EP0727502B1 - Chromium steel sheet excellent in press formability - Google Patents
Chromium steel sheet excellent in press formability Download PDFInfo
- Publication number
- EP0727502B1 EP0727502B1 EP95924505A EP95924505A EP0727502B1 EP 0727502 B1 EP0727502 B1 EP 0727502B1 EP 95924505 A EP95924505 A EP 95924505A EP 95924505 A EP95924505 A EP 95924505A EP 0727502 B1 EP0727502 B1 EP 0727502B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- deep
- steel sheet
- resistance
- less
- formability
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C27/00—Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
- C22C27/06—Alloys based on chromium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/28—Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/32—Ferrous alloys, e.g. steel alloys containing chromium with boron
Definitions
- This invention relates to chromium steel sheets (inclusive of steel strips) having an excellent press formability, particularly excellent deep-drawing formability and resistance to secondary working brittleness.
- ferritic stainless steel sheets are usually produced through steps of hot rolling - annealing of hot rolled sheet - cold rolling - finish annealing after the heating of continuously cast slab.
- the thus produced ferritic stainless steel is excellent in the resistance to stress corrosion cracking and is cheap, so that it is widely used to applications such as various kitchenwares, automobile parts and the like.
- the steel is particularly subjected to a severer deep drawing in the application such as fuel filter casing for automobile and the like, so that there is frequently caused a problem of creating cracks due to secondary working brittleness.
- JP-B-54-11770 has proposed a production technique of ferritic stainless steel sheets aiming at a high cold workability by addition of Ti
- JP-B-57-55787 has proposed a production technique of ferritic stainless steel sheets aiming at a high Lankford value (hereinafter abbreviated as "r-value" simply) by addition of B
- JP-B-2-7391 has proposed a production technique of ferritic stainless steel sheets hardly creating brittle cracks in the bulging after the deep drawing by addition of Ti and B.
- JP-A-2-61033 there is known a cold rolled steel sheet for deep drawing having good corrosion resistance which comprises not more than 0.01 wt% carbon and 3.10 wt% chromium provided that a specified relation of nitrogen, sulphur, titanium and niobium is satisfied.
- JP-A-4-099151 there is known a ferritic stainless steel sheet with excellent press formability and surface properties, comprising not more than 0.1 wt% carbon, 10.0 to 20.0 wt% chromium and 0.03 to 0.50 wt% niobium wherein a particular relation of boron, titanium, niobium, carbon and nitrogen has to be fulfilled.
- Fig. 1 is a graph showing an influence of Nb content upon ⁇ r
- Fig. 2 is a graph showing a relationship between r-value and crack creating temperature
- Fig. 3 is a diagrammatical view illustrating a method of repetitive bending test.
- the chromium steel sheets according to the invention explained in the above item "DISCLOSURE OF INVENTION” are excellent in the press formability, particularly the deep-drawing formability and resistance to secondary work brittleness, and satisfy the r-value of not less than 1.5, the ⁇ r of not more than 0.3 and the brittle crack creating temperature of not higher than -50°C.
- C is an element lowering the r-value and elongation property. Particularly, when it exceeds 0.03 wt%, the influence is conspicuous, so that the content is necessary to be not more than 0.03 wt%. Preferably, it is not more than 0.01 wt%.
- Si not more than 1.0 wt%
- Si is an element effective for deoxidation.
- the excessive addition brings about the degradation of the cold workability, so that the addition range is not more than 1.0 wt%, preferably not more than 0.5 wt%.
- Mn not more than 1.0 wt%
- Mn is an element effective for precipitating and fixing S existent in the steel to maintain the hot rolling property.
- the excessive addition brings about the degradation of the cold workability, so that the addition range is not more than 1.0 wt%, preferably not more than 0.5 wt%.
- P is an element harmful for hot workability. Particularly, when it exceeds 0.05 wt%, the influence becomes conspicuous, so that the content is not more than 0.05 wt%, preferably not more than 0.04 wt%.
- S segregates in a crystal grain boundary to promote grain boundary brittleness and is a harmful element. Particularly, when it exceeds 0.015 wt%, the influence becomes conspicuous, so that the content is not more than 0.015 wt%, preferably not more than 0.008 wt%.
