JPH06310320A - Oxide magnetic substance material - Google Patents

Oxide magnetic substance material

Info

Publication number
JPH06310320A
JPH06310320A JP5095790A JP9579093A JPH06310320A JP H06310320 A JPH06310320 A JP H06310320A JP 5095790 A JP5095790 A JP 5095790A JP 9579093 A JP9579093 A JP 9579093A JP H06310320 A JPH06310320 A JP H06310320A
Authority
JP
Japan
Prior art keywords
loss
weight
oxide
mol
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5095790A
Other languages
Japanese (ja)
Inventor
Osamu Inoue
修 井上
Shinya Matsutani
伸哉 松谷
Koichi Kugimiya
公一 釘宮
Osamu Ishii
治 石井
Yasuyuki Aono
保之 青野
Masaki Suzumura
政毅 鈴村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP5095790A priority Critical patent/JPH06310320A/en
Publication of JPH06310320A publication Critical patent/JPH06310320A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To lower a magnetic loss by a method wherein at least CaO and SiO2 in a specific amount are added to an MnZn-based ferrite and, in addition, at least one kind of a specific metal oxide in a specific amount is added. CONSTITUTION:An oxide magnetic substance material is constituted in such a way that 0.05<=CaO<=0.3wt.% and 0.005<=SiO2<=0.1wt.% as subcomponents are contained in a ferrite whose main component is composed of an oxide of Mn, Zn and Fe and that at least one kind out of TiO2, CaO, CuO and SnO2 is a sintered body containing 0.005<=MxOz<=0.2wt.%. Thereby, it is possible to obtain a ferrite material whose magnetic loss is low. A switching power supply manufactured by using it can be made small, generates little heat and is highly efficient.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、インダクタンス部品、
電源用トランスコア等に用いられる酸化物磁性体材料に
関し、特に、本発明の酸化物磁性体材料は、高周波特性
に優れた低損失MnZn系フェライト磁性体に関する。
The present invention relates to an inductance component,
The present invention relates to an oxide magnetic material used for a power transformer core or the like. In particular, the oxide magnetic material of the present invention relates to a low-loss MnZn-based ferrite magnetic material excellent in high frequency characteristics.

【0002】[0002]

【従来の技術】近年のエレクトロニクス技術の発展にと
もなう機器の小型化・高密度化により、使用周波数の高
周波化が進んでいる。例えばスイッチング電源用トラン
ス磁芯その他に用いられる磁性体材料においても、高周
波化への対応が必要とされ、特に小型化した場合の発熱
を防止するために、高周波において低磁気損失であるこ
とが要求されている。
2. Description of the Related Art With the recent progress in electronics technology, the downsizing and densification of equipment have led to a higher operating frequency. For example, magnetic materials used for transformer magnetic cores for switching power supplies and the like are also required to cope with higher frequencies, and in order to prevent heat generation especially when miniaturized, low magnetic loss at high frequencies is required. Has been done.

【0003】例えば磁芯材料等に適用される磁性体材料
には、大きく分けて金属系材料と酸化物フェライト系材
料がある。金属系の材料は、飽和磁束密度・透磁率とも
高いという長所があるが、電気抵抗率が10-6〜10-4
Ω・cm程度と低いため、高周波においては渦電流に起
因する磁気損失が増大するという欠点があった。
For example, magnetic materials used as magnetic core materials are roughly classified into metallic materials and oxide ferrite materials. Metal-based materials have the advantage of high saturation magnetic flux density and high magnetic permeability, but have an electrical resistivity of 10 -6 to 10 -4.
Since it is as low as Ω · cm, there is a drawback that magnetic loss due to eddy current increases at high frequencies.

【0004】この欠点は、磁性体の厚さを薄くする事に
よって改善されるため、金属を薄い箔状に加工し絶縁体
をはさんでロール状に巻いたものも作られているが、薄
体化には約10μm程度と限界があり、また複雑形状の
ものが作りにくい、高コストであるといった問題点があ
る。このため、100kHz程度の周波数帯域までしか
使用不可能であった。
Since this drawback is improved by reducing the thickness of the magnetic material, a metal foil processed into a thin foil and wound with an insulator sandwiched between them is also manufactured. There is a problem that the body is limited to about 10 μm, and it is difficult to form a complicated shape and the cost is high. For this reason, it could only be used up to a frequency band of about 100 kHz.

【0005】一方フェライト系材料は、飽和磁束密度は
金属系材料の1/2程度と低い。しかしながら電気抵抗
率は、通常用いられているMnZn系のもので1Ω・c
m程度と、金属系材料に比べてはるかに高く、また、C
aOやSiO2 等の添加物を用いることにより、電気抵
抗率をさらに10〜数百Ω・cm程度まで高めることが
でき、渦電流に起因する磁気損失が高周波数まで比較的
小さく、特別な工夫をすることなく使用可能である。ま
た、複雑形状のものも容易に作れ、かつ低コストである
といった利点を持つ。
On the other hand, a ferrite material has a saturation magnetic flux density as low as about 1/2 that of a metal material. However, the electrical resistivity is 1 Ω · c for the MnZn type that is usually used.
m, which is much higher than that of metallic materials, and C
By using an additive such as aO or SiO 2 , the electrical resistivity can be further increased to about 10 to several hundreds Ω · cm, and the magnetic loss due to the eddy current is relatively small up to high frequencies. It can be used without doing. In addition, it has the advantage that it can easily make a complicated shape and is low in cost.

【0006】このため、例えば100kHz以上のスイ
ッチング周波数での電源用トランス磁芯材料としては、
このフェライト系の材料が一般に用いられていた。
Therefore, for example, as a transformer core material for a power source at a switching frequency of 100 kHz or more,
This ferrite material was generally used.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、このよ
うなフェライト系材料といえども、500kHz以上に
なると渦電流に起因する磁気損失が増大して使用するこ
とができないという課題がある。また、高周波で比較的
低損失な材料であっても、使用磁束密度を大きくする
と、磁気損失が急増するという問題点があった。
However, even such a ferrite material has a problem that it cannot be used because the magnetic loss due to the eddy current increases at a frequency of 500 kHz or higher. Further, even if the material has a relatively low loss at high frequency, there is a problem that the magnetic loss rapidly increases when the used magnetic flux density is increased.

【0008】また、磁気損失の温度係数が室温付近で正
であると、実使用時にトランスが磁気損失により発熱
し、そのため温度が上昇し、温度上昇にともないさらに
磁気損失が増大して発熱が大きくなることを繰り返し、
熱暴走を起こす危険性がある。
If the temperature coefficient of the magnetic loss is positive near room temperature, the transformer generates heat due to the magnetic loss during actual use, so that the temperature rises, and as the temperature rises, the magnetic loss further increases and the heat generation becomes large. To become
There is a risk of thermal runaway.

【0009】このため、使用条件にもよるが、一般に室
温付近での磁気損失の温度係数が負で、実際に使用する
温度で、磁気損失が最小となるような温度特性を持つこ
とが要求される。
Therefore, although it depends on the operating conditions, it is generally required that the temperature coefficient of the magnetic loss near room temperature is negative, and that the temperature characteristic is such that the magnetic loss is minimized at the temperature actually used. It

【0010】ところが、充分低磁気損失な材料が無い上
に、比較的磁気損失が低い材料では、一般に磁気損失最
小温度が室温付近にあって熱暴走を起こしやすく、一方
磁気損失最小温度が40〜60℃以上にあるような材料
は、非常に磁気損失が大きいという問題点があった。従
って、超低磁気損失で同時に温度特性も良い材料は、現
在まで得られていないという課題があった。
However, in the absence of a material having a sufficiently low magnetic loss and a material having a relatively low magnetic loss, the magnetic loss minimum temperature is generally around room temperature and thermal runaway easily occurs, while the magnetic loss minimum temperature is 40 to A material having a temperature of 60 ° C. or higher has a problem of extremely large magnetic loss. Therefore, there has been a problem that a material having an extremely low magnetic loss and a good temperature characteristic has not been obtained until now.

【0011】本発明は、前記従来技術の課題を解決する
ため、高周波・高磁束密度下における磁気損失が極めて
低い磁性体材料を提供することを目的とする。また、そ
の温度特性が好ましくない場合には、これを改善する手
段を提供する。
In order to solve the above-mentioned problems of the prior art, it is an object of the present invention to provide a magnetic material having extremely low magnetic loss under high frequency and high magnetic flux density. Moreover, when the temperature characteristic is not preferable, a means for improving this is provided.

【0012】[0012]

【課題を解決するための手段】前記目的を達成するた
め、本発明の第1番目の酸化物磁性体材料は、主成分が
Mn、Zn、Feの酸化物よりなるフェライトに、副成
分として0.05≦CaO≦0.3重量%、0.005
≦SiO2≦0.1重量%を含有し、さらにA群(Ti
2、CoO、CuO、SnO2)を少なくとも一種類以
上、0.005≦Mxz≦0.2 重量%含有する焼結
体であるという構成を備えたものである。
In order to achieve the above object, the first oxide magnetic material of the present invention comprises a ferrite composed of oxides of Mn, Zn, and Fe as main components and 0% as a subcomponent. 0.05 ≤ CaO ≤ 0.3 wt%, 0.005
≦ SiO 2 ≦ 0.1% by weight, and further includes Group A (Ti
O 2 , CoO, CuO, SnO 2 ) is a sintered body containing at least one kind and 0.005 ≦ M x O z ≦ 0.2 wt%.

【0013】また、本発明の第2番目の酸化物磁性体材
料は、上記にさらにB群(ZrO2、HfO2、Ta
25、Al23、Ga23、In23、GeO2、Sb2
3)を、0.01重量%以上 0.2重量%以下含有す
るという構成を備えたものである。
The second oxide magnetic material of the present invention has the above-mentioned group B (ZrO 2 , HfO 2 , Ta).
2 O 5 , Al 2 O 3 , Ga 2 O 3 , In 2 O 3 , GeO 2 , Sb 2
O 3 ) is contained in an amount of 0.01% by weight or more and 0.2% by weight or less.

【0014】また、本発明の第3番目の酸化物磁性体材
料は、上記にさらにMgOを、0.01重量%以上
0.2重量%以下含有するという構成を備えたものであ
る。
The third oxide magnetic material of the present invention further comprises MgO in an amount of 0.01% by weight or more.
It has a constitution of containing 0.2 wt% or less.

【0015】[0015]

【作用】前記した本発明の構成によれば、MnZn系フ
ェライトに、少なくとも特定量のCaOおよびSiO2
を添加し、これにさらに特定量のA群(TiO2、Co
O、CuO、SnO2)の金属酸化物を、少なくとも一
種類以上添加する事により、磁気損失の低い磁性体材料
とすることができる。
According to the above-mentioned constitution of the present invention, at least a specific amount of CaO and SiO 2 is added to the MnZn-based ferrite.
Was added, and a specific amount of group A (TiO 2 , Co
By adding at least one kind of metal oxide of O, CuO, SnO 2 ), a magnetic material having low magnetic loss can be obtained.

