EP0723081B1 - Schneckenpumpe für fliessfähiges Pumpgut - Google Patents

Schneckenpumpe für fliessfähiges Pumpgut Download PDF

Info

Publication number
EP0723081B1
EP0723081B1 EP95120203A EP95120203A EP0723081B1 EP 0723081 B1 EP0723081 B1 EP 0723081B1 EP 95120203 A EP95120203 A EP 95120203A EP 95120203 A EP95120203 A EP 95120203A EP 0723081 B1 EP0723081 B1 EP 0723081B1
Authority
EP
European Patent Office
Prior art keywords
stator
hoses
pump
eccentric
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95120203A
Other languages
English (en)
French (fr)
Other versions
EP0723081A1 (de
Inventor
Klemens Fockenberg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seepex GmbH
Original Assignee
Seepex Seeberger GmbH and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seepex Seeberger GmbH and Co filed Critical Seepex Seeberger GmbH and Co
Publication of EP0723081A1 publication Critical patent/EP0723081A1/de
Application granted granted Critical
Publication of EP0723081B1 publication Critical patent/EP0723081B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/12Machines, pumps, or pumping installations having flexible working members having peristaltic action
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/10Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member
    • F04C2/107Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member with helical teeth
    • F04C2/1071Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member with helical teeth the inner and outer member having a different number of threads and one of the two being made of elastic materials, e.g. Moineau type
    • F04C2/1076Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member with helical teeth the inner and outer member having a different number of threads and one of the two being made of elastic materials, e.g. Moineau type where one member orbits or wobbles relative to the other member which rotates around a fixed axis

