EP0750774B1 - Procede de detection du trafic et de situations de trafic sur des axes routiers, de preference sur des autoroutes - Google Patents

Procede de detection du trafic et de situations de trafic sur des axes routiers, de preference sur des autoroutes Download PDF

Info

Publication number
EP0750774B1
EP0750774B1 EP95910428A EP95910428A EP0750774B1 EP 0750774 B1 EP0750774 B1 EP 0750774B1 EP 95910428 A EP95910428 A EP 95910428A EP 95910428 A EP95910428 A EP 95910428A EP 0750774 B1 EP0750774 B1 EP 0750774B1
Authority
EP
European Patent Office
Prior art keywords
traffic
trend
factor
measuring
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95910428A
Other languages
German (de)
English (en)
Other versions
EP0750774A1 (fr
Inventor
Fritz Busch
Andrea Ghio
Johannes Konrad
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0750774A1 publication Critical patent/EP0750774A1/fr
Application granted granted Critical
Publication of EP0750774B1 publication Critical patent/EP0750774B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions

Definitions

  • the invention relates to a method for traffic detection and traffic situation detection on highways according to the preamble of claim 1.
  • Procedures that display appropriate ads based on traffic measurements turn on the variable message sign.
  • the control is point based if it is on a certain point of the traffic flow (e.g. construction sites or Road narrowing), due to the route (generally under known as "line manipulation") if they are refers to a route, or network-related if it is the automatic rerouting from a normal route to an alternative route undertakes (alternating directions).
  • the control logic is to keep the display manageable relatively simple.
  • the prepared local measured values like generally smoothed traffic, smoothed Speed and local traffic density are predefined with Threshold values compared to make a statement or to control the variable message sign.
  • EP-A-0 171 098 describes a method for traffic detection and disclosed for traffic control on highways, which at least two measuring points for vehicle detection with traffic sensors having.
  • Traffic data is in the form of vehicle speeds taking into account the traffic volume determined, processed and evaluated. It will there the determined speed data of at least two, considered in a certain length of spaced measuring points and based on logical decisions with predefined ones Speed values compared.
  • Iokibe T. et al. is a Method known in which only the traffic volume measured and this together with experience of Traffic levels are assessed using fuzzy logic get an estimate of the expected traffic.
  • the object of the invention is an early and reliable, automatic detection of critical traffic situations, such as traffic disruptions caused by congestion or an accident, on motorways to the road users in good time before this Warning situation.
  • these are the respective measuring cross sections with traffic sensors installed for each lane, Traffic data recorded and in a processing device provided for this purpose processed for traffic control. From the regularly recorded traffic data: speed and traffic volume, are in a traffic data processing device certain traffic parameters derived. For this purpose, two adjacent measuring points form a measuring section, which has a certain distance, for example 3 km. From the traffic data from these measuring points The following traffic quantities are formed:
  • a speed density difference (vk-D) according to the relationship as specified in claim 1.
  • the speed density difference takes into account the speed and the traffic density of both measurement cross sections.
  • a second traffic parameter a trend factor is formed that is continuous from the ratio of the heavy traffic of the first and the second measuring point is formed, but only the values above one certain period, e.g. the last 30 minutes.
  • the third traffic parameter is the traffic volume trend the respective measuring point as a measure of the dynamic Situation development, i.e. the temporal development the traffic volume.
  • These three traffic parameters are based on fuzzy logic processed to detect critical traffic situations, to make a statement about the probability as an output variable for a critical traffic situation. This probability quantity is dependent on a predeterminable threshold value evaluated to a display recommendation to generate for the variable message signs.
  • fuzzy logic for traffic situation detection on highway roads has a number of advantages.
  • the evaluation the input data is very simple. Multiple inputs can can be linked further. This makes it possible for one Measure to use multiple inputs at the same time, even if they are not particularly meaningful individually. Leading on average at a faster response time.
  • a soft mindset of fuzzy logic it is possible instead of a rigid binary decision (Jam or no jam on a cross section) a soft one To determine transition in the form of a probability (e.g. the probability of a jam at this cross-section is 70%). That has the Advantage that this result with a correspondingly predetermined Threshold value can be evaluated so that a reliable display recommendation can be made.
  • the traffic volume (Q), which also traffic volume is called, and the traffic density (K) is used.
  • the Traffic strength gives the number of vehicles on a measurement cross section on, based on a unit of time, for example one hour.
  • the traffic density is a measure of the number of the vehicles related to a certain section of the route. It is operated with a so-called local traffic density, the the number of vehicles on the measurement cross section relates and takes into account the corresponding speed.
