EP0750774B1 - Method of detecting traffic and traffic situations on roads, preferably motorways - Google Patents

Method of detecting traffic and traffic situations on roads, preferably motorways Download PDF

Info

Publication number
EP0750774B1
EP0750774B1 EP95910428A EP95910428A EP0750774B1 EP 0750774 B1 EP0750774 B1 EP 0750774B1 EP 95910428 A EP95910428 A EP 95910428A EP 95910428 A EP95910428 A EP 95910428A EP 0750774 B1 EP0750774 B1 EP 0750774B1
Authority
EP
European Patent Office
Prior art keywords
traffic
trend
factor
measuring
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95910428A
Other languages
German (de)
French (fr)
Other versions
EP0750774A1 (en
Inventor
Fritz Busch
Andrea Ghio
Johannes Konrad
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0750774A1 publication Critical patent/EP0750774A1/en
Application granted granted Critical
Publication of EP0750774B1 publication Critical patent/EP0750774B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions

Definitions

  • the invention relates to a method for traffic detection and traffic situation detection on highways according to the preamble of claim 1.
  • Procedures that display appropriate ads based on traffic measurements turn on the variable message sign.
  • the control is point based if it is on a certain point of the traffic flow (e.g. construction sites or Road narrowing), due to the route (generally under known as "line manipulation") if they are refers to a route, or network-related if it is the automatic rerouting from a normal route to an alternative route undertakes (alternating directions).
  • the control logic is to keep the display manageable relatively simple.
  • the prepared local measured values like generally smoothed traffic, smoothed Speed and local traffic density are predefined with Threshold values compared to make a statement or to control the variable message sign.
  • EP-A-0 171 098 describes a method for traffic detection and disclosed for traffic control on highways, which at least two measuring points for vehicle detection with traffic sensors having.
  • Traffic data is in the form of vehicle speeds taking into account the traffic volume determined, processed and evaluated. It will there the determined speed data of at least two, considered in a certain length of spaced measuring points and based on logical decisions with predefined ones Speed values compared.
  • Iokibe T. et al. is a Method known in which only the traffic volume measured and this together with experience of Traffic levels are assessed using fuzzy logic get an estimate of the expected traffic.
  • the object of the invention is an early and reliable, automatic detection of critical traffic situations, such as traffic disruptions caused by congestion or an accident, on motorways to the road users in good time before this Warning situation.
  • these are the respective measuring cross sections with traffic sensors installed for each lane, Traffic data recorded and in a processing device provided for this purpose processed for traffic control. From the regularly recorded traffic data: speed and traffic volume, are in a traffic data processing device certain traffic parameters derived. For this purpose, two adjacent measuring points form a measuring section, which has a certain distance, for example 3 km. From the traffic data from these measuring points The following traffic quantities are formed:
  • a speed density difference (vk-D) according to the relationship as specified in claim 1.
  • the speed density difference takes into account the speed and the traffic density of both measurement cross sections.
  • a second traffic parameter a trend factor is formed that is continuous from the ratio of the heavy traffic of the first and the second measuring point is formed, but only the values above one certain period, e.g. the last 30 minutes.
  • the third traffic parameter is the traffic volume trend the respective measuring point as a measure of the dynamic Situation development, i.e. the temporal development the traffic volume.
  • These three traffic parameters are based on fuzzy logic processed to detect critical traffic situations, to make a statement about the probability as an output variable for a critical traffic situation. This probability quantity is dependent on a predeterminable threshold value evaluated to a display recommendation to generate for the variable message signs.
  • fuzzy logic for traffic situation detection on highway roads has a number of advantages.
  • the evaluation the input data is very simple. Multiple inputs can can be linked further. This makes it possible for one Measure to use multiple inputs at the same time, even if they are not particularly meaningful individually. Leading on average at a faster response time.
  • a soft mindset of fuzzy logic it is possible instead of a rigid binary decision (Jam or no jam on a cross section) a soft one To determine transition in the form of a probability (e.g. the probability of a jam at this cross-section is 70%). That has the Advantage that this result with a correspondingly predetermined Threshold value can be evaluated so that a reliable display recommendation can be made.
  • the traffic volume (Q), which also traffic volume is called, and the traffic density (K) is used.
  • the Traffic strength gives the number of vehicles on a measurement cross section on, based on a unit of time, for example one hour.
  • the traffic density is a measure of the number of the vehicles related to a certain section of the route. It is operated with a so-called local traffic density, the the number of vehicles on the measurement cross section relates and takes into account the corresponding speed.
  • the traffic parameter speed density difference vk-D average speed is calculated from the local traffic data and the traffic density of two neighboring cross sections (Measuring points) according to that specified in claim 1 Formula.
  • the first term of the speed density difference refers to the measuring cross section MQi, the second to the downstream measuring cross section MQ (i + 1).
  • To the traffic sizes different measurement cross sections compare to they are each set to the adjustable maximum values related to the traffic quantities of the cross sections (max. free speed and max. Traffic density). Is the traffic condition undisturbed at the measuring cross-section, i.e. the speed is not small and the traffic density is not great then the corresponding term is very small in the range Values. If there is an unstable traffic condition on the measurement cross-section, i.e. the speed is low and the traffic density large, the value of the term concerned increases on. Conclusions can thus be drawn from the difference between the two terms be pulled to the current traffic condition.
  • the trend factor (FT) is used as an indicator of a fault. It monitors the inflow and outflow of vehicles in the measurement section (MA) that have a specific Route length, for example 3 km, and is formed by the two measuring points (MQi and (MQi + 1)). In the event of a critical traffic situation, more vehicles drive into and out of the measuring section, the trend factor (FT) thereby increases exponentially.
  • the calculation of the Trend factor is based on the generally unsmoothed traffic volumes, i.e. the heavy traffic on the two cross sections. This will result in higher accuracy and faster Response achieved. To the influence of measurement errors too decrease, the trend factor is only based on the last measuring interval, that means a period of for example 30 minutes.
  • the third traffic parameter serves to assess the dynamic situation development.
  • the calculation is based on the generally unsmoothed recorded traffic data.
  • the traffic strength trend will also considered at the two measuring cross sections.
  • the input variables of the fuzzy logic are influenced by many factors dependent, in particular on the measuring point distance, the route geometry, i.e. Incline or descent, environmental conditions, such as Wetness, snow, black ice, day or night, and possible others Influences. So the influences are not just stationary, but also of a dynamic nature. Therefore, in continuing education the traffic parameters of the method according to the invention calibrated so that the fuzzy system inputs (Traffic parameters) always independent of external influences can rate right away. The sizes are dependent on this their past values dynamically calibrated.
  • this traffic data becomes a calibration factor for the speed density difference and a calibration factor formed for the trend factor and in a calibration facility, between the traffic data preparation and the fuzzy editing is arranged with the current one Relating traffic parameters.
  • the actual Velocity density difference is determined by the velocity density difference calibration factor and the respective one current trend factor divided by the trend calibration factor.
  • the speed density difference depends on environmental conditions such as wet, fog, day / night etc.
  • This fuzzy input variable is therefore evaluated by the dynamic calibration factor.
  • the value of this factor can be used as a threshold for the speed density difference above which there is a high probability of a critical traffic situation (disruption).
  • the calibration factor is only calculated if the speed density difference is below a certain threshold, for example 0.3.
  • the factor is made up of the mean, the standard deviation from the speed density difference and its defined threshold. The calculation of the mean value and the standard deviation is only carried out on the basis of the relative maxima of the speed density-difference curve.
  • vk_D medium ⁇ vk_D + (1- ⁇ ) vk_D middle age
  • vk_D ⁇ ⁇ (vk_D-vk_D medium ) 2nd + (1- ⁇ ) ⁇ ⁇ vk_D old
  • vk_D middle age vk_D medium
  • vk_D old ⁇ vk_D
  • Calibration factor vk_D vk_D medium +2.
  • the current speed density difference is shown by this Divided calibration factor.
  • the characteristic value of the trend factor is sought, which you consider "small". This characteristic value becomes like this defines that it includes the set of all values of the trend factor, their relative cumulative frequency below one Threshold.
  • a frequency table is introduced whose classes are defined according to the table will.
  • a class is a defined range of values of the Trend factor, with all classes together covering the entire value range describe the trend factor. For every measuring interval the current trend factor is assigned to a class that the respective class is then incremented. For every interval can be used to determine the measured value for which the relative Total frequency below the specified threshold lies.
  • classification is more graded for very small and large values, a finer gradation is chosen for the important calibration range: class 0 1 2nd 3rd ......... 36 37 Characteristic value range -1..0.15 > 0.15 > 0.225 > 0.275 ......... > 1,975 > 2,025 F T ⁇ 0.225 ⁇ 0.275 ⁇ 0.325 ⁇ 2.025 ⁇ 2,075 Classification
  • KFT characteristic normalized expression "small” of the trend factor
  • the current trend factor is determined by this calibration factor divided.
  • the method according to the invention for detecting critical traffic situations is used in a special embodiment of the invention for accident detection.
  • traffic parameters trend factor and traffic strength trend of the first measurement cross-section
  • a crowd formation is recognized in a crowd detection and a pulse probability quantity is derived.
  • an accident criterion is derived from the traffic parameter traffic strength trend of the second measurement cross section and the pulse probability variable with the help of the fuzzy decision, which together with the trend factor and the speed density difference enables an accident detection.
  • the traffic parameters, traffic strength trend at the measuring point MQ1 and at the measuring point MQ2 are used for the fuzzy accident decision, with which a preliminary investigation for an accident is carried out.
  • a bulk detection is carried out.
  • a crowd hires Vehicle collective with high traffic volume and traffic density represents which enters the measuring section.
  • the traffic parameter used for accident detection Trend factor leaves two interpretations for very large values to. There is an accident, i.e. about one longer period there are more vehicles in the measurement section retracted as extended, or is in the measuring section Bunch retracted. A bunch is like a density wave, such as in the event of a sudden cancellation of a Bottlenecks arise. To differentiate between these two cases as stated above, a bulk detection is carried out.
  • the fuzzy logic As an input variable of the fuzzy logic, the traffic volume trend, the pulse probability in the previous one Measurement interval, and the trend factor used.
  • As an output variable is a value for the probability of one Pulks are available in the considered measurement section.
  • the traffic volume trend on the downstream is now also decreasing Measurement cross section from at a high value for an accident criterion, so is the probability of an accident very high.
  • the traffic volume trend on the downstream measuring cross-section decreases the possibility of an accident, as well as when the pulse probability increases.
  • a The exception is the case if a Disorder was very likely.
  • the accident criterion essentially independent of the pulse probability and the traffic volume trend, because in the case of the already In the last measurement interval, a fault identified can both the pulse rate as well as the traffic volume trend rise again.
  • Accident detection is the decision level which ultimately results in the probability of a Accident leads. Depending on this size, a Warning activated on the display cross-section.
  • the variables become: accident criterion, Trend factor and speed density difference that The probability of an accident is derived, as already explained.
  • accident criterion there is most likely an accident.
  • the bigger (positive) the difference in speed density the more likely is an accident.
  • speed density difference Probability of an accident even more.
  • the trend factor has more influence.
  • the result evaluation is based on on the likelihood of an accident, a recommendation to display, e.g. Traffic jam warning, for the variable message signs derived and causes the display.
  • the AS auto Avenue here as a freeway with e.g. two tracks in shown a direction of travel, has two measurement cross-sections MQi and MQ (i + 1), which are arranged at a certain distance are and form a measuring section MA.
  • the traffic sensors VS e.g. Vehicle detectors, for example can be formed by induction double loops Traffic data VD recorded and a traffic data preparation VDA supplied. Speed is used as traffic data v, the traffic density K and the traffic volume Q detected and processed further.
  • the traffic parameters speed density difference vk-D, the trend factor FT and the high-traffic QTi and QTi + 1 determined separately on the measuring cross sections MQi and MQi + t and fed to fuzzy logic for further processing.
  • the fuzzy processing device is called FUB.
  • the probability quantity formed there, as already explained above Flat share for a critical traffic situation is evaluated in the result evaluation facility EBE on the basis of a Predeterminable threshold value SW evaluated to a control signal SG, for example as a display recommendation for a variable message sign To generate VWZ.
  • KFB becomes the traffic data VD or traffic parameters vk-D and FT to form a calibration factor for the speed density difference KFv and one Calibration factor used for the trend factor KFT.
  • KFB becomes the traffic data VD or traffic parameters vk-D and FT to form a calibration factor for the speed density difference KFv and one Calibration factor used for the trend factor KFT.
  • Fig. 3 the accident detection is shown schematically.
  • the input variables become a trend factor FT and traffic volume trend QTi at the measurement cross section MQi one Pulse probability quantity PWG using fuzzy logic derived.
  • This pulse probability quantity PWG is in a preliminary accident investigation STV with the traffic parameter Traffic strength trend QT (i + 1) of the measurement cross section MQ (i + 1) considered and derived an accident criterion STK.
  • This criterion STK is used together with the trend factor FT and the velocity density difference vk-D is considered to be to be able to close an accident.
  • This is with the accident detection STE indicated.
  • the Accident detection STE to an accident probability quantity SWG closed in a subsequent earnings assessment facility EBE is treated further.