Definitions

  • a worm pump of the construction described above is made known by GB-A-2 029 514.
  • This points including one driven by a drive axle helically wound eccentric screw rotor with constant circular cross section.
  • the one in a stator room longitudinal elastic hoses are by means of end plates through the stator.
  • openings are provided in the aforementioned plates.
  • central openings that accommodate the recording serve a drive or rotational axis.
  • the gap play or Fit between eccentric screw rotor and stator like this adjust that this is about twice the wall thickness of the corresponds to elastic hoses. Consequently, attack the Hoses running in the longitudinal direction to which can lead to unavoidable damage. Especially can be stretched, for example in connection with Aging effects can lead to tearing, not to be excluded.
  • the invention is based on the technical problem Worm pump of the construction described above with regard Improve resistance and wear problems.
  • the invention teaches to solve this technical problem in a generic screw pump for flowable Pump material that the stator chamber is longitudinal, partially cylindrical Stator wall sections and at least two between the Stator wall sections longitudinal cavities for the has resilient hoses disposed therein, and that the stator wall sections with a clearance to the Sum of eccentricity distance and cross section radius of the Eccentric screw rotor adapted radius.
  • the invention is based on the knowledge that despite of the open, helical channel between the eccentric screw rotor and the partially cylindrical stator wall sections can achieve a promotional effect if the stator between the stator wall sections with longitudinal Cavities and hoses arranged in them is provided: between the longitudinal hoses and the helical circumferential areas of the Eccentric screw rotor creates cutting areas with Sealing lines used to generate lengthways spaced sealing areas of the hoses are used. Sealing areas and conveying spaces enclosed between them by rotating the eccentric screw rotor in the conveying direction moved so that the pumped material is conveyed.
  • Auger pump multi-flow that is, for simultaneous Promotion of several, independent pump material flows suitable.
  • the pumping material is conveyed in sections compressed hoses is basically known as Peristaltic pumps known from practice (see Ullmanns Encyclopedia of Technical Chemistry, 1973, Volume 3, page 169).
  • a hose through several, along the Hose moving displacers such as rollers or Sliding shoes compressed.
  • a multi-flow arrangement requires and is an increase in the number of these displacers constructively complex.
  • the hoses while reducing their lifespan in the longitudinal direction stretched.
  • the screw pump according to the invention produces on the other hand, no expansion of the hoses because of frictional forces between rotor and hose essentially only in the circumferential direction of the eccentric screw rotor act.
  • the eccentric screw rotor not only with one, but with several gears. Due to the increase in the length of the pump stator Number of sealing areas can be the tightness of the Increase the screw pump and the achievable pressure.
  • the Pump stator of the screw pump according to the invention can are basically made of any material. For The use of a has been gentle on the hoses elastic material with a hardness between 90 and 95 Shore A especially proven. Regarding an even and low pulsation running of the screw pump, it is from Advantage, cavities and hoses equidistant on the Distribute the circumference of the stator space.
  • Another preferred embodiment lie to promote the same Hoses serving the goods to be pumped on each other in pairs opposite the circumference of the stator space, so that at one later merging of the streams does not equal pumped goods Pulsation occurs.
  • Another preferred embodiment provides for hoses in the cavities different diameters are recordable. Hereby different amounts in the individual tubes are funded by Pumpgut. The ratio of the funded The quantity depends on the speed and gradient of the eccentric screw rotor and thus the total output independently, so that the device according to the invention be used especially for dosing and mixing tasks can, with the control of various individual pumps There is no change in the total output. It goes without saying that the depths and breadth of the cavities the different hose diameters can be adjusted.
  • the device shown in the figures serves as a screw pump for flowable pump material.
  • the necessary ones Units for drive, storage of the eccentric screw rotor as well as for the supply and removal of the pumped goods have been improved Clarity not shown.
  • FIG. 1 shows hatched the circular cross section of the Eccentric screw rotor.
  • the center 3 of the eccentric screw rotor points to the axis of rotation 4 Eccentricity distance e on.
  • the pump stator 5 includes one Stator chamber 6, in which the eccentric screw rotor 2 as is rotatably arranged.
  • a comparative 1 and 2 it can be seen that the stator space 6 longitudinally running, partially cylindrical stator wall sections 7 having.
  • Fig. 2 shows a fitting game s between the Eccentric screw rotor 2 and the pump stator 5, through which allows wear-free operation of the two components becomes.
  • the radius R of the partially cylindrical stator wall sections 7 is out of the sum with this fit s Cross-sectional radius r of the eccentric screw rotor 2 and Eccentricity adjusted e, as can be seen in Fig. 2.
  • the Eccentricity e is 23% of the embodiment Eccentric screw rotor diameter. It can be seen that the Rotation axis 4 and the longitudinal axis 4 of the stator space 6 coincide and so far a central drive of the Eccentric screw rotor takes place.
  • Fig. 2 shows four Cavities 8 in the stator chamber 6. These run as shown in FIG. 1 shows in the longitudinal direction between the Stator wall sections 7. In the cavities 8 are elastic hoses 9 arranged. The one shown The worm pump has four channels. The funding mechanism is in 1 can be seen well.
  • the Sealing line between eccentric screw rotor 2 and hoses 9 runs in one of the pitch of the eccentric screw rotor 2 dependent angles to the longitudinal direction of the tubes 9.
  • the eccentric screw rotor 2 shown is catchy, it can but can also be easily carried out in multiple courses.
  • Hoses 9 are made of elastic rubber or plastic be made.
  • the pump stator 5 Use of an elastic material with a hardness of 90 Up to 95 Shore A advantageous for protecting the hoses. in the the rest of the chemical resistance of the Eccentric screw rotor and pump stator material only low requirements, so that inexpensive materials can be used.
  • Fig. 2 shows that the tubes 9th are distributed equidistantly around the circumference of the stator space.
  • two different items to be pumped be promoted, so it is beneficial to low pulsation Convey each pump good in pairs on the circumference of the stator chamber 6 opposite hoses 9 use.
  • the hoses 9 shown in Fig. 2 have the same diameter and promote the same Pump material flows. It is easy to see in Fig. 2 that the Diameter of the hoses can be changed easily can to increase the delivery rate of the individual hoses vary. In operation, the ratio of those in the Hoses 9 pumped material flows constant and from Total throughput or of speed and slope of the Eccentric screw rotor 2 be independent.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Details And Applications Of Rotary Liquid Pumps (AREA)
  • Reciprocating Pumps (AREA)
  • Electromagnetic Pumps, Or The Like (AREA)