- Al not more than 0.10 wt%
- Al is an element effective for deoxidation.
- the excessive addition brings about the surface defect due to the increase of Al inclusions, so that the content is not more than 0.10 wt%, preferably not more than 0.07 wt%.
- N not more than 0.02 wt%
- N is an element harmful for the deep-drawing formability likewise C. Particularly, when it exceeds 0.02 wt%, the influence becomes conspicuous, so that the content is necessary to be not more than 0.02 wt%. Preferably, it is not more than 0.01 wt%.
- the Cr is an element necessary for ensuring the corrosion resistance of the stainless steel.
- the content is less than 5 wt%, the corrosion resistance is lacking, while when it exceeds 60 wt%, the cold workability is degraded.
- the addition range is 10.39-60 wt%, preferably 10.39-45 wt%.
- Ti is an element useful for precipitating and fixing C, N harmful for the deep-drawing formability to ensure the highly deep-drawing formability.
- the effect is not obtained in an amount of less than 4(C+N) wt%, while the effect is saturated and the productivity lowers when it exceeds 0.5 wt%. Therefore, the addition amount of Ti is 4(C+N) - 0.5 wt% but not less than 0.103 wt%, preferably 4(C+N) - 0.3 wt%.
- Nb is an element particularly important for simultaneously improving the deep-drawing formability and the resistance to secondary work brittleness by composite addition with Ti, B and the like in the invention.
- the effect is not obtained in an amount of less than 0.003 wt%, while the effect is saturated and the production cost is rather increased when it exceeds 0.020 wt%.
- the addition amount of Nb is 0.003-0.020 wt%, preferably 0.004-0.018 wt%.
- Fig. 1 shows an influence of Nb on ⁇ r in a cold rolled steel sheet (cold reduction through work rolls having a roll diameter of not less than 150 mm: 82.5%) containing (0.007-0.009)wt%C - (0.3-0.4)wt%Si-(0.3-0.4)wt%Mn - (0.02-0.03)wt%P - (0.005-0.007)wt%S - (0.02-0.03)wt%Al - (0.0070-0.0090)wt%N - (16-18)wt%Cr - (0.15-0.17)wt%Ti - (0.0008-0.0010)wt%B. From Fig. 1, it is apparent that ⁇ r is considerably improved by adding Nb of not less than 0.003 wt% and hence the edge shape after the deep drawing is largely improved.
- Fig. 2 shows an influence of Nb amount upon a relationship between brittle crack and r-value after secondary work of a cold rolled steel sheet (cold reduction through work rolls having a roll diameter of not less than 150 mm: 82.5%) containing (0.007-0.009)wt%C - (0.3-0.4)wt%Si - (0.3-0.4)wt%Mn - (0.02-0.03)wt%P - (0.005-0.007)wt%S - (0.02-0.03)wt%Al-(0.0070-0.0090)wt%N- (16-18)wt%Cr - (0.15-0.17)wt%Ti-(0.001-0.018)wt%Nb - (0.0008-0.0010)wt%B. From Fig. 2, it is apparent that the steel sheets containing not less than 0.003 wt% of Nb are high in the r-value as a forming limit indication in the deep drawing and low in the brittle crack creating temperature.
- both the deep-drawing formability and the resistance to secondary work brittleness are shown to be balanced at a high level by including not less than 0.003 wt% of Nb.
- the press formability is improved by composite addition of Ti and Nb instead of single addition.
- ⁇ r is considerably small when Ti and Nb are added together, which acts to considerably improve the press formability. This effect can more surely be attained by the composite addition of Ti and Nb under a condition satisfying Ti/Nb ⁇ 7.
- B is an element effective for improving the resistance to secondary work brittleness after the deep drawing.
- the effect is not obtained in an amount of less than 0.0002 wt%, while the excessive addition degrades the deep-drawing formability.
- the addition amount is 0.0002-0.005 wt%, preferably 0.0003-0.003 wt%.
- Mo 0.01-5.0 wt%, preferably 0.1-3.0 wt%;
- Mo is an element improving the press formability (r-value, ⁇ r, resistance to secondary work brittleness) and the corrosion resistance, and is added selectively.