【0016】さらにB群(ZrO2、HfO2、Ta
25、Al23、Ga23、In23、GeO2、Sb2
3)の金属酸化物を、少なくとも一種類以上を添加す
る事により、より磁気損失の低い磁性体材料とすること
ができる。
Further, Group B (ZrO 2 , HfO 2 , Ta
2 O 5 , Al 2 O 3 , Ga 2 O 3 , In 2 O 3 , GeO 2 , Sb 2
By adding at least one kind of metal oxide of O 3 ), a magnetic material having a lower magnetic loss can be obtained.

【0017】副成分のうち、CaOおよびSiO2 の役
割は、MnZn系フェライトの電気抵抗値を増大させ、
渦電流にともなう磁気損失を低下させるものである。
Of the subcomponents, the roles of CaO and SiO 2 increase the electric resistance of MnZn ferrite,
The magnetic loss associated with the eddy current is reduced.

【0018】A群の添加物の役割は、さらに磁気損失を
低下させる事にあるが、これらの添加物による損失低下
のメカニズムは、現時点では明瞭ではない。TiO2
ように、若干電気抵抗を高くするものもあるが、その効
果よりも、磁区構造や磁歪を変化させる事によるものと
考えられる。
The role of the additives of group A is to further reduce the magnetic loss, but the mechanism of loss reduction by these additives is not clear at this time. Some materials, such as TiO 2 , have a slightly higher electric resistance, but it is considered that the effect is caused by changing the magnetic domain structure or magnetostriction rather than the effect.

【0019】B群の添加物の役割は、CaOおよびSi
2 とともに、さらに電気抵抗を増大させる事にある。
The role of the additives of group B is CaO and Si.
It is to increase the electric resistance further together with O 2 .

【0020】添加量の下限は、磁気損失低下の効果が表
れるのに必要な最低限度である。一方上限を設定する理
由は、添加量が増加し過ぎると透磁率の低下等を招き、
磁気損失を増大させるためである。
The lower limit of the amount added is the minimum necessary for the effect of reducing magnetic loss to appear. On the other hand, the reason for setting the upper limit is that when the addition amount increases too much, the magnetic permeability decreases,
This is to increase the magnetic loss.

【0021】但し、CoOについては、かなり多量に添
加しても、必ずしも磁気損失は増加しない。しかしなが
ら、透磁率は大幅に低下し、また損失極小温度が低下す
るという欠点がある。
However, with respect to CoO, the magnetic loss does not necessarily increase even if a considerably large amount is added. However, there are drawbacks that the magnetic permeability is significantly lowered and the minimum loss temperature is lowered.

【0022】MgOは添加量を増やす事によって損失極
小温度を上げる事ができるが、添加量が多すぎると損失
が増加する。
Although the minimum loss temperature can be raised by increasing the addition amount of MgO, the loss increases if the addition amount is too large.

【0023】A群またはB群として2種類以上の金属酸
化物を用いた場合、一種類の添加量が下限である0.0
1重量%未満であっても、2種類以上の合計量が0.0
1重量以上であれば、低損失化の効果は現れる。もちろ
ん、複数の種類のMxzそれぞれが添加範囲内であって
も問題はなく、CaOおよびSiO2 のみの場合に比べ
て磁気損失を低下させることができる。
When two or more kinds of metal oxides are used as the group A or the group B, the addition amount of one kind is the lower limit of 0.0.
Even if less than 1% by weight, the total amount of two or more kinds is 0.0
If it is 1 weight or more, the effect of lowering the loss appears. Of course, there is no problem even if each of a plurality of types of M x O z is within the addition range, and the magnetic loss can be reduced as compared with the case of only CaO and SiO 2 .

【0024】[0024]

【実施例】一般にフェライトの磁気特性のうち、飽和磁
束密度・キュリー温度・損失極小温度などはその主組成
に依存し、一方、透磁率・残留磁束密度・保持力・磁気
損失などは、主組成の影響も受けるが、微細構造によっ
て支配される特性であるとされている。
[Example] Generally, among magnetic properties of ferrite, saturation magnetic flux density, Curie temperature, minimum loss temperature, etc. depend on the main composition, while permeability, residual magnetic flux density, coercive force, magnetic loss, etc. It is said that this is a characteristic that is dominated by the fine structure, although it is also affected by.

【0025】高周波の磁気損失は主に渦電流損失に起因
するので、電気抵抗率が高いほど損失が小さくなると考
えられるが、MnZnフェライト自体の電気抵抗率は、
前述したように充分高くはない。
Since the high frequency magnetic loss is mainly caused by the eddy current loss, it is considered that the loss becomes smaller as the electrical resistivity becomes higher. However, the electrical resistivity of MnZn ferrite itself is
As mentioned above, it is not high enough.

【0026】このため、高周波用低磁気損失MnZnフ
ェライトの開発は、各種の添加物を用い、また微細構造
を制御する事により、電気抵抗率を高くする検討が主流
である。
For this reason, the mainstream of the development of low magnetic loss MnZn ferrite for high frequencies is to increase the electrical resistivity by using various additives and controlling the fine structure.

【0027】一方、MnZn系フェライトの磁気損失極
小温度については、従来は結晶磁気異方性によって説明
がなされていた。すなわち、結晶磁気異方性定数K1
符号が温度上昇に伴って負から正の値に変わるK1 =0
の温度において、磁気損失が極小値をもつと言われてい
る。
On the other hand, the minimum temperature of magnetic loss of MnZn type ferrite has been conventionally explained by the crystal magnetic anisotropy. That is, the sign of the magnetocrystalline anisotropy constant K 1 changes from a negative value to a positive value as the temperature rises K 1 = 0
It is said that the magnetic loss has a minimum value at the temperature of.

【0028】この温度は透磁率が極大をもつ、いわゆる
透磁率のセカンダリーピークに一致する。このK1 は温
度上昇に対して単調に増加するが、Fe2+は正のK1
持つため、Fe2+の量が増加すると(すなわちFe23
量が増加すると)セカンダリーピークの温度は低温側に
移動する。
This temperature coincides with a so-called secondary peak of magnetic permeability, which has a maximum magnetic permeability. This K 1 monotonically increases with increasing temperature, but since Fe 2+ has a positive K 1 , the amount of Fe 2+ increases (that is, Fe 2 O 3
The temperature of the secondary peak moves to the lower temperature side (when the amount increases).

【0029】従って、主組成のFe23量が多いと極小
損失温度が低くなり過ぎるため、Fe23量は、54m
ol%程度以下が一般的であった。
Therefore, if the Fe 2 O 3 content of the main composition is large, the minimum loss temperature becomes too low, so the Fe 2 O 3 content is 54 m.
It was generally about ol% or less.

【0030】また、TiO2 やCoOは、フェライトに
よく用いられる添加物であるが、Ti4+はフェライト相
に固溶し、電気的中性を保つため、Fe3+をFe2+に変
化させる。
Further, TiO 2 and CoO are additives often used for ferrite, but Ti 4+ is solid-dissolved in the ferrite phase to maintain electric neutrality, so that Fe 3+ is changed to Fe 2+ . Let

【0031】また、Co2+はそれ自体が大きな正のK1
を持つ。このため、これらの添加量増加にともない、極
小損失温度が低下するので、低損失用フェライトには必
ずしも用いられていなかった。
Co 2+ itself has a large positive K 1
have. For this reason, the minimum loss temperature decreases with an increase in the addition amount of these, and therefore, it has not always been used as a low-loss ferrite.

【0032】一方、高周波用低損失材料の磁気損失以外
の特性としては、飽和磁束密度・キュリー温度・透磁率
が高い事が必要とされている。これらの特性は、ソフト
磁性体が基本的に要求される特性であるとともに、低損
失化のためにも重要な特性と考えられている(「粉体お
よび粉末冶金」第34巻5号P191)。
On the other hand, high saturation magnetic flux density, Curie temperature, and magnetic permeability are required as properties of the high-frequency low-loss material other than magnetic loss. These properties are basically required properties of a soft magnetic material and are considered to be important properties for reducing loss ("Powder and powder metallurgy" Vol. 34, No. 5, P191). .

【0033】飽和磁束密度は、ZnO量がある程度多
く、Fe23量が多いほど増加する。しかしながら、Z
nO量が多すぎるとキュリー温度が低下し、またFe2
3量が多すぎると透磁率が低下する事が知られてい
る。
The saturation magnetic flux density increases as the amount of ZnO increases to some extent and the amount of Fe 2 O 3 increases. However, Z
If the amount of nO is too large, the Curie temperature decreases, and Fe 2
It is known that if the amount of O 3 is too large, the magnetic permeability decreases.

【0034】以上のような理由から、低損失MnZnフ
ェライトの主組成としては、Fe23を53〜54mo
l%程度、ZnOを9〜12mol%程度含有するもの
が最適とされている(「エレクトロニク・セラミクス」
1985年冬号P44)。
For the above reasons, the main composition of the low-loss MnZn ferrite is Fe 2 O 3 of 53 to 54 mo.
It is optimal that the content of ZnO is about 1% and ZnO is about 9 to 12 mol% ("Electronic Ceramics").
1985 winter issue P44).

【0035】実際に開発されている低損失フェライト
も、ほとんどがこの組成範囲内であり、低損失化は、こ
の付近の主組成を用い、既に述べた添加物・微細構造に
よる検討が中心であった。
Most of the low-loss ferrites actually developed are within this composition range, and reduction of loss is centered on the additives and fine structure described above using the main composition in the vicinity. It was

【0036】発明者等は、各種の主組成比のMnZn系
フェライトに種々の金属酸化物を複合添加したフェライ
トを実際に作製し、添加物・主組成の効果を詳細に検討
した。その結果、3〜5成分以上の複合添加により、従
来よりもはるかに優れた低損失化効果を見いだした。
The inventors actually manufactured ferrites in which various metal oxides were added in combination to MnZn-based ferrites having various main composition ratios, and examined the effects of additives / main compositions in detail. As a result, it was found that by adding 3 to 5 or more components, the loss-reducing effect far superior to the conventional one was achieved.

【0037】また、従来用いられていたものとは全く異
なる、Fe23が過剰でZnO量の少ない主組成にこれ
らの添加物を用いる事により、300kHz〜数MHz
でもさらに低磁気損失なフェライトが得られる事を見い
だした。
Further, by using these additives in the main composition containing Fe 2 O 3 excessively and containing a small amount of ZnO, which is completely different from the conventional ones, 300 kHz to several MHz can be obtained.
However, they have found that ferrite with even lower magnetic loss can be obtained.