Description

Die Erfindung betrifft eine Schneckenpumpe für fließfähiges Pumpgut, - mit angetriebenem und schraubenförmig gewundenem Exzenterschneckenrotor mit konstantem, kreisförmigen Querschnitt, dessen Mittelpunkt von der Rotationsachse des Exzenterschneckenrotors um einen Exzentrizitätsabstand beabstandet ist, mit einem Pumpenstator mit Statorraum, und mit im Statorraum längslaufenden, in diesen hineinragenden, elastischen Schläuchen, wobei
  • der Exzenterschneckenrotor im Statorraum drehbar angeordnet ist, wobei ferner
  • die Rotationsachse des Exzenterschneckenrotors und die Längsachse des Statorraums zusammenfallen, wobei weiter
  • die Schläuche durch die von der Rotationsachse fernsten Bereiche des Exzenterschneckenrotors abschnittsweise in Dichtbereichen komprimiert werden und zwischen den Dichtbereichen Förderräume aufweisen, und wobei
  • die Dichtbereiche und die Förderräume durch Rotation des Exzenterschneckenrotors in Förderrichtung längs der Schläuche verschoben werden.
Eine Schneckenpumpe des eingangs beschriebenen Aufbaus ist durch die GB-A-2 029 514 bekannt geworden. Diese weist unter anderem einen über eine Antriebsachse angetriebenen schraubenförmig gewundenen Exzenterschneckenrotor mit konstantem kreisförmigen Querschnitt auf. Die in einem Statorraum längs verlaufenden elastischen Schläuche werden mittels endseitigen Platten durch den Statorraum geführt. Hierzu sind Öffnungen in den vorgenannten Platten vorgesehen. Ferner finden sich Zentralöffnungen, welche der Aufnahme einer Antriebs- bzw. Rotationsachse dienen. Um die Schläuche abschnittsweise in Dichtbereichen zu komprimieren und zwischen den Dichtbereichen Förderräume zu definieren, kommt es einzig und allein darauf an, das Spaltspiel bzw. Passungsspiel zwischen Exzenterschneckenrotor und Stator so einzustellen, daß dieses etwa der zweifachen Wanddicke der elastischen Schläuche entspricht. Folglich greifen an die Schläuche in Längsrichtung verlaufende Kräfte an, welche zu unvermeidbaren Beschädigungen führen können. Insbesondere lassen sich Dehnungen, die beispielsweise in Verbindung mit Alterungseffekten zum Reißen führen können, nicht ausschließen.
Im übrigen sind Schneckenpumpen mit Exzenterschneckenrotor beispielsweise aus Hartinger, "Taschenbuch der Abwasserbehandlung", Band 2, Carl Hanser Verlag, 1977, bekannt. Bei diesen Pumpen besitzt der Statorraum schraubenförmige Ausnehmungen mit doppelter Gangzahl und Steigung des Exzenterschneckenrotors. Rotationsachse des Exzenterschneckenrotors und Längsachse des Statorraums sind um die Exzentrizität des Exzenterschneckenrotors versetzt. Die bekannte Pumpe ist hinsichtlich der Pumpenstatorfertigung und hinsichtlich des Antriebes konstruktiv vergleichsweise aufwendig. Der Pumpenstator ist wegen des dichtenden Kontraktes zum Exzenterschneckenrotor verschleißanfällig. Das Pumpenstatormaterial und der Exzenterschneckenrotor-Werkstoff müssen hinsichtlich ihrer Beständigkeit an das zu fördernde Pumpgut angepaßt werden. Die bekannten Exzenterschneckenpumpen arbeiten einflutig, d.h., pro Rotor-Stator-Paarung kann nur ein Pumpgutstrom gefördert werden.
Der Erfindung liegt das technische Problem zugrunde, eine Schneckenpumpe des eingangs beschriebenen Aufbaus hinsichtlich Beständigkeits- und Verschleißproblemen zu verbessern.
Zur Lösung dieses technischen Problems lehrt die Erfindung bei einer gattungsgemäßen Schneckenpumpe für fließfähiges Pumpgut, daß der Statorraum längslaufende, teilzylindrische Statorwandabschnitte und zumindest zwei zwischen den Statorwandabschnitten längslaufende Auskammerungen für die hierin angeordneten elastischen Schläuche aufweist, und daß die Statorwandabschnitte einen mit Passungsspiel an die Summe aus Exzentrizitätsabstand und Querschnittsradius des Exzenterschneckenrotors angepaßten Radius besitzen.