- the improvement of r-value and ⁇ r by the addition of Mo is due to the fact that the recrystallization grain elongation rate is near to 1 together with the fine formation of recrystallization grains in the annealed sheet.
- the effect is obtained in an amount of not less than 0.01 wt%, but the addition exceeding 5.0 wt% brings about the degradation of deep-drawing formability, so that the addition amount of Mo is 0.01-5.0 wt%.
- the preferable addition amount is 0.1-3.0 wt%.
- Ca is an element having an effect of controlling nozzle clogging with Ti inclusion in the steel making and casting and is selectively added in accordance with the Ti content.
- Ca inclusion is a starting point of brittle breakage, so that the addition range of Ca is 0.0005-0.01 wt%, preferably 0.0005-0.006 wt%.
- Se is an important element enhancing the flowability of welded metal in the welding to control surface defect (crack) of weld portion and improve the ductility of the weld portion. This effect appears in an amount of not less than 0.0005 wt%, but when it exceeds 0.025 wt%, the corrosion resistance lowers, so that the addition range of Se is 0.0005-0.025 wt%, preferably 0.0008-0.010 wt%.
- the object of the invention is attained by the above chemical ingredients, but the effect of the invention is not lost even if 0.01-0.5 wt% of V, 0.3-6 wt% of Ni, 0.3-6 wt% of Co, 0.1-3 wt% of Cu, 0.3-6 wt% of W are added in addition to these ingredients.
- the production of the steel sheet according to the invention may be carried out by a method wherein steel having the above chemical composition is melted in a usual steelmaking furnace such as convertor, electric furnace or the like, shaped into a steel slab by continuous casting process or steel ingot process, and then subjected to hot rolling-(annealing of hot rolled sheet) - pickling - cold rolling-annealing of cold rolled sheet - pickling - if necessary, repetition of cold rolling - annealing - pickling.
- a usual steelmaking furnace such as convertor, electric furnace or the like
- the object can more advantageously be attained when the roll diameter of cold rolling work roll and the reduction of cold rolling are controlled to roll diameter: not less than 150 mm, preferably 250-1000 mm, and reduction: not less than 30%, preferably 40-95% among cold rolling conditions in the above cold rolling step. That is, the cold rolled stainless steel sheet is generally rolled through work rolls having a roll diameter of not more than 100 mm.
- the roll diameter is made larger as mentioned above, the shearing stress in the rolling direction through friction between the roll and the steel sheet surface is mitigated and also the difference of stress in the sheet surface becomes small.
- the r-value and ⁇ r can be more improved without degrading the resistance to secondary work brittleness.
- a steel having a chemical composition as shown in Tables 1, 2, and 3 is melted in a convertor and rendered into a steel slab through secondary refining, which is heated to 1250°C and hot rolled to obtain a hot rolled sheet having a thickness of 4.0 mm.
- the hot rolled sheet is subjected to annealing of hot rolled sheet (800-950°) - pickling - cold rolling - annealing of cold rolled sheet (800-950°C) - pickling to obtain a cold rolled steel sheet having a thickness of 0.7 mm.
- the deep-drawing formability (r-value, ⁇ r) and the resistance to secondary work brittleness are measured with respect to the steel sheets obtained by the above method as a test specimen, and the ductility of weld portion is measured with respect to a part of the steel sheets according to the following method.
- a test specimen of JIS No. 5 is cut out from the steel sheet in a rolling direction, a direction of 45° with respect to the rolling direction or a direction of 90° with respect to the rolling direction.
- a cup-shaped test specimen subjected to deep drawing at a drawing ratio of 2 is held at a particular temperature of -100°C - 20°C, and thereafter an impact load is applied to a head portion of the cup according to a drop weight test (weight: 5 kg, dropping difference: 0.8 m), during which a crack creating temperature is measured from the presence or absence of brittle crack at a sidewall portion of the cup.
- the test is conducted with respect to two specimens every temperature interval of 5°C.
- a temperature when the brittle crack is created in one of the two specimens is the crack creating temperature.
- the cold rolled steel sheet (thickness: 0.7 mm) is welded through TIG welding method, from which is taken out a strip-shaped test specimen of 15 mm x 70 mm arranging a weld portion in center.
- the test specimen is subjected to a repetitive bending test (see Fig. 3) repeating bending-returning operation 20 times, during which the occurrence of cracking from the weld portion is observed. This test is carried out with respect to 20 specimens of each of the test steels, and the crack creating ratio is measured from the number of cracked specimens.
- the steel sheets according to the invention exhibit properties that the r-value is not less than 1.5, ⁇ r is not more than 0.3 and the crack creating temperature indicating the resistance to secondary work brittleness is not higher than -50°C, so that they have excellent deep-drawing formability and resistance to secondary work brittleness as compared with the comparative examples.
- the cracking ratio of bead is not more than 10% in addition to the above properties.
- each of steel Nos. 1 and 6 is melted in a convertor and subjected to secondary refining to obtain a steel slab, which is then heated to 1250°C and hot rolled to obtain a hot rolled sheet having a thickness of 4.0 mm.
- the hot rolled sheet is rendered into a cold rolled sheet having a thickness of 0.7 mm through annealing of hot rolled sheet (800-950°C) - pickling - cold rolling-annealing of cold rolled sheet (800-950°C) - pickling.
- the cold rolling step of from 4.0 mm ⁇ 0.7 mm in thickness (total reduction: 82.5%) is divided into a cold rolling stage I (thickness: 4 mm ⁇ X mm) and a cold rolling stage II (thickness: X mm ⁇ 0.7 mm), and the rollings of these stages are carried out under various roll diameter and reduction conditions.
- a test specimen is taken out from the resulting steel sheet and then subjected to the same tests as in Example 1 for the evaluation of the properties. The results are shown in Table 5 together with the rolling conditions.
- the chromium steel sheets according to the invention have press formability, which has not been obtained in the conventional chromium steel sheet, i.e. excellent deep-drawing formability and resistance to secondary work brittleness, which are useful in the press forming.
- the chromium steel sheets according to the invention therefore, it is possible to conduct the severer deep drawing for kitchenwares such as deep drop sink and the like, automobile parts such as fuel case and the like, and also it is possible to prevent the occurrence of brittle crack in subsequent secondary work.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Heat Treatment Of Steel (AREA)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15383194 | 1994-07-05 | ||
JP153831/94 | 1994-07-05 | ||
JP6153831A JP2933826B2 (ja) | 1994-07-05 | 1994-07-05 | 深絞り成形性と耐二次加工脆性に優れるクロム鋼板およびその製造方法 |
PCT/JP1995/001341 WO1996001335A1 (fr) | 1994-07-05 | 1995-07-05 | Tole d'acier au chrome a excellente formabilite a la presse |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0727502A1 EP0727502A1 (en) | 1996-08-21 |
EP0727502A4 EP0727502A4 (en) | 1996-12-27 |
EP0727502B1 true EP0727502B1 (en) | 2002-03-06 |
Family
ID=15571048
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP95924505A Expired - Lifetime EP0727502B1 (en) | 1994-07-05 | 1995-07-05 | Chromium steel sheet excellent in press formability |
Country Status (6)
Country | Link |