  • the traffic parameter speed density difference vk-D average speed is calculated from the local traffic data and the traffic density of two neighboring cross sections (Measuring points) according to that specified in claim 1 Formula.
  • the first term of the speed density difference refers to the measuring cross section MQi, the second to the downstream measuring cross section MQ (i + 1).
  • To the traffic sizes different measurement cross sections compare to they are each set to the adjustable maximum values related to the traffic quantities of the cross sections (max. free speed and max. Traffic density). Is the traffic condition undisturbed at the measuring cross-section, i.e. the speed is not small and the traffic density is not great then the corresponding term is very small in the range Values. If there is an unstable traffic condition on the measurement cross-section, i.e. the speed is low and the traffic density large, the value of the term concerned increases on. Conclusions can thus be drawn from the difference between the two terms be pulled to the current traffic condition.
  • the trend factor (FT) is used as an indicator of a fault. It monitors the inflow and outflow of vehicles in the measurement section (MA) that have a specific Route length, for example 3 km, and is formed by the two measuring points (MQi and (MQi + 1)). In the event of a critical traffic situation, more vehicles drive into and out of the measuring section, the trend factor (FT) thereby increases exponentially.
  • the calculation of the Trend factor is based on the generally unsmoothed traffic volumes, i.e. the heavy traffic on the two cross sections. This will result in higher accuracy and faster Response achieved. To the influence of measurement errors too decrease, the trend factor is only based on the last measuring interval, that means a period of for example 30 minutes.
  • the third traffic parameter serves to assess the dynamic situation development.
  • the calculation is based on the generally unsmoothed recorded traffic data.
  • the traffic strength trend will also considered at the two measuring cross sections.
  • the input variables of the fuzzy logic are influenced by many factors dependent, in particular on the measuring point distance, the route geometry, i.e. Incline or descent, environmental conditions, such as Wetness, snow, black ice, day or night, and possible others Influences. So the influences are not just stationary, but also of a dynamic nature. Therefore, in continuing education the traffic parameters of the method according to the invention calibrated so that the fuzzy system inputs (Traffic parameters) always independent of external influences can rate right away. The sizes are dependent on this their past values dynamically calibrated.
  • this traffic data becomes a calibration factor for the speed density difference and a calibration factor formed for the trend factor and in a calibration facility, between the traffic data preparation and the fuzzy editing is arranged with the current one Relating traffic parameters.
  • the actual Velocity density difference is determined by the velocity density difference calibration factor and the respective one current trend factor divided by the trend calibration factor.
  • the speed density difference depends on environmental conditions such as wet, fog, day / night etc.
  • This fuzzy input variable is therefore evaluated by the dynamic calibration factor.
  • the value of this factor can be used as a threshold for the speed density difference above which there is a high probability of a critical traffic situation (disruption).
  • the calibration factor is only calculated if the speed density difference is below a certain threshold, for example 0.3.
  • the factor is made up of the mean, the standard deviation from the speed density difference and its defined threshold. The calculation of the mean value and the standard deviation is only carried out on the basis of the relative maxima of the speed density-difference curve.
  • vk_D medium ⁇ vk_D + (1- ⁇ ) vk_D middle age
  • vk_D ⁇ ⁇ (vk_D-vk_D medium ) 2nd + (1- ⁇ ) ⁇ ⁇ vk_D old
  • vk_D middle age vk_D medium
  • vk_D old ⁇ vk_D
  • Calibration factor vk_D vk_D medium +2.
  • the current speed density difference is shown by this Divided calibration factor.
  • the characteristic value of the trend factor is sought, which you consider "small". This characteristic value becomes like this defines that it includes the set of all values of the trend factor, their relative cumulative frequency below one Threshold.
  • a frequency table is introduced whose classes are defined according to the table will.
  • a class is a defined range of values of the Trend factor, with all classes together covering the entire value range describe the trend factor. For every measuring interval the current trend factor is assigned to a class that the respective class is then incremented. For every interval can be used to determine the measured value for which the relative Total frequency below the specified threshold lies.
  • classification is more graded for very small and large values, a finer gradation is chosen for the important calibration range: class 0 1 2nd 3rd ......... 36 37 Characteristic value range -1..0.15 > 0.15 > 0.225 > 0.275 ......... > 1,975 > 2,025 F T ⁇ 0.225 ⁇ 0.275 ⁇ 0.325 ⁇ 2.025 ⁇ 2,075 Classification
  • KFT characteristic normalized expression "small” of the trend factor
  • the current trend factor is determined by this calibration factor divided.