【0038】このような理由から、本発明の酸化物磁性
体材料の主組成としては、Fe23を53〜60mol
%、MnOを34〜44mol%、ZnOを0〜9mo
l%含む事が望ましい。さらにFe23が55〜60m
ol%、MnOが34〜42mol%、ZnOが0〜6
mol%である事が、より望ましい。
For these reasons, the main composition of the oxide magnetic material of the present invention is Fe 2 O 3 of 53 to 60 mol.
%, MnO 34-44 mol%, ZnO 0-9mo
It is desirable to include 1%. Further, Fe 2 O 3 is 55 to 60 m
ol%, MnO 34-42 mol%, ZnO 0-6
More preferably, it is mol%.

【0039】添加物による低損失化については、CaO
およびSiO2 を同時に添加し、これらを粒界に偏析さ
せる事により高電気抵抗化させ、渦電流損失を減少させ
る事ができる事は良く知られているが、これにさらに選
択された3番目(A群)および4番目(B群)の添加物
を用いる事により、より低損失化できる。
Regarding the loss reduction by the additive, CaO
It is well known that by simultaneously adding SiO 2 and SiO 2 and segregating them into grain boundaries, it is possible to increase the electrical resistance and reduce the eddy current loss. The loss can be further reduced by using the A group) and the fourth (B group) additives.

【0040】しかしながら、発明者等の検討によると、
このB群の添加物についても粒界に析出させる事が重要
である。つまり、添加物を多量に用いると、電気抵抗が
高くなり、渦電流損失は減少するものと予想されるが、
実際には、多量の添加によって、添加物のフェライト相
への固溶が生じ易くなり、ヒステリシス損を増加させる
事になる。従って、添加物量はできる限り少なくし、粒
界に薄く均一に析出させる事により、低損失な材料が得
られる。具体的には、B群の金属酸化物の粒界層部分の
濃度が、粒子内部の濃度の5倍以上となっている事が望
ましく、このような構成をとることによって、損失を低
下させる事が出来る。
However, according to the study by the inventors,
It is important to precipitate the group B additive also at the grain boundaries. In other words, it is expected that the electrical resistance will increase and the eddy current loss will decrease if a large amount of the additive is used.
In reality, addition of a large amount makes it easier for the additive to form a solid solution in the ferrite phase, thereby increasing the hysteresis loss. Therefore, a low loss material can be obtained by making the amount of the additive as small as possible and precipitating thinly and uniformly at the grain boundaries. Specifically, it is desirable that the concentration of the group B metal oxide in the grain boundary layer is 5 times or more the concentration inside the grain. By adopting such a configuration, the loss can be reduced. Can be done.

【0041】一方、A群およびMgOについては、逆に
フェライト相へ固溶させる事が望ましい。MgOは、磁
気損失極小温度を高くする効果を持つが、これは、Mg
2+がフェライト相へ固溶する事により、Fe2+がFe3+
へ変化してK1 が減少するためと考えられる。
On the other hand, it is desirable that the group A and MgO should be solid-dissolved in the ferrite phase. MgO has the effect of raising the minimum temperature of magnetic loss, which is
Fe 2+ becomes Fe 3+ due to the solid solution of 2+ in the ferrite phase.
It is thought that this is because K 1 decreases and K 1 decreases.

【0042】その他低磁気損失MnZnフェライトに必
要な特性としては、焼結体の相対密度が 4.6g/cm
3以上である事が望ましい。焼結密度が低いと実効断面
積が減少するために損失が増大する。また焼結密度が低
いと、焼成の冷却時に雰囲気の影響を受け易くなり、特
にFe23が多いような組成では、精密に雰囲気制御を
行わなければ本来の特性が得られにくくなる場合があ
り、製造時の歩留まりを下げる原因となる。
Another characteristic required for low magnetic loss MnZn ferrite is that the relative density of the sintered body is 4.6 g / cm.
It is desirable that it is 3 or more. If the sintered density is low, the effective area is reduced and the loss is increased. Further, if the sintering density is low, the atmosphere is likely to be affected by cooling during firing, and especially in a composition containing a large amount of Fe 2 O 3, it may be difficult to obtain the original characteristics unless the atmosphere is precisely controlled. There is a cause of lowering the production yield.

【0043】次に、透磁率として700以上1600以
下程度の範囲内が望ましい。また、電気抵抗率は、直流
抵抗率が20〜2kΩ・cm程度が望ましい。透磁率や
電気抵抗率は結晶粒径によって変化し、粒径が小さすぎ
ると透磁率が低くなり、また大きすぎると電気抵抗が低
くなる。従って、平均結晶粒径は10μm以下で、2〜
5μm程度が望ましい。
Next, the magnetic permeability is preferably in the range of 700 to 1600. Further, the electrical resistivity is preferably a direct current resistivity of about 20 to 2 kΩ · cm. The magnetic permeability and the electrical resistivity change depending on the crystal grain size. If the grain size is too small, the magnetic permeability is low, and if it is too large, the electrical resistance is low. Therefore, the average crystal grain size is 10 μm or less,
About 5 μm is desirable.

【0044】本発明のMnZn系フェライト材料は、測
定周波数がMHz帯域であっても超低磁気損失を示す。
従って、本材料を磁気コアとして用いたスイッチング周
波数が300kHz〜5MHzのスイッチング電源は、
小型・高効率となる。すなわち、本発明の酸化物磁性体
材料をスイッチング周波数300kHz〜5MHzのス
イッチング電源の磁芯として使用すると、小型・高効率
のスイッチング電源を提供できる。
The MnZn ferrite material of the present invention exhibits an ultra-low magnetic loss even when the measurement frequency is in the MHz band.
Therefore, a switching power supply using this material as a magnetic core and having a switching frequency of 300 kHz to 5 MHz is
Small size and high efficiency. That is, when the oxide magnetic material of the present invention is used as a magnetic core of a switching power supply having a switching frequency of 300 kHz to 5 MHz, a compact and highly efficient switching power supply can be provided.

【0045】以下、A群およびB群として一部のものを
用いた場合を中心に、実施例によって本発明を説明する
が、実施例4〜6に示すように、他の本発明の請求項に
挙げた以外の添加物を用いた場合にも、程度の差はあれ
同様の効果が認められた。
Hereinafter, the present invention will be described with reference to Examples, focusing on the case where some of the groups A and B are used. However, as shown in Examples 4 to 6, the claims of other inventions are claimed. Even when additives other than those mentioned above were used, similar effects were observed to some extent.

【0046】(実施例1)出発原料に純度99.5%の
α-Fe23、MnCO3、ZnO の各粉末を用いた。
これらの粉末を組成比が組成比Fe23=54.5mo
l%、MnO=36mol%、ZnO=9.5mol%
となり、合計重量が300gとなるようにそれぞれの
粉体を秤量した。これに、CoOが最終焼結体において
0.05重量%となるように秤量し、これらの粉末を
ボールミルにて湿式10h混合粉砕し、乾燥させた。
Example 1 As starting materials, powders of α-Fe 2 O 3 , MnCO 3 and ZnO having a purity of 99.5% were used.
The composition ratio of these powders was Fe 2 O 3 = 54.5mo.
1%, MnO = 36 mol%, ZnO = 9.5 mol%
And the respective powders were weighed so that the total weight became 300 g. CoO was weighed so as to be 0.05% by weight in the final sintered body, and these powders were wet pulverized for 10 hours in a ball mill, pulverized, and dried.

【0047】この混合粉末を900℃で2時間空気中で
仮焼した後、CaOとSiO2 が(表1)の量となり、
Sb23が0.05重量%となるように、CaCO3
SiO2 およびSb23を添加し、再度ボールミルにて
10h、湿式混合粉砕して乾燥させ、仮焼粉末とした。
After calcining this mixed powder in air at 900 ° C. for 2 hours, the amounts of CaO and SiO 2 became (Table 1),
CaCO 3 , so that Sb 2 O 3 is 0.05% by weight,
SiO 2 and Sb 2 O 3 were added, and the mixture was again wet mixed and ground for 10 hours in a ball mill and dried to obtain a calcined powder.

【0048】これらの仮焼粉末に、ポリビニルアルコー
ルの5重量%水溶液を10重量%加え、30#のふるい
を通過させて造粒した。これらの造粒粉を一軸金型成形
し、この成形体を500℃で1時間、空気中でバインダ
アウトした。
10% by weight of a 5% by weight aqueous solution of polyvinyl alcohol was added to these calcined powders, and the mixture was passed through a 30 # sieve to granulate. These granulated powders were uniaxially die-molded, and the molded body was binder-out in air at 500 ° C. for 1 hour.

【0049】焼成は、温度を1200℃とし、昇温時を
空気中、最高温度保持時および冷却時をフェライトの平
衡酸素分圧に応じてO2 雰囲気制御した。この時、焼成
時間及び成形時の圧力を、焼結体の平均結晶粒径が3〜
5μm程度、焼結体密度がほぼ4.7g/cm3程度で、
4.6〜4.8g/cm3の範囲内に入るように変化させ
た。
For the firing, the temperature was set to 1200 ° C., the temperature was raised in air, and the O 2 atmosphere was controlled according to the equilibrium oxygen partial pressure of the ferrite during the maximum temperature holding and cooling. At this time, the firing time and the pressure at the time of molding are set so that the average crystal grain size of the sintered body is 3 to
About 5 μm, the density of the sintered body is about 4.7 g / cm 3 ,
It was changed so as to fall within the range of 4.6 to 4.8 g / cm 3 .

【0050】特性の測定は、得られた焼結体より外径2
0mm、内径14mm、厚さ3mmのリング状試料を切
り出し、1MHz・50mTにおける磁気損失を、20
℃〜120℃の間で20℃きざみで測定した。
The outer diameter of the obtained sintered body was 2
A ring-shaped sample with a diameter of 0 mm, an inner diameter of 14 mm, and a thickness of 3 mm was cut out, and the magnetic loss at 1 MHz / 50 mT was 20
The measurement was performed in steps of 20 ° C between 0 ° C and 120 ° C.

【0051】磁気損失の測定方法はリング状フェライト
コアに絶縁テープを一層巻いた後、線径 0.26mm
φの絶縁導線を全周にわたって一層巻いた試料を準備
し、交流B−Hカーブ・トレーサーを用いて測定した。
その結果損失値は、いずれの試料においても60℃で極
小値となった。その時の損失測定値を、KW/m3の単位で
(表1)に示した。
The magnetic loss was measured by winding a layer of insulating tape around the ring-shaped ferrite core and then measuring the wire diameter of 0.26 mm.
A sample in which a φ insulated conductor was wound around the entire circumference was prepared and measured using an AC BH curve tracer.
As a result, the loss value became the minimum value at 60 ° C. in all the samples. The measured loss values at that time are shown in (Table 1) in units of KW / m 3 .