Die Erfindung geht von der Erkenntnis aus, daß sich trotz des offenen, schraubenförmigen Kanals zwischen Exzenterschneckenrotor und den teilzylindrischen Statorwandabschnitten eine Förderwirkung erzielen läßt, wenn der Statorraum zwischen den Statorwandabschnitten mit längslaufenden Auskammerungen und darin angeordneten Schläuchen versehen wird: Zwischen den längslaufenden Schläuchen und den schraubenförmig umlaufenden, von der Rotationsachse fernsten Bereichen des Exzenterschneckenrotors entstehen Schnittbereiche mit Dichtlinien, die zur Erzeugung von in Längsrichtung beabstandeten Dichtbereichen der Schläuche genutzt werden. Dichtbereiche und zwischen diesen eingeschlossene Förderräume werden durch Rotation des Exzenterschneckenrotors in Förderrichtung verschoben, so daß das Pumpgut gefördert wird. Durch die Verwendung mehrerer Schläuche ist die erfindungsgemäße Schneckenpumpe mehrflutig, das heißt zur gleichzeitigen Förderung mehrerer, voneinander unabhängiger Pumpgutströme geeignet. Insbesondere können verschiedene Pumpgüter gleichzeitig gefördert werden. Pumpenstator und Exzenterschneckenrotor arbeiten praktisch verschleißfrei und ohne Beständigkeitsprobleme, da sie durch die Schläuche voneinander und vom Pumpgut getrennt sind. Der Aufbau der erfindungsgemäßen Schneckenpumpe ist konstruktiv einfach.
Die Föderung von Pumpgut mittels abschnittsweise komprimierter Schläuche ist grundsätzlich durch sogenannte Schlauchpumpen aus der Praxis bekannt (vgl. Ullmanns Encyklopädie der technischen Chemie, 1973, Band 3, Seite 169). Hierbei wird ein Schlauch durch mehrere, längs des Schlauches bewegte Verdrängungskörper wie Rollen oder Gleitschuhe komprimiert. Eine mehrflutige Anordnung erfordert eine Erhöhung der Anzahl dieser Verdrängungskörper und ist konstruktiv aufwendig. Darüber hinaus werden die Schläuche unter Verringerung ihrer Lebensdauer in Längsrichtung gedehnt. Die erfindungsgemäße Schneckenpumpe erzeugt demgegenüber keine Dehnung der Schläuche, da Reibungskräfte zwischen Rotor und Schlauch im wesentlichen nur in Umfangsrichtung des Exzenterschneckenrotors wirken. Darüber hinaus fördert die erfindungsgemäße Schneckenpumpe wegen des durch die Steigung des Exzenterschneckenrotors bedingten Winkels der Dichtlinien zur Förderrichtung und wegen der durch die Geometrie des Exzenterschneckenrotors bedingten allmählichen Freigabe des Förderraumes am Pumpenausgang besonders pulsationsarm.
Im Rahmen der Erfindung liegt es, den Exzenterschneckenrotor nicht nur mit einem, sondern mit mehreren Gängen zu versehen. Durch die bei gleichbleibender Pumpenstatorlänge vergrößerte Zahl von Dichtbereichen läßt sich so die Dichtigkeit der Schneckenpumpe und der erzielbare Druck erhöhen. Der Pumpenstator der erfindungsgemäßen Schneckenpumpe kann grundsätzlich aus beliebigem Werkstoff gefertigt werden. Zur Schonung der Schläuche hat sich die Verwendung eines elastischen Materials mit einer Härte zwischen 90 und 95 Shore A besonders bewährt. Hinsichtlich eines gleichmäßigen und pulsationsarmen Laufes der Schneckenpumpe ist es von Vorteil, Auskammerungen und Schläuche äquidistant auf dem Umfang des Statorraumes zu verteilen. Bei einer weiteren bevorzugten Ausführungsform liegen zur Förderung des gleichen Pumpgutes dienende Schläuche einander jeweils paarweise auf dem Umfang des Statorraumes gegenüber, so daß bei einer späteren Zusammenführung der Ströme gleichen Pumpgutes keine Pulsation auftritt. Eine weitere bevorzugte Ausführungsform sieht vor, daß in den Auskammerungen Schläuche unterschiedlichen Durchmessers aufnehmbar sind. Hierdurch können in den einzelnen Schläuchen unterschiedliche Mengen von Pumpgut gefördert werden. Das Verhältnis der geförderten Mengen ist dabei von Drehzahl und Steigung des Exzenterschneckenrotors und somit von der Gesamtfördermenge unabhängig, so daß die erfindungsgemäße Vorrichtung insbesondere für Dosier- und Mischaufgaben eingesetzt werden kann, wobei die Regelung verschiedener Einzelpumpen bei Änderung der Gesamtfördermenge entfällt. Es versteht sich, daß hierzu die Auskammerungen in ihrer Tiefe und Breite an die verschiedenen Schlauchdurchmesser angepaßt werden können. Im allgemeinen ist dies jedoch nicht erforderlich, sofern die Wandstärke der Schläuche unterschiedlichen Durchmessers im wesentlichen übereinstimmt. Es versteht sich weiter, daß die Summe aus Tiefe der Auskammerung und Passungsspiel an die doppelte Wandstärke des in der Auskammerung angeordneten Schlauches angepaßt ist.
Im folgenden wird die Erfindung anhand einer lediglich ein Ausführungsbeispiel darstellenden Zeichnung ausführlicher Erläutert. Es zeigen in schematischer Darstellung
Fig. 1
einen Längsschnitt durch Exzenterschneckenrotor, Pumpenstator und Schläuche der erfindungsgemäßen Schneckenpumpe,
Fig. 2
einen Schnitt durch den Gegenstand der Fig. 1 aus der in Fig. 1 eingezeichneten Blickrichtung A-A.
Die in den Figuren gezeigte Vorrichtung dient als Schneckenpumpe für fließfähiges Pumpgut. Die insoweit erforderlichen Aggregate für Antrieb, Lagerung des Exzenterschneckenrotors sowie für Zu- und Abfuhr des Pumpgutes wurden zur besseren Übersichtlichkeit nicht dargestellt.
Zum grundsätzlichen Aufbau der Schneckenpumpen 1 gehört ein schraubenförmiger, angetriebener Exzenterschneckenrotor 2. Fig. 1 zeigt schraffiert den kreisförmigen Querschnitt des Exzenterschneckenrotors. Der Mittelpunkt 3 des Exzenterschneckenrotors weist zu der Rotationsachse 4 einen Exzentrizitätsabstand e auf. Erkennbar ist weiterhin der Pumpenstator 5, der im Ausführungsbeispiel aus NBR-Kautschuk gefertigt sein mag. Der Pumpenstator 5 umfaßt einen Statorraum 6, in dem der Exzenterschneckenrotor 2 wie eingezeichnet drehbar angeordnet ist. Einer vergleichenden Betrachtung der Fig. 1 und 2 entnimmt man, daß der Statorraum 6 längslaufende, teilzylindrische Statorwandabschnitte 7 aufweist. Fig. 2 zeigt ein Passungspiel s zwischem dem Exzenterschneckenrotor 2 und dem Pumpenstator 5, durch das ein verschleißfreier Betrieb der beiden Bauteile ermöglicht wird. Der Radius R der teilzylindrischen Statorwandabschnitte 7 ist mit diesem Passungspiel s an die Summe aus Querschnittsradius r des Exzenterschneckenrotors 2 und Exzentrizität e angpaßt, wie Fig. 2 zu entnehmen ist. Die Exzentrizität e beträgt im Ausführungsbeispiel 23% des Exzenterschneckenrotor-Durchmessers. Man erkennt, daß die Rotationsachse 4 und die Längsachse 4 des Statorraumes 6 zusammenfallen und insoweit ein zentrischer Antrieb des Exzenterschneckenrotors erfolgt. Fig. 2 zeigt vier Auskammerungen 8 im Statorraum 6. Diese verlaufen, wie Fig. 1 erkennen läßt, in Längsrichtung zwischen den Statorwandabschnitten 7. In den Auskammerungen 8 sind elastische Schläuche 9 angeordnet. Die gezeigte Schneckenpumpe ist vierflutig. Der Fördermechanismus ist in Fig. 1 gut zu erkennen. Die der Rotationsachse 4 fernsten Bereiche des Exzenterschneckenrotors laufen schraubenförmig um und sind als Linie auf dem Rotor 2 angedeutet. Man erkennt, daß im Schnitt dieser Bereiche mit den in Längsrichtung verlaufenden Schläuchen 9 abschnittsweise Dichtbereiche 10 gebildet werden, in denen die Schläuche 9 komprimiert werden. Fig. 1 zeigt, daß die Schläuche 9 zwischen den Dichtbereichen 10 Förderräume 11 aufweisen. Man erkennt, daß durch Rotation des Exzenterschneckenrotors 2 Förderräume 11 und Dichtbereiche 10 längs der Schläuche 9 verschoben werden, wodurch das in den Förderräumen 11 eingeschlossene Volumen in Förderrichtung gefördert wird. Die Förderrichtung ist in Fig. 1 als Pfeil gekennzeichnet. Die Dichtlinie zwischen Exzenterschneckenrotor 2 und Schläuchen 9 verläuft in einem von der Steigung des Exzenterschneckenrotors 2 abhängigen Winkel zur Längsrichtung der Schläuche 9. Der gezeigte Exzenterschneckenrotor 2 ist eingängig, er kann aber auch ohne weiteres mehrgängig ausgeführt sein. Der Exzenterschneckenrotor 2 wird regelmäßig aus Stahl, die Schläuche 9 werden aus elastischem Gummi oder Kunststoff gefertigt sein. Hinsichtlich des Pumpenstators 5 ist die Verwendung eines elastischen Materials mit einer Härte von 90 bis 95 Shore A für die Schonung der Schläuche vorteilhaft. Im übrigen werden an die chemische Beständigkeit des Exzenterschneckenrotor- und des Pumpenstatorwerkstoffes nur geringe Anforderungen gestellt, so daß preiswerte Materialien verwendet werden können. Fig. 2 zeigt, daß die Schläuche 9 äquidistant auf dem Umfang des Statorraumes verteilt sind. Sollen im Ausführungsbeispiel zwei verschiedene Pumpgüter gefördert werden, so ist es vorteilhaft, zur pulsationsarmen Förderung jedes Pumpgutes einander paarweise auf dem Umfang des Statorraumes 6 gegenüberliegende Schläuche 9 zu verwenden. Die in Fig. 2 gezeigten Schläuche 9 haben den gleichen Durchmesser und fördern insofern gleiche Pumpgutströme. Man erkennt unschwer in Fig. 2, daß die Durchmesser der Schläuche ohne weiteres verändert werden können, um die Förderleistung der einzelnen Schläuche zu variieren. Im Betrieb wird hierbei das Verhältnis der in den Schläuchen 9 geförderten Pumpgutströme konstant und vom Gesamtdurchsatz bzw. von Drehzahl und Steigung des Exzenterschneckenrotors 2 unabhängig sein.

