T2 (en) 2001-05-10
    US6120916A (en) 2000-09-19

    Similar Documents

    Publication Publication Date Title
    EP0764955B1 (en) Composite magnetic material with reduced permeability and losses
    EP0800183B1 (en) Ferrite with low losses within 1MHz and 100 MHz and manufacturing process
    US4943793A (en) Dual-permeability core structure for use in high-frequency magnetic components
    CA2188382A1 (en) Composite magnetic core
    JP5769059B2 (en) Sputtering target for permanent magnet thin film and method for producing the same
    EP2622613B1 (en) MANUFACTURING PROCESS of a HYPERFREQUENCE DEVICE of YTTRIUM-IRON-GARNET FERRITE, AND HYPERFREQUENCE DEVICE
    JP2004349585A (en) Method of manufacturing dust core and nanocrystalline magnetic powder
    JPS59211549A (en) Adhered rare earth element-iron magnet
    CN108503349B (en) High-current-resistant low-temperature sintered NiCuZn ferrite material and preparation method thereof
    JPH10163018A (en) Soft-magnetic material for inductor and manufacture of inductor using the same
    EP1829061A1 (en) Ferrite material with low hyperfrequency losses and production method
    EP3380438B1 (en) Garnet-type ferrite material with very low saturation magnetization and component comprising said material with very low saturation magnetization
    WO2013149574A1 (en) Nickel-zinc soft ferrite and method of producing the same
    JP2002528929A (en) Magnetic ceramic toroid composite
    EP1065676A1 (en) Ferrites with low losses
    JPH10163017A (en) High frequency soft-magnetic material for low temp. sintering and manufacture of inductor using the same
    CN111925201A (en) Sc doped hexagonal Zn2W ferrite material and preparation method thereof
    JP2005150425A (en) Transformer, core therefor and its manufacturing method
    JPH06310320A (en) Oxide magnetic substance material
    EP3033755B1 (en) Ferrite device for power application and manufacturing method of device
    CN114068130B (en) Common mode choke
    FR2899579A1 (en) LOW LOSS AND LOW TEMPERATURE FERRIED MATERIAL FOR SINTING, MANUFACTURING PROCESS AND MAGNETIC COMPONENT INCLUDING LEDIT FERRIED MATERIAL
    CN113539610B (en) Laminated coil component
    JP2005209708A (en) Transformer, ferrite core and manufacturing method therefor
    WO2004102595A2 (en) Ferrite material for a permanent magnet and method for production therof

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT DE FR GB NL

    17P Request for examination filed

    Effective date: 19970426

    17Q First examination report despatched

    Effective date: 19990311

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    17Q First examination report despatched

    Effective date: 19990311

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT DE FR GB NL

    REF Corresponds to:

    Ref document number: 197855

    Country of ref document: AT

    Date of ref document: 20001215

    Kind code of ref document: T

    REF Corresponds to:

    Ref document number: 69611072

    Country of ref document: DE

    Date of ref document: 20010104

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20010302

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20010821

    Year of fee payment: 6

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20010822

    Year of fee payment: 6

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: NL

    Payment date: 20010830

    Year of fee payment: 6

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20010925

    Year of fee payment: 6

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: AT

    Payment date: 20010927

    Year of fee payment: 6

    RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

    Owner name: THALES

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed
    NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

    Owner name: THALES

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: IF02

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20020913

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20020913

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: CD

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20030401

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20030401

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20020913

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20030603

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST