CN1225614C - 由不锈钢制成的供燃料管 - Google Patents

由不锈钢制成的供燃料管 Download PDF

Info

Publication number
CN1225614C
CN1225614C CNB018137466A CN01813746A CN1225614C CN 1225614 C CN1225614 C CN 1225614C CN B018137466 A CNB018137466 A CN B018137466A CN 01813746 A CN01813746 A CN 01813746A CN 1225614 C CN1225614 C CN 1225614C
Authority
CN
China
Prior art keywords
stainless steel
pipe
fuel
value
hardness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CNB018137466A
Other languages
English (en)
Other versions
CN1446295A (zh
Inventor
大雅人
石川半二
铃木聪
足立俊郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Publication of CN1446295A publication Critical patent/CN1446295A/zh
Application granted granted Critical
Publication of CN1225614C publication Critical patent/CN1225614C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L9/00Rigid pipes
    • F16L9/02Rigid pipes of metal
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/02Modifying the physical properties of iron or steel by deformation by cold working
    • C21D7/10Modifying the physical properties of iron or steel by deformation by cold working of the whole cross-section, e.g. of concrete reinforcing bars
    • C21D7/12Modifying the physical properties of iron or steel by deformation by cold working of the whole cross-section, e.g. of concrete reinforcing bars by expanding tubular bodies
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0405Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • C21D8/105Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies of ferrous alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12292Workpiece with longitudinal passageway or stopweld material [e.g., for tubular stock, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12951Fe-base component
    • Y10T428/12972Containing 0.01-1.7% carbon [i.e., steel]
    • Y10T428/12979Containing more than 10% nonferrous elements [e.g., high alloy, stainless]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)
  • Earth Drilling (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

一种由耐腐蚀的奥氏体或铁素体不锈钢的焊接管制成的供燃料管,其具有高尺寸精确度的燃料供应开口。所述奥氏体不锈钢的硬度为180HV或更小,加工硬化系数(n-值)为0.49或更小。铁素体不锈钢的Lankford值(r-值)为1.2或更大,单轴拉伸试验测得的伸长率为30%或更大。