Claims (6)

  1. Schneckenpumpe (1) für fließfähiges Pumpgut,
    mit angetriebenem und schraubenförmig gewundenem Exzenterschneckenrotor (2) mit konstantem, kreisförmigem Querschnitt, dessen Mittelpunkt (3) von der Rotationsachse (4) des Exzenterschneckenrotors (2) um einen Exzentrizitätsabstand (e) beabstandet ist,
    mit einem Pumpenstator (5) mit Statorraum (6), und
    mit im Statorraum (6) längslaufenden, in diesen hineinragenden, elastischen Schläuchen (9), wobei
    der Exzenterschneckenrotor (2) im Statorraum (6) drehbar angeordnet ist, wobei ferner
    die Rotationsachse (4) des Exzenterschneckenrotors (2) und die Längsachse (4) des Statorraums (6) zusammenfallen, wobei weiter
    die Schläuche (9) durch die von der Rotationsachse (4) fernsten Bereiche des Exzenterschneckenrotors (2) abschnittsweise in Dichtbereichen (10) komprimiert werden und zwischen den Dichtbereichen (10) Förderräume (11) aufweisen, und wobei
    die Dichtbereiche (10) und die Förderräume (11) durch Rotation des Exzenterschneckenrotors (2) in Förderrichtung längst der Schläuche (9) verschoben werden,
    dadurch gekennzeichnet, daß
    der Statorraum (6) längslaufende, teilzylindrische Statorwandabschnitte (7) und zumindest zwei zwischen den Statorwandabschnitten (7) längslaufende Auskammerungen (8) für die hierin angeordneten elastischen Schläuche (9) aufweist, und daß
    die Statorwandabschnitte (7) einen mit Passungsspiel (s) an die Summe aus Exzentrizitätsabstand (e) und Querschnittsradius (r) des Exzenterschneckenrotors (2) angepaßten Radius (R) besitzen.
  2. Schneckenpumpe nach Anspruch 1, dadurch gekennzeichnet, daß der Exzenterschneckenrotor (2) mehrgängig ist.
  3. Schneckenpumpe nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Pumpenstator (5) aus elastischem Material mit einer Härte zwischen 90 und 95 Shore A gefertigt ist.
  4. Schneckenpumpe nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Auskammerungen (8) äquidistant auf dem Umfang des Statorraumes (6) verteilt sind.
  5. Schneckenpumpe nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß mit dem gleichen Pumpgut beaufschlagte Schläuche (9) einander jeweils paarweise auf dem Umfang des Statorraumes (6) gegenüberliegen.
  6. Schneckenpumpe nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß in den Auskammerungen (8) Schläuche (9) mit unterschiedlichem Durchmesser aufnehmbar sind.
EP95120203A 1995-01-19 1995-12-20 Schneckenpumpe für fliessfähiges Pumpgut Expired - Lifetime EP0723081B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19501441A DE19501441C1 (de) 1995-01-19 1995-01-19 Mehrflutige Schlauchpumpe
DE19501441 1995-01-19