  • the method according to the invention for detecting critical traffic situations is used in a special embodiment of the invention for accident detection.
  • traffic parameters trend factor and traffic strength trend of the first measurement cross-section
  • a crowd formation is recognized in a crowd detection and a pulse probability quantity is derived.
  • an accident criterion is derived from the traffic parameter traffic strength trend of the second measurement cross section and the pulse probability variable with the help of the fuzzy decision, which together with the trend factor and the speed density difference enables an accident detection.
  • the traffic parameters, traffic strength trend at the measuring point MQ1 and at the measuring point MQ2 are used for the fuzzy accident decision, with which a preliminary investigation for an accident is carried out.
  • a bulk detection is carried out.
  • a crowd hires Vehicle collective with high traffic volume and traffic density represents which enters the measuring section.
  • the traffic parameter used for accident detection Trend factor leaves two interpretations for very large values to. There is an accident, i.e. about one longer period there are more vehicles in the measurement section retracted as extended, or is in the measuring section Bunch retracted. A bunch is like a density wave, such as in the event of a sudden cancellation of a Bottlenecks arise. To differentiate between these two cases as stated above, a bulk detection is carried out.
  • the fuzzy logic As an input variable of the fuzzy logic, the traffic volume trend, the pulse probability in the previous one Measurement interval, and the trend factor used.
  • As an output variable is a value for the probability of one Pulks are available in the considered measurement section.
  • the traffic volume trend on the downstream is now also decreasing Measurement cross section from at a high value for an accident criterion, so is the probability of an accident very high.
  • the traffic volume trend on the downstream measuring cross-section decreases the possibility of an accident, as well as when the pulse probability increases.
  • a The exception is the case if a Disorder was very likely.
  • the accident criterion essentially independent of the pulse probability and the traffic volume trend, because in the case of the already In the last measurement interval, a fault identified can both the pulse rate as well as the traffic volume trend rise again.
  • Accident detection is the decision level which ultimately results in the probability of a Accident leads. Depending on this size, a Warning activated on the display cross-section.
  • the variables become: accident criterion, Trend factor and speed density difference that The probability of an accident is derived, as already explained.
  • accident criterion there is most likely an accident.
  • the bigger (positive) the difference in speed density the more likely is an accident.
  • speed density difference Probability of an accident even more.
  • the trend factor has more influence.
  • the result evaluation is based on on the likelihood of an accident, a recommendation to display, e.g. Traffic jam warning, for the variable message signs derived and causes the display.
  • the AS auto Avenue here as a freeway with e.g. two tracks in shown a direction of travel, has two measurement cross-sections MQi and MQ (i + 1), which are arranged at a certain distance are and form a measuring section MA.
  • the traffic sensors VS e.g. Vehicle detectors, for example can be formed by induction double loops Traffic data VD recorded and a traffic data preparation VDA supplied. Speed is used as traffic data v, the traffic density K and the traffic volume Q detected and processed further.
  • the traffic parameters speed density difference vk-D, the trend factor FT and the high-traffic QTi and QTi + 1 determined separately on the measuring cross sections MQi and MQi + t and fed to fuzzy logic for further processing.
  • the fuzzy processing device is called FUB.
  • the probability quantity formed there, as already explained above Flat share for a critical traffic situation is evaluated in the result evaluation facility EBE on the basis of a Predeterminable threshold value SW evaluated to a control signal SG, for example as a display recommendation for a variable message sign To generate VWZ.
  • KFB becomes the traffic data VD or traffic parameters vk-D and FT to form a calibration factor for the speed density difference KFv and one Calibration factor used for the trend factor KFT.
  • KFB becomes the traffic data VD or traffic parameters vk-D and FT to form a calibration factor for the speed density difference KFv and one Calibration factor used for the trend factor KFT.
  • Fig. 3 the accident detection is shown schematically.
  • the input variables become a trend factor FT and traffic volume trend QTi at the measurement cross section MQi one Pulse probability quantity PWG using fuzzy logic derived.
  • This pulse probability quantity PWG is in a preliminary accident investigation STV with the traffic parameter Traffic strength trend QT (i + 1) of the measurement cross section MQ (i + 1) considered and derived an accident criterion STK.
  • This criterion STK is used together with the trend factor FT and the velocity density difference vk-D is considered to be to be able to close an accident.
  • This is with the accident detection STE indicated.
  • the Accident detection STE to an accident probability quantity SWG closed in a subsequent earnings assessment facility EBE is treated further.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Traffic Control Systems (AREA)
  • Road Signs Or Road Markings (AREA)

Claims (5)

  1. Procédé de détection du trafic et de situations de trafic sur des axes routiers (AS), de préférence sur des autoroutes, comprenant des points de mesure installés à cet effet, appelés sections de mesure (MQ1,MQ2...), pour la détection de véhicules automobiles au moyen de capteurs de trafic (VS), et comprenant un dispositif de traitement de données de trafic (VDVE) pour commander le trafic, des données de trafic (VD), comme la vitesse (v) des véhicules, l'intensité du trafic (Q) - c'est le nombre de véhicules dans une section de mesure par rapport à une unité de temps - et la densité du trafic (K) - c'est le nombre de véhicules par rapport à un certain tronçon de la voie - étant relevées régulièrement aux postes de mesure (MQ1, MQ2,... ) et, à partir de ces données, certaines grandeurs caractéristiques de trafic étant calculées dans une préparation de données de trafic (VDA), en outre deux points de mesure voisins, par exemple les sections de mesure MQ1 et MQ2, ou, d'une façon plus générale, les sections de mesure Mqi et MQ (i+1), formant un tronçon de mesure (MA) d'une certaine longueur (I),
       caractérisé en ce que l'on calcule à partir des données de trafic (VD) provenant de deux de ces points de mesure les grandeurs caractéristiques de trafic suivantes :
    a) la différence des densités de vitesse (vk-D) selon la relation suivante : vk - D = Vfi-Vi Vfi + ki kmaxi - Vfi+1-Vi+1 Vfi+1 + ki+1 kmaxi+1 avec
    Vfi, Vf (i+1) :
    valeur maximale réglable de la vitesse à la section de mesure Mqi, MQ (i+1)
    kmaxi, kmax (i+1):
    valeur maximale réglable de la densité du trafic à la section de mesure MQi, MQ (i+1)
    ki:
    densité du trafic après la section de mesure MQi
    k (i+1) :
    densité du trafic avant la section de mesure MQ (i+1)
    vi, v (i+1) :
    vitesse moyenne à la section de mesure MQi, MQ (i+1)
    b) un facteur de tendance (FT), qui est calculé de manière continue à partir de la relation entre les intensités du trafic (Qi / Q (i+1)) de la première et de la deuxième section de mesure (MQi, MQ (i+1)), mais sur une certaine période (t) située dans la gamme des minutes,
    c) la tendance de l'intensité du trafic (QTi, QT (i+1)) des sections de mesure respectives (MQi, MQ (i+1)), la tendance étant déduite, à l'aide de la fonction de l'intensité du trafic (Q) sur le temps (courbe Q (t) ), de la montée de la tangente à la courbe ; ces trois grandeurs caractéristiques du trafic (vK-D ; FT ; QTi et QT (i+1)) sont traitées dans une logique floue (FUB) de détection de situations de trafic critiques dans la section de mesure (MA) considérée et amenées comme grandeurs de probabilité (WG) à un dispositif d'évaluation de résultat (EBE) monté en aval, dans lequel sont générés, en fonction de seuils (SW) réglables, des signaux de commande (SG) pour des panneaux de signalisation réglables (WVZ).