【0052】また、同様の方法で、CaOが0.1重量
%、SiO2 が0.05重量%となり、CoOとSb2
3が(表2)の量となるように、CaCO3、SiO2
およびCoO、Sb23を添加した焼結体を作製し、磁
気損失の温度特性を測定したところ、CoO量が 0.
05重量%以下の場合には、60℃で極小値となった。
但し、CoO量が0.1〜0.2重量%の場合には、4
0℃で極小値となった。
By the same method, CaO was reduced to 0.1% by weight, SiO 2 was reduced to 0.05% by weight, and CoO and Sb 2 were added.
CaCO 3 , SiO 2 so that the amount of O 3 is (Table 2).
When a sintered body to which CoO and Sb 2 O 3 were added was prepared and the temperature characteristic of magnetic loss was measured, the amount of CoO was 0.
In the case of less than 05% by weight, the minimum value was obtained at 60 ° C.
However, when the CoO amount is 0.1 to 0.2% by weight, 4
It reached a minimum value at 0 ° C.

【0053】また、0.3重量%の場合には20℃で極
小値となった。極小温度における損失値測定結果を、KW
/m3の単位で(表2)に示した。
Further, in the case of 0.3% by weight, the minimum value was obtained at 20 ° C. Measure the loss value measurement result at the minimum temperature by KW
It is shown in (Table 2) in units of / m 3 .

【0054】[0054]

【表1】 [Table 1]

【0055】[0055]

【表2】 [Table 2]

【0056】(表1)および(表2)より明らかなよう
に、CaO、SiO2 のどちらかを全く含まないと、C
oO、Sb23を含んでいても損失値は大きい。また、
CaO、SiO2 を含むものに、CoOを適量添加する
ことによって、より低損失化する。さらに4種類を特定
量同時に添加する事によって低磁気損失化し、特に0.
05≦CaO≦0.3重量%、0.005≦SiO2
0.1重量%、0.005 重量%≦CoO、0.01
≦Sb25≦0.2重量%の範囲内にあるときは、磁気
損失が300kW/m3以下と低磁気損失であった。但
し、CoOが 0.3重量%以上の場合には、損失極小
温度が20℃と低く、かつ比透磁率が、他のものが90
0〜1600程度以上であるのに比べて、約500と低
くなりすぎるという欠点があった。
As is clear from (Table 1) and (Table 2), when either CaO or SiO 2 is not contained at all, C
Even if it contains oO and Sb 2 O 3 , the loss value is large. Also,
The loss is further reduced by adding an appropriate amount of CoO to the one containing CaO and SiO 2 . Furthermore, the magnetic loss is reduced by adding four types at the same time in a specific amount, and particularly,
05 ≦ CaO ≦ 0.3% by weight, 0.005 ≦ SiO 2
0.1% by weight, 0.005% by weight ≦ CoO, 0.01
When it was within the range of ≤Sb 2 O 5 ≤0.2% by weight, the magnetic loss was as low as 300 kW / m 3 or less. However, when CoO is 0.3% by weight or more, the minimum loss temperature is as low as 20 ° C. and the relative permeability is 90% or less.
There was a defect that it was too low, about 500, compared with about 0 to 1600 or more.

【0057】(実施例2)実施例1と同様の方法で、組
成比Fe23=56.5mol%、MnO=38mol
%、ZnO=5.5mol% となり、合計重量が30
0gとなるようにそれぞれの粉体を秤量した。これに、
CoOが最終焼結体において0.05重量%となるよう
に秤量し、これらの粉末をボールミルにて湿式10h混
合粉砕し、乾燥させた。
Example 2 By the same method as in Example 1, the composition ratio Fe 2 O 3 = 56.5 mol% and MnO = 38 mol.
%, ZnO = 5.5 mol%, and the total weight is 30
Each powder was weighed so that it would be 0 g. to this,
CoO was weighed so as to be 0.05% by weight in the final sintered body, and these powders were wet-ground for 10 hours in a ball mill, pulverized, and dried.

【0058】この混合粉末を900℃で2時間空気中で
仮焼した後、CaOがとSiO2 が(表3)の量とな
り、Ta25が0.05重量%となるように、CaCO
3、SiO2 およびTa25を添加し、再度ボールミル
にて10h、湿式混合粉砕して乾燥させ、仮焼粉末とし
た。
After calcining the mixed powder in air at 900 ° C. for 2 hours, CaO and SiO 2 were adjusted to the amounts shown in Table 3 and Ta 2 O 5 was adjusted to 0.05% by weight so that CaCO
3 , SiO 2 and Ta 2 O 5 were added, and the mixture was again wet mixed and pulverized for 10 hours in a ball mill and dried to obtain a calcined powder.

【0059】これらの仮焼粉末より実施例1と同様の方
法で焼結体を作製し、1MHz,50mTの磁気損失の
温度特性を測定したところ、何れの試料においても損失
は80℃で極小値を示した。その時の損失測定値を、単
位KW/m3で(表3)に示した。
Sinters were prepared from these calcined powders in the same manner as in Example 1 and the temperature characteristics of magnetic loss at 1 MHz and 50 mT were measured. showed that. The measured loss values at that time are shown in (Table 3) in units of KW / m 3 .

【0060】また、同様の方法で、CaOが0.1重量
%、SiO2 が0.05重量%となり、CoOとTa2
5が(表4)の量となるように、CaCO3、SiO2
およびCoO、Ta25を添加した焼結体を作製し、磁
気損失の温度特性を測定したところ、CoO量が0.0
5重量%以下の場合には、80℃で極小値となった。但
し、CoO量が0.1 重量%の場合には、60℃で極
小値となった。また、CoO量が 0.2重量%の場合
には、40℃で極小値となった。 0.3重量%の場合
には、20℃で極小値となった。極小温度における損失
値測定結果を、単位KW/m3で(表4)に示した。
By the same method, CaO was reduced to 0.1% by weight, SiO 2 was reduced to 0.05% by weight, and CoO and Ta 2 were added.
CaCO 3 , SiO 2 so that the amount of O 5 is (Table 4).
A sintered body to which CoO and Ta 2 O 5 were added was manufactured, and the temperature characteristic of magnetic loss was measured.
In the case of 5% by weight or less, the minimum value was obtained at 80 ° C. However, when the amount of CoO was 0.1% by weight, the minimum value was obtained at 60 ° C. Further, when the amount of CoO was 0.2% by weight, it became the minimum value at 40 ° C. In the case of 0.3% by weight, the minimum value was obtained at 20 ° C. The loss value measurement results at the minimum temperature are shown in (Table 4) in units of KW / m 3 .

【0061】[0061]

【表3】 [Table 3]

【0062】[0062]

【表4】 [Table 4]

【0063】(表3)および(表4)より明らかなよう
に、CaO、SiO2 のどちらかを全く含まないと、C
oO、Ta25を含んでいても損失値は大きい。またC
aO、SiO2 を適当量含むものにCoOを適当量添加
する事によって、より低損失化する。さらに、4種類を
特定量同時に添加する事によって最も低磁気損失化し、
特に0.05≦CaO≦0.3重量%、0.005≦S
iO2 ≦0.1wt%、0.005重量%≦CoO、
0.01≦Ta25≦0.2wt%の範囲内にあるとき
は、磁気損失が100kW/m3以下と低磁気損失であっ
た。
As is clear from (Table 3) and (Table 4), when either CaO or SiO 2 is not contained at all, C
Even if it contains oO and Ta 2 O 5 , the loss value is large. Also C
The loss can be further reduced by adding an appropriate amount of CoO to an appropriate amount of aO and SiO 2 . Furthermore, the lowest magnetic loss can be achieved by adding four types at the same time.
Especially 0.05 ≦ CaO ≦ 0.3% by weight, 0.005 ≦ S
iO 2 ≦ 0.1 wt%, 0.005 wt% ≦ CoO,
In the range of 0.01 ≦ Ta 2 O 5 ≦ 0.2 wt%, the magnetic loss was 100 kW / m 3 or less, which was a low magnetic loss.

【0064】但し、CoOが 0.3重量%の場合に
は、損失極小温度が20℃と低く、かつ比透磁率が、他
のものが700〜1200程度であるのに比べて、約3
00程度と低くなりすぎるという欠点があった。
However, when CoO is 0.3% by weight, the minimum loss temperature is as low as 20 ° C., and the relative permeability is about 3 to 100, compared with the other materials having a relative magnetic permeability of about 700 to 1200.
There was a drawback that it was too low, around 00.

【0065】また、実施例1の(表1)(表2)と本実
施例の(表3)(表4)を比較すると、よりFeが多
く、Znの少ない本実施例のほうが、比透磁率は200
〜400程度低いが、磁気損失は小さかった。
Further, comparing (Table 1) (Table 2) of Example 1 with (Table 3) (Table 4) of this example, the relative permeability of this example with more Fe and less Zn was compared. Magnetic susceptibility is 200
The magnetic loss was small though it was about 400 lower.

【0066】(実施例3)実施例2と同様に、組成比F
23=57mol%、MnO=38mol%、ZnO
=5mol%となり、合計重量が300gとなるように
それぞれの粉体を秤量した。これに、CoOが最終焼結
体において 0.2重量%となり、MgOが(表5)の
量となるように秤量し、これらの粉末をボールミルにて
湿式10h混合粉砕し、乾燥させた。
(Example 3) As in Example 2, the composition ratio F
e 2 O 3 = 57 mol%, MnO = 38 mol%, ZnO
= 5 mol%, and each powder was weighed so that the total weight was 300 g. CoO was 0.2% by weight in the final sintered body and MgO was weighed so that the amount was (Table 5), and these powders were wet-ground for 10 hours in a ball mill and pulverized and dried.

【0067】この混合粉末を900℃で2時間空気中で
仮焼した後、CaOが0.1重量%、SiO2 が0.0
2重量%となり、Ta25が 0.05重量%となるよ
うに、CaCO3、SiO2およびTa25を添加し、再
度ボールミルにて10h、湿式混合粉砕して乾燥させ、
仮焼粉末とした。
This mixed powder was calcined in air at 900 ° C. for 2 hours, and then 0.1% by weight of CaO and 0.0% of SiO 2 were obtained.
CaCO 3 , SiO 2 and Ta 2 O 5 were added so that the amount of Ta 2 O 5 became 2% by weight and the amount of Ta 2 O 5 became 0.05% by weight, and the mixture was again wet mixed and pulverized for 10 hours in a ball mill and dried.
It was a calcined powder.

