EP0756436A1 - Magnetsystem für elektromagnetische Wandler - Google Patents

Magnetsystem für elektromagnetische Wandler Download PDF

Info

Publication number
EP0756436A1
EP0756436A1 EP96110942A EP96110942A EP0756436A1 EP 0756436 A1 EP0756436 A1 EP 0756436A1 EP 96110942 A EP96110942 A EP 96110942A EP 96110942 A EP96110942 A EP 96110942A EP 0756436 A1 EP0756436 A1 EP 0756436A1
Authority
EP
European Patent Office
Prior art keywords
permanent magnet
yoke
magnet
core
air gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP96110942A
Other languages
English (en)
French (fr)
Inventor
Hermann Gruber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harman Audio Electronic Systems GmbH
Original Assignee
Nokia Technology GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nokia Technology GmbH filed Critical Nokia Technology GmbH
Publication of EP0756436A1 publication Critical patent/EP0756436A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/02Details
    • H04R9/025Magnetic circuit
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2209/00Details of transducers of the moving-coil, moving-strip, or moving-wire type covered by H04R9/00 but not provided for in any of its subgroups
    • H04R2209/022Aspects regarding the stray flux internal or external to the magnetic circuit, e.g. shielding, shape of magnetic circuit, flux compensation coils

Definitions

  • the invention is concerned with the formation of magnet systems for electromagnetic transducers, in particular with magnet systems for loudspeakers.
  • Magnet systems of this type are generally formed by a permanent magnet and a yoke, an air gap being present in which a coil to be driven is later inserted.
  • annular permanent magnet is present, the lower annular surface of which is provided with a disk referred to as the lower pole plate.
  • the upper circular surface is usually connected to an annular disc, which is also referred to as the upper pole plate.
  • a core is inserted into this pot thus formed and connected to the lower pole plate, the inner diameter of the upper pole plate and permanent magnet being larger than the diameter of the core.
  • the distance A between the core and the inner diameter of the upper pole plate forms the air gap of the magnet system, in which the coil is later immersed.
  • the arrangement consisting of core, upper and lower pole plate and also referred to as a yoke serves to guide the magnetic flux to the air gap from the permanent magnet magnetized along the direction of extension of the core.
  • magnet systems are known in which the yoke is essentially pot-shaped and the core inserted into the pot either is formed completely or at least partially, for example by the integration of a disk, from a permanent magnetic material, the direction of magnetization likewise running along the direction of extension of the core.
  • cores made entirely of permanent magnet material can be produced very cost-effectively and connected to the pot, such arrangements have certain disadvantages. For example, if neodymium is to be used as the permanent magnet material for weight reasons, it would not be justifiable in view of the high costs of this material to form the entire core from this material.
  • a downsizing of the system for example to leave a core that is then smaller but still completely made of neodymium, fails because magnet applications that have been reduced in size in this way are very limited in their possible uses.
  • thin neodymium discs are therefore used and connected to the core of the desired diameter and the desired height. If this disk is provided with a pole core disk on the side facing away from the bottom of the pot, a reduction in the stray field occurs because this measure also concentrates the magnetic flux on the core side on the air gap.
  • the stray field reduction caused by the pole plate or pole core disks is not limited to the use of neodymium as a magnetic material. However, this means that - if a magnetic system with little stray field is to be created - special measures must be taken to achieve this.
  • the invention is therefore based on the object of specifying a low-scatter magnet system which has a reduced number of components compared to the known systems.
  • An essential finding of the present invention is to form the entire magnet system only from two parts, namely the yoke and the permanent magnet.
  • a one-piece yoke arrangement is realized in that the entire yoke is designed as a pot, which additionally has in its interior a core which is connected to the bottom of the pot and has a distance A from the inside of the edge walls of the pot.
  • Such a design of the pot can be produced very easily, for example, as a casting mold.
  • the permanent magnet which forms the second component of the magnet system, is essentially annular and magnetized transverse to the direction of extension of the core axis.
  • this type of magnetization means that, for example, all southern magnetic poles are on the inner and all northern magnetic poles on the outer circumferential surface of the permanent magnet, that is to say both magnetic poles are “spaced apart” from one another by the circular ring width.
  • This permanent magnet magnetized in this way is inserted into the distance A between the edge wall of the pot and the core and, depending on the design, is connected either with its outer surface to the edge wall or with its inner surface to the core.
  • the circular ring width of the permanent magnet is chosen based on the distance A between the core and the edge wall so that in the connected state of the permanent magnet and the respective one An air gap remains in the yoke part (core or edge wall), in which the coil is later inserted.
  • the magnetization of the permanent magnet is transverse to the direction of extension of the core axis and, moreover, the arrangement of the permanent magnet at a distance A guides the magnetic flux into the air gap like an otherwise usual upper pole disk or pole core disk, a reduction in the stray field is achieved without additional guide means being necessary .