---|---|
US (1) | US5709836A (ko) |
EP (1) | EP0727502B1 (ko) |
JP (1) | JP2933826B2 (ko) |
KR (1) | KR100207868B1 (ko) |
DE (1) | DE69525730T2 (ko) |
WO (1) | WO1996001335A1 (ko) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3373983B2 (ja) * | 1995-08-24 | 2003-02-04 | 川崎製鉄株式会社 | プレス成形性、耐リジング性および表面性状に優れるフェライト系ステンレス鋼帯の製造方法 |
US5851316A (en) * | 1995-09-26 | 1998-12-22 | Kawasaki Steel Corporation | Ferrite stainless steel sheet having less planar anisotropy and excellent anti-ridging characteristics and process for producing same |
US6855213B2 (en) | 1998-09-15 | 2005-02-15 | Armco Inc. | Non-ridging ferritic chromium alloyed steel |
US6214289B1 (en) * | 1999-09-16 | 2001-04-10 | U. T. Battelle | Iron-chromium-silicon alloys for high-temperature oxidation resistance |
CN1225614C (zh) * | 2000-08-01 | 2005-11-02 | 日新制钢株式会社 | 由不锈钢制成的供燃料管 |
US6935529B2 (en) * | 2000-08-01 | 2005-08-30 | Nisshin Steel Co., Ltd. | Stainless steel fuel tank for automobile |
US6733601B2 (en) * | 2001-01-18 | 2004-05-11 | Jfe Steel Corporation | Ferritic stainless steel sheet with excellent workability |
KR100762151B1 (ko) * | 2001-10-31 | 2007-10-01 | 제이에프이 스틸 가부시키가이샤 | 딥드로잉성 및 내이차가공취성이 우수한 페라이트계스테인리스강판 및 그 제조방법 |
JP2003277891A (ja) * | 2002-03-27 | 2003-10-02 | Nisshin Steel Co Ltd | 耐衝撃特性に優れたステンレス鋼製の自動車用燃料タンクまたは給油管 |
JP4014907B2 (ja) * | 2002-03-27 | 2007-11-28 | 日新製鋼株式会社 | 耐食性に優れたステンレス鋼製の自動車用燃料タンクおよび給油管 |
US7111401B2 (en) * | 2003-02-04 | 2006-09-26 | Eveready Battery Company, Inc. | Razor head having skin controlling means |
KR20090005252A (ko) | 2004-01-29 | 2009-01-12 | 제이에프이 스틸 가부시키가이샤 | 오스테나이트·페라이트계 스테인레스 강 |
KR100660444B1 (ko) * | 2005-06-14 | 2006-12-22 | 울산화학주식회사 | 삼불화질소 가스의 저장방법 |
JP5505575B1 (ja) | 2013-03-18 | 2014-05-28 | Jfeスチール株式会社 | フェライト系ステンレス鋼板 |
US9377751B2 (en) | 2014-03-31 | 2016-06-28 | Brother Kogyo Kabushiki Kaisha | Image forming apparatus having developer cartridge rotatable between first and second positions |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5411770A (en) * | 1977-06-28 | 1979-01-29 | Seiko Instr & Electronics Ltd | Electronic watch |
JPS56123356A (en) * | 1980-03-01 | 1981-09-28 | Nippon Steel Corp | Ferritic stainless steel with superior formability |
JPS61261460A (ja) * | 1985-05-11 | 1986-11-19 | Nippon Steel Corp | 深絞り加工後の張出し成形性に優れたフェライト系ステンレス鋼板 |
JPH0261033A (ja) * | 1988-08-26 | 1990-03-01 | Kawasaki Steel Corp | 深絞り用冷延鋼板 |
JPH0826436B2 (ja) * | 1990-08-03 | 1996-03-13 | 日本鋼管株式会社 | プレス成形加工性と表面特性に優れたフェライト系ステンレス鋼およびその製造方法 |
JP3027012B2 (ja) * | 1990-12-28 | 2000-03-27 | 日新製鋼株式会社 | 耐食性および加工性に優れた高強度クロム含有鋼板 |
JP3068216B2 (ja) * | 1990-12-28 | 2000-07-24 | 東北特殊鋼株式会社 | 高冷鍛性電磁ステンレス鋼 |
JP3225442B2 (ja) * | 1991-07-30 | 2001-11-05 | 日新製鋼株式会社 | 耐孔あき腐食性に優れた深絞り用溶融亜鉛めっき鋼板の製造方法 |
JP3309860B2 (ja) * | 1991-07-30 | 2002-07-29 | 日新製鋼株式会社 | 耐食性に優れた深絞り用冷延鋼板の製造方法 |
JP3249572B2 (ja) * | 1992-04-15 | 2002-01-21 | 川崎製鉄株式会社 | 常温遅時効性を有する焼付硬化型薄鋼板 |
-
1994
- 1994-07-05 JP JP6153831A patent/JP2933826B2/ja not_active Expired - Fee Related
-
1995
- 1995-07-05 EP EP95924505A patent/EP0727502B1/en not_active Expired - Lifetime
- 1995-07-05 DE DE69525730T patent/DE69525730T2/de not_active Expired - Fee Related
- 1995-07-05 US US08/602,857 patent/US5709836A/en not_active Expired - Fee Related
- 1995-07-05 WO PCT/JP1995/001341 patent/WO1996001335A1/ja active IP Right Grant
- 1995-07-05 KR KR1019960701097A patent/KR100207868B1/ko not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