【0068】これらの仮焼粉末より実施例1と同様の方
法で焼結体を作製し、磁気損失の温度特性を測定した。
その結果を(表5)に示した。
Sinters were prepared from these calcined powders in the same manner as in Example 1, and the temperature characteristics of magnetic loss were measured.
The results are shown in (Table 5).

【0069】[0069]

【表5】 [Table 5]

【0070】(表5)より明らかなように、損失極小温
度が40℃以下のものに対してMgOを添加すると、損
失極小温度が上昇した。特に添加量0.01重量%以上
0.2重量%以下の時に、損失をあまり増加させる事無
く、60〜80℃の損失極小温度とする事ができた。
As is clear from Table 5, when MgO was added to a material having a minimum loss temperature of 40 ° C. or less, the minimum loss temperature increased. In particular, when the addition amount was 0.01% by weight or more and 0.2% by weight or less, the loss minimum temperature of 60 to 80 ° C. could be achieved without increasing the loss.

【0071】(実施例4)実施例1と同様に、組成比が
Fe23=56.5mol%、MnO=37.5mol
%、ZnO=6mol%となり、合計重量が300gと
なるようにそれぞれの粉体を秤量した。これに、TiO
2、CuO、SnO2が最終的に(表6)の添加量となる
ように秤量し、これらの粉末をボールミルにて湿式10
h混合粉砕し、乾燥させた。
(Example 4) As in Example 1, the composition ratio was Fe 2 O 3 = 56.5 mol% and MnO = 37.5 mol.
%, ZnO = 6 mol%, and the respective powders were weighed so that the total weight became 300 g. To this, TiO
2 , CuO, and SnO 2 were weighed so that the final addition amounts were as shown in Table 6, and these powders were wet-milled with a ball mill.
h Mixed and crushed and dried.

【0072】この混合粉末を800℃で2時間空気中で
仮焼した後、CaOが0.1重量%、SiO2が0.0
2重量%となるように、CaCO3およびSiO2を添加
し、再度ボールミルにて粉砕して仮焼粉末を作製した。
この仮焼粉末より、実施例1と同様の方法で焼結体を作
製した。
This mixed powder was calcined in air at 800 ° C. for 2 hours, and then 0.1% by weight of CaO and 0.0% of SiO 2 were obtained.
CaCO 3 and SiO 2 were added so as to be 2% by weight, and the mixture was ground again with a ball mill to prepare a calcined powder.
A sintered body was produced from this calcined powder by the same method as in Example 1.

【0073】得られた焼結体より切り出したリング状試
料について、実施例1と同じ1MHz,50mTの条件
で磁気損失の温度依存性を測定したところ、TiO2
0.2重量%添加と 0.3重量%添加を除く全ての試
料で、損失は80℃で極小値を示した。但し、TiO2
の0.2重量%添加では、損失は60℃で極小値を示し
た。また、0.3重量%添加では、20℃で極小値を示
した。この極小損失値をkW/m3の単位で(表6)に示
した。
With respect to the ring-shaped sample cut out from the obtained sintered body, the temperature dependence of the magnetic loss was measured under the same conditions of 1 MHz and 50 mT as in Example 1, and it was found that 0.2% by weight of TiO 2 was added. In all the samples except the addition of 0.3% by weight, the loss showed a minimum value at 80 ° C. However, TiO 2
Of 0.2% by weight, the loss showed a minimum value at 60 ° C. Further, when 0.3% by weight was added, a minimum value was exhibited at 20 ° C. This minimum loss value is shown in (Table 6) in units of kW / m 3 .

【0074】[0074]

【表6】 [Table 6]

【0075】(表6)より明らかなように、CaO、S
iO2 のみの添加に比べ、さらにTiO2、CuO、S
nO2の何れかを0.005重量%以上0.2重量%以
下複合して添加したものは、特定添加範囲内で超低損失
であった。
As is clear from (Table 6), CaO, S
Compared with the addition of iO 2 only, TiO 2 , CuO, S
The composite addition of 0.005% by weight or more and 0.2% by weight or less of any of nO 2 had an extremely low loss within the specific addition range.

【0076】(実施例5)実施例1と同様に、組成比が
Fe23=56.5mol%、MnO=37.5mol
%、ZnO=6mol%となり、合計重量が300gと
なるようにそれぞれの粉体を秤量した。これに、TiO
2、CoO、CuO、SnO2が最終的に(表7)の添加
量となるように秤量し、これらの粉末をボールミルにて
湿式10h混合粉砕し、乾燥させた。
Example 5 As in Example 1, the composition ratios were Fe 2 O 3 = 56.5 mol% and MnO = 37.5 mol.
%, ZnO = 6 mol%, and the respective powders were weighed so that the total weight became 300 g. To this, TiO
2 , CoO, CuO, and SnO 2 were weighed so that the final amount of addition was as shown in (Table 7), and these powders were wet-ground for 10 hours in a ball mill and pulverized and dried.

【0077】この混合粉末を800℃で2時間空気中で
仮焼した後、CaOが0.1重量%、SiO2が0.0
2重量%、Ta25が0.05重量%となるように、C
aCO3 およびそれぞれの金属酸化物を添加したて再度
ボールミルにて粉砕混合し、仮焼粉末とした。この粉末
より、実施例1と同様の方法で焼結体を作製した。
This mixed powder was calcined in air at 800 ° C. for 2 hours, and then 0.1% by weight of CaO and 0.0% of SiO 2 were obtained.
2% by weight and Ta 2 O 5 at 0.05% by weight, C
aCO 3 and each metal oxide were added, and the mixture was pulverized and mixed again in a ball mill to obtain a calcined powder. A sintered body was produced from this powder in the same manner as in Example 1.

【0078】得られた焼結体より切り出したリング状試
料について、実施例1と同じ1MHz,50mTの条件
で磁気損失の温度依存性を測定したところ、TiO2
CoOの0.2重量%添加と0.3重量%添加を除く全
ての試料で、損失は80℃で極小値を示した。但し、T
iO2とCoOの0.2重量%添加では、損失は60℃
で極小値を示した。また、0.3重量%添加では、20
℃で極小値を示した。この極小損失値をkW/m3の単位
で(表7)に示した。また、測定磁場を100mTにし
て、同様の測定を行った結果を(表8)に示した。さら
に、CoO添加0重量%と、0.05重量%の場合に付
いて、測定磁場50mTの場合の損失値の温度変化を
(表9)に示した。
With respect to the ring-shaped sample cut out from the obtained sintered body, the temperature dependence of the magnetic loss was measured under the same conditions of 1 MHz and 50 mT as in Example 1, and 0.2% by weight of TiO 2 and CoO was added. In all the samples except the addition of 0.3 wt% and, the loss showed a minimum value at 80 ° C. However, T
With 0.2% by weight addition of iO 2 and CoO, the loss is 60 ° C.
Shows the minimum value. Moreover, when 0.3% by weight is added, 20
It showed a minimum value at ℃. This minimum loss value is shown in (Table 7) in units of kW / m 3 . Further, the results of the same measurement performed with the measurement magnetic field set to 100 mT are shown in (Table 8). Further, with respect to the case of CoO addition of 0% by weight and the case of 0.05% by weight, the temperature change of the loss value at the measurement magnetic field of 50 mT is shown in (Table 9).

【0079】[0079]

【表7】 [Table 7]

【0080】[0080]

【表8】 [Table 8]

【0081】[0081]

【表9】 [Table 9]

【0082】(表7)および(表8)より明らかなよう
に、CaO、SiO2、Ta25のみの添加に比べ、さ
らにTiO2、CuO、SnO2を複合して添加したもの
は、0.005重量%以上 0.2重量%以下の添加範
囲内で超低損失であった。CoOについては、0.00
5重量%以上で低損失であったが、0.3重量%では、
損失極小温度が20℃と低下し、また、他の試料の比透
磁率が700〜1100程度であるのに対して、400
程度と低下した。
As is clear from (Table 7) and (Table 8), compared with the addition of only CaO, SiO 2 and Ta 2 O 5 , those obtained by adding TiO 2 , CuO and SnO 2 in combination were The loss was extremely low in the addition range of 0.005% by weight or more and 0.2% by weight or less. For CoO, 0.00
The loss was low at 5% by weight or more, but at 0.3% by weight,
The minimum loss temperature is reduced to 20 ° C., and the relative magnetic permeability of other samples is about 700 to 1100, whereas the minimum loss is 400.
Degraded with the degree.

【0083】測定磁場を100mTとした場合、これら
の添加物による損失低下効果は、より顕著であった。さ
らに、(表9)より明らかなように、損失極小値を下げ
るだけではなく、全ての温度範囲にわたって、低損失化
効果が認められた。
When the measuring magnetic field was 100 mT, the effect of reducing the loss by these additives was more remarkable. Further, as is clear from (Table 9), not only the minimum loss value was lowered, but also the effect of reducing loss was observed over the entire temperature range.

【0084】(実施例6)実施例1と同様に、組成比が
Fe23=56.5mol%、MnO=39.5mol
%、ZnO=4mol%となり、合計重量が300gと
なるようにそれぞれの粉体を秤量した。これに、CoO
が外割りで最終的に 0.05重量%となるように秤量
し、これらの粉末をボールミルにて湿式10h混合粉砕
し、乾燥させた。
Example 6 As in Example 1, the composition ratios were Fe 2 O 3 = 56.5 mol% and MnO = 39.5 mol.
%, ZnO = 4 mol%, and the respective powders were weighed so that the total weight became 300 g. CoO
Was weighed so that the final amount was 0.05% by weight, and these powders were mixed and pulverized by a ball mill for 10 hours in a wet manner and dried.

【0085】この混合粉末を800℃で2時間空気中で
仮焼した後、CaOが0.1重量%、SiO2が0.0
2重量%となり、ZrO2、HfO2、Ta25、Al2
3、Ga23、In23、GeO2、Sb23が(表1
0)の量となるように、CaCO3およびそれぞれの金
属酸化物を添加して、再度ボールミルにて粉砕混合し、
仮焼粉末とした。この粉末より、実施例1と同様の方法
で焼結体を作製した。
This mixed powder was calcined in air at 800 ° C. for 2 hours, and then 0.1% by weight of CaO and 0.0% of SiO 2 were obtained.
2% by weight, ZrO 2 , HfO 2 , Ta 2 O 5 , Al 2
O 3 , Ga 2 O 3 , In 2 O 3 , GeO 2 , and Sb 2 O 3 (Table 1
CaCO 3 and the respective metal oxides are added so that the amount becomes 0), and the mixture is pulverized and mixed again in a ball mill,
It was a calcined powder. A sintered body was produced from this powder in the same manner as in Example 1.