  2. Procédé selon la revendication 1, caractérisé en ce que les grandeurs caractéristiques de trafic différence des densités de vitesse (vk-D) et facteur de tendance (FT) sont calibrées de manière dynamique en fonction de leurs valeurs antérieures, à partir des données de trafic (VD) étant calculés un facteur de calibrage (KFv) pour la différence des densités de vitesse (vK-D) et un facteur de calibrage (KFT) pour le facteur de tendance (FT), et en ce que dans un dispositif de calibrage (KE) disposé entre la préparation de données de trafic (VDA) et le traitement à logique floue (FUB), la différence actuelle des densités de vitesse (vk-D) est divisée par le facteur de calibrage (KFv) pour la différence des densités de vitesse et le facteur de tendance actuel par le facteur de calibrage (KFT) pour le facteur de tendance.
  3. Procédé selon la revendication 2, caractérisé en ce que pour calibrer la différence des densités de vitesse (vk-D), celle-ci est évaluée, la valeur du facteur de calibrage (KFv) pour la différence des densités de vitesse étant un seuil pour la différence des densités de vitesse (vk-D), à partir duquel l'existence d'une situation de trafic critique est fort probable.
  4. Procédé selon la revendication 2, caractérisé en ce que pour calibrer le facteur de tendance (FT), une valeur caractéristique du facteur de tendance estimée "petite" est définie de telle sorte qu'elle englobe l'ensemble de toutes les valeurs du facteur de tendance, dont la fréquence cumulée relative est inférieure à un seuil, une table des fréquences présentant plusieurs classes étant réalisée avec des gammes de valeurs définies du facteur de tendance et le facteur de tendance actuel étant affecté à une classe pour en déduire le facteur de calibrage (KFT).
  5. Procédé selon l'une quelconque des revendications 1 à 4, caractérisé en ce qu'une perturbation représentant une situation de trafic critique est détectée et affichée, une formation de "pulk" (PE) étant détectée à partir du facteur de tendance (FT) et de la tendance de l'intensité du trafic (QTi) de la première section de mesure (MQi) et une grandeur de probabilité de "pulk" (PWG) étant calculée, laquelle est mise en rapport avec la tendance de l'intensité du trafic (QT (i-1)) de la deuxième section de mesure (MQ (i+1)) pour en déduire (STV) un critère de perturbation (STK), en outre une perturbation étant détectée (STE) à partir du facteur de tendance (FT) et de la différence des densités de vitesse (vk-D) ainsi que du critère de perturbation (STK) et une grandeur de probabilité de perturbation (SWG) étant calculée.
EP95910428A 1994-03-14 1995-03-01 Procede de detection du trafic et de situations de trafic sur des axes routiers, de preference sur des autoroutes Expired - Lifetime EP0750774B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4408547A DE4408547A1 (de) 1994-03-14 1994-03-14 Verfahren zur Verkehrserfassung und Verkehrssituationserkennung auf Autostraßen, vorzugsweise Autobahnen
DE4408547 1994-03-14
PCT/DE1995/000265 WO1995025321A1 (fr) 1994-03-14 1995-03-01 Procede de detection du trafic et de situations de trafic sur des axes routiers, de preference sur des autoroutes