Abstract

PCT No. PCT/DE95/00265 Sec. 371 Date Sep. 12, 1996 Sec. 102(e) Date Sep. 12, 1996 PCT Filed Mar. 1, 1995 PCT Pub. No. WO95/25321 PCT Pub. Date Sep. 21, 1995A method of sensing traffic and detecting traffic situations on roads (AS), preferably freeways. With measuring points (measuring cross sections MQ1, MQ2, . . . ) set up for the purpose for vehicle detection using traffic sensors (VS) and with a traffic data processing arrangement (VDVE) for traffic control, at regular intervals traffic data (VD), such as vehicle speed (v), traffic intensity (Q) and traffic density (K), are determined and traffic parameters determined therefrom are formed in a traffic data processing system (VDA). Two adjacent measuring points. (MQi, MQ(i+1) form a measuring section (MA) of a given length (l). The following traffic parameters are formed from the traffic data (VD) of two such measuring points: a) the speed density difference (vk-D), which is calculated from the local traffic data of average speed (v) and traffic density (K); b) a trend factor (FT), which is formed continually from the ratio between the traffic intensities (Qi/Q(i+1)) of the first and second measuring points (MQi, MQ(i+1)), but determined during a given period (t) in the minute range; c) the traffic intensity trend (QTi, QT(i+1)) of the respective measuring point (MQi, MQ(i+1)), the trend being derived on the basis of the function of the traffic intensity (Q) over the time (curve Q (t)) from the increase of the tangent to the curve. The probability of a critical traffic situation (WG) is derived therefrom in a fuzzy logic (FUB).

Description

Die Erfindung bezieht sich auf ein Verfahren zur Verkehrserfassung und Verkehrssituationserkennung auf Autostraßen gemäß dem Oberbegriff des Anspruchs 1.The invention relates to a method for traffic detection and traffic situation detection on highways according to the preamble of claim 1.

Das ständig zunehmende Verkehrsaufkommen auf der Straße, vorzugsweise Autobahn, mit dem dadurch bedingten Sicherheitsverlust und die Schwierigkeiten, das gesamte Straßen- bzw. Autobahnnetz entsprechend zu erweitern, haben in den letzten Jahrzehnten zu Überlegungen geführt, die Leistungsfähigkeit sowie die Sicherheit der Autostraßen mit Hilfe der Elektronik zu steigern.The ever increasing traffic on the street, preferably Autobahn, with the resulting loss of security and the difficulties, the entire road or highway network have expanded accordingly in recent years Decades led to considerations of performance as well as the safety of the highways with the help of electronics to increase.

Es gibt in der Zwischenzeit diverse Anlagen und verschiedene Verfahren, die aufgrund von Verkehrsmessungen passende Anzeigen an den Wechselverkehrszeichen anschalten. Die Steuerung ist punktbedingt, wenn sie sich auf einem bestimmten Punkt des Verkehrsablaufs bezieht (beispielsweise Baustellen oder Fahrbahnverengungen), streckenbedingt (im allgemeinen unter der Bezeichnung "Linienbeeinflussung" bekannt), wenn sie sich auf eine Strecke bezieht, oder netzbedingt, wenn sie sich die automatische Umleitung von einer Normalroute auf eine Alternativroute vornimmt (Wechselwegweisung).In the meantime there are various plants and different ones Procedures that display appropriate ads based on traffic measurements turn on the variable message sign. The control is point based if it is on a certain point of the traffic flow (e.g. construction sites or Road narrowing), due to the route (generally under known as "line manipulation") if they are refers to a route, or network-related if it is the automatic rerouting from a normal route to an alternative route undertakes (alternating directions).

Bisherige Linienbeeinflussungen sind sehr aufwendig und teuer und werden daher nur gezielt an besonderes befahrenen Strekken errichtet. Dabei ist ein sehr hoher Aufwand bezüglich der Datenerfassung bzw. -auswertung sowie für die Informationsübertragung mittels Wechselverkehrszeichen erforderlich. Um die Zusammenhänge zwischen der Verkehrssituation und der gesteuerten Anzeige überschaubar zu halten, ist die Steuerlogik relativ einfach aufgebaut. Die aufbereiteten lokalen Meßwerte, wie im allgemeinen geglättete Verkehrsstärke, geglättete Geschwindigkeit und lokale Verkehrsdichte, werden mit vordefinierten Schwellwerten verglichen, um eine Aussage zu treffen bzw. um das Wechselverkehrszeichen anzusteuern.Current line influencing is very complex and expensive and are therefore only targeted at particularly busy routes built. This is a very high effort in terms of Data acquisition and evaluation as well as for information transfer required by means of variable message signs. Around the relationships between the traffic situation and the controlled one The control logic is to keep the display manageable relatively simple. The prepared local measured values, like generally smoothed traffic, smoothed Speed and local traffic density are predefined with Threshold values compared to make a statement or to control the variable message sign.