【0086】得られた焼結体より切り出したリング状試
料について、実施例1と同じ1MHz,50mTの条件
で磁気損失の温度依存性を測定したところ、損失はいず
れの試料においても、80℃で極小値を示した。この極
小損失値をkW/m3の単位で(表10)に示した。
With respect to the ring-shaped sample cut out from the obtained sintered body, the temperature dependence of the magnetic loss was measured under the same conditions of 1 MHz and 50 mT as in Example 1. The loss was 80 ° C. in any sample. The minimum value was shown. This minimum loss value is shown in (Table 10) in units of kW / m 3 .

【0087】[0087]

【表10】 [Table 10]

【0088】(表10)より明らかなように、CaO、
SiO2、CoOのみの添加に比べ、さらにZrO2、H
fO2、Ta25、Al23、Ga23、In23、G
eO 2、Sb23を複合して添加したものは、0.01
重量%以上0.2重量%以下の添加範囲内で、100k
W/m3程度以下と超低損失であった。
As is clear from (Table 10), CaO,
SiO2, Compared to the addition of CoO only, ZrO2, H
fO2, Ta2OFive, Al2O3, Ga2O3, In2O3, G
eO 2, Sb2O3What was added in combination was 0.01
Within the range of addition by weight of 0.2% by weight or less, 100k
W / m3It was below the level and extremely low loss.

【0089】次に、これらの試料を破壊しその破断面を
観察すると、何れも粒界破壊を生じ、平均結晶粒径は約
4μmであった。そこで最も低損失となった添加量
(0.03または0.05重量%) の試料について、
破断面の各A群添加物元素の分布をSIMS(2次イオ
ン質量分析装置)を用いて測定した。
Next, when these samples were broken and their fracture surfaces were observed, grain boundary fracture occurred in all of them, and the average crystal grain size was about 4 μm. Therefore, regarding the sample of the added amount (0.03 or 0.05% by weight) that resulted in the lowest loss,
The distribution of each group A additive element on the fracture surface was measured using SIMS (secondary ion mass spectrometer).

【0090】まず、分析範囲を3μm径に絞って同一試
料について数十点分析したところ、添加物濃度は分析位
置によって若干の差があった。そこで分析範囲を50×
50μmとして、平均的な添加物元素濃度を求める事と
し、破断面からの各添加物の深さ方向のプロファイルを
測定した。
First, when the analysis range was narrowed down to a diameter of 3 μm and several tens of points were analyzed for the same sample, the concentration of the additive had a slight difference depending on the analysis position. Therefore, the analysis range is 50 ×
The average additive element concentration was determined to be 50 μm, and the profile in the depth direction of each additive from the fracture surface was measured.

【0091】その結果、何れの添加物系においても、添
加元素濃度は、破断面(すなわち粒界部分)から深くな
る(粒子内部に進む)に従って低下し、数十nm程度の
深さからあとはほぼ一定となった。そこで粒界部分と、
濃度がほぼ一定となった粒子内部の濃度を比較してみる
と、いずれの添加物においても粒界部分の濃度が約10
倍高くなっていた。
As a result, in any additive system, the concentration of the additive element decreases as it goes deeper from the fracture surface (that is, the grain boundary portion) (progresses to the inside of the grain), and from the depth of about several tens nm, the rest. It became almost constant. So with the grain boundary part,
Comparing the concentrations inside the particles where the concentration became almost constant, the concentration at the grain boundary part was about 10 for all the additives.
It was twice as high.

【0092】(実施例7)実施例1と同様の方法で、組
成比がFe23=56mol%、MnO=39mol
%、ZnO=5mol%となり、合計重量が300gと
なるようにそれぞれ秤量し、ボールミルにて湿式10時
間混合し、乾燥させた。この粉末を800〜1200℃
の各温度で2時間空気中仮焼した。これにさらに、最終
的な焼結体においてCaOが0.1重量%、SiO2
0.02重量%、Ta25が0.05重量%、CoOが
0.05重量%となるように、CaCO3とSiO2とT
25とCoOを秤量添加し、再度ボールミルにて湿式
10時間混合粉砕して仮焼粉末とした。
Example 7 In the same manner as in Example 1, the composition ratios were Fe 2 O 3 = 56 mol% and MnO = 39 mol.
%, ZnO = 5 mol%, and each was weighed so that the total weight was 300 g, wet-mixed for 10 hours in a ball mill, and dried. This powder is 800 ~ 1200 ℃
Calcination was performed in the air at each temperature for 2 hours. Furthermore, in the final sintered body, CaO is 0.1% by weight, SiO 2 is 0.02% by weight, Ta 2 O 5 is 0.05% by weight, and CoO is 0.05% by weight. , CaCO 3 and SiO 2 and T
A 2 O 5 and CoO were weighed and added, and again wet-mixed and pulverized in a ball mill for 10 hours to obtain a calcined powder.

【0093】この仮焼粉末より、実施例1と同様の方法
で、1200℃で1時間焼成し、焼結体を得た。また、
同様の方法で、Ta25あるいはCoOのみ、添加を仮
焼前の混合時とした試料を作製した。
The calcined powder was fired at 1200 ° C. for 1 hour in the same manner as in Example 1 to obtain a sintered body. Also,
In the same manner, a sample was prepared in which only Ta 2 O 5 or CoO was added at the time of mixing before calcination.

【0094】得られた焼結体より切り出したリング状試
料について、実施例1と同様1MHz,50mTの磁気
損失の温度依存性を測定したところ、損失はいずれの試
料においても80℃で極小値を示した。また焼結体破断
面の電子顕微鏡観察により、焼結体の平均結晶粒径を測
定した。さらに、実施例6と同様の方法で、粒界層およ
び粒子内部におけるTa濃度を測定し、粒界部濃度/粒
内部濃度比を決定した。結果を(表11)に示した。
With respect to the ring-shaped sample cut out from the obtained sintered body, the temperature dependence of the magnetic loss of 1 MHz and 50 mT was measured in the same manner as in Example 1, and the loss showed a minimum value at 80 ° C. in any sample. Indicated. The average crystal grain size of the sintered body was measured by observing the fracture surface of the sintered body with an electron microscope. Further, Ta concentration in the grain boundary layer and inside the grains was measured by the same method as in Example 6 to determine the grain boundary portion concentration / grain internal concentration ratio. The results are shown in (Table 11).

【0095】[0095]

【表11】 [Table 11]

【0096】(表11)より明かなように、無添加のも
のに比べ、Ta25およびCoO添加により、より低磁
気損失化するが、Ta濃度比が5以下の場合にはその効
果が小さくなった。逆に、No.11 に見られるよう
に、CoOは濃度比が大きくなるのは好ましくない。ま
た、焼結体密度が4.6g/cm3 以下の試料No.5
および10では、他のものに比べて、やや損失が大きく
なった。
As is clear from Table 11, the addition of Ta 2 O 5 and CoO results in a lower magnetic loss than that without addition, but the effect is obtained when the Ta concentration ratio is 5 or less. It got smaller. Conversely, No. As shown in 11, it is not preferable that CoO has a large concentration ratio. Further, the sample No. having a sintered body density of 4.6 g / cm 3 or less. 5
In Nos. 10 and 10, the loss was slightly larger than the others.

【0097】(実施例8)実施例1と同様に、Fe
23、MnCO3、ZnOが(表12)の組成比とな
り、合計重量が300gとなるようにそれぞれ秤量し、
これにさらにCoOが最終的に 0.05重量%となる
ように秤量し、ボールミルにて湿式10時間混合粉砕
し、乾燥させた。これらの混合粉末を850℃で2時間
空気中で仮焼した後、CaOが0.1重量%、SiO2
が0.02重量%、Ta25が0.05重量%となるよ
うに、CaCO3とSiO2とTa25を秤量添加し、再
度ボールミルにて10時間、湿式混合粉砕して乾燥さ
せ、仮焼粉末とした。
(Embodiment 8) As in Embodiment 1, Fe
2 O 3 , MnCO 3 , and ZnO have the composition ratios shown in Table 12, and are weighed so that the total weight becomes 300 g.
CoO was further weighed so that the final CoO content would be 0.05% by weight, wet-mixed and ground in a ball mill for 10 hours, and dried. These mixed powders were calcined in air at 850 ° C. for 2 hours, and then 0.1% by weight of CaO, SiO 2
CaCO 3 , SiO 2 and Ta 2 O 5 are weighed and added so that the amount of water is 0.02% by weight and the content of Ta 2 O 5 is 0.05% by weight, and the mixture is again wet mixed and ground in a ball mill for 10 hours and dried. To obtain a calcined powder.

【0098】これらの仮焼粉末より、実施例1と同様の
方法で焼結体を作製した。得られた焼結体より実施例1
と同様の方法で、1MHz・100mTにおける磁気損
失を、20℃〜120℃の間で20℃きざみで測定し
た。結果を(表12)に示した。
A sintered body was prepared from these calcined powders in the same manner as in Example 1. Example 1 from the obtained sintered body
The magnetic loss at 1 MHz · 100 mT was measured in steps of 20 ° C to 120 ° C in steps of 20 ° C in the same manner as in. The results are shown in (Table 12).

【0099】[0099]

【表12】 [Table 12]

【0100】(表12)の結果より明らかなように、主
組成の効果について、Fe23が53mol%以上60
mol%以下、MnOが34mol%以上44mol%
以下、ZnOが0mol%以上9mol%以下の範囲内
で、損失が1500kW/m3程度以下と低損失であっ
た。さらに、Fe23が55mol%以上60mol%
以下、MnOが35mol%以上42mol%以下、Z
nOが1mol%以上6mol%以下の範囲内で、損失
は1000kW/m3程度以下と超低損失となった。ただ
し、Fe23が60molの場合には、損失極小温度が
20℃以下という欠点があり、用途が限定される。
As is clear from the results of (Table 12), the effect of the main composition is that Fe 2 O 3 is 53 mol% or more and 60% or more.
mol% or less, MnO is 34 mol% or more and 44 mol%
In the following, the loss was as low as about 1500 kW / m 3 or less in the range of 0 mol% or more and 9 mol% or less of ZnO. Further, Fe 2 O 3 is 55 mol% or more and 60 mol% or more.
Below, MnO is 35 mol% or more and 42 mol% or less, Z
When nO was in the range of 1 mol% or more and 6 mol% or less, the loss was 1000 kW / m 3 or less, which was an extremely low loss. However, when Fe 2 O 3 is 60 mol, there is a drawback that the minimum loss temperature is 20 ° C. or less, and the use is limited.