  • a good mechanical and magnetic flux-conducting connection between the respective yoke part and the permanent magnet is achieved if an adhesive filled with iron powder is used according to claim 2.
  • connection of the respective yoke part with the permanent magnet is specified as a press-fit connection.
  • This has the advantage that the use of sometimes environmentally harmful adhesives can be completely dispensed with to form magnet systems.
  • the connection of the permanent magnet to the respective yoke part is particularly simple if at least the respective yoke part and / or the permanent magnet has guide means which come into mutual engagement when the permanent magnet is placed on the respective yoke part or center the respective permanent magnet to the respective yoke part when connecting .
  • FIG. 1 which, like all the other figures, does not show a true-to-scale representation of the situation to improve clarity, shows a magnet system 10, as can be used, for example, in loudspeakers.
  • This magnet system 10 is essentially formed by a yoke 11 and a permanent magnet 12.
  • the yoke 11 is formed in one piece and comprises a pot 15 formed from a bottom 13 and an edge wall 14 and a core 16 which is arranged inside the pot 15 and is connected to the bottom 13 thereof. Since the inside diameter of the edge wall 14 is larger than the diameter of the core 16 and since the system 10 is constructed rotationally symmetrically, there is a distance A between the core 16 and the edge wall 14. This distance A increases somewhat in the direction of the upper end 17 of the edge wall 14, because the upper end 17 of the peripheral edge wall 14 is chamfered.
  • the yoke 11 described in the present exemplary embodiment and formed from various components consists of iron and was created using casting technology.
  • the permanent magnet 12 which contains neodymium as the magnetic material, is essentially annular. Only the outer lateral surface 18 of the permanent magnet 12 has a bevel complementary to the upper end 17 of the edge wall 14. How the permanent magnet 12, which is inserted at the distance A, is connected to the upper end 17 of the edge wall 14, will be explained in more detail below in connection with FIGS. 4a-c.
  • the permanent magnet 12 connected to the edge wall 14 does not fill the entire distance A, as clearly shown in FIG. 1, so that an air gap 19 is formed which later serves to accommodate the coil (not shown). Since the permanent magnet 12 - as the poles (N; S) show clearly - is magnetized transverse to the longitudinal direction of the core 16 indicated by the center line, in the exemplary embodiment shown the north pole (N) directly adjoins the air gap 19. The end of the permanent magnet 12 facing away from the air gap 19 is connected to the yoke 11, so that the upper end 20 of the core 16, which is adjacent to the air gap 19, forms the south pole (S ').
  • the core 16 can also have a pole shape at its upper end 20. Such a design is shown in dashed lines in FIG.
  • the illustration according to FIG. 2 differs from the illustration according to FIG. 1 only in that the permanent magnet 12 'does not have the edge wall 14, but is connected to the core 16 of the yoke 11. If it is necessary, the upper end 17 of the edge wall 14 can also be formed in a pole shape in this exemplary embodiment (not shown).
  • FIG. 3 shows a combination of FIGS. 1 and 2.
  • both the edge wall 14 and the core 16 are each equipped with an annular permanent magnet 12, 12 ', the surfaces of the two permanent magnets 12, 12 being directly opposite each other 'are separated by the air gap 19.
  • This splitting of the permanent magnetic mass into two magnets 12, 12 ' may be necessary depending on the geometry of the magnet system 10 and the magnetic material used, but has the disadvantage that the induction is doubled by doubling the interfaces between the yoke 11 and the permanent magnet 12, 12' slightly decreases in the air gap 19 compared to an arrangement according to FIG. 1 or FIG. 2, which has only one interface. If this disadvantage is tolerated, however, an arrangement shown in FIG. 3 has the advantage that a very low-scatter magnet system 10 is formed because the magnetic lines of force are introduced directly into the air gap 19 due to the pole-shaped configuration of both permanent magnets 12, 12 '.
  • FIG. 4a shows a connection between a part of the yoke 11 and the permanent magnet 12.
  • the parts 11, 12 which are in each case connected to one another have a complementary shape which is matched to one another in the connection region.
  • This complementary shape causes the permanent magnet 12 to be guided and centered when it is connected to the yoke 11.
  • a step 21 is additionally formed on the part of the yoke 11, on which the permanent magnet 12 rests with its lower circular ring surface 22 when the permanent magnet 12 has its end position shown in FIG. 1 at a distance A (not shown in FIG. 4a). has taken.
  • this step 22 has the function of a depth stop.
  • the connection of yoke 11 and permanent magnet 12 according to FIG. 4a is realized by means of an adhesive 23 filled with iron powder.
  • the illustration according to FIG. 4b differs from the illustration according to FIG. 4a only in that the formation of a step 23 in the yoke 11 has been dispensed with.
  • a press fit connection between yoke 11 and permanent magnet 12 is shown.
  • this press fit connection can be designed as a shrink connection, in which both parts 11, 12 have different temperatures when they are joined together and / or a different thermal expansion behavior of both parts 11, 12 is used when they are joined together. Deviating from this, the two parts 11, 12 can also be cold-pressed to produce a press-fit connection.
  • Such a press-fit connection ensures that the two parts 11, 12 lie against one another without a gap, which, in contrast to the connection produced using adhesive technology, further reduces induction losses in the transition from permanent magnet 12 and yoke 11.