Publications (2)

Publication Number Publication Date
EP0723081A1 EP0723081A1 (de) 1996-07-24
EP0723081B1 true EP0723081B1 (de) 1999-02-03

Family

ID=7751802

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95120203A Expired - Lifetime EP0723081B1 (de) 1995-01-19 1995-12-20 Schneckenpumpe für fliessfähiges Pumpgut

Country Status (8)

Country Link
US (1) US5620313A (de)
EP (1) EP0723081B1 (de)
JP (1) JPH08319939A (de)
CN (1) CN1133944A (de)
AT (1) ATE176520T1 (de)
CA (1) CA2167545C (de)
DE (2) DE19501441C1 (de)
ES (1) ES2127460T3 (de)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3414171B2 (ja) 1996-11-29 2003-06-09 株式会社デンソー 熱交換器
US6267570B1 (en) 1999-02-16 2001-07-31 Arne D. Armando Peristaltic pump
DE10125939A1 (de) * 2001-05-23 2002-12-05 Gunter Kraus Pumpe, vorzugsweise zum Einsatz bei Windkraftanlagen
US6905319B2 (en) 2002-01-29 2005-06-14 Halliburton Energy Services, Inc. Stator for down hole drilling motor
US7396351B2 (en) * 2003-11-05 2008-07-08 Boston Scientific Scimed, Inc. Device and method for the delivery of viscous fluids in the body
CA2601861C (en) * 2005-04-07 2011-12-13 Marion H. Bobo A head for a peristaltic pump
US20070237642A1 (en) * 2006-04-10 2007-10-11 Murrow Kurt D Axial flow positive displacement worm pump
US20090211474A1 (en) * 2008-02-22 2009-08-27 Atwater Richard G Printing press inking systems
DE202009001865U1 (de) * 2009-02-11 2010-07-22 Krauss, Gunter Pumpe, insbesondere Schlauchpumpe
US8777597B1 (en) * 2010-01-27 2014-07-15 Robert C. Geschwender Linear peristaltic pump having a platen and pressure plate with curved surfaces
DE102010022704A1 (de) * 2010-06-04 2011-12-08 Wilo Se Hebeanlage zum Entsorgen häuslicher Abwässer
US9693896B2 (en) 2013-03-15 2017-07-04 Novartis Ag Systems and methods for ocular surgery
RU2019110403A (ru) 2013-11-05 2019-05-31 Новартис Аг Офтальмологическая система смазки и сопутствующие приборы, системы и способы
DE102014118924A1 (de) * 2014-12-17 2016-06-23 Qonqave Gmbh Fördervorrichtung
DE102014118926B4 (de) * 2014-12-17 2023-02-02 Watson Marlow Gmbh Fördervorrichtung
CN108260840A (zh) * 2016-12-30 2018-07-10 周安定 食品打印用的直线蠕动泵
DE202018003997U1 (de) 2018-08-28 2019-12-04 Gunter Krauss Pumpe, insbesondere Schlauchpumpe
DE102019116601A1 (de) * 2019-06-19 2021-01-07 Ralf Hannibal Schlauchquetschpumpe