Bei in Betrieb befindlichen Anlagen mit Verkehrserfassung und Steuerung des Verkehrs durch Wechselverkehrszeichen wird bisher die Steuerung mit eindeutigen Ja/Nein-Aussagen, basierend auf Entscheidungslogiken, durchgeführt. Beispielsweise kann eine Harmonisierung des Verkehrs aufgrund hoher Belastung erreicht werden, indem auf sämtlichen Fahrspuren eine gleiche Geschwindigkeitsbeschränkung angezeigt wird. Eine Stauerkennung und Warnung kann aufgrund einer Verringerung der Fahrgeschwindigkeit erfolgen. Wird eine verhältnismäßig starke Verkehrsunruhe erkannt, so kann dem mit einer gleichmäßigen Geschwindigkeitsbeschränkung begegnet werden. Witterungsabhängige Umfeldbedingungen, die mit getrennten Sensoren erfaßt werden, werden zur Linienbeeinflussung ebenfalls angezeigt. Eine frühzeitige und zuverlässige Erkennung von gefährlichen Verkehrs zuständen ist mit den bekannten Anlagen nicht ohne weiteres möglich, weil die erfaßten Verkehrsdaten keinen deutlichen Aufschluß über das tatsächliche Verkehrsgeschehen ergeben.For systems in operation with traffic detection and Control of traffic through variable message signs is so far control based on clear yes / no statements on decision logic. For example a harmonization of traffic achieved due to high loads be the same on all lanes Speed limit is displayed. A traffic jam detection and warning may be due to a decrease in driving speed respectively. Becomes a relatively heavy traffic unrest recognized, so can with an even speed limit be met. Weather dependent Ambient conditions detected with separate sensors are also displayed to influence the line. Early and reliable detection of dangerous Traffic conditions are not without the known systems further possible because the recorded traffic data none clear information about the actual traffic situation surrender.

In der EP-A-0 171 098 ist ein Verfahren zur Verkehrserfassung und zur Verkehrssteuerung auf Autostraßen geoffenbart, welches zumindest zwei Meßstellen zur KFZ-Detektion mit Verkehrssensoren aufweist. Dabei werden Verkehrsdaten in Form von KFZ-Geschwindigkeiten unter Berücksichtigung der Verkehrsstärke ermittelt, verarbeitet und bewertet. Es werden dort die ermittelten Geschwindigkeitsdaten zumindest zweier, in einer bestimmten Länge beabstandeter Meßstellen betrachtet und auf der Basis logischer Entscheidungen mit vorgegebenen Geschwindigkeitswerten verglichen. EP-A-0 171 098 describes a method for traffic detection and disclosed for traffic control on highways, which at least two measuring points for vehicle detection with traffic sensors having. Traffic data is in the form of vehicle speeds taking into account the traffic volume determined, processed and evaluated. It will there the determined speed data of at least two, considered in a certain length of spaced measuring points and based on logical decisions with predefined ones Speed values compared.

Aus dem Artikel "Traffic Prediction Method by Fuzzy Logik", Second IEEE International Conference on Fuzzy Systems (Cat. No. 93CH3136-9), Proceedings of IEEE 2nd International Fuzzy Systems Conference, San Francisco, CA, USA, 28 March - 1 April 1993, ISBN 0-7803-0614-7, 1993, New York, NY, USA, IEEE, USA, Seiten 673-678 Vol. 2, Iokibe T. et al. ist ein Verfahren bekannt, bei dem lediglich die Verkehrsstärke gemessen und diese zusammen mit Erfahrungswerten der Verkehrsstärke mit Hilfe von Fuzzy-Logik bewertet wird, um eine Abschätzung des zu erwartenden Verkehrs zu erhalten.From the article "Traffic Prediction Method by Fuzzy Logic", Second IEEE International Conference on Fuzzy Systems (Cat. No. 93CH3136-9), Proceedings of IEEE 2nd International Fuzzy Systems Conference, San Francisco, CA, USA, March 28 - 1 April 1993, ISBN 0-7803-0614-7, 1993, New York, NY, USA, IEEE, USA, pages 673-678 vol. 2, Iokibe T. et al. is a Method known in which only the traffic volume measured and this together with experience of Traffic levels are assessed using fuzzy logic get an estimate of the expected traffic.

Aufgabe der Erfindung ist eine frühzeitige und zuverlässige, automatische Erkennung von kritischen Verkehrssituationen, wie Verkehrsstörungen durch Staubildung oder Unfall, auf Autostraßen, um die Verkehrsteilnehmer rechtzeitig vor dieser Situation zu warnen.The object of the invention is an early and reliable, automatic detection of critical traffic situations, such as traffic disruptions caused by congestion or an accident, on motorways to the road users in good time before this Warning situation.

Diese Aufgabe wird bei dem eingangs beschriebenen Verfahren mit den kennzeichnenden Merkmalen des Anspruchs 1 gelöst.This task is carried out in the method described at the beginning solved with the characterizing features of claim 1.

Mit dem erfindungsgemäßen Verfahren werden an den Autostraßen mit dafür eingerichteten Meßstellen, das sind jeweilige Meßquerschnitte mit für jede Fahrspur angebrachten Verkehrssensoren, Verkehrsdaten erfaßt und in einer dafür vorgesehenen Verarbeitungseinrichtung für eine Verkehrssteuerung verarbeitet. Aus den regelmäßig erfaßten Verkehrsdaten: Geschwindigkeit und Verkehrsstärke, werden in einer Verkehrsdatenaufbereitungseinrichtung bestimmte Verkehrskenngrößen abgeleitet. Dazu bilden zwei benachbarte Meßstellen einen Meßabschnitt, der eine bestimmte Streckenlänge, beispielsweise 3 km, aufweist. Aus den Verkehrsdaten von diesen Meßstellen werden folgende Verkehrsgrößen gebildet:With the method according to the invention on the highways with measuring points set up for this purpose, these are the respective measuring cross sections with traffic sensors installed for each lane, Traffic data recorded and in a processing device provided for this purpose processed for traffic control. From the regularly recorded traffic data: speed and traffic volume, are in a traffic data processing device certain traffic parameters derived. For this purpose, two adjacent measuring points form a measuring section, which has a certain distance, for example 3 km. From the traffic data from these measuring points The following traffic quantities are formed:

Eine Geschwindigkeitsdichtedifferenz (vk-D) gemäß der Beziehung, wie sie im Anspruch 1 angegeben ist. Die Geschwindigkeitsdichtedifferenz berücksichtigt die Geschwindigkeit und die Verkehrsdichte beider Meßquerschnitte. Als zweite Verkehrskenngröße wird ein Trendfaktor gebildet, der fortlaufend aus dem Verhältnis der Verkehrsstarken der ersten und der zweiten Meßstelle gebildet ist, jedoch nur die Werte über einen bestimmten Zeitraum, z.B. den letzten 30 Minuten, berücksichtigt. Als dritte Verkehrskenngröße wird der Verkehrsstärketrend der jeweiligen Meßstelle als Maß für die dynamische Situationsentwicklung, d.h. die zeitliche Entwicklung der Verkehrsstärke, gebildet. Dabei wird aus der Funktion der Verkehrsstärke über der Zeit bzw. aus der Steigung der Tangente an dieser Funktionskurve der Trend der Verkehrsstärke abgeleitet. Diese drei Verkehrskenngrößen werden in einer Fuzzy-Logik zur Erkennung kritischer Verkehrssituationen bearbeitet, um als Ausgangsgröße eine Aussage über die Wahrscheinlichkeit für eine kritische Verkehrssituation zu erhalten. Diese Wahrscheinlichkeitsgröße wird in Abhängigkeit von einem vorgebbaren Schwellwert bewertet, um eine Anzeigeempfehlung für die Wechselverkehrszeichen zu generieren.A speed density difference (vk-D) according to the relationship as specified in claim 1. The speed density difference takes into account the speed and the traffic density of both measurement cross sections. As a second traffic parameter a trend factor is formed that is continuous from the ratio of the heavy traffic of the first and the second measuring point is formed, but only the values above one certain period, e.g. the last 30 minutes. The third traffic parameter is the traffic volume trend the respective measuring point as a measure of the dynamic Situation development, i.e. the temporal development the traffic volume. The function of Traffic intensity over time or from the slope of the tangent on this functional curve the trend of traffic volume derived. These three traffic parameters are based on fuzzy logic processed to detect critical traffic situations, to make a statement about the probability as an output variable for a critical traffic situation. This probability quantity is dependent on a predeterminable threshold value evaluated to a display recommendation to generate for the variable message signs.

Die Anwendung der Fuzzy-Logik für die Verkehrsituationserkennung auf Autostraßen hat eine Reihe von Vorteilen. Das Auswerten der Input-Daten ist sehr einfach. Mehrere Inputs können weiter verknüpft werden. Dadurch ist es möglich, für eine Maßnahme mehrere Eingänge gleichzeitig zu benutzen, auch wenn sie einzeln nicht besonders aussagekräftig sind. Das führt durchschnittlich zu einer schnelleren Reaktionszeit. Außerdem können kompliziertere Logiken für die Situationsinterpretation, die nur mit der Verknüpfung vieler Daten möglich sind (Verkehrsstärke, Geschwindigkeit und lokale Dichte am Querschnitt und am darauf bzw. dahinter liegenden Meßquerschnitt, Trendfaktoren, evtl. Umfelddaten), mit der Fuzzy-Logik besser verwaltet werden. Wegen der weichen Denkweise der Fuzzy-Logik ist es möglich, statt einer starren binären Entscheidung (Stau oder kein Stau an einem Querschnitt) einen weichen Übergang zu ermitteln, der in Form einer Wahrscheinlichkeit (z.B. die Wahrscheinlichkeit eines Staus an diesem Querschnitt beträgt 70%) dargestellt werden kann. Das hat den Vorteil, daß dieses Ergebnis mit einem entsprechend vorgebbaren Schwellwert so bewertet werden kann, daß frühzeitig eine zuverlässige Anzeigeempfehlung ausgesprochen werden kann.The application of fuzzy logic for traffic situation detection on highway roads has a number of advantages. The evaluation the input data is very simple. Multiple inputs can can be linked further. This makes it possible for one Measure to use multiple inputs at the same time, even if they are not particularly meaningful individually. Leading on average at a faster response time. Furthermore can use more complex logics for situation interpretation, that are only possible by linking a lot of data (Traffic volume, speed and local density at the cross section and on the measuring cross section on or behind, Trend factors, possibly environmental data), better with fuzzy logic to get managed. Because of the soft mindset of fuzzy logic it is possible instead of a rigid binary decision (Jam or no jam on a cross section) a soft one To determine transition in the form of a probability (e.g. the probability of a jam at this cross-section is 70%). That has the Advantage that this result with a correspondingly predetermined Threshold value can be evaluated so that a reliable display recommendation can be made.