Abstract

Erfindungsgemäß wird ein Magnetsystem (10) für elektro-magnetische Wandler angegeben, welches im wesentlichen aus zwei Teilen gebildet ist. Dieses Magnetsystem (10) wird aus einem einstückigen, topfförmigen Joch (11), welches einen Boden (13), eine Randwandung (14) und einen Kern (16) aufweist, und einem Dauermagneten (12) gebildet. Dieser Dauermagnet (12), welcher entweder mit dem Kern (16) oder der Randwandung (14) verbunden ist, ist quer zur Erstreckungsrichtung der Kernachse magnetisiert. Diese Art der Ausbildung gestattet die Ausbildung eines sehr streuarmen Magnetsystems (10), dessen Bauteilanzahl gegenüber bekannten Systemen deutlich reduziert ist. Vorteilhafterweise wird die Verbindung von Joch (11) und Dauermagnet (12) als Preßsitzverbindung ausgebildet. <IMAGE>

Description

    Technisches Gebiet
  • Die Erfindung befaßt sich mit der Ausbildung von Magnetsystemen für elektromagnetische Wandler, insbesondere mit Magnetsystemen für Lautsprecher.
  • Stand der Technik
  • Derartige Magnetsysteme werden allgemein von einem Dauermagneten und einem Joch gebildet, wobei ein Luftspalt vorhanden ist, in welchen später eine anzutreibende Spule eingesetzt wird.
  • Die tatsächliche Realisierung ist in aller Regel so gelöst, daß ein kreisringförmiger Dauermagnet vorhanden ist, dessen untere Kreisringfläche mit einer, als untere Polplatte bezeichneten Scheibe versehen ist. Die obere Kreisringfläche ist zumeist mit einer kreisringförmigen Scheibe verbunden, welche auch als obere Polplatte bezeichnet wird. In diesen so gebildeten Topf ist ein Kern eingesetzt und mit der unteren Polplatte verbunden, wobei der Innendurchmesser von oberer Polplatte und Dauermagnet größer ist als der Durchmesser des Kerns. Der sich dabei zwischen dem Kern und dem Innendurchmesser der oberen Polplatte ergebende Abstand A bildet dabei den Luftspalt des Magnetsystems, in welchen später die Spule eintaucht. Die aus Kern, oberer und unterer Polplatte bestehende und auch als Joch bezeichnete Anordnung dient zur Führung des Magnetflusses zum Luftspalt vom längs zur Erstreckungsrichtung des Kerns magnetisierten Dauermagneten.
  • Hierneben sind Magnetsysteme bekannt, bei welchem das Joch im wesentlichen topfförmig ausgebildet ist und der in den Topf eingesetzte Kern entweder vollständig oder zumindest teilweise, etwa durch die Integration einer Scheibe, aus einem dauermagnetischen Werkstoff gebildet ist, wobei die Magnetisierungsrichtung ebenfalls längs zur Erstreckungsrichtung des Kerns verläuft. Wenngleich die Verwendung von vollständig aus Dauermagnetwerkstoff gebildeten Kernen vom Produktionsaufwand her sehr kostengünstig hergestellt und mit dem Topf verbunden werden können, weisen solche Anordnungen jedoch gewisse Nachteile auf. Soll beispielsweise aus Gewichtsgründen als Dauermagnetwerkstoff Neodymium verwendet werden, so wäre es mit Rücksicht auf die hohen Kosten dieses Werkstoffs nicht vertretbar, den gesamten Kern aus diesem Werkstoff zu bilden. Eine Verkleinerung des Systems, um etwa einen dann zwar kleineren, aber immer noch vollständig aus Neodymium gebildeten Kern zu belassen, scheitert daran, daß derartig verkleinerte Magnetsysteme in ihren Einsatzmöglichkeiten sehr beschränkt sind. Zur Vermeidung dieser Probleme werden daher dünne Neodymium-Scheiben verwendet und mit dem Kern des gewünschten Durchmessers und der gewünschten Höhe verbunden. Wird dabei diese Scheibe noch auf der dem Topfboden abgewandten Seite mit einer Polkernscheibe versehen, so tritt eine Reduzierung des Streufeldes auf, weil durch diese Maßnahme der Magnetfluß auch kernseitig auf den Luftspalt konzentriert wird.
  • Nur der Vollständigkeit sei darauf hingewiesen, daß die durch die Polplatte bzw. Polkernscheiben bewirkte Streufeldreduzierung nicht auf die Verwendung von Neodymium als Magnetmaterial beschränkt ist. Dies bedeutet aber, daß - wenn ein streufeldarmes Magnetsystem erstellt werden soll - besondere Maßnahmen ergriffen werden müssen, um dies zu realisieren.
  • Daher liegt der Erfindung die Aufgabe zugrunde, ein streuarmes Magnetsystem anzugeben, welches gegenüber den bekannten Systemen eine verminderte Anzahl von Bauteilen aufweist.
  • Darstellung der Erfindung
  • Diese Aufgabe wird durch die in Anspruch 1 angegebenen Merkmale gelöst. Vorteilhafte Aus- und Weiterbildungen der Erfindungen sind den Ansprüchen 2 bis 4 entnehmbar.