【0101】(実施例9)実施例7と同様に、組成比F
23=60mol%、MnO=37mol%、ZnO
=3mol%となり、合計重量が300gとなるように
それぞれの粉体を秤量した。これに、CoOが最終焼結
体において0.05重量%となり、MgOが(表13)
の量となるように秤量し、これらの粉末をボールミルに
て湿式10h混合粉砕し、乾燥させた。この混合粉末を
900℃で2時間空気中で仮焼した後、CaOがとSi
2 がそれぞれ0.1重量%、0.02重量%の量とな
り、Ta25が 0.05重量%となるように、CaC
3 、SiO2 およびTa2 5を添加し、再度ボールミ
ルにて10h、湿式混合粉砕して乾燥させ、仮焼粉末と
した。
Example 9 As in Example 7, the composition ratio F
e2O3= 60 mol%, MnO = 37 mol%, ZnO
= 3 mol%, so that the total weight is 300 g
Each powder was weighed. CoO is finally sintered
0.05% by weight in the body, MgO (Table 13)
And weigh these powders in a ball mill.
Wet wet for 10 hours, pulverized, and dried. This mixed powder
After calcination in air at 900 ° C for 2 hours, CaO and Si
O2Are 0.1% by weight and 0.02% by weight, respectively.
And Ta2OFiveIs 0.05% by weight, CaC
O3 , SiO2And Ta2O FiveIs added, and the ball
For 10 h, wet mix and pulverize and dry, then calcined powder
did.

【0102】これらの仮焼粉末より実施例1と同様の方
法で焼結体を作製し、1MHz,50mTにおける磁気
損失の温度特性を測定した。その結果を(表13)に示
した。
Sintered bodies were prepared from these calcined powders in the same manner as in Example 1, and the temperature characteristics of magnetic loss at 1 MHz and 50 mT were measured. The results are shown in (Table 13).

【0103】[0103]

【表13】 [Table 13]

【0104】(表13)より明らかなように、損失極小
温度が20℃以下のものに対してMgOを添加すると、
損失極小温度が上昇した。特に添加量0.01重量%以
上0.2重量%以下の時に、損失をほとんど増加させる
事無く、40〜60℃の損失極小温度とする事ができ
た。
As is clear from Table 13, when MgO is added to a material having a minimum loss temperature of 20 ° C. or less,
The minimum loss temperature rose. In particular, when the addition amount was 0.01% by weight or more and 0.2% by weight or less, the loss minimum temperature of 40 to 60 ° C. could be achieved with almost no increase in loss.

【0105】(実施例10)実施例1と同様の方法で、
組成比がFe23=57mol%、MnO=40mol
%、ZnO=3mol%となり、CaOを0.1重量
%、SiO2 を0.02重量%、ZrO2を0.05重
量%、SnO2を0.05重量%含む焼結体(a)を作製
した。
Example 10 In the same manner as in Example 1,
The composition ratio is Fe 2 O 3 = 57 mol%, MnO = 40 mol
%, ZnO = next 3 mol%, the CaO 0.1 wt%, a SiO 2 0.02 wt%, a ZrO 2 0.05 wt%, the sintered body (a) comprising SnO 2 0.05 wt% It was made.

【0106】同様に、組成比がFe23=54mol
%、MnO=36mol%、ZnO=10mol%とな
り、CaOを0.1重量%、SiO2を0.02重量
%、ZrO2を0.05重量%、SnO2を0.05重量
%含む、焼結体(b)を作製した。
Similarly, the composition ratio is Fe 2 O 3 = 54 mol
%, MnO = 36 mol%, ZnO = 10 mol%, CaO 0.1 wt%, SiO 2 0.02 wt%, ZrO 2 0.05 wt%, SnO 2 0.05 wt% A conjugate (b) was prepared.

【0107】同様に、組成比がFe23=54mol
%、MnO=36mol%、ZnO=10mol%とな
り、CaOを0.1重量%、SiO2を0.02重量
%、Ta25を0.05重量%含む焼結体(c)を作製し
た。これらの焼結体の1MHz,50mTにおける磁気
損失を実施例1と同様の方法で測定した。
Similarly, the composition ratio is Fe 2 O 3 = 54 mol
%, MnO = 36 mol%, ZnO = 10 mol%, and a sintered body (c) containing 0.1% by weight of CaO, 0.02% by weight of SiO 2 , and 0.05% by weight of Ta 2 O 5 was produced. . The magnetic loss of these sintered bodies at 1 MHz and 50 mT was measured by the same method as in Example 1.

【0108】焼結体(a)は、80℃で磁気損失が極小と
なり、損失値は90kW/m3であった。また焼結体(b)
は、損失が60℃で極小となり、損失値は250kW/
3であった。以上の焼結体(a)および(b)は、本発明
による超低磁気損失材である。焼結体(c)は、60℃で
磁気損失が極小となり、損失値は540kW/m3であ
る、従来材料である。
The magnetic loss of the sintered body (a) was minimal at 80 ° C., and the loss value was 90 kW / m 3 . Also a sintered body (b)
Has a minimum loss at 60 ° C, and the loss value is 250 kW /
It was m 3 . The above sintered bodies (a) and (b) are the ultra-low magnetic loss materials according to the present invention. The sintered body (c) is a conventional material having a minimum magnetic loss at 60 ° C. and a loss value of 540 kW / m 3 .

【0109】これらの3種類の試料について、それぞれ
の損失極小温度において、磁束密度Bと周波数fの積、
B・f=50(mT・MHz)で一定となる条件で磁気
損失を測定した(この条件では、同一出力時の電源トラ
ンスでコアサイズが一定となる)。結果を(表14)に
示した。
For these three types of samples, the product of the magnetic flux density B and the frequency f at each minimum loss temperature,
The magnetic loss was measured under the condition of constant B · f = 50 (mT · MHz) (under this condition, the core size is constant in the power transformer at the same output). The results are shown in (Table 14).

【0110】[0110]

【表14】 [Table 14]

【0111】(表13)より明らかなように、これらの
焼結体は1〜2MHz付近で損失が最小となる。(a)
(b)と(c)を比較すると、300kHz以上で本発明の
焼結体(a)および(b)が有利となる。しかしながら10
MHzでは、これらの試料においてもかなり損失が増加
した。
As is clear from (Table 13), these sintered bodies have a minimum loss in the vicinity of 1 to 2 MHz. (a)
Comparing (b) and (c), the sintered bodies (a) and (b) of the present invention are advantageous at 300 kHz or higher. However, 10
At MHz, there was also a considerable increase in loss in these samples.

【0112】次にこれらの焼結体より、それぞれE型コ
アを切り出し、これを用いてフォワード方式のスイッチ
ング電源回路を試作し、磁気損失にあたる温度上昇を評
価した。一定の軽負荷条件下で、周波数、磁芯磁束密度
にたいする磁芯の温度上昇について測定した。結果を
(表15)に示した。
Next, E type cores were cut out from each of these sintered bodies, a forward type switching power supply circuit was prototyped using the cores, and the temperature rise corresponding to the magnetic loss was evaluated. Under a constant light load condition, the temperature rise of the magnetic core with respect to the frequency and the magnetic flux density of the magnetic core was measured. The results are shown in (Table 15).

【0113】[0113]

【表15】 [Table 15]

【0114】(表15)より明らかなように、トランス
の磁芯損失による温度上昇許容値を25℃見込んだ場
合、焼結体(c)を用いた電源は温度上昇が大きく、あま
り高周波では使用できないことが分かる。これに対し
て、本発明のフェライト材料(a)または(b)を用いた電
源は温度上昇が少なく、特に(a)の場合、50mTで
2MHz以上でも充分使用できる。これは、用いた材料
が超低磁気損失で、かつ温度特性が良好なためである。
より高周波では磁束密度を下げて使用するのが一般的で
あるので、(表14)の結果より5MHz程度まで使用
可能と考えられる。しかしながら、2MHz以上のスイ
ッチング電源は回路側の損失が増大するため、現時点で
は現実的ではない。
As is clear from (Table 15), when the temperature rise allowable value due to the magnetic core loss of the transformer is expected to be 25 ° C., the power supply using the sintered body (c) has a large temperature rise and is used at too high frequencies. I see that I can't. On the other hand, the power source using the ferrite material (a) or (b) of the present invention has a small temperature rise, and particularly in the case of (a), it can be sufficiently used even at 2 MHz or more at 50 mT. This is because the material used has ultra-low magnetic loss and excellent temperature characteristics.
Since it is general to use the magnetic flux with a lower magnetic flux density at higher frequencies, it can be considered that the magnetic flux density can be used up to about 5 MHz from the results of (Table 14). However, a switching power supply of 2 MHz or more increases the loss on the circuit side, and is not practical at this time.

【0115】以上の結果より、開発したフェライト材料
を用いたスイッチング周波数が100kHz〜2MHz
の電源は、発熱が少なく高効率で、熱暴走する危険性が
低い。また、特に300kHz以上でその特徴が顕著と
なり、電源回路側の損失が減少すれば、5MHzまで使
用可能である。
From the above results, the switching frequency using the developed ferrite material is 100 kHz to 2 MHz.
The power source has low heat generation, high efficiency, and low risk of thermal runaway. Further, if the characteristic becomes remarkable especially at 300 kHz or more and the loss on the power supply circuit side is reduced, it can be used up to 5 MHz.

【0116】[0116]