Description

由不锈钢制成的供燃料管
技术领域
本发明涉及一种用于机动车的供燃料管,它是由无裂缝的扩展不锈钢管制成的,从而保持燃料长时间不会扩散。
发明背景
用于机动车的供燃料管一直采用焊接钢管制造,在其末端形成燃料供应开口。燃料供应开口是通过用冲孔压制或扩展方法而扩大焊接钢管的末端形成的,但钢管经常会在形成的部件裂缝。在此情形下,强烈要求提供具有优异成形性的焊接钢管。
供燃料管安装于机动车上,以与燃料箱偶联的状态存在。如果供燃料管的密封性差的话,蒸发的汽油将会扩散至大气中。为保持清洁的大气环境,应当避免汽油的扩散,但当使用采用合成树脂制成的常规供燃料管时这种扩散难以抑制。另一种类型的供燃料管是用普通钢管扩展其末端制成的,用铬层涂敷,再用漆膜涂敷,当其暴露于如有盐分的区域的腐蚀性气氛时,这种供燃料管并非总能防止腐蚀发生。供燃料管暴露于含有有机酸如变性汽油或醇性燃料的腐蚀性气氛时,腐蚀也会发生于供燃料管的内部,并且会造成在末端的点蚀和开孔。结果,供燃料管会急剧失去其密封性。
为了克服这些缺陷,已广泛研究了如何应用不锈钢即代表性的耐腐蚀性材料于供燃料管,并且检测长期密封性的保持情况。不锈钢具有优异的耐腐蚀性,不必进行电镀或油漆,但与普通钢相比,其较硬且易于加工硬化。由于材料的特性,不锈钢管难于形成预定的形状而不在其扩展部件产生裂缝。
此外,当采用小直径的扩展钢管制备供燃料管时,有时会将此种供燃料管用于机动车的轻型化。但是,不论钢板的尺寸如何,燃料供应开口尺寸是不可变化的,其内径大约为50mm。在此情形下,由于钢管必须在其末端形成大扩展比,强烈要求钢材具有优异的成形性。
然而,目前还未开发出具有足够形成产品形状的优异可扩展性的以及必要的耐腐蚀性的不锈钢管。
发明概述
本发明旨在提供一种不锈钢供燃料管,其具有优异的耐腐蚀性并具有高尺寸精确度的燃料供应开口,所述开口是基于硬度和加工硬化性通过选择一种奥氏体不锈钢,或者基于兰克福特(Lankford)值(r-值)选择一种铁素体不锈钢形成的。
在奥氏体类型的供燃料管中,选择奥氏体不锈钢管,其硬度为180HV或更低,加工硬化系数(n-值)为0.49或更小,并将其加工成管。
在铁素体类型的供燃料管中,选择用单轴拉伸试验得到的伸长率为30%或更大且Lankford值为1.2或更大的铁素体不锈钢管,并将其加工成管。
附图简述
图1是显示当钢管的一端通过多段加工而成形为燃料供应开口形状时在每一成形步骤中扩展部件的硬度的曲线图。
图2为显示在每一成形步骤中沿轴向施加于钢管上的负载变化的曲线图。
发明详述
由于不锈钢比普通钢更硬,为扩展不锈钢的焊接管必须施以更大的负载,随着扩展比增加,不锈钢管常常会变弯曲。随着在多段成形步骤中的深入,由于不锈钢管易于加工变硬,成形负载变得越来越大。虽然不锈钢管的弯曲可通过增加成形步骤的数量以及每一步较小的扩展率来避免,但成形步骤的增加使生产过程复杂化,并增加了生产成本。进而,当成形的不锈钢管加工硬化至约500HV以上时,将很难再进行塑性变形,在随后的成形步骤中易于在扩展的末端发生裂缝。特别是,由于铁素体不锈管的伸长率及Lankford值均低于普通钢管,从而铁素体不锈钢管经常会在其扩展的末端裂缝。
本发明的发明人研究了用作供燃料管材料的不锈钢板在扩展时的物理性质的影响。
奥氏体不锈钢与普通钢相比是一种易于硬化的材料,这是由于通过塑性变形引起基体向应变致马氏体变化。即使其在初始时是软的,但其加工硬化状态要求在随后的加工步骤中具有更大的成形负载,并且,由于增加成形负载而造成经常性的裂缝和弯曲。源于生成应变引起的马氏体的奥氏体不锈钢管板的硬化趋势是由其加工硬化系数(n-值)表示的。
初始硬度高是指难于形成焊接管,并要求大的成形负载。此时,扩展率不可避免地应确定为很低的值以抑制不锈钢管的弯曲或其随冲压的烧结。由于随初始硬度的增加,不锈钢管通常具有较差的延展性,其易于在成形过程中破裂。
考虑到这一点,本发明的发明人研究了原料的硬度和加工硬化系数(n-值),以找寻适于扩展成形成供燃料管的不锈钢板,并且发现,硬度值为180HV或更低,且加工硬化系数(n-值)为0.49或更小的奥氏体不锈钢板适用作为生产供燃料管的原料,其具有相对少数量的成形步骤以及在每一步骤中较小的成形负载。加工硬化系数(n-值)是通过如下的拉伸试验测量的:将不锈钢板沿轧制方向取样,并成形成由JIS Z2201所规定的试验片#13B并拉伸。由试验结果绘制真实的拉伸应变与伸长的对数值的曲线图,计算作为加工硬化系数(n-值)曲线的梯度。当n-值较大时,不锈钢被认为是易于加工硬化的材料。
另一方面,由于具有高Cr含量,铁素体不锈钢与普通钢相比较硬,具有较低的伸长率。但是,在管子沿周长方向施加拉伸应力,以及沿轴向施加压缩应力而扩展时,由于不锈钢的延展性较差,不可能预期改善扩展性。
Landford值(r-值)用作评价厚度减少很小的沿轴向方向金属流动的指数。本发明的发明人研究了各种铁素体不锈钢板以良好地成形成产品形状,结果发现,伸长为30%或更高,其Lankford值(r-值)为1.2或更大的铁素体不锈钢板是成形成在其末端具有燃料供应开口的预定形状的最佳材料,不会发生破裂或其它缺陷。Lankford值(r-值)通过如下的拉伸试验测量:将不锈钢板沿轧制方向取样,并成形成由JIS Z2201所规定的试验板#13B并在20mm/分钟下拉伸。在施以15%的应变后,测量试验钢板的厚度和宽度,Lankford值(r-值)这样计算:宽度减少率的自然对数值除以厚度减少率的自然对数值。进而,将试验板继续拉伸直到断裂,断裂部件对接在一起以测量预定标记间的伸长。测量的伸长被认为是断裂伸长。