  • Wesentliche Erkenntnis der vorliegenden Erfindung ist es, das gesamte Magnetsystem lediglich aus zwei Teilen, nämlich dem Joch und dem Dauermagneten zu bilden. Eine einstückige Jochanordnung wird dadurch realisiert, daß das gesamte Joch als Topf ausgebildet wird, welcher noch zusätzlich in seinem Inneren einen mit dem Boden des Topfes verbundenen und zur Innenseite der Randwandungen des Topfes einen Abstand A habenden Kern aufweist. Eine solche Ausbildung des Topfes läßt sich beispielsweise sehr einfach als Gießformstück herstellen.
  • Der Dauermagnet, welcher das zweite Bauteil des Magnetsystems bildet, ist im wesentlichen kreisringförmig ausgebildet und quer zur Erstreckungsrichtung der Kernachse magnetisiert. Bezogen auf den Dauermagneten bedeutet diese Art der Magnetisierung, daß beispielsweise alle südlichen Magnetpole an der inneren und alle nördlichen Magnetpole an der äußeren Mantelfläche des Dauermagneten liegen, also beide Magnetpole durch die Kreisringbreite voneinander "beabstandet" sind.
  • Dieser so magnetisierte Dauermagnet ist in den Abstand A zwischen der Randwandung des Topfes und dem Kern eingesetzt und je nach Ausbildung entweder mit seiner äußeren Mantelfläche mit der Randwandung oder mit seiner inneren Mantelfläche mit dem Kern verbunden. Die Kreisringbreite des Dauermagneten ist bezogen auf den Abstand A zwischen Kern und Randwandung so gewählt, daß im verbundenen Zustand von Dauermagnet und jeweiligem Jochteil (Kern oder Randwandung) ein Luftspalt verbleibt, in welchen später die Spule eingesetzt wird.
  • Da die Magnetisierung des Dauermagneten quer zur Erstreckungsrichtung der Kernachse verläuft und darüber hinaus die Anordnung des Dauermagneten im Abstand A den Magnetfluß wie eine sonst übliche obere Polscheibe bzw. Polkernscheibe in den Luftspalt leitet, wird eine Verringerung des Streufeldes erzielt, ohne daß zusätzliche Leitmittel notwendig sind.
  • Auch wenn die Verbindung von Dauermagnet mit dem Kern oder mit der Randwandung nach der bisherigen Darstellung in einem Alternativverhältnis steht, wird damit nicht ausgeschlossen, daß sowohl der Kern als auch die Randwandung mit je einem kreisringförmigen Dauermagneten versehen wird und der verbleibende Abstand zwischen den gegenüberliegenden Flächen der beiden Dauermagnete den Luftspalt des Systems bildet.
  • Eine gute mechanische und den Magnetfluß leitende Verbindung zwischen dem jeweiligen Jochteil und dem Dauermagneten wird dann erreicht, wenn gemäß Anspruch 2 ein mit Eisenpulver gefüllter Kleber verwendet wird.
  • Gemäß Anspruch 3 wird die Verbindung des jeweiligen Jochteils mit dem Dauermagneten als Preßsetzverbindung angegeben. Dies hat den Vorteil, daß zur Bildung von Magnetsystemen auf den Einsatz von mitunter umweltschädlichen Klebstoffen gänzlich verzichtet werden kann. Das Verbinden des Dauermagneten mit dem jeweiligen Jochteil ist dann besonders einfach, wenn zumindest das jeweilige Jochteil und/oder der Dauermagnet Führungsmittel aufweist, die beim Aufsetzen des Dauermagneten auf das jeweilige Jochteil in gegenseitigen Eingriff kommen bzw. den jeweiligen Dauermagneten zum jeweiligen Jochteil beim Verbinden zentrieren.
  • Kurze Darstellung der Figuren
  • Es zeigen:
  • Figur 1
    Ein Magnetsystem im Schnitt;
    Figur 2
    weitere Darstellung gemäß Figur 1;
    Figur 3
    eine weitere Darstellung gemäß Figur 1; und
    Figur 4a-c
    drei Verbindungen zwischen Jochteil und Dauermagnet im Detail.
    Wege zum Ausführen der Erfindung
  • Die Erfindung soll nun anhand der Figuren näher erläutert werden.
  • Figur 1, welche wie alle anderen Figuren zur Verbesserung der Anschaulichkeit keine maßstäbliche Darstellung der Verhältnisse zeigt, zeigt ein Magnetsystem 10, wie es beispielsweise in Lautsprechern Verwendung finden kann.
  • Dieses Magnetsystem 10 wird im wesentlichen von einem Joch 11 und einem Dauermagneten 12 gebildet.
  • Das Joch 11 ist einstückig ausgebildet und umfaßt einen aus einem Boden 13 und einer Randwandung 14 gebildeten Topf 15 sowie einen Kern 16, welcher innerhalb des Topfes 15 angeordnet und mit dessen Boden 13 verbunden ist. Da der Innendurchmesser der Randwandung 14 größer ist als der Durchmesser des Kerns 16 und da das System 10 rotationssymmetrisch aufgebaut ist, besteht zwischen Kern 16 und Randwandung 14 ein Abstand A. Dieser Abstand A vergrößert sich in Richtung des oberen Endes 17 der Randwandung 14 etwas, weil das obere Ende 17 der umlaufenden Randwandung 14 abgeschrägt ausgebildet ist.
  • Das im vorliegenden Ausführungsbeispiel beschriebene und aus verschiedenen Komponenten gebildete Joch 11 besteht aus Eisen und wurde in Gußtechnik erstellt.