Publications (2)

Publication Number Publication Date
EP0750774A1 EP0750774A1 (fr) 1997-01-02
EP0750774B1 true EP0750774B1 (fr) 1998-05-27

Family

ID=6512707

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95910428A Expired - Lifetime EP0750774B1 (fr) 1994-03-14 1995-03-01 Procede de detection du trafic et de situations de trafic sur des axes routiers, de preference sur des autoroutes

Country Status (6)

Country Link
US (1) US5696502A (fr)
EP (1) EP0750774B1 (fr)
AT (1) ATE166738T1 (fr)
DE (2) DE4408547A1 (fr)
FI (1) FI963627A (fr)
WO (1) WO1995025321A1 (fr)

Families Citing this family (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19521927C2 (de) * 1995-06-09 1998-08-06 Inst Automation Und Kommunikat Verfahren und Vorrichtung zur verkehrsabhängigen Grünzeitanpassung in einer Verkehrssignalanlage
DE19606258C1 (de) * 1996-02-06 1997-04-30 Mannesmann Ag Fahrzeugautonome Detektion von Verkehrsstau
DE19638070A1 (de) * 1996-09-18 1998-03-19 Deutsche Telekom Mobil Verfahren zur Verkehrsdatenerfassung mittels Mobilfunkgeräten
DE19647127C2 (de) * 1996-11-14 2000-04-20 Daimler Chrysler Ag Verfahren zur automatischen Verkehrsüberwachung mit Staudynamikanalyse
EP0944890B1 (fr) * 1996-12-16 2004-10-13 ATX Europe GmbH Procede pour completer et/ou verifier des donnees concernant l'etat d'un reseau routier; central d'informations routieres
US5995900A (en) * 1997-01-24 1999-11-30 Grumman Corporation Infrared traffic sensor with feature curve generation
KR100234987B1 (ko) * 1997-08-20 1999-12-15 윤종용 고속도로의 구간별 주행 시간 안내 시스템
DE59812267D1 (de) * 1997-09-11 2004-12-23 Siemens Ag Verfahren zur Ermittlung von Verkehrsinformationen
EP0903711A3 (fr) * 1997-09-18 2000-08-23 Siemens Aktiengesellschaft Procédé de transmission d'information sur le trafic
DE19757863A1 (de) * 1997-12-24 1999-07-08 Peter Grohse Sende- und Empfangseinheit zum Bezahlen von Autobahngebühren
DE19757812A1 (de) * 1997-12-24 1999-07-01 Peter Grohse Chipkarte zum Bezahlen von Autobahngebühren
US6313757B1 (en) * 1998-03-05 2001-11-06 Siemens Aktiengesellschaft Method and apparatus for controlling motor vehicle traffic
DE19835979B4 (de) * 1998-08-08 2005-01-05 Daimlerchrysler Ag Verfahren zur Verkehrszustandsüberwachung und Fahrzeugzuflußsteuerung in einem Straßenverkehrsnetz
US6317058B1 (en) 1999-09-15 2001-11-13 Jerome H. Lemelson Intelligent traffic control and warning system and method
AU5385601A (en) * 2000-03-15 2001-09-24 Raytheon Co Predictive automatic incident detection using automatic vehicle identification
US7068185B2 (en) * 2001-01-26 2006-06-27 Raytheon Company System and method for reading license plates
DE10103392A1 (de) * 2001-01-26 2002-08-08 Bosch Gmbh Robert Verfahren zur automatischen Stauwarnung
SE0100351D0 (sv) * 2001-02-06 2001-02-06 Sergio Luciani Traffic monitoring system and method
CA2343435C (fr) 2001-04-06 2006-12-05 International Road Dynamics Inc. Systeme dynamique de securite pour zone de travail
US6600994B1 (en) 2001-05-17 2003-07-29 Horizon Navigation, Inc. Quick selection of destinations in an automobile navigation system
KR20040051778A (ko) * 2002-12-13 2004-06-19 주식회사 엘지씨엔에스 유고 감지 방법
US7251558B1 (en) * 2003-09-23 2007-07-31 Navteq North America, Llc Method and system for developing traffic messages
US7096115B1 (en) * 2003-09-23 2006-08-22 Navteq North America, Llc Method and system for developing traffic messages
DE102005024953A1 (de) * 2005-05-31 2006-12-07 Siemens Ag Verfahren zur Ermittlung von Abbiegeraten in einem Straßennetz
US20070208493A1 (en) * 2006-03-03 2007-09-06 Inrix, Inc. Identifying unrepresentative road traffic condition data obtained from mobile data sources
US20070208498A1 (en) * 2006-03-03 2007-09-06 Inrix, Inc. Displaying road traffic condition information and user controls
US7912628B2 (en) 2006-03-03 2011-03-22 Inrix, Inc. Determining road traffic conditions using data from multiple data sources