EP0727502A4 (en) | 1996-12-27 |
DE69525730D1 (de) | 2002-04-11 |
KR100207868B1 (ko) | 1999-07-15 |
KR960705069A (ko) | 1996-10-09 |
DE69525730T2 (de) | 2002-08-01 |
US5709836A (en) | 1998-01-20 |
EP0727502A1 (en) | 1996-08-21 |
JPH0820843A (ja) | 1996-01-23 |
WO1996001335A1 (fr) | 1996-01-18 |
JP2933826B2 (ja) | 1999-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101602088B1 (ko) | 내열 페라이트계 스테인리스 냉연 강판, 냉연 소재용 페라이트계 스테인리스 열연 강판 및 그들의 제조 방법 | |
EP1734143B1 (en) | Ferritic stainless steel sheet excellent in formability and method for production thereof | |
US5571343A (en) | Austenitic stainless steel having superior press-formability, hot workability and high temperature oxidation resistance, and manufacturing process therefor | |
EP0727502B1 (en) | Chromium steel sheet excellent in press formability | |
WO2010110466A1 (ja) | 耐熱性と加工性に優れたフェライト系ステンレス鋼板 | |
KR100484983B1 (ko) | 용접부의 내이차가공 취성 및 고온피로특성이 우수한페라이트계 스테인레스강 | |
EP0758685B1 (en) | Fe-Cr alloy exhibiting excellent ridging resistance and surface characteristics | |
CN114502760A (zh) | 铁素体系不锈钢钢板及其制造方法、以及铁素体系不锈钢构件 | |
EP3964600A1 (en) | Ultra-high strength steel sheet having excellent shear workability and method for manufacturing same | |
JP4655437B2 (ja) | 加工性に優れたマルテンサイト系ステンレス鋼 | |
JP3534083B2 (ja) | マルテンサイト系ステンレス鋼板とその製造方法 | |
EP0539962B1 (en) | Method of manufacturing a cold rolled steel sheet exhibiting an excellent resistance to cold-work embrittlement and a small planar anisotropy | |
JP3420373B2 (ja) | 成形加工性に優れるクロム鋼板 | |
KR102463485B1 (ko) | 페라이트계 스테인리스 강판, 및 그 제조 방법 그리고 페라이트계 스테인리스 부재 | |
EP3686293B1 (en) | A high strength high ductility complex phase cold rolled steel strip or sheet | |
JP3420371B2 (ja) | 成形加工性と耐候性に優れるクロム鋼板 | |
JP4205892B2 (ja) | プレス成形性と打抜き加工性に優れた高強度熱延鋼板及びその製造方法 | |
JP2002339037A (ja) | 低温継手靱性と耐ssc性に優れた高張力鋼とその製造方法 | |
EP0375273B1 (en) | Formable thin steel sheets and method of producing the same | |
US20240229184A1 (en) | Coiling temperature influenced cold rolled strip or steel | |
US20240132989A1 (en) | Coiling temperature influenced cold rolled strip or steel | |
JPH0510418B2 (ko) | ||
EP4008800A1 (en) | Steel sheet for hot forming, hot-formed member, and method for manufacturing same | |
JP3003495B2 (ja) | 加工性に優れた鋼材およびその製造方法 | |
JP3844662B2 (ja) | マルテンサイト系ステンレス鋼板およびその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19960614 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB |
|
A4 | Supplementary search report drawn up and despatched | ||
AK | Designated contracting states |
Kind code of ref document: A4 Designated state(s): DE FR GB |
|
17Q | First examination report despatched |
Effective date: 19981211 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB |
|
REF | Corresponds to: |
Ref document number: 69525730 Country of ref document: DE Date of ref document: 20020411 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20021209 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20040630 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20040708 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20040715 Year of fee payment: 10 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050705 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060201 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20050705 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060331 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20060331 |