  • Der Dauermagnet 12, welcher als magnetisches Material Neodymium enthält, ist im wesentlichen kreisringförmig ausgebildet. Lediglich die äußere Mantelfläche 18 des Dauermagneten 12 weist eine zu dem oberen Ende 17 der Randwandung 14 komplementäre Abschrägung auf. Wie der Dauermagnet 12, welcher in den Abstand A eingesetzt ist, mit dem oberen Ende 17 der Randwandung 14 verbunden ist, wird im Zusammenhang mit den Figuren 4a-c weiter unten noch näher erläutert werden.
  • Der mit der Randwandung 14 verbundene Dauermagnet 12 füllt aber - wie Figur 1 deutlich zeigt - nicht den gesamten Abstand A aus, so daß ein Luftspalt 19 gebildet wird, welcher später zur Aufnahme der Spule (nicht dargestellt) dient. Da der Dauermagnet 12 - wie die gezeigten Pole (N; S) verdeutlichen - quer zur durch die Mittellinie angedeutete Längsrichtung des Kerns 16 magnetisiert ist, grenzt in dem gezeigten Ausführungsbeispiel der Nordpol (N) direkt an den Luftspalt 19 an. Das dem Luftspalt 19 abgewandte Ende des Dauermagneten 12 ist mit dem Joch 11 verbunden, so daß das obere Ende 20 des Kerns 16, welches dem Luftspalt 19 nebengeordnet ist, den Südpol (S') bildet.
  • Sofern es zur Verbesserung der Einleitung der magnetischen Kraftlinien in den Luftspalt 19 notwendig sein sollte, kann der Kern 16 auch an seinem oberen Ende 20 polförmig ausgebildet sein. Eine derartige Ausbildung ist in Figur 1 gestrichelt dargestellt.
  • Die Darstellung gemäß Figur 2 unterscheidet sich von der Darstellung gemäß Figur 1 nur dadurch, daß der Dauermagnet 12' nicht mit der Randwandung 14, sondern mit dem Kern 16 des Jochs 11 verbunden ist. Sofern es erforderlich ist, kann auch in diesem Ausführungsbeispiel das obere Ende 17 der Randwandung 14 polförmig ausgebildet sein (nicht dargestellt).
  • Die Darstellung gemäß Figur 3 zeigt eine Kombination aus Figur 1 und 2. In diesem Ausführungsbeispiel ist sowohl die Randwandung 14 als auch der Kern 16 mit je einem ringförmigen Dauermagneten 12, 12' ausgestattet, wobei jeweils direkt gegenüber beabstandete Flächen der beiden Dauermagneten 12, 12' durch den Luftspalt 19 getrennt sind. Diese Aufspaltung der dauermagnetischen Masse auf zwei Magnete 12, 12' kann zwar in Abhängikeit der Geometrie des Magnetsystems 10 und des verwendeten Magnetwerkstoffs notwendig sein, hat aber den Nachteil, daß durch die Verdoppelung der Grenzflächen zwischen Joch 11 und Dauermagneten 12, 12' die Induktion im Luftspalt 19 gegenüber einer Anordnung gemäß Figur 1 oder Figur 2, welche nur eine Grenzfläche aufweist, leicht absinkt. Wird dieser Nachteil allerdings toleriert, hat eine in Figur 3 gezeigte Anordnung den Vorteil, daß ein sehr streuarmes Magnetsystem 10 gebildet wird, weil durch die polförmige Ausgestaltung beider Dauermagnete 12, 12' die magnetischen Kraftlinien direkt in den Luftspalt 19 eingeleitet werden.
  • In Figur 4a ist eine Verbindung zwischen einem Teil des Jochs 11 und dem Dauermagneten 12 gezeigt. Deutlich ist dieser Darstellung entnehmbar, daß die jeweils miteinander in Verbindung stehenden Teile 11, 12 im Verbindungsbereich eine aufeinander abgestimmte komplementäre Formgebung aufweisen. Diese komplementäre Formgebung bewirkt eine Führung und Zentrierung des Dauermagneten 12, wenn dieser mit dem Joch 11 verbunden wird. An dem Teil des Jochs 11 ist zusätzlich eine Stufe 21 ausgebildet, auf der der Dauermagnet 12 mit seiner unteren Kreisringfläche 22 aufliegt, wenn der Dauermagnet 12 seine in Figur 1 gezeigte Endlage im Abstand A (in Figur 4a nicht gezeigt) eingenommen hat. Diese Stufe 22 hat im vorliegenden Ausführungsbeispiel die Funktion eines Tiefenanschlags. Die Verbindung von Joch 11 und Dauermagnet 12 gemäß Figur 4a ist mittels eines mit Eisenpulver gefüllten Klebers 23 realisiert.
  • Die Darstellung gemäß Figur 4b unterscheidet sich von der Darstellung gemäß 4a nur dadurch, daß auf die Ausbildung einer Stufe 23 im Joch 11 verzichtet worden ist.
  • In Figur 4c ist eine Preßsitzverbindung zwischen Joch 11 und Dauermagnet 12 gezeigt. Je nach Gegebenheiten kann diese Preßsitzverbindung als Schrumpfverbindung ausgebildet sein, in dem beide Teile 11, 12 beim Zusammenfügen unterschiedliche Temperaturen haben und/oder ein unterschiedliches Wärmeausdehnungsverhalten beider Teile 11, 12 beim Zusammenfügen ausgenutzt wird. Abweichend hiervon lassen sich die beiden Teile 11, 12 auch zur Herstellung einer Preßsitzverbindung kalt verpressen. Durch eine solche Preßsitzverbindung wird sichergestellt, daß die beiden Teile 11, 12 abstandsfrei aneinander liegen, was im Gegensatz zu der in Klebetechnik hergestellten Verbindung Induktionsverluste im Übergang von Dauermagnet 12 und Joch 11 weiter reduziert.