US7813870B2 (en) * 2006-03-03 2010-10-12 Inrix, Inc. Dynamic time series prediction of future traffic conditions
US7899611B2 (en) * 2006-03-03 2011-03-01 Inrix, Inc. Detecting anomalous road traffic conditions
US20070208501A1 (en) * 2006-03-03 2007-09-06 Inrix, Inc. Assessing road traffic speed using data obtained from mobile data sources
US7912627B2 (en) * 2006-03-03 2011-03-22 Inrix, Inc. Obtaining road traffic condition data from mobile data sources
US7831380B2 (en) * 2006-03-03 2010-11-09 Inrix, Inc. Assessing road traffic flow conditions using data obtained from mobile data sources
US8700296B2 (en) 2006-03-03 2014-04-15 Inrix, Inc. Dynamic prediction of road traffic conditions
US7706965B2 (en) * 2006-08-18 2010-04-27 Inrix, Inc. Rectifying erroneous road traffic sensor data
US8014936B2 (en) 2006-03-03 2011-09-06 Inrix, Inc. Filtering road traffic condition data obtained from mobile data sources
US7908076B2 (en) * 2006-08-18 2011-03-15 Inrix, Inc. Representative road traffic flow information based on historical data
DE102008056858B4 (de) * 2008-11-12 2021-02-11 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Betreiben eines Hybridfahrzeugs
DE102009006534A1 (de) * 2009-01-28 2010-07-29 Siemens Aktiengesellschaft Verfahren zur Erkennung eines Störfalles auf einem Streckenabschnitt eines Straßennetzes sowie Verkehrsrechner zur Durchführung des Verfahrens
WO2010097325A1 (fr) * 2009-02-27 2010-09-02 Siemens Aktiengesellschaft Procédé et système de détection d'incidents sur un tronçon de route
US9087465B2 (en) * 2009-02-27 2015-07-21 Blackberry Limited Adaptive pedestrian billboard system and related methods
US9257041B2 (en) * 2009-04-22 2016-02-09 Inrix, Inc. Predicting expected road traffic conditions based on historical and current data
GB0916204D0 (en) * 2009-09-16 2009-10-28 Road Safety Man Ltd Traffic signal control system and method
US20110175753A1 (en) * 2010-01-15 2011-07-21 James Jacob Free Robotic influenced self scheduling F.L.O.W. trafic management system
ES2350551B2 (es) * 2010-08-06 2012-06-22 Universidad De Málaga Sistema y procedimiento de gestion de trafico.
US8930123B2 (en) 2010-11-19 2015-01-06 International Business Machines Corporation Systems and methods for determining traffic intensity using information obtained through crowdsourcing
US9958280B2 (en) 2011-08-16 2018-05-01 Inrix, Inc. Assessing inter-modal passenger travel options
CN102708688B (zh) * 2012-06-08 2014-01-22 四川川大智胜软件股份有限公司 一种基于二级模糊综合判别的城市道路状态辨识方法
DE202013003279U1 (de) * 2013-04-06 2013-07-25 Sadeeb Ottenburger Globale Stauprävention auf Autobahnen / Straßennetze
CN103456172B (zh) * 2013-09-11 2016-01-27 无锡加视诚智能科技有限公司 一种基于视频的交通参数测量方法
US8903636B1 (en) 2013-12-02 2014-12-02 Abdualrahman Abdullah Mohammad Al Kandari Accident detection system and method for accident detection
US9697731B2 (en) 2014-01-20 2017-07-04 Here Global B.V. Precision traffic indication
CN104050808B (zh) * 2014-06-03 2016-05-18 北京航天福道高技术股份有限公司 公路交通堵塞定位搜寻方法
WO2016018936A1 (fr) 2014-07-28 2016-02-04 Econolite Group, Inc. Contrôleur de signal de trafic auto-configurable
US10495480B1 (en) * 2016-08-18 2019-12-03 Apple Inc. Automated travel lane recommendation
GB2585243A (en) * 2019-07-05 2021-01-06 Valerann Ltd Traffic event and road condition identification and classification
KR20190109324A (ko) * 2019-07-26 2019-09-25 엘지전자 주식회사 로봇 충전대의 위치를 추천하기 위한 방법, 장치 및 시스템
US11508239B2 (en) 2020-05-19 2022-11-22 The Auto Club Group Road-side detection and alert system and method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1192025A (en) * 1966-10-20 1970-05-13 Tateisi Electronics Company A Method of and Apparatus for Detecting Traffic Delay
NL8402094A (nl) * 1984-07-02 1986-02-03 Philips Nv Werkwijze voor het besturen van een verkeersregelsysteem en het verkeersregelsysteem voor het toepassen van de werkwijze.
US5357436A (en) * 1992-10-21 1994-10-18 Rockwell International Corporation Fuzzy logic traffic signal control system