Als Verkehrsdaten werden neben der Fahrzeuggeschwindigkeit, die an beiden Meßstellen ermittelt wird und im allgemeinen als geglätteter Mittelwert (v) für die jeweilige Meßstelle verarbeitet wird, die Verkehrsstärke (Q), die auch Verkehrsmenge genannt wird, und die Verkehrsdichte (K) verwendet. Die Verkehrsstärke gibt die Anzahl der Fahrzeuge an einem Meßquerschnitt an, bezogen auf eine Zeiteinheit, beispielsweise eine Stunde. Die Verkehrsdichte ist ein Maß für die Anzahl der Fahrzeuge bezogen auf einen bestimmten Streckenabschnitt. Es wird mit einer sogenannten lokalen Verkehrsdichte operiert, die die Anzahl der Fahrzeuge auf den Meßquerschnitt bezieht und die entsprechende Geschwindigkeit berücksichtigt. Die Verkehrsdichte ist der Quotient der Verkehrsstärke und der mittleren Geschwindigkeit (K = Q/v).In addition to the vehicle speed, which is determined at both measuring points and in general as a smoothed mean (v) for the respective measuring point is processed, the traffic volume (Q), which also traffic volume is called, and the traffic density (K) is used. The Traffic strength gives the number of vehicles on a measurement cross section on, based on a unit of time, for example one hour. The traffic density is a measure of the number of the vehicles related to a certain section of the route. It is operated with a so-called local traffic density, the the number of vehicles on the measurement cross section relates and takes into account the corresponding speed. The traffic density is the quotient of the traffic volume and the average speed (K = Q / v).

Die Verkehrskenngröße Geschwindigkeitsdichtedifferenz vk-D berechnet sich aus den lokalen Verkehrsdaten mittlere Geschwindigkeit und der Verkehrsdichte zweier benachbarter Meßquerschnitte (Meßstellen) nach der im Anspruch 1 angegebenen Formel. Der erste Term der Geschwindigkeitsdichtedifferenz bezieht sich auf den Meßquerschnitt MQi, der zweite auf den stromabwärtsliegenden Meßquerschnitt MQ(i+1). Um die Verkehrsgrößen unterschiedlicher Meßquerschnitte vergleichen zu können, werden sie jeweils auf die einstellbaren Maximalwerte der Verkehrsgrößen der Querschnitte bezogen (max. freie Geschwindigkeit und max. Verkehrsdichte). Ist der Verkehrszustand an dem Meßquerschnitt ungestört, d.h. die Geschwindigkeit ist nicht klein und die Verkehrsdichte nicht groß, dann bewegt sich der entsprechende Term im Bereich sehr kleiner Werte. Herrscht an dem Meßquerschnitt ein instabiler Verkehrszustand, d.h. die Geschwindigkeit ist klein und die Verkehrsdichte groß, so steigt der Wert des betroffenen Terms an. Aus der Differenz der beiden Terme können damit Rückschlüsse auf den momentanen Verkehrszustand gezogen werden.The traffic parameter speed density difference vk-D average speed is calculated from the local traffic data and the traffic density of two neighboring cross sections (Measuring points) according to that specified in claim 1 Formula. The first term of the speed density difference refers to the measuring cross section MQi, the second to the downstream measuring cross section MQ (i + 1). To the traffic sizes different measurement cross sections compare to , they are each set to the adjustable maximum values related to the traffic quantities of the cross sections (max. free speed and max. Traffic density). Is the traffic condition undisturbed at the measuring cross-section, i.e. the speed is not small and the traffic density is not great then the corresponding term is very small in the range Values. If there is an unstable traffic condition on the measurement cross-section, i.e. the speed is low and the traffic density large, the value of the term concerned increases on. Conclusions can thus be drawn from the difference between the two terms be pulled to the current traffic condition.

Der Trendfaktor (FT) wird als Indikator für eine Störung herangezogen. Durch ihn erfolgt eine Überwachung des Zu- und Abflusses der Fahrzeuge im Meßabschnitt (MA), der eine bestimmte Streckenlänge, beispielsweise 3 km, aufweisen kann, und von den beiden Meßstellen (MQi und (MQi+1)) gebildet ist. Im Falle einer kritischen Verkehrssituation fahren mehr Fahrzeuge in den Meßabschnitt hinein als hinaus, der Trendfaktor (FT) steigt dadurch exponentiell an. Die Berechnung des Trendfaktors beruht auf den im allgemeinen ungeglätteten Verkehrsmengen, d.h. den Verkehrsstarken an den beiden Meßquerschnitten. Damit wird eine höhere Genauigkeit und ein schnelleres Ansprechen erreicht. Um den Einfluß von Meßfehlern zu verringern, wird der Trendfaktor jeweils nur auf der Basis der letzten Meßintervalle, das bedeutet einen Zeitraum von beispielsweise 30 Minuten, berechnet.The trend factor (FT) is used as an indicator of a fault. It monitors the inflow and outflow of vehicles in the measurement section (MA) that have a specific Route length, for example 3 km, and is formed by the two measuring points (MQi and (MQi + 1)). In the event of a critical traffic situation, more vehicles drive into and out of the measuring section, the trend factor (FT) thereby increases exponentially. The calculation of the Trend factor is based on the generally unsmoothed traffic volumes, i.e. the heavy traffic on the two cross sections. This will result in higher accuracy and faster Response achieved. To the influence of measurement errors too decrease, the trend factor is only based on the last measuring interval, that means a period of for example 30 minutes.

Die dritte Verkehrskenngröße, der Verkehrsstärke-Trend (QTi), dient zur Beurteilung der dynamischen Situationsentwicklung. Die Berechnung beruht auf den im allgemeinen ungeglätteten erfaßten Verkehrsdaten. Der Verkehrsstärketrend wird ebenfalls an den beiden Meßquerschnitten betrachtet. The third traffic parameter, the traffic strength trend (QTi), serves to assess the dynamic situation development. The calculation is based on the generally unsmoothed recorded traffic data. The traffic strength trend will also considered at the two measuring cross sections.

Diese drei Verkehrskenngrößen sind die Eingangsdaten für die Fuzzy-Logik. Diese bringt die Eingangsgrößen, die von zwei benachbarten Meßquerschnitten stammen, über eine durch Regeln definierte Wissensbasis in Zusammenhang und leitet daraus die Wahrscheinlichkeit für eine kritische Verkehrssituation, beispielsweise ein Störfall, ab.These three traffic parameters are the input data for the Fuzzy logic. This brings the input variables, that of two neighboring measuring cross-sections originate from one by rules defined knowledge base in connection and leads the Probability of a critical traffic situation, for example a major accident.

Die Eingangsgrößen der Fuzzy-Logik sind von vielen Einflüssen abhängig, insbesondere vom Meßstellenabstand, der Streckengeometrie, d.h. Steigung oder Gefälle, Umfeldbedingungen, wie Nässe, Schnee, Glatteis, Tag oder Nacht, und möglichen weiteren Einflüssen. Die Einflüsse sind also nicht nur stationär, sonderen auch dynamischer Art. Daher werden in Weiterbildung des erfindungsgemäßens Verfahrens die Verkehrskenngrößen so kalibriert, daß das Fuzzy-System die Eingangsgrößen (Verkehrskenngrößen) unabhängig von äußeren Einflüssen immer gleich bewerten kann. Dazu werden die Größen in Abhängigkeit ihrer Vergangenheitswerte dynamisch kalibriert.The input variables of the fuzzy logic are influenced by many factors dependent, in particular on the measuring point distance, the route geometry, i.e. Incline or descent, environmental conditions, such as Wetness, snow, black ice, day or night, and possible others Influences. So the influences are not just stationary, but also of a dynamic nature. Therefore, in continuing education the traffic parameters of the method according to the invention calibrated so that the fuzzy system inputs (Traffic parameters) always independent of external influences can rate right away. The sizes are dependent on this their past values dynamically calibrated.

Um den Aufwand für die Kalibrierung zur Erkennung einer kritischen Verkehrssituation zu minimieren, werden automatisch der Trendfaktor und die Geschwindigkeitsdifferenz kalibriert. Dazu wird aus diesen Verkehrsdaten ein Kalibrierungsfaktor für die Geschwindigkeitsdichtedifferenz und ein Kalibrierungsfaktor für den Trendfaktor gebildet und in einer Kalibrierungseinrichtung, die zwischen der Verkehrsdatenaufbereitung und der Fuzzy-Bearbeitung angeordnet ist, mit den aktuellen Verkehrskenngrößen in Beziehung gebracht. Die aktuelle Geschwindigkeitsdichtedifferenz wird durch den Geschwindigkeitsdichtedifferenz-Kalibrierungsfaktor und der jeweilige aktuelle Trendfaktor durch den Trend-Kalibrierungsfaktor dividiert.To reduce the effort for calibration to detect a critical Minimize traffic situation will be automatic the trend factor and the speed difference calibrated. For this purpose, this traffic data becomes a calibration factor for the speed density difference and a calibration factor formed for the trend factor and in a calibration facility, between the traffic data preparation and the fuzzy editing is arranged with the current one Relating traffic parameters. The actual Velocity density difference is determined by the velocity density difference calibration factor and the respective one current trend factor divided by the trend calibration factor.