当硬度为180HV或更小且加工硬化系数(n-值)为0.49或更小的奥氏体不锈钢板用作供燃料管的材料时,其可高扩展性地成形。因此,焊接钢管即使尺寸较小,也可扩展而产生具有预定尺寸的燃料供应开口的产品形状。当伸长率为30%或更大且Lankford值(r-值)为1.2或更大的铁素体不锈钢板用作供燃料管的材料时,也可扩展而产生具有预定尺寸的燃料供应开口的产品形状。通过确定不锈钢板至预定宽度,将成形所确定尺寸的钢板成形成圆柱形,以及进行电弧焊、激光焊或电阻焊将钢板两片焊在一起,而可由任一种不锈钢板生产焊接管。无缝管也扩展成在其一端具有燃料供应开口的供燃料管,只要其硬度和加工硬化系数(n-值)分别低于180HV和0.49。
本发明的其它特征从下述实施例结合附图将更为明显,当然实施例并非对本发明范围的限制。
实施例1
由表1所示的几种不锈钢板生产外径为25.4mm,厚度为0.5mm,长度为350mm的焊接管。通过重复扩展每一焊接管的一端而形成外径为51.4mm的扩展部件,以研究硬度和加工硬化系数(n-值)对焊接管成形性的影响。
焊接管L易于在扩展过程中弯曲,因为其较硬(185HV),且其加工硬化系数为0.52。其成形方法必须分成具有小扩展率的许多步骤,但扩展部件的外径至多为42.4mm。另一个铁素体不锈钢的焊接管M以较大的厚度减小率成形,因为其具有较差的延展性,伸长为28%,Lankford值为1.16。因此,其无裂缝的扩展率至多达到42.4mm。
另一方面,采用控制硬度和加工硬化系数的奥氏体不锈钢制成的焊接管则在其一端可扩展至外径为51.4mm(即足够的内径用于燃料供应开口)。特别是,包含Cu的Cr-Ni奥氏体不锈钢的焊接管可在五步内成形成所需的外径,并且成形成53.0mm的外径,且无裂缝。采用控制硬度和Lankford值的铁素体不锈钢制成的焊接管也可成形成外径51.4mm且无裂缝。
表1:实施例1采用的不锈钢的性质
           注                                               本发明实施例      比较例
  焊接管种类   A   B  C   D   E  F  G  H  I   J   K   L  M
合金元素(质量%)   C   0.06   0.02  0.05   0.01   0.01  0.03  0.03  0.01  0.02   0.01   0.01   0.06  0.01
  Si   0.6   0.4  0.6   0.3   0.3  0.3  0.4  0.2  0.56   0.04   0.2   2.5  0.2
  Mn   1.3   1.4  1.0   1.6   1.5  1.4  0.3  0.2  0.2   0.2   0.2   0.8  0.2
  Ni   8.5   9.1  10.1   7.9   12.0  4.67  -  -   -   -   -   9.4  -
  Cr   18.2   18.7  17.0   16.9   17.1  16.8  16.5  18.0   19.2   18.9   22.1   17.8  30.2
  Cu   -   -  -   3.2   2.0  3.82  -  -   0.5   0.5   -   -  -
  Mo   -   -  2.1   -   -  -  -  1.0   -   -   1.2   -  2.1
  Ti   -   -  -   -   -  -  0.3  0.3   -   -   0.2   -  0.2
  Nb   -   -  -   -   -  -  -  -   0.5   0.5   0.2   -  0.2
  机械性质   0.2%屈服强度(N/mm2) 284 270 314 188 176 241 285 270 360 274 343 285 431
  拉伸强度(N/mm2) 659 570 578 479 476 529 480 440 530 444 510 710 568
  伸长率(%)   60  60  55   61   55  54  32  34   31   34   30   64  28
  硬度HV   160  154  156   119   109  127  154  144   177   139   166   185  192
  n-值   0.49  0.48  0.49   0.41   0.38  0.43  0.23  0.22   0.20   0.21   0.18   0.52  0.23
  r-值   -  -  -   -   -  -  1.8  1.25   1.76   1.84   1.31   -  1.16
表2:在每一步骤中裂缝的情况和厚度减少率
           注                              本发明实施例       比较例
          焊接管种类 A  B  C  D  E  F  G  H  I  J  K  L  M
成形步骤 成形部分的外径 评价
第1 30.0mm (1) -  -  -  -  -  -  -  -  -  -  -  ○  -
(2)
第2 31.2mm (1)  ○  ○  -  -  -  ○  -  ○  -  ○  ○  ○
(2)
第3 33.4mm (1)  ○  ○  ○  ○  ○  ○  ○  ○  ○  ○  ○  ○
(2) 10.4  10.2  10.6  8.0  7.2  8.5  5.7  5.3  6.2  5.1  7.9  11.1  8.7
第4 36.5mm (1)  ○  ○  -  -  -  -  -  -  -  -  ○  -
(2)
第5 40.0mm (1)  ○  ○  ○  ○  ○  ○  ○  ○  ○  ○  ○  ○
(2)
第6 42.4mm (1)  ○  ○  ○  ○  ○  ○  ○  ○  ○  ○  ○  ○
(2) 18.2  17.5  17.8  13.7  12.0  14.2  11.9  11.7  12.0  11.2  13.2  21.2  18.7
第7 44.0mm (1)  ○  ○  -  -  -  -   -  -  -  -  ×  ×
(2)
第8 48.5mm (1)  ○  ○  ○  ○  ○  ○  ○  ○  ○  ○
(2)
第9 51.4mm (1)  ○  ○  ○  ○  ○  ○  ○  ○  ○  ○
(2) 24.2  23.2  23.7  19.1  18.1  18.7  20.3  19.8  20.6  19.9  21.5
第10 53.0mm (1) ×  ×  ×  ○  ○  ○  ×  ×  ×  ×  ×
(2)
评价(1):无裂缝(○)或有裂缝(×)                                                                       评价(2):厚度减小率(%)
在每一成形步骤测量每一焊接管的扩展部件的截面硬度,从而研究在成形步骤中厚度的变化情况。结果如图1所示。应当注意,当其末端的外径扩展至42.4mm时,焊接管L过度硬化至高达550HV。
另一方面,焊接管A和D则分别轻微硬化至460HV和315HV,虽然它们是由相同类型的奥氏体不锈钢制成。这些结果证明,焊接管A和D的奥氏体不锈钢是很难加工硬化的材料。另一种铁素体不锈钢的焊接管J在扩展状态下相比于奥氏体不锈钢更软一些,因为其加工硬化系数低至0.21。
进而,外径25.4mm,厚度1.0mm及长度350mm的高频焊接管如表3所示在三个步骤中其末端扩展至外径52.4mm。具有本发明控制的硬度和加工硬化系数的焊接管可扩展至外径52.4mm,且没有裂缝或弯曲。厚度减小率可小至足够用作具有良好性能的燃料供应开口。但是,焊接管L和M在第三步骤期间其末端破裂。
表3:在每一步骤裂缝的情况和厚度减小率
       注                                          本发明实施例      比较例
       焊接管种类 A B C D E F G H I J K L M
成形步骤  成形部分的外径 评价
第1 34.4mm (1)  ○  ○  ○  ○  ○  ○  ○  ○  ○  ○  ○  ○
(2) 10.6  10.4  11.0  9.0  8.1  9.4  7.8  7.5  8.1  7.4  8.5  12.1  9.5
第2 43.4mm (1)  ○  ○  ○  ○  ○  ○  ○  ○  ○  ○  ○  ○
(2) 18.8  18.2  18.5  15.8  13.9  16.2  14.0  13.9  14.1  13.2  15.6  22.3  19.8
第3 52.4mm (1)  ○  ○  ○  ○  ○  ○  ○  ○  ○  ○  ×  ×
(2) 25.1  24.1  24.3  20.5  19.8  21.1  21.5  20.3  21.9  20.1  22.3
评价(1):无裂缝(○)或有裂缝(×)                                                                      评价(2):厚度减小率(%)
进而,测量在每一成形步骤中沿轴向每一焊接管上施加的负载。图2的结果证明,对于那些由本发明定义的奥氏体不锈钢制成的焊接管来说,对其施加的负载相对较小。当由难于加工硬化的铁素体不锈钢制成的焊接管J的扩展部件进一步成形时,与奥氏体不锈钢相比,沿轴向施加的负载保持在较低的水平上。负载的降低是指在成形过程中产生的热量会降低,并抑制随冲压烧结焊接管。结果,冲孔机的寿命得以延长,并且焊接管也成形成具有无缺陷的内表面的产品形状。
本发明的工业有益效果
如上所述本发明的供燃料管可由以下性能的不锈钢板的焊接管制造,奥氏体不锈钢板:硬度为180HV或更小,加工硬化系数(n-值)为0.49或更小,或者铁素体不锈钢:单轴拉伸试验的伸长率为30%或更大,Lankford值(r-值)为1.2或更大。即使在苛刻的条件下,焊接管也可扩展成具有在其末端扩展的燃料供应开口的产品形状,且没有裂缝或弯曲。小直径的焊接管也可成形成在其末端具有燃料供应开口的产品形状,且具有高尺寸精确度,高扩展率。结果,可提供小尺寸的供燃料管作为机动车的耐腐蚀的轻型化部件。

Claims (2)

1.一种汽车用不锈钢制供燃料管,其特征在于它是由硬度为180HV或更小、加工硬化系数(n-值)为0.49或更小的奥氏体不锈钢制成的,在管末端扩展形成有燃料供应开口。
2.一种汽车用不锈钢制供燃料管,其特征在于它是由单轴拉伸试验测得的伸长率为30%或更大、兰克福特值(r-值)为1.2或更大的铁素体不锈钢制成的,在管末端扩展形成有燃料供应开口。
CNB018137466A 2000-08-01 2001-07-26 由不锈钢制成的供燃料管 Expired - Lifetime CN1225614C (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP233415/2000 2000-08-01
JP233415/00 2000-08-01
JP2000233415 2000-08-01

Publications (2)

Publication Number Publication Date
CN1446295A CN1446295A (zh) 2003-10-01
CN1225614C true CN1225614C (zh) 2005-11-02

Family

ID=18725936

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB018137466A Expired - Lifetime CN1225614C (zh) 2000-08-01 2001-07-26 由不锈钢制成的供燃料管

Country Status (8)

Country Link
US (1) US6851455B2 (zh)
EP (2) EP1306600B1 (zh)
KR (1) KR100522660B1 (zh)
CN (1) CN1225614C (zh)
AU (1) AU2001276678A1 (zh)
DE (2) DE60131083T2 (zh)
ES (2) ES2344430T3 (zh)
WO (1) WO2002010631A1 (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4014907B2 (ja) * 2002-03-27 2007-11-28 日新製鋼株式会社 耐食性に優れたステンレス鋼製の自動車用燃料タンクおよび給油管
JP2005201254A (ja) * 2003-12-16 2005-07-28 Usui Kokusai Sangyo Kaisha Ltd ディーゼルエンジン用高圧燃料配管
KR100865413B1 (ko) * 2004-12-22 2008-10-24 닛폰 스틸 앤드 스미킨 스테인레스 스틸 코포레이션 확관 가공성이 우수한 페라이트계 스테인레스강 용접관
JP4959937B2 (ja) * 2004-12-27 2012-06-27 株式会社日立産機システム 腐食診断部品を設けてなる配電用変圧器
US8091588B2 (en) * 2008-05-30 2012-01-10 Fluid Routing Solutions, Inc. Metallic tubular structure
WO2015074802A1 (en) * 2013-11-25 2015-05-28 Exxonmobil Chemical Patents Inc. Lean duplex stainless steel as construction material
KR101659186B1 (ko) * 2014-12-26 2016-09-23 주식회사 포스코 가요성이 우수한 오스테나이트계 스테인리스강
KR101756701B1 (ko) * 2015-12-23 2017-07-12 주식회사 포스코 가공성이 향상된 오스테나이트계 스테인리스강
KR101735007B1 (ko) * 2015-12-23 2017-05-15 주식회사 포스코 주름 저항성이 우수한 오스테나이트계 스테인리스 강관
WO2017171178A1 (ko) * 2016-03-28 2017-10-05 엘지전자 주식회사 스테인리스강 및 상기 스테인리스강으로 이루어지는 배관
KR20180111416A (ko) * 2017-03-31 2018-10-11 엘지전자 주식회사 연성 스테인리스 강관
KR20180138070A (ko) * 2017-06-20 2018-12-28 엘지전자 주식회사 흡수식 칠러
JP2019113004A (ja) * 2017-12-25 2019-07-11 臼井国際産業株式会社 高圧直噴用のレール
KR102120700B1 (ko) 2018-09-13 2020-06-09 주식회사 포스코 확관가공성 및 내시효균열성이 우수한 오스테나이트계 스테인리스강
JP7165161B2 (ja) * 2019-08-09 2022-11-02 株式会社三五 建築用配管システム及び当該システムの施工方法