【発明の効果】以上説明した通り本発明は、主成分がM
n、Zn、Feの酸化物よりなるフェライトに、副成分
として0.05≦CaO≦0.3重量%、0.005≦
SiO 2≦0.1重量%を含有し、さらにA群(Ti
2、CoO、CuO、SnO2)を少なくとも一種類以
上、0.005≦Mxz≦0.2 重量%含有する焼結
体であるという構成を備えた酸化物磁性体材料であるた
め、従来にない低磁気損失の材料であり、これを用いて
作製されたスイッチング電源は、小型で低発熱・高効率
とすることができる効果がある。
As described above, in the present invention, the main component is M
Ferrite consisting of oxides of n, Zn, and Fe is added as a sub-component.
As 0.05 ≦ CaO ≦ 0.3% by weight, 0.005 ≦
SiO 2≦ 0.1% by weight, and further includes Group A (Ti
O2, CoO, CuO, SnO2) At least one type
Upper, 0.005 ≦ MxOzSintering containing ≦ 0.2 wt%
It is an oxide magnetic material with the structure of being a body.
Therefore, it is a material with low magnetic loss that has never existed before.
The switching power supply manufactured is small, low heat generation, and high efficiency.
There is an effect that can be.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 石井 治 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 青野 保之 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 鈴村 政毅 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Osamu Ishii 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Yasuno Aono, 1006 Kadoma, Kadoma City, Osaka Matsushita Electric Industrial Co., Ltd. (72) Inventor Masatake Suzumura 1006, Kadoma, Kadoma-shi, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】主成分がMnの酸化物、Znの酸化物、F
eの酸化物を含むフェライトに、副成分として0.05
≦CaO≦0.3重量%、0.005≦SiO 2 ≦0.
1重量%を含有し、さらに、以下に示すA群の金属酸化
物Mxzを、それぞれ少なくとも一種類以上、0.00
5≦Mxz≦0.2重量%含有する焼結体である事を特
徴とする酸化物磁性体材料。但し、A群の金属酸化物M
xzは、TiO2、CoO、CuO、SnO2の何れかで
ある。
1. A main component of Mn oxide, Zn oxide, F
In addition to the ferrite containing the oxide of e, 0.05
≦ CaO ≦ 0.3% by weight, 0.005 ≦ SiO 2 ≤0.
1% by weight of metal oxide of group A shown below
Thing MxOzAt least one kind, 0.00
5 ≦ MxOzSpecified to be a sintered body containing ≦ 0.2 wt%
Characteristic oxide magnetic material. However, group A metal oxide M
xOzIs TiO2, CoO, CuO, SnO2In any of
is there.
【請求項2】副成分とA群の金属酸化物を含むフェライ
トに、さらに、以下に示すB群の金属酸化物Mxzを、
それぞれ少なくとも一種類以上、0.01≦M xz
0.2重量%含有する焼結体である事を特徴とする、請
求項1記載の酸化物磁性体材料。但し、B群の金属酸化
物Mxzは、ZrO2、HfO2、Ta25、Al23
Ga23、In23、GeO2、Sb23の何れかであ
る。
2. A ferrite containing a subcomponent and a metal oxide of group A.
In addition, the following metal oxides M of group BxOzTo
At least one kind, 0.01 ≦ M xOz
A contract, characterized by being a sintered body containing 0.2% by weight.
The oxide magnetic material according to claim 1. However, metal oxidation of group B
Thing MxOzIs ZrO2, HfO2, Ta2OFive, Al2O3,
Ga2O3, In2O3, GeO2, Sb2O3In any of
It
【請求項3】副成分とA群の金属酸化物を含むフェライ
ト、または、副成分とA群の金属酸化物とB群の金属酸
化物を含むフェライトの何れかに、さらに、MgOを、
0.01重量%以上0.2重量%以下含有する焼結体で
ある事を特徴とする、請求項1または2何れかに記載の
酸化物磁性体材料。
3. A ferrite containing a minor component and a metal oxide of group A, or a ferrite containing a minor component, a metal oxide of group A and a metal oxide of group B, and MgO further.
The oxide magnetic material according to claim 1 or 2, which is a sintered body containing 0.01% by weight or more and 0.2% by weight or less.
【請求項4】B群の金属酸化物Mxzの粒界層部分の濃
度が、粒子内部の濃度の5倍以上となっている事を特徴
とする、請求項2または3何れかに記載の酸化物磁性体
材料。
4. The concentration of the grain boundary layer portion of the group B metal oxide M x O z is 5 times or more the concentration inside the grain, according to claim 2 or 3. The oxide magnetic material described.
【請求項5】フェライトの主成分のFeの酸化物Fe2
3を53mol%以上60mol%以下、Mnの酸化
物MnOを34mol%以上44mol%以下、Znの
酸化物ZnOを9mol%以下である事を特徴とする、
請求項1〜4何れかに記載の酸化物磁性体材料。
5. An oxide of Fe, which is the main component of ferrite, Fe 2
O 3 is 53 mol% or more and 60 mol% or less, Mn oxide MnO is 34 mol% or more and 44 mol% or less, and Zn oxide ZnO is 9 mol% or less.
The oxide magnetic material according to claim 1.
【請求項6】フェライトの主組成のFeの酸化物Fe2
3を55mol%以上60mol%以下、Mnの酸化
物MnOを34mol%以上42mol%以下、Znの
酸化物ZnOを6mol%以下である事を特徴とする、
請求項1〜4何れかに記載の酸化物磁性体材料。
6. An oxide of Fe having a main composition of ferrite, Fe 2
O 3 is 55 mol% or more and 60 mol% or less, Mn oxide MnO is 34 mol% or more and 42 mol% or less, and Zn oxide ZnO is 6 mol% or less.
The oxide magnetic material according to claim 1.
JP5095790A 1993-04-22 1993-04-22 Oxide magnetic substance material Pending JPH06310320A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5095790A JPH06310320A (en) 1993-04-22 1993-04-22 Oxide magnetic substance material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5095790A JPH06310320A (en) 1993-04-22 1993-04-22 Oxide magnetic substance material

Publications (1)

Publication Number Publication Date
JPH06310320A true JPH06310320A (en) 1994-11-04

Family

ID=14147257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5095790A Pending JPH06310320A (en) 1993-04-22 1993-04-22 Oxide magnetic substance material

Country Status (1)

Country Link
JP (1) JPH06310320A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6905629B2 (en) 2002-09-02 2005-06-14 Tdk Corporation Mn-Zn ferrite, transformer magnetic core and transformer
WO2006054749A1 (en) * 2004-11-19 2006-05-26 Hitachi Metals, Ltd. LOW-LOSS Mn-Zn FERRITE AND UTILIZING THE SAME, ELECTRONIC PART AND SWITCHING POWER SUPPLY
JP2006303522A (en) * 1994-11-07 2006-11-02 Jfe Chemical Corp Mn-Zn-Co SYSTEM FERRITE IRON CORE MATERIAL
US7540972B2 (en) 2006-03-30 2009-06-02 Tdk Corporation Mn-Zn based ferrite material
JP2009227554A (en) * 2008-03-25 2009-10-08 Tdk Corp Ferrite sintered compact and method for producing the same
JP2012017251A (en) * 2010-06-11 2012-01-26 Jfe Chemical Corp MnZnAlCo-BASED FERRITE
JP2012138399A (en) * 2010-12-24 2012-07-19 Tdk Corp Ferrite core and electronic component
WO2018181242A1 (en) * 2017-03-28 2018-10-04 日立金属株式会社 MnZn-BASED FERRITE SINTERED BODY
CN109678483A (en) * 2019-02-26 2019-04-26 南通华兴磁性材料有限公司 The preparation method of wide temperature low-temperature coefficient low-consumption Mn-Zn ferrite material
JP2020120064A (en) * 2019-01-28 2020-08-06 Njコンポーネント株式会社 Magnetic material
JP2022122983A (en) * 2016-03-25 2022-08-23 日立金属株式会社 inductor

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006303522A (en) * 1994-11-07 2006-11-02 Jfe Chemical Corp Mn-Zn-Co SYSTEM FERRITE IRON CORE MATERIAL
US6905629B2 (en) 2002-09-02 2005-06-14 Tdk Corporation Mn-Zn ferrite, transformer magnetic core and transformer
EP1816111A4 (en) * 2004-11-19 2011-12-28 Hitachi Metals Ltd LOW-LOSS Mn-Zn FERRITE AND UTILIZING THE SAME, ELECTRONIC PART AND SWITCHING POWER SUPPLY
EP1816111A1 (en) * 2004-11-19 2007-08-08 Hitachi Metals Precision, Ltd. LOW-LOSS Mn-Zn FERRITE AND UTILIZING THE SAME, ELECTRONIC PART AND SWITCHING POWER SUPPLY
JPWO2006054749A1 (en) * 2004-11-19 2008-06-05 日立金属株式会社 Low loss Mn-Zn ferrite, electronic component using the same, and switching power supply
US7790053B2 (en) 2004-11-19 2010-09-07 Hitachi Metals, Ltd. Loss-loss Mn-Zn ferrite and electronic part made thereof and switching power supply
WO2006054749A1 (en) * 2004-11-19 2006-05-26 Hitachi Metals, Ltd. LOW-LOSS Mn-Zn FERRITE AND UTILIZING THE SAME, ELECTRONIC PART AND SWITCHING POWER SUPPLY
US7540972B2 (en) 2006-03-30 2009-06-02 Tdk Corporation Mn-Zn based ferrite material
JP2009227554A (en) * 2008-03-25 2009-10-08 Tdk Corp Ferrite sintered compact and method for producing the same
JP2012017251A (en) * 2010-06-11 2012-01-26 Jfe Chemical Corp MnZnAlCo-BASED FERRITE
JP2012138399A (en) * 2010-12-24 2012-07-19 Tdk Corp Ferrite core and electronic component
JP2022122983A (en) * 2016-03-25 2022-08-23 日立金属株式会社 inductor
WO2018181242A1 (en) * 2017-03-28 2018-10-04 日立金属株式会社 MnZn-BASED FERRITE SINTERED BODY
JPWO2018181242A1 (en) * 2017-03-28 2019-07-11 日立金属株式会社 MnZn ferrite sintered body
KR20190127785A (en) * 2017-03-28 2019-11-13 히타치 긴조쿠 가부시키가이샤 MnZn Ferrite Sintered Body
US11398328B2 (en) 2017-03-28 2022-07-26 Hitachi Metals, Ltd. Sintered MnZn ferrite body
JP2020120064A (en) * 2019-01-28 2020-08-06 Njコンポーネント株式会社 Magnetic material
CN109678483A (en) * 2019-02-26 2019-04-26 南通华兴磁性材料有限公司 The preparation method of wide temperature low-temperature coefficient low-consumption Mn-Zn ferrite material

Similar Documents

Publication Publication Date Title
JP3108803B2 (en) Mn-Zn ferrite
JP2917706B2 (en) Oxide magnetic material
JPH06310321A (en) Oxide magnetic substance material
JPH06310320A (en) Oxide magnetic substance material
JPH05335132A (en) Oxide magnetic body material
JP3108804B2 (en) Mn-Zn ferrite
JP2005132715A (en) Ni-Cu-Zn SYSTEM FERRITE MATERIAL AND ITS MANUFACTURING METHOD
JP2855990B2 (en) Oxide magnetic material
JP3597673B2 (en) Ferrite material
JP2005330126A (en) MnZn FERRITE AND METHOD OF MANUFACTURING THE SAME
JP2004247370A (en) MnZn FERRITE
JP2000340419A (en) Manganese zinc system ferrite core and its manufacture
JPH08148322A (en) Oxide magnetic material and switching power supply employing the same
JPH08169756A (en) Low loss manganese-zinc ferrite core and its production
JPH07130527A (en) Oxide magnetic material
JP2000299215A (en) Low loss oxide magnetic material
EP1447393A1 (en) Electromagnetic wave absorber formed of Mn-Zn ferrite
JP3790606B2 (en) Mn-Co ferrite material
JP3597665B2 (en) Mn-Ni ferrite material
JP2004247371A (en) MnZn FERRITE
JPH10270231A (en) Mn-ni ferrite material
JPH08148323A (en) Production of oxide magnetic material and molding
JPH1022113A (en) Method for manufacturing low power loss oxide magnetic material
JP2005187247A (en) Manufacturing method of low-loss oxide magnetic material
JPH05226137A (en) Oxide magnetic body material and its manufacture