Wie bereits gesagt, ist die Geschwindigkeitsdichtedifferenz abhängig von Umfeldbedingungen, wie Nässe, Nebel, Tag/Nacht usw. Diese Fuzzy-Eingangsgröße wird deshalb durch den dynamischen Kalibrierungsfaktor bewertet. Der Wert dieses Faktors kann als Schwelle für die Geschwindigkeitdichtedifferenz gelten, ab der mit hoher Wahrscheinlichkeit der Fall einer kritischen Verkehrssituation (Störung) vorliegt. Der Kalibrierungsfaktor wird nur berechnet, wenn die Geschwindigkeitsdichtedifferenz unter einer bestimmten Schwelle, beispielsweise 0,3, liegt. Der Faktor setzt sich aus dem Mittelwert, der Standardabweichung von der Geschwindigkeitsdichte-differenz und seiner festgelegten Schwelle zusammen. Die Berechnung des Mittelwerts und der Standardabweichung wird nur auf Basis der relativen Maxima der Geschwindigkeitsdichte-differenz-Ganglinie durchgeführt: vk_Dmittel=α·vk_D+(1-α)·vk_Dmittelalt σvk_D=α·(vk_D-vk_Dmittel)2+(1-α)·σvk_Dalt vk_Dmittelalt=vk_Dmittel σvk_Dalt=σvk_D Kalibrierungsfaktor vk_D= vk_Dmittel +2.σvk_D+0.35 PSG PSG = normalisierte Ausprägung (positiv sehr groß)
mit α=0.05 (einstellbar)
As already mentioned, the speed density difference depends on environmental conditions such as wet, fog, day / night etc. This fuzzy input variable is therefore evaluated by the dynamic calibration factor. The value of this factor can be used as a threshold for the speed density difference above which there is a high probability of a critical traffic situation (disruption). The calibration factor is only calculated if the speed density difference is below a certain threshold, for example 0.3. The factor is made up of the mean, the standard deviation from the speed density difference and its defined threshold. The calculation of the mean value and the standard deviation is only carried out on the basis of the relative maxima of the speed density-difference curve. vk_D medium = αvk_D + (1-α) vk_D middle age σvk_D = α · (vk_D-vk_D medium ) 2nd + (1-α) · σvk_D old vk_D middle age = vk_D medium σvk_D old = σvk_D Calibration factor vk_D = vk_D medium +2. σ vk_D +0.35 PSG PSG = normalized expression (positive very large)
with α = 0.05 (adjustable)

Die aktuelle Geschwindigkeitsdichtedifferenz wird durch diesen Kalibrierungsfaktor dividiert. Zur Kalibrierung des Trendfaktors wird der Merkmalswert des Trendfaktors gesucht, den man als "klein" einschätzt. Dieser Merkmalwert wird so definiert, daß er die Menge aller Werte des Trendfaktors umfaßt, deren relative Summenhäufigkeit unterhalb eines Schwellwertes liegen. Dazu wird eine Häufigkeitstabelle eingeführt, deren Klassen entsprechend der Tabelle definiert werden. Eine Klasse ist ein definierter Wertebereich des Trendfaktors, wobei alle Klassen zusammen den gesamten Wertebereich des Trendfaktors beschreiben. Für jedes Meßintervall wird der aktuelle Trendfaktor einer Klasse zugeordnet, die jeweilige Klasse wird dann inkrementiert. Für jedes Intervall kann damit der Meßwert ermittelt werden, für den die relative Summenhäufigkeit unterhalb des vorgegebenen Schwellwertes liegt.The current speed density difference is shown by this Divided calibration factor. To calibrate the Trend factor, the characteristic value of the trend factor is sought, which you consider "small". This characteristic value becomes like this defines that it includes the set of all values of the trend factor, their relative cumulative frequency below one Threshold. A frequency table is introduced whose classes are defined according to the table will. A class is a defined range of values of the Trend factor, with all classes together covering the entire value range describe the trend factor. For every measuring interval the current trend factor is assigned to a class that the respective class is then incremented. For every interval can be used to determine the measured value for which the relative Total frequency below the specified threshold lies.

Die Klasseneinteilung ist für ganz kleine und große Werte stärker abgestuft, für den wichtigen Kalibrierungsbereich wird eine feinere Abstufung gewählt: Klasse 0 1 2 3 ......... 36 37 Merkmalwertebereich -1..0.15 >0.15 >0.225 >0.275 ......... >1.975 >2.025 FT ≤0.225 ≤0.275 ≤0.325 ≤2.025 ≤2.075 Klasseneinteilung The classification is more graded for very small and large values, a finer gradation is chosen for the important calibration range: class 0 1 2nd 3rd ......... 36 37 Characteristic value range -1..0.15 > 0.15 > 0.225 > 0.275 ......... > 1,975 > 2,025 F T ≤0.225 ≤0.275 ≤0.325 ≤2.025 ≤2,075 Classification

Der Kalibrierungsfaktor berechnet sich dann: KFT=Merkmalnormalisierte Ausprägung "klein" des Trendfaktors The calibration factor is then calculated: KFT = characteristic normalized expression "small" of the trend factor

Der aktuelle Trendfaktor wird jeweils durch diesen Kalibrierungsfaktor dividiert.The current trend factor is determined by this calibration factor divided.

Das erfindungsgemäße Verfahren zur Erkennung kritischer Verkehrssituationen wird in einer besonderen Ausgestaltung der Erfindung zur Störfallerkennung verwendet. Dabei wird aus den Verkehrskenngrößen: Trendfaktor und Verkehrsstärketrend des ersten Meßquerschnitts, in einer Pulkerkennung eine Pulkbildung erkannt und eine Pulkwahrscheinlichkeitsgröße abgeleitet. In einer Störfallvoruntersuchung wird aus der Verkehrskenngröße Verkehrsstärketrend des zweiten Meßquerschnitts und der Pulkwahrscheinlichkeitsgröße mit Hilfe der Fuzzy-Entscheidung ein Störfallkriterium abgeleitet, welches mit dem Trendfaktor und der Geschwindigkeitsdichtedifferenz zusammen betrachtet eine Störfallerkennung ermöglicht.
Für die Fuzzy-Störfallentscheidung werden neben den Entscheidungskriterien Geschwindigkeitsdichtedifferenz und Trendfaktor die Verkehrskenngrößen, Verkehrsstärketrend an der Meß stelle MQ1 und an der Meßstelle MQ2 verwendet, mit denen eine Voruntersuchung auf einen Störfall durchgeführt wird.
The method according to the invention for detecting critical traffic situations is used in a special embodiment of the invention for accident detection. From the traffic parameters: trend factor and traffic strength trend of the first measurement cross-section, a crowd formation is recognized in a crowd detection and a pulse probability quantity is derived. In a preliminary accident investigation, an accident criterion is derived from the traffic parameter traffic strength trend of the second measurement cross section and the pulse probability variable with the help of the fuzzy decision, which together with the trend factor and the speed density difference enables an accident detection.
In addition to the decision criteria of speed density difference and trend factor, the traffic parameters, traffic strength trend at the measuring point MQ1 and at the measuring point MQ2 are used for the fuzzy accident decision, with which a preliminary investigation for an accident is carried out.

Es wird eine Pulkerkennung durchgeführt. Ein Pulk stellt ein Fahrzeugkollektiv mit hoher Verkehrsstärke und Verkehrsdichte dar, welches in den Meßabschnitt einfährt.A bulk detection is carried out. A crowd hires Vehicle collective with high traffic volume and traffic density represents which enters the measuring section.

Die zur Störfallerkennung herangezogene Verkehrskenngröße Trendfaktor läßt bei sehr großen Werten zwei Interpretationsmöglichkeiten zu. Es liegt ein Störfall vor, d.h. über einen längeren Zeitraum sind mehr Fahrzeuge in den Meßabschnitt eingefahren als ausgefahren, oder in den Meßabschnitt ist ein Pulk eingefahren. Ein Pulk ist gewissermaßen eine Dichtewelle, wie sie z.B. bei einer plötzlichen Aufhebung eines Engpasses entsteht. Um diese beiden Fälle sicher zu unterscheiden wird, wie oben gesagt, eine Pulkerkennung durchgeführt. Als Eingangsgröße der Fuzzy-Logik werden der Verkehrsstärketrend, die Pulkwahrscheinlichkeit im vorangegangenen Meßintervall, und der Trendfaktor herangezogen. Als Ausgangsgröße steht direkt ein Wert für die Wahrscheinlichkeit eines Pulks im betrachteten Meßabschnitt zur Verfügung.The traffic parameter used for accident detection Trend factor leaves two interpretations for very large values to. There is an accident, i.e. about one longer period there are more vehicles in the measurement section retracted as extended, or is in the measuring section Bunch retracted. A bunch is like a density wave, such as in the event of a sudden cancellation of a Bottlenecks arise. To differentiate between these two cases as stated above, a bulk detection is carried out. As an input variable of the fuzzy logic, the traffic volume trend, the pulse probability in the previous one Measurement interval, and the trend factor used. As an output variable is a value for the probability of one Pulks are available in the considered measurement section.