Claims (4)

  1. Magnetsystem für elektro-magnetische Wandler, welches wenigstens von einem Dauermagneten (12, 12') und einem Joch (11) gebildet ist und einen Luftspalt (19) zum Antrieb einer in den Luftspalt (19) eingesetzten Spule aufweist,
    dadurch gekennzeichnet,
    daß das Joch (11) als einstückiger Topf (15) ausgebildet ist und neben einer Randwandung (14) und einem Boden (13) einen Kern (16) aufweist, der sich innerhalb des Topfes (15) erstreckt und von der Randwand (14) mit Abstand A umgeben ist, und
    daß der Dauermagnet (12, 12') quer zur Erstreckungsrichtung des Kerns (16) magnetisiert ist und so in den Abstand A eingesetzt ist, daß der verbleibende Abstand zwischen dem Dauermagneten (12) und dem mit dem Dauermagneten (12) nicht verbundenen Teil (14; 16) des Jochs (11) den Luftspalt (19) des Magnetsystems (10) bildet.
  2. Magnetsystem nach Anspruch 1,
    dadurch gekennzeichnet, daß der Dauermagnet (12) mit dem Teil des Jochs (11), mit welchem er verbunden ist, mittels eines mit Eisenpulver gefüllten Klebers (23) verbunden ist.
  3. Magnetsystem nach Anspruch 1,
    dadurch gekennzeichnet, daß die Verbindung zwischen dem Dauermagneten (12) und dem Teil des Jochs (11), mit welchem der Dauermagnet (12) verbunden ist, als Preßsitz-Verbindung ausgebildet ist.
  4. Magnetsystem nach Anspruch 2 oder Anspruch 3,
    dadurch gekennzeichnet, daß das jeweilige Jochteil (14; 16), welches mit dem Dauermagneten (12) verbunden ist, und der Dauermagnet (12) im unmittelbaren Verbindungsbereich beider Teile zueinander komplementäre Führungsmittel (17, 18) aufweisen.
EP96110942A 1995-07-27 1996-07-06 Magnetsystem für elektromagnetische Wandler Withdrawn EP0756436A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE29512102U 1995-07-27
DE29512102U DE29512102U1 (de) 1995-07-27 1995-07-27 Magnetsystem

Publications (1)

Publication Number Publication Date
EP0756436A1 true EP0756436A1 (de) 1997-01-29

Family

ID=8011051

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96110942A Withdrawn EP0756436A1 (de) 1995-07-27 1996-07-06 Magnetsystem für elektromagnetische Wandler

Country Status (4)

Country Link
US (1) US5729617A (de)
EP (1) EP0756436A1 (de)
JP (1) JP3034130U (de)
DE (1) DE29512102U1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19735838A1 (de) * 1997-08-12 1998-07-23 Horst Weymann Modifizierte Schwingspule für elektromechanischen Wandler
WO2010037822A1 (en) * 2008-10-01 2010-04-08 Ortofon A/S Magnetic assembly suitable for audio cartridges