Also Published As

Publication number Publication date
EP0750774A1 (fr) 1997-01-02
DE4408547A1 (de) 1995-10-12
WO1995025321A1 (fr) 1995-09-21
ATE166738T1 (de) 1998-06-15
FI963627A0 (fi) 1996-09-13
FI963627A (fi) 1996-09-13
US5696502A (en) 1997-12-09
DE59502343D1 (de) 1998-07-02

Similar Documents

Publication Publication Date Title
EP0750774B1 (fr) Procede de detection du trafic et de situations de trafic sur des axes routiers, de preference sur des autoroutes
DE19606258C1 (de) Fahrzeugautonome Detektion von Verkehrsstau
EP1176569B1 (fr) Procédé de surveillance de l'état du trafic sur un réseau routier comportant des modifications effectives du trafic
DE69329119T2 (de) Vorhersageverfahren für strassenverkehrparameter
DE19944075C2 (de) Verfahren zur Verkehrszustandsüberwachung für ein Verkehrsnetz mit effektiven Engstellen
EP0740280A2 (fr) Méthode de détection des pertubations pour trafic routièr
DE69631629T2 (de) Erfassung und Vorhersage von Verkehrsbehinderungen
DE102008003039A1 (de) Verfahren zur Verkehrszustandsbestimmung in einem Fahrzeug
EP2447924B1 (fr) Système d'établissement de la situation de trafic sur une voie de circulation
EP1303845A1 (fr) Procede de determination d'informations relatives a la situation du trafic
EP0292897B1 (fr) Méthode d'évaluation du temps de voyage mesuré dans des véhicules au moyen d'un dispositif de guidage et d'informations dans un système de guidage et d'informations
DE1574054B1 (de) Vorrichtung zur bestimmung des autoverkehrsflusses
DE102008021260A1 (de) Verfahren zur Güteprüfung von Verkehrsstörungsmeldeverfahren
DE1574109C2 (de) Gerät zur Ermittlung der relativen Dichte von Verkehrsströmen auf Straßen
DE69132668T2 (de) System zur Überwachung von Verkehrsflussänderungen
DE3128578C2 (fr)
DE19917154B4 (de) Verfahren zum Erkennen von Stausituationen auf Straßen und Fahrzeuggeräte mit einer Einheit zur Durchführung des Verfahrens
EP1262934B1 (fr) Méthode pour la detection de la situation du trafic routier
WO2008011850A1 (fr) Procédé et dispositif pour la fusion de données sur la circulation routière en cas d'informations incomplètes
EP0902405B1 (fr) Procédé d'investigation d'information sur le trafic
DE10025039C2 (de) Verfahren zur Ermittlung von Verkehrsregelungsphasendauern
DE2911734C2 (de) Verfahren zur Messung von Verkehrsstörungen
DE10133001A1 (de) Verfahren zur Ermittlung von Verkehrslageinformationen
DE10359977B4 (de) Verfahren zum Ermitteln einer Reisezeit
DE102005060856A1 (de) Verfahren zur Erkennung eines Stauereignisses

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19960520

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL PT SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19970326

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19980527

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19980527

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980527

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19980527

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19980527

REF Corresponds to:

Ref document number: 166738

Country of ref document: AT

Date of ref document: 19980615

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59502343

Country of ref document: DE

Date of ref document: 19980702

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19980730

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19980827

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19980827

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19980827

EN Fr: translation not filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990301

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20040517

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20040607

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20050302

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20050303

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20050311

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051001

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060301

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060331

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20060301

BERE Be: lapsed

Owner name: *SIEMENS A.G.

Effective date: 20060331