Mit der Störfallvoruntersuchung wird aus den Größen Verkehrsstarketrend, alte Störfallwahrscheinlichkeit und Pulkwahrscheinlichkeit auf die Möglichkeit eines Störfalls geschlossen. Die Möglichkeit eines Störfalls wird durch die Ausgangsvariable Störfallkriterium repräsentiert. Ist dieser Wert hoch, so deutet die Voruntersuchung auf einen Störfall hin.With the preliminary accident investigation, the quantities traffic volume trend, old accident probability and pulse probability concluded on the possibility of an accident. The possibility of a malfunction is determined by the output variable Accident criterion represented. Is this value high, so the preliminary investigation indicates an accident.

Nimmt nun zudem der Verkehrsstärketrend am stromabwärts liegenden Meßquerschnitt ab bei einem hohen Wert für ein Störfallkriterium, so ist die Wahrscheinlichkeit eines Störfalles sehr hoch. Mit steigendem Verkehrsstärketrend am stromabwärts liegenden Meßquerschnitt sinkt die Möglichkeit eines Störfalls, ebenso wie bei Zunahme der Pulkwahrscheinlichkeit. Eine Ausnahme bildet der Fall, wenn im letzten Meßintervall eine Störung sehr wahrscheinlich war. Hierbei ist das Störfallkriterium im wesentlichen unabhängig von der Pulkwahrscheinlichkeit und dem Verkehrsstärketrend, denn im Fall des bereits im letzten Meßintervall erkannten Störfalls kann sowohl die Pulkwahrscheinlichkeit als auch der Verkehrsstärketrend wieder steigen. Die Störfallerkennung ist die Entscheidungsstufe, die letztlich zum Ergebnis der Wahrscheinlichkeit eines Störfalles führt. In Abhängigkeit dieser Größe wird eine Warnung an den Anzeigequerschnitt aufgeschaltet.In addition, the traffic volume trend on the downstream is now also decreasing Measurement cross section from at a high value for an accident criterion, so is the probability of an accident very high. With increasing traffic volume trend on the downstream measuring cross-section decreases the possibility of an accident, as well as when the pulse probability increases. A The exception is the case if a Disorder was very likely. Here is the accident criterion essentially independent of the pulse probability and the traffic volume trend, because in the case of the already In the last measurement interval, a fault identified can both the pulse rate as well as the traffic volume trend rise again. Accident detection is the decision level which ultimately results in the probability of a Accident leads. Depending on this size, a Warning activated on the display cross-section.

Über eine Fuzzy-Regelbasis wird aus den Größen: Störfallkriterium, Trendfaktor und Geschwindigkeitsdichtedifferenz, die Störfallwahrscheinlichkeit abgeleitet, wie bereits dargelegt. Bei sehr großer positiver Geschwindigkeitdichtedifferenz liegt sehr wahrscheinlich ein Störfall vor. Je größer (positiv) die Geschwindigkeitsdichtedifferenz, desto wahrscheinlicher ist ein Störfall. Mit wachsendem Trendfaktor steigt bei positiver Geschwindigkeitsdichtedifferenz die Wahrscheinlichkeit eines Störfalls noch mehr an. Bei einem großen Störfallkriterium hat der Trendfaktor mehr Einfluß. Bei kleinerem Störfallkriterium, d.h. die Merkmale deuten nicht auf einen Störfall hin, entscheidet die Geschwindigkeitsdichtedifferenz allein, da sie in diesem Fall sicherer als der Trendfaktor ist. In der Ergebnisbewertung wird, basierend auf der Wahrscheinlichkeit eines Störfalles, eine Anzeigeempfehlung, z.B. Stauwarnung, für die Wechselverkehrszeichen abgeleitet und die Anzeige veranlaßt.Using a fuzzy rule base, the variables become: accident criterion, Trend factor and speed density difference that The probability of an accident is derived, as already explained. With a very large positive speed density difference there is most likely an accident. The bigger (positive) the difference in speed density, the more likely is an accident. With a growing trend factor increases with a positive speed density difference Probability of an accident even more. At a large accident criterion, the trend factor has more influence. With a smaller accident criterion, i.e. interpret the characteristics the speed density difference is not decisive for an accident alone because in this case they are safer than the trend factor. The result evaluation is based on on the likelihood of an accident, a recommendation to display, e.g. Traffic jam warning, for the variable message signs derived and causes the display.

Anhand der Zeichnung wird das erfindungsgemäße Verfahren nochmals kurz erläutert. Dabei zeigen

  • Fig. 1 eine prinzipielle Darstellung für das erfindungsgemäße Verfahren,
  • Fig. 2 für eine Kalibrierung und
  • Fig. 3 für eine Störfallerkennung.
  • The method according to the invention is briefly explained again with the aid of the drawing. Show
  • 1 shows a basic illustration for the method according to the invention,
  • Fig. 2 for a calibration and
  • Fig. 3 for an accident detection.
  • Die Autostraße AS, hier als Autobahn mit z.B. zwei Spuren in einer Fahrtrichtung dargestellt, weist zwei Meßquerschnitte MQi und MQ(i+1) auf, welche in einem bestimmten Abstand angeordnet sind und einen Meßabschnitt MA bilden. Mit den Verkehrssensoren VS, z.B. Fahrzeugdetektoren, die beispielsweise von Induktionsdoppelschleifen gebildet sein können, werden Verkehrsdaten VD erfaßt und einer Verkehrsdatenaufbereitung VDA zugeführt. Als Verkehrsdaten werden die Geschwindigkeit v, die Verkehrsdichte K und die Verkehrsstärke Q erfaßt und weiterverarbeitet. In der Verkehrsdatenaufbereitung VDA werden die Verkehrskenngrößen: Geschwindigkeitsdichtedifferenz vk-D, der Trendfaktor FT und die Verkehrsstarken QTi und QTi+1 getrennt an den Meßquerschnitten MQi und MQi+t ermittelt und zur weiteren Bearbeitung einer Fuzzy-Logik zugeführt. Die Fuzzy-Bearbeitungseinrichtung ist mit FUB bezeichnet. Die dort gebildete, wie bereits oben erläuterte, Wahrscheinlichkeitsgröße WG für eine kritische Verkehrssituation wird in der Ergebnisbewertungseinrichtung EBE aufgrund eines vorgebbaren Schwellwertes SW bewertet, um ein Steuersignal SG, beispielsweise als Anzeigeempfehlung, für ein Wechselverkehrszeichen VWZ zu erzeugen.The AS autostraße, here as a freeway with e.g. two tracks in shown a direction of travel, has two measurement cross-sections MQi and MQ (i + 1), which are arranged at a certain distance are and form a measuring section MA. With the traffic sensors VS, e.g. Vehicle detectors, for example can be formed by induction double loops Traffic data VD recorded and a traffic data preparation VDA supplied. Speed is used as traffic data v, the traffic density K and the traffic volume Q detected and processed further. In the traffic data processing VDA the traffic parameters: speed density difference vk-D, the trend factor FT and the high-traffic QTi and QTi + 1 determined separately on the measuring cross sections MQi and MQi + t and fed to fuzzy logic for further processing. The fuzzy processing device is called FUB. The probability quantity formed there, as already explained above Flat share for a critical traffic situation is evaluated in the result evaluation facility EBE on the basis of a Predeterminable threshold value SW evaluated to a control signal SG, for example as a display recommendation for a variable message sign To generate VWZ.

    In Fig. 2 ist die bereits oben beschriebene Kalibrierung schematisch dargestellt. In einer Einrichtung zur Kalibrierungsfaktor-Bildung KFB werden die Verkehrsdaten VD bzw. Verkehrskenngrößen vk-D und FT zur Bildung eines Kalibrierfaktors für die Geschwindigkeitsdichtedifferenz KFv und eines Kalibrierungsfaktors für den Trendfaktor KFT herangezogen. Diese Faktoren werden der Kalibrierungseinrichtung KE zugeführt, in der die Verkehrskenngrößen Geschwindigkeitsdichtedifferenz und Trendfaktor damit kalibriert bzw. und als kalibrierte Kenngrößen vK-D; FT der Fuzzy-Bearbeitung FUB für die bereits erläuterte Weiterverarbeitung zugeführt werden.2 is the calibration already described above shown schematically. In a facility for calibration factor formation KFB becomes the traffic data VD or traffic parameters vk-D and FT to form a calibration factor for the speed density difference KFv and one Calibration factor used for the trend factor KFT. These factors are fed to the calibration device KE, in which the traffic parameters speed density difference and trend factor thus calibrated and / or as calibrated Parameters vK-D; FT the fuzzy editing FUB for the further processing already explained can be supplied.

    In Fig. 3 ist schematisch die Störfallerkennung dargestellt. In der Pulkerkennung PE wird aus den Eingangsgrößen Trendfaktor FT und Verkehrsstärketrend QTi am Meßquerschnitt MQi eine Pulkwahrscheinlichkeitsgröße PWG mit Hilfe der Fuzzy-Logik abgeleitet. Diese Pulkwahrscheinlichkeitsgröße PWG wird in einer Störfallvoruntersuchung STV mit der Verkehrskenngröße Verkehrsstärketrend QT(i+1) des Meßquerschnitts MQ(i+1) betrachtet und daraus ein Störfallkriterium STK abgeleitet. Dieses Kriterium STK wird zusammen mit dem Trendfaktor FT und der Geschwindigkeitsdichtedifferenz vk-D betrachtet, um auf einen Störfall schließen zu können. Dies ist mit der Störfallerkennung STE angedeutet. Wie oben erläutert, wird in der Störfallerkennung STE auf eine Störfallwahrscheinlichkeitsgröße SWG geschlossen, die in einer anschließenden Ergebnisbewertungseinrichtung EBE weiterbehandelt wird.In Fig. 3 the accident detection is shown schematically. In the bulk detection PE, the input variables become a trend factor FT and traffic volume trend QTi at the measurement cross section MQi one Pulse probability quantity PWG using fuzzy logic derived. This pulse probability quantity PWG is in a preliminary accident investigation STV with the traffic parameter Traffic strength trend QT (i + 1) of the measurement cross section MQ (i + 1) considered and derived an accident criterion STK. This criterion STK is used together with the trend factor FT and the velocity density difference vk-D is considered to be to be able to close an accident. This is with the accident detection STE indicated. As explained above, the Accident detection STE to an accident probability quantity SWG closed in a subsequent earnings assessment facility EBE is treated further.