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB788468A (en) * 1954-07-30 1958-01-02 Babcock & Wilcox Co Forgeable high strength austenitic alloy steel with niobium-tantalum addition
US3884731A (en) * 1964-07-02 1975-05-20 Reynolds Metals Co Metal composite and method of producing the same
GB1224489A (en) * 1968-03-06 1971-03-10 Armco Steel Corp Stainless steel, products and method
US3785787A (en) * 1972-10-06 1974-01-15 Nippon Yakin Kogyo Co Ltd Stainless steel with high resistance against corrosion and welding cracks
JPS5129854B2 (zh) * 1973-04-21 1976-08-27
US4034994A (en) * 1973-05-07 1977-07-12 Kubota Engineering Co, Ltd. Tubular end structure of pipe
US4134430A (en) * 1976-03-26 1979-01-16 Usui International Industry, Ltd. High pressure fuel injection pipe
US4558721A (en) * 1982-09-28 1985-12-17 Apx Group Inc. Double walled tubing
JPS60220281A (ja) * 1984-04-12 1985-11-02 川崎製鉄株式会社 耐食2重管
US4609577A (en) * 1985-01-10 1986-09-02 Armco Inc. Method of producing weld overlay of austenitic stainless steel
DE3742539A1 (de) * 1987-12-16 1989-07-06 Thyssen Stahl Ag Verfahren zur herstellung von plattiertem warmband und danach hergestelltes plattiertes warmband
JPH04247851A (ja) * 1991-01-22 1992-09-03 Kobe Steel Ltd 高Mnオーステナイト鋼
JP3217088B2 (ja) * 1991-07-26 2001-10-09 三桜工業株式会社 ステンレス鋼製多重巻きパイプ
JPH0641689A (ja) * 1992-06-22 1994-02-15 Nippon Steel Corp 加工性の優れた高Cr含有鋼管
TW363082B (en) * 1994-04-26 1999-07-01 Nippon Steel Corp Steel sheet having high strength and being suited to deep drawing and process for producing the same
JP2933826B2 (ja) * 1994-07-05 1999-08-16 川崎製鉄株式会社 深絞り成形性と耐二次加工脆性に優れるクロム鋼板およびその製造方法
JPH1088293A (ja) * 1996-04-16 1998-04-07 Nippon Steel Corp 粗悪燃料および廃棄物を燃焼する環境において耐食性を有する合金、該合金を用いた鋼管およびその製造方法
JPH1052713A (ja) * 1996-08-12 1998-02-24 Nkk Corp 耐震性に優れた鋼管及びその製造方法
JP3841372B2 (ja) * 1997-02-26 2006-11-01 臼井国際産業株式会社 高圧燃料噴射管およびその製造方法
JPH11256279A (ja) * 1998-03-09 1999-09-21 Nisshin Steel Co Ltd 抗菌性を有するステンレス鋼板及びその製造方法
WO1999062665A1 (en) * 1998-06-03 1999-12-09 Sumitomo Special Metals Co., Ltd. Clad material and method of manufacturing the material
JP2000063996A (ja) * 1998-08-18 2000-02-29 Nisshin Steel Co Ltd 被削性及び抗菌性に優れたオーステナイト系ステンレス鋼
CA2285732A1 (en) * 1998-10-08 2000-04-08 Daido Tokushuko Kabushiki Kaisha Expandable metal-pipe bonded body and manufacturing method thereof
DE60100880T2 (de) * 2000-07-25 2004-09-02 Kawasaki Steel Corp., Kobe Ferritisch rostfreier Stahl mit guter Verformbarkeit bei Raumtemperatur und mit guten mechanischen Eigenschaften bei höheren Temperaturen, und Verfahren zur Herstellung derselben
JP3769479B2 (ja) * 2000-08-07 2006-04-26 新日鐵住金ステンレス株式会社 プレス成形性に優れた燃料タンク用フェライト系ステンレス鋼板