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5953436A (en) * 1997-07-18 1999-09-14 Caterpillar Inc. Apparatus for generating an audible tone
JP4739635B2 (ja) * 2000-03-28 2011-08-03 カスタム・センサーズ・アンド・テクノロジーズ・インク 補償コイルを備えるリニアボイスコイルアクチュエータ
US6636612B1 (en) * 2000-11-03 2003-10-21 Algo Sound, Inc. Speaker for use in confined spaces
JP3985526B2 (ja) * 2002-01-16 2007-10-03 松下電器産業株式会社 磁気回路およびこの磁気回路を用いたスピーカ
US20060239499A1 (en) * 2005-04-25 2006-10-26 Stiles Enrique M Semi-radially-charged conical magnet for electromagnetic transducer
US20060239496A1 (en) * 2005-04-25 2006-10-26 Stiles Enrique M Magnetically tapered air gap for electromagnetic transducer
CN103024645B (zh) * 2011-09-27 2017-02-08 苏州新吴光电科技有限公司 用于动铁式传声器/换能器的磁轭装置
US9377017B2 (en) * 2012-11-15 2016-06-28 Shenzhen Mindray Bio-Medical Electronics Co., Ltd. Extended elasticity of pump membrane with conserved pump force
US8855356B1 (en) * 2012-12-18 2014-10-07 Skullcandy, Inc. Dual ring magnet apparatus
US11184712B2 (en) 2015-05-19 2021-11-23 Bose Corporation Dual-field single-voice-coil transducer
US10848874B2 (en) * 2018-02-20 2020-11-24 Google Llc Panel audio loudspeaker electromagnetic actuator
US10841704B2 (en) 2018-04-06 2020-11-17 Google Llc Distributed mode loudspeaker electromagnetic actuator with axially and radially magnetized circuit
US11245986B2 (en) 2019-10-24 2022-02-08 Bose Corporation Electro-magnetic motor geometry with radial ring and axial pole magnet

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2131035A1 (de) * 1971-06-23 1973-01-11 Magnetfab Bonn Gmbh Ringspalt-magnetsystem mit polen verminderter elektrischer leitfaehigkeit
US3763334A (en) * 1972-01-21 1973-10-02 Gen Electric Magnet assembly
WO1993003586A1 (en) * 1991-08-05 1993-02-18 Aura Systems, Inc. Voice coil actuator
US5364253A (en) * 1992-05-14 1994-11-15 Matsushita Electric Industrial Co., Ltd. Magnetic circuit component molding device
WO1995011579A1 (en) * 1993-10-20 1995-04-27 Aura Systems, Inc. Device and method for assembly of radial magnet voice coil actuators
WO1996004706A1 (en) * 1994-08-03 1996-02-15 Aura Systems, Inc. Axially focused radial magnet voice coil actuator

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1632332A (en) * 1925-09-28 1927-06-14 Harvey C Hayes Electromagnetic sound reproducer
US3050593A (en) * 1959-11-10 1962-08-21 Vockenhuber Karl Phonograph, particularly sound tape apparatus
US3134057A (en) * 1960-07-11 1964-05-19 Sumitomo Metal Ind Magnetic circuit for the deflection of flux leakage
DE1907969A1 (de) * 1968-03-01 1969-09-25 Philips Nv Magnetsystem mit einem ringfoermigen permanenten Hauptmagnet mit einer Weicheisenober- und -unterplatte und einem Kern mit Hilfsmagnet
DE6811565U (de) * 1968-12-16 1969-10-22 Deutsche Edelstahlwerke Ag Streufeldarmes bauermagnetsystem fuer leutsprecher
DE3150041A1 (de) * 1981-12-17 1983-06-23 Magnetfabrik Bonn Gmbh Vorm. Gewerkschaft Windhorst, 5300 Bonn Streuarmes topfmagnetsystem fuer dynamische lautsprecher
JPS59139794A (ja) * 1983-01-31 1984-08-10 Ibuki Kogyo Kk 漏洩磁場を打消したホ−ンスピ−カ−
DE3339720A1 (de) * 1983-11-03 1985-05-15 Magnetfabrik Bonn Gmbh Vorm. Gewerkschaft Windhorst, 5300 Bonn Streuarmes topfmagnetsystem fuer magnet-dynamische lautsprecher bzw. akustische wandler
US4737992A (en) * 1985-11-15 1988-04-12 Bose Corporation Compact electroacoustical transducer with spider covering rear basket opening
GB2188791A (en) * 1986-04-04 1987-10-07 Data Recording Instr Co Improved motor design
DE3722927A1 (de) * 1986-07-16 1988-01-21 Mitsubishi Electric Corp Kopftrommelanordnung
GB8810943D0 (en) * 1988-05-09 1988-06-15 Kef Electronics Ltd Loudspeaker
JPH01300696A (ja) * 1988-05-30 1989-12-05 Daido Steel Co Ltd 永久磁石を使った磁気回路
US4926896A (en) * 1988-12-23 1990-05-22 Dresser Industries, Inc. Sensitive electrical to mechanical transducer
US5022425A (en) * 1988-12-23 1991-06-11 Dresser Industries Inc. Sensitive electrical to mechanical transducer
US5159949A (en) * 1988-12-23 1992-11-03 Dresser Industries, Inc. Electropneumatic positioner
DE4007678A1 (de) * 1990-03-10 1991-09-12 Lehner Fernsprech Signal Dynamischer, elektroakustischer wandler
JPH0448899A (ja) * 1990-06-18 1992-02-18 Matsushita Electric Ind Co Ltd スピーカ
DE4021651C1 (de) * 1990-07-07 1991-06-27 Mercedes-Benz Aktiengesellschaft, 7000 Stuttgart, De
JPH04115699A (ja) * 1990-08-31 1992-04-16 Matsushita Electric Ind Co Ltd スピーカおよびその製造方法
US5371486A (en) * 1990-09-07 1994-12-06 Kabushiki Kaisha Toshiba Transformer core
DE4031742A1 (de) * 1990-10-06 1992-04-09 Nokia Unterhaltungselektronik Kalotten-hochton-lautsprecher
US5321762A (en) * 1991-08-05 1994-06-14 Aura Systems, Inc. Voice coil actuator
DE69430776T2 (de) * 1993-04-28 2003-03-27 Matsushita Electric Ind Co Ltd Lautsprecherapparat
DE9313631U1 (de) * 1993-09-09 1994-01-13 Radio Lua Helmut Lua Lautsprecher-Magnet mit Streufeld-Korrektur und Hubbegrenzung