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2015123A (en) * 1934-05-11 1935-09-24 Pennell Samuel Blood transfusion apparatus
US2621605A (en) * 1945-10-12 1952-12-16 Clayton Mark & Company Pump
US2629333A (en) * 1950-07-01 1953-02-24 Roger G Olden Rotary compress pump
US2752860A (en) * 1953-02-25 1956-07-03 Du Pont Pump
GB800154A (en) * 1955-09-30 1958-08-20 Ahmad Aziz Improvements in or relating to rotary pumps or motors
FR1335006A (fr) * 1962-06-12 1963-08-16 Machine rotative utilisable notamment comme pompe
US3340817A (en) * 1965-10-18 1967-09-12 Gustave W Kemnitz Pump
US3951576A (en) * 1974-09-23 1976-04-20 Lofquist Jr Alden A Rotary diaphragm pump
EP0004729B1 (de) * 1978-03-23 1983-02-23 Daniel Joseph Bradley Vorrichtung und Verfahren zur Aufzeichnung sehr schneller sich wiederholender optischer Vorgänge
GB2029514A (en) * 1978-08-31 1980-03-19 Charlesworth M Peristaltic fluid-machines
JPS5692387A (en) * 1979-12-26 1981-07-27 Kuraray Co Ltd Liquid feeding pump utilizing spiral-type rotary body
JPS58116690A (ja) * 1981-12-28 1983-07-11 Denki Kagaku Kogyo Kk D−β−ヒドロキシアミノ酸の製造法
FR2523656A1 (fr) * 1982-03-18 1983-09-23 Commissariat Energie Atomique Pompe rotative a membrane
GB8510382D0 (en) * 1985-04-24 1985-05-30 Russell D Peristaltic pump
JPS6321375A (ja) * 1986-07-15 1988-01-28 Mitsui Constr Co Ltd 流動化物圧送ポンプ
JPH02171308A (ja) * 1988-12-24 1990-07-03 Sumitomo Rubber Ind Ltd 空気入りタイヤ
RU2004850C1 (ru) * 1991-04-03 1993-12-15 Станислав Владимирович Варварин Волновой насос со шлангами
HU212559B (en) * 1993-02-12 1996-08-29 Ferenczy Rotating piston pump for fluids and gases

Also Published As

Publication number Publication date
EP0723081A1 (de) 1996-07-24
DE59505030D1 (de) 1999-03-18
CA2167545A1 (en) 1996-07-20
CA2167545C (en) 2000-10-03
CN1133944A (zh) 1996-10-23
JPH08319939A (ja) 1996-12-03
US5620313A (en) 1997-04-15
ES2127460T3 (es) 1999-04-16
ATE176520T1 (de) 1999-02-15
DE19501441C1 (de) 1996-04-04

Similar Documents

Publication Publication Date Title
EP0723081B1 (de) Schneckenpumpe für fliessfähiges Pumpgut
DE602004006827T2 (de) Gekrümmte Zähne für Zahnradpumpe
DE2113923A1 (de) Mischeinrichtung fuer fluessige Kunststoffe mit Zusaetzen
WO2002026471A1 (de) Schneckenextruder-zahnradpumpen-anordnung für hochviskose medien
DE2143401C2 (de) Pumpe
EP1958757B1 (de) Extruder
EP0642913B1 (de) Einwellenschnecke mit Zahnradpumpe
EP1338796B1 (de) Exzenterschneckenpumpe
DE2645933A1 (de) Excenterschraubenpumpe
DE3426029C2 (de)
EP1831570B9 (de) Pumpe, insbesondere dickstoffpumpe
EP0564884B1 (de) Mehrwellige Schneckenmaschine mit Zahnradpumpe
WO1998021479A1 (de) Innenzahnradpumpe mit antrieb über das hohlrad
DE4142653A1 (de) Zusammengesetzte schnecke