    Claims (5)

    1. Method of sensing traffic and detecting traffic situations on roads (AS), preferably motorways, having measuring points, designated measuring cross-sections (MQ1, MQ2...), set up for the purpose for vehicle detection using traffic sensors (VS) and a traffic data processing arrangement (VDVE) for traffic control, determining at regular intervals at the measuring points (MQ1, MQ2, ...) traffic data (VD), such as vehicle speed (v), traffic intensity (Q), i.e. the number of vehicles at a measuring cross-section based on a limit of time, and traffic density (K), i.e. the number of vehicles based on a specific section of road, and forming in a traffic data processing system (VDA) traffic parameters determined therefrom, furthermore, two adjacent measuring points, for example measuring cross-sections MQ1 and MQ2, or, as expressed generally, measuring cross-sections Mqi and MQ(i+1), forming a measuring section (MA) of a specific length (l),
      characterized by the following features:
      the following traffic parameters are formed from the traffic data (VD) of two such measuring points:
      a) the speed density difference (vk-D) according to the following relationship: vk - D = v fi-v i v fi + k i k maxi - v fi+1-v i+1 v fi+1 + k i+1 k maxi+1 where
      Vfi, VF(i+1) :
      Adjustable maximum value of the speed at the measuring cross-section Mqi, MQ(i+1)
      kmaxi, kmax(i+1) :
      Adjustable maximum value of the traffic density at the measuring cross-section MQi, MQ(i+1)
      ki :
      Traffic density after the measuring cross-section MQi
      k(i+1) :
      Traffic density before the measuring cross-section MQ(i+1)
      vi, v(i+1) :
      Average speed at the cross-section MQi, MQ(i+1)
      b) a trend factor (FT), which is formed continually from the ratio between the traffic intensities (Qi/Q(i+1)) of the first and second measuring cross-sections (MQi, MQ(i+1)), but determined during a given period (t) in the minute range,
      c) the traffic intensity trend (QTi, QT(i+1)) of the respective measuring cross-sections (MQi, MQ(i+1)), the trend being derived on the basis of the function of the traffic intensity (Q) over the time (curve Q(t)) from the increase of the tangent to the curve,
      these three traffic parameters (vk-D; FT; QTi and QT(i+1)) are processed in a fuzzy logic (FUB) for the detection of a critical traffic situation in the measuring section (MA) being considered and are fed as probability variables (WG) to a downstream result assessment arrangement (EBE), in which control signals (SG) for variable message signs (WVZ) are formed in dependence on adjustable threshold values (SW).
    2. Method according to Claim 1, characterized in that the traffic parameters of speed density difference (vk-D) and trend factor (FT) are dynamically calibrated in dependence on their past values, a calibration factor (KFv) for the speed density difference (vk-D) and a calibration factor (KFT) for the trend factor (FT) being formed (KFB) from the traffic data (VD) and in that in a calibration arrangement (KE), arranged between the traffic data processing system (VDA) and the fuzzy processing (FUB), the current speed density difference (vk-D) is divided by the speed density difference calibration factor (KFv) and the respectively current trend factor (FT) is divided by the trend factor calibration factor (KFT).
    3. Method according to Claim 2, characterized in that, for calibration of the speed density difference (vk-D), the latter is assessed, the value of the calibration factor (KFv) for the speed density difference being a threshold value for the speed density difference (vk-D) from which there is a high probability of a critical traffic situation.
    4. Method according to Claim 2, characterized in that, for calibration of the trend factor (FT), a characteristic value of the trend factor estimated to be "small" is defined such that it comprises the set of all the values of the trend factor whose relative cumulative frequency lies below a threshold value, a frequency table being formed with a plurality of classes with defined ranges of values of the trend factor and the current trend factor being assigned to a class in order to determine the calibration factor (KFT) from it.
    5. Method according to one of Claims 1 to 4, characterized in that a disruption is determined and displayed as a critical traffic situation, the trend factor (FT) and the traffic intensity trend (QTi) of the first measuring cross-section (MQi) being used to detect bunching (PE) and to form a bunching probability variable (PWG), the relationship of which with the traffic intensity trend (QT(i-1)) of the second measuring cross-section (MQ(i+1)) is established in order to derive (STV) a disruption criterion (STK), the trend factor (FT) and the speed density difference (vk-D) and also the disruption criterion (STK) also being used to detect (STE) a disruption and to form a disruption probability variable (SWG).
    EP95910428A 1994-03-14 1995-03-01 Method of detecting traffic and traffic situations on roads, preferably motorways Expired - Lifetime EP0750774B1 (en)

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    DE4408547 1994-03-14
    DE4408547A DE4408547A1 (en) 1994-03-14 1994-03-14 Process for traffic detection and traffic situation detection on highways, preferably motorways
    PCT/DE1995/000265 WO1995025321A1 (en) 1994-03-14 1995-03-01 Method of detecting traffic and traffic situations on roads, preferably motorways

    Publications (2)

    Publication Number Publication Date
    EP0750774A1 EP0750774A1 (en) 1997-01-02
    EP0750774B1 true EP0750774B1 (en) 1998-05-27

    Family

    ID=6512707

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP95910428A Expired - Lifetime EP0750774B1 (en) 1994-03-14 1995-03-01 Method of detecting traffic and traffic situations on roads, preferably motorways

    Country Status (6)

    Country Link
    US (1) US5696502A (en)
    EP (1) EP0750774B1 (en)
    AT (1) ATE166738T1 (en)
    DE (2) DE4408547A1 (en)
    FI (1) FI963627A0 (en)
    WO (1) WO1995025321A1 (en)