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2131035A1 (de) * 1971-06-23 1973-01-11 Magnetfab Bonn Gmbh Ringspalt-magnetsystem mit polen verminderter elektrischer leitfaehigkeit
US3763334A (en) * 1972-01-21 1973-10-02 Gen Electric Magnet assembly
WO1993003586A1 (en) * 1991-08-05 1993-02-18 Aura Systems, Inc. Voice coil actuator
US5364253A (en) * 1992-05-14 1994-11-15 Matsushita Electric Industrial Co., Ltd. Magnetic circuit component molding device
WO1995011579A1 (en) * 1993-10-20 1995-04-27 Aura Systems, Inc. Device and method for assembly of radial magnet voice coil actuators
WO1996004706A1 (en) * 1994-08-03 1996-02-15 Aura Systems, Inc. Axially focused radial magnet voice coil actuator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19735838A1 (de) * 1997-08-12 1998-07-23 Horst Weymann Modifizierte Schwingspule für elektromechanischen Wandler
WO2010037822A1 (en) * 2008-10-01 2010-04-08 Ortofon A/S Magnetic assembly suitable for audio cartridges

Also Published As

Publication number Publication date
JP3034130U (ja) 1997-02-14
US5729617A (en) 1998-03-17
DE29512102U1 (de) 1995-10-05

Similar Documents

Publication Publication Date Title
DE60026426T2 (de) Polstückeinheit für einen Magnet der bildgebenden magnetischen Resonanz
EP0756436A1 (de) Magnetsystem für elektromagnetische Wandler
DE3215057C2 (de) Selbsthaltendes solenoid
EP0591837A1 (de) Konuslautsprecher in Leichtbauweise
DE102010023813A1 (de) Elektrokleinmotor
DE3334159A1 (de) Magnetventil
EP0574960B1 (de) Elektrischer Rotationsmotor
DE2103737C3 (de) Magnetische Axiallagerung für Elektrizitätszähler
DE19839784A1 (de) Synchronmotor mit beweglichem Teil mit Permanentmagneten
DE102009021639A1 (de) Elektromagnetventil für flüssige und gasförmige Medien
CH656990A5 (de) Zweiphasenschrittmotor.
DE10239958B4 (de) Hartmagnetischer Gegenstand und Verfahren zur Einstellung von Richtung und Lage eines Magnetvektors
EP0581129B1 (de) Magnetsystem für elektroakustische Wandler
DE102016106242A1 (de) Elektromagnetischer Aktuator
DE19712064A1 (de) Elektromagnetischer Antrieb
DE1907137A1 (de) Polarisierter Synchron-Kleinstmotor
CH651146A5 (de) Stereophoner elektrodynamischer tonabnehmereinsatz.
DE19810529B4 (de) Elektromotor
EP3457529A1 (de) Scheibenläufermotor
DE3005921A1 (de) Monostabiles drehankersystem
AT381204B (de) Magnetsystem fuer elektrodynamische wandler, insbesondere mikrophone und kopfhoerer
DE3919617A1 (de) Steuermotor, insbesondere fuer ein servoventil
DE102008057738A1 (de) Elektromagnet mit einstellbarem Nebenschlussluftspalt
DE1198454B (de) Schutzrohrankerkontaktrelais mit Ruhe- oder Haftcharakteristik
DE3822842C2 (de)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE DE DK FR GB IT NL SE

17P Request for examination filed

Effective date: 19970310

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HARMAN AUDIO ELECTRONIC SYSTEMS GMBH

17Q First examination report despatched

Effective date: 20040330

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20040810