Also Published As

Publication number Publication date
ES2294013T3 (es) 2008-04-01
EP1306600A1 (en) 2003-05-02
DE60131083T2 (de) 2008-08-07
CN1446295A (zh) 2003-10-01
US20030183292A1 (en) 2003-10-02
KR20030026330A (ko) 2003-03-31
EP1847749A3 (en) 2007-12-05
EP1847749A2 (en) 2007-10-24
US6851455B2 (en) 2005-02-08
EP1847749B1 (en) 2010-04-14
DE60141866D1 (de) 2010-05-27
EP1306600B1 (en) 2007-10-24
WO2002010631A1 (fr) 2002-02-07
ES2344430T3 (es) 2010-08-26
AU2001276678A1 (en) 2002-02-13
KR100522660B1 (ko) 2005-10-19
DE60131083D1 (de) 2007-12-06
EP1306600A4 (en) 2005-12-21

Similar Documents

Publication Publication Date Title
CN1225614C (zh) 由不锈钢制成的供燃料管
CN106133175B (zh) 耐应变时效特性和耐hic特性优良的高变形能力管线管用钢材及其制造方法以及焊接钢管
KR100611092B1 (ko) 디젤 엔진용 고압 연료 배관
CN106164314B (zh) 耐应变时效特性和耐hic特性优良的高变形能力管线管用钢材及其制造方法以及焊接钢管
US7819991B2 (en) Ferritic stainless steel sheet for raw material pipe for bellows pipe
JP5618057B2 (ja) 耐水素脆性に優れた高強度加工用ステンレス材料及びそのステンレス鋼線、並びにステンレス鋼成形品
US7985372B2 (en) Ferritic stainless steel sheet for use in raw material pipe for forming bellows pipe
KR100256161B1 (ko) 디젤내연기관용의고압연료분사관
Asahi et al. Pipe production technology and properties of X120 linepipe
KR100865413B1 (ko) 확관 가공성이 우수한 페라이트계 스테인레스강 용접관
DE102019103502A1 (de) Verfahren zur Herstellung eines nahtlosen Stahlrohres, nahtloses Stahlrohr und Rohrprodukt
Yuan et al. Effects of hydroforming process on fatigue life of reinforced S-shaped bellows
JPH0641689A (ja) 加工性の優れた高Cr含有鋼管
JP2008307594A (ja) 変形能に優れたラインパイプ用uoe鋼管
JP3470632B2 (ja) 耐座屈特性に優れたラインパイプ用鋼管及びその製造方法
JP4720344B2 (ja) 鋼管、該鋼管を用いたパイプライン
JP2001220653A (ja) 耐疲労特性に優れたマルテンサイト系ステンレス鋼とそれからの製管法
Khodayari Bending limit curve for rotary draw bending of tubular components in automotive hydroforming applications
CN115210396A (zh) 钢管和钢板
Zhang et al. Experimental study on chain-die forming for ultrahigh strength steel (UHSS)
JP3690246B2 (ja) ハイドロフォーム用金属管およびその製造方法
US6014884A (en) Method of bending tubing
EP4261315A1 (en) Hot-stamped part
JP3679179B2 (ja) 耐震性に優れた鋼管
JP2001220643A (ja) 局部延性に優れた中・高炭素鋼板

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term
CX01 Expiry of patent term

Granted publication date: 20051102