    Families Citing this family (57)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE19521927C2 (en) * 1995-06-09 1998-08-06 Inst Automation Und Kommunikat Method and device for traffic-dependent green time adjustment in a traffic signal system
    DE19606258C1 (en) * 1996-02-06 1997-04-30 Mannesmann Ag Vehicle autonomous traffic jam detection method
    DE19638070A1 (en) * 1996-09-18 1998-03-19 Deutsche Telekom Mobil Procedure for the acquisition of traffic data using mobile radio devices
    DE19647127C2 (en) * 1996-11-14 2000-04-20 Daimler Chrysler Ag Process for automatic traffic monitoring with dynamic analysis
    WO1998027525A1 (en) * 1996-12-16 1998-06-25 Mannesmann Ag Process for completing and/or verifying data concerning the state of a road network; traffic information centre
    US5995900A (en) * 1997-01-24 1999-11-30 Grumman Corporation Infrared traffic sensor with feature curve generation
    KR100234987B1 (en) * 1997-08-20 1999-12-15 윤종용 Driving time guiding system by toll gate of highway
    PT902404E (en) * 1997-09-11 2005-02-28 Siemens Ag PROCESS FOR THE EVALUATION OF TRANSIT INFORMATION
    EP0903711A3 (en) * 1997-09-18 2000-08-23 Siemens Aktiengesellschaft Method for transmitting traffic information
    DE19757863A1 (en) * 1997-12-24 1999-07-08 Peter Grohse Sending and receiving unit for paying motorway tolls
    DE19757812A1 (en) * 1997-12-24 1999-07-01 Peter Grohse Chip card for paying motorway tolls
    US6313757B1 (en) * 1998-03-05 2001-11-06 Siemens Aktiengesellschaft Method and apparatus for controlling motor vehicle traffic
    DE19835979B4 (en) * 1998-08-08 2005-01-05 Daimlerchrysler Ag Method for monitoring traffic conditions and vehicle inflow control in a road network
    US6317058B1 (en) 1999-09-15 2001-11-13 Jerome H. Lemelson Intelligent traffic control and warning system and method
    AU2001253856B2 (en) * 2000-03-15 2005-01-27 Raytheon Company Automatic incident detection
    IL156675A0 (en) * 2001-01-26 2004-01-04 Raytheon Co Vehicle trip determination system and method
    DE10103392A1 (en) * 2001-01-26 2002-08-08 Bosch Gmbh Robert Automatic traffic jam warning procedure
    SE0100351D0 (en) * 2001-02-06 2001-02-06 Sergio Luciani Traffic monitoring system and method
    CA2343435C (en) 2001-04-06 2006-12-05 International Road Dynamics Inc. Dynamic work zone safety system
    US6600994B1 (en) 2001-05-17 2003-07-29 Horizon Navigation, Inc. Quick selection of destinations in an automobile navigation system
    KR20040051778A (en) * 2002-12-13 2004-06-19 주식회사 엘지씨엔에스 Noticing method of vehicle-trouble
    US7251558B1 (en) * 2003-09-23 2007-07-31 Navteq North America, Llc Method and system for developing traffic messages
    US7096115B1 (en) * 2003-09-23 2006-08-22 Navteq North America, Llc Method and system for developing traffic messages
    DE102005024953A1 (en) * 2005-05-31 2006-12-07 Siemens Ag Method for determining turning rates in a road network
    US8014936B2 (en) * 2006-03-03 2011-09-06 Inrix, Inc. Filtering road traffic condition data obtained from mobile data sources
    US7813870B2 (en) * 2006-03-03 2010-10-12 Inrix, Inc. Dynamic time series prediction of future traffic conditions
    US7912628B2 (en) 2006-03-03 2011-03-22 Inrix, Inc. Determining road traffic conditions using data from multiple data sources
    US7706965B2 (en) * 2006-08-18 2010-04-27 Inrix, Inc. Rectifying erroneous road traffic sensor data
    US8700296B2 (en) 2006-03-03 2014-04-15 Inrix, Inc. Dynamic prediction of road traffic conditions
    US20070208498A1 (en) 2006-03-03 2007-09-06 Inrix, Inc. Displaying road traffic condition information and user controls
    US20070208493A1 (en) * 2006-03-03 2007-09-06 Inrix, Inc. Identifying unrepresentative road traffic condition data obtained from mobile data sources
    US7831380B2 (en) * 2006-03-03 2010-11-09 Inrix, Inc. Assessing road traffic flow conditions using data obtained from mobile data sources
    US7899611B2 (en) * 2006-03-03 2011-03-01 Inrix, Inc. Detecting anomalous road traffic conditions
    US20070208501A1 (en) * 2006-03-03 2007-09-06 Inrix, Inc. Assessing road traffic speed using data obtained from mobile data sources
    US7912627B2 (en) 2006-03-03 2011-03-22 Inrix, Inc. Obtaining road traffic condition data from mobile data sources
    US7908076B2 (en) * 2006-08-18 2011-03-15 Inrix, Inc. Representative road traffic flow information based on historical data
    DE102008056858B4 (en) * 2008-11-12 2021-02-11 Bayerische Motoren Werke Aktiengesellschaft Method for operating a hybrid vehicle
    DE102009006534A1 (en) * 2009-01-28 2010-07-29 Siemens Aktiengesellschaft Method for detecting accident of e.g. passenger car at part of highway network, involves automatically adapting upper and lower threshold values to actual characteristics of parameter value of traffic
    WO2010097325A1 (en) * 2009-02-27 2010-09-02 Siemens Aktiengesellschaft Method and device for detecting disruption on a section of road
    US9087465B2 (en) * 2009-02-27 2015-07-21 Blackberry Limited Adaptive pedestrian billboard system and related methods
    EP2422330B1 (en) * 2009-04-22 2015-02-25 Inrix, Inc. Predicting expected road traffic conditions based on historical and current data
    GB0916204D0 (en) * 2009-09-16 2009-10-28 Road Safety Man Ltd Traffic signal control system and method
    US20110175753A1 (en) * 2010-01-15 2011-07-21 James Jacob Free Robotic influenced self scheduling F.L.O.W. trafic management system
    ES2350551B2 (en) * 2010-08-06 2012-06-22 Universidad De Málaga TRAFFIC MANAGEMENT SYSTEM AND PROCEDURE.
    US8930123B2 (en) 2010-11-19 2015-01-06 International Business Machines Corporation Systems and methods for determining traffic intensity using information obtained through crowdsourcing
    US9958280B2 (en) 2011-08-16 2018-05-01 Inrix, Inc. Assessing inter-modal passenger travel options
    CN102708688B (en) * 2012-06-08 2014-01-22 四川川大智胜软件股份有限公司 Secondary fuzzy comprehensive discrimination-based urban road condition recognition method
    DE202013003279U1 (en) * 2013-04-06 2013-07-25 Sadeeb Ottenburger Global congestion prevention on highways / road networks
    CN103456172B (en) * 2013-09-11 2016-01-27 无锡加视诚智能科技有限公司 A kind of traffic parameter measuring method based on video
    US8903636B1 (en) 2013-12-02 2014-12-02 Abdualrahman Abdullah Mohammad Al Kandari Accident detection system and method for accident detection
    US9697731B2 (en) 2014-01-20 2017-07-04 Here Global B.V. Precision traffic indication
    CN104050808B (en) * 2014-06-03 2016-05-18 北京航天福道高技术股份有限公司 Highway communication blockage positioning method for searching
    AU2015296645A1 (en) 2014-07-28 2017-02-16 Econolite Group, Inc. Self-configuring traffic signal controller
    US10495480B1 (en) * 2016-08-18 2019-12-03 Apple Inc. Automated travel lane recommendation
    GB2585243A (en) * 2019-07-05 2021-01-06 Valerann Ltd Traffic event and road condition identification and classification
    KR20190109324A (en) * 2019-07-26 2019-09-25 엘지전자 주식회사 Method, apparatus and system for recommending location of robot charging station
    US11508239B2 (en) * 2020-05-19 2022-11-22 The Auto Club Group Road-side detection and alert system and method

    Family Cites Families (3)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    GB1192025A (en) * 1966-10-20 1970-05-13 Tateisi Electronics Company A Method of and Apparatus for Detecting Traffic Delay
    NL8402094A (en) * 1984-07-02 1986-02-03 Philips Nv METHOD FOR DRIVING A TRAFFIC CONTROL SYSTEM AND THE TRAFFIC CONTROL SYSTEM FOR APPLYING THE METHOD
    US5357436A (en) * 1992-10-21 1994-10-18 Rockwell International Corporation Fuzzy logic traffic signal control system

    Also Published As

    Publication number Publication date
    FI963627A (en) 1996-09-13
    EP0750774A1 (en) 1997-01-02
    FI963627A0 (en) 1996-09-13
    US5696502A (en) 1997-12-09
    ATE166738T1 (en) 1998-06-15
    DE4408547A1 (en) 1995-10-12
    DE59502343D1 (en) 1998-07-02
    WO1995025321A1 (en) 1995-09-21

    Similar Documents

    Publication Publication Date Title
    EP0750774B1 (en) Method of detecting traffic and traffic situations on roads, preferably motorways
    EP0740280B1 (en) Disturbance detection method for road traffic
    DE19606258C1 (en) Vehicle autonomous traffic jam detection method
    EP1176569B1 (en) Method for monitoring the condition of traffic for a traffic network comprising effective narrow points
    DE19944075C2 (en) Traffic condition monitoring method for a traffic network with effective bottlenecks
    DE69631629T2 (en) Registration and prediction of traffic obstructions
    DE102008003039A1 (en) Vehicle traffic condition recognizing method for traffic assistance system, involves differentiating traffic jam conditions on basis of measured speed, and recognizing traffic jam condition if another traffic jam condition is not recognized
    EP2447924B1 (en) System for detecting the traffic situation on a stretch of road
    EP1303845A1 (en) Method for determining traffic related information
    DE1574054B1 (en) DEVICE FOR DETERMINING CAR TRAFFIC FLOW
    DE102008021260A1 (en) Method for quality testing of traffic congestion information procedure, involves detecting total quantity of traffic congestion information that is generated by traffic congestion information procedure
    DE1574109C2 (en) Device for determining the relative density of traffic flows on roads
    EP0292897B1 (en) Evaluation method of the travel time measured in vehicles by means of a guidance and information device in a guidance and information system
    DE3128578C2 (en)
    DE19917154B4 (en) Method for detecting congestion situations on roads and vehicle equipment with a unit for carrying out the method
    EP1262934B1 (en) Method to detect a traffic situation
    WO2008011850A1 (en) Method and device for the fusion of traffic data when information is incomplete
    EP0902405B1 (en) Method for determining traffic information
    DE10025039C2 (en) Method for determining traffic control phase durations
    DE2911734C2 (en) Procedure for measuring traffic incidents
    DE19944077A1 (en) Traffic condition supervision in traffic network, undertaking inquiry of current position and/or prognosis of future position of flank between area of free traffic and area of synchronized traffic continuously
    DE10359977B4 (en) Method for determining a travel time
    DE102020105527A1 (en) PROCEDURE AND SYSTEM FOR DETERMINING CAUSES OF A TRAFFIC CONFLICT
    DE102005060856A1 (en) Detecting traffic congestion involves determining indicator from rate of change, generating congestion factor by assessing indicator for several vehicles as probability for occurrence of congestion event
    DE10234367B3 (en) Traffic situation imaging method for traffic flow organization system uses correlation of flow lines dependent on measured traffic parameters

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 19960520

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL PT SE

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    17Q First examination report despatched

    Effective date: 19970326

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL PT SE

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 19980527

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

    Effective date: 19980527

    Ref country code: GR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 19980527

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 19980527

    Ref country code: ES

    Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

    Effective date: 19980527

    REF Corresponds to:

    Ref document number: 166738

    Country of ref document: AT

    Date of ref document: 19980615

    Kind code of ref document: T

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: NV

    Representative=s name: SIEMENS SCHWEIZ AG

    Ref country code: CH

    Ref legal event code: EP

    REF Corresponds to:

    Ref document number: 59502343

    Country of ref document: DE

    Date of ref document: 19980702

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 19980730

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 19980827

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 19980827

    Ref country code: DK

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 19980827

    EN Fr: translation not filed
    NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LU

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 19990301

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed
    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: IF02

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20040517

    Year of fee payment: 10

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: CH

    Payment date: 20040607

    Year of fee payment: 10

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: AT

    Payment date: 20050302

    Year of fee payment: 11

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20050303

    Year of fee payment: 11

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: BE

    Payment date: 20050311

    Year of fee payment: 11

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050331

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050331

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20051001

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20060301

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20060301

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20060331

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20060301

    BERE Be: lapsed

    Owner name: *SIEMENS A.G.

    Effective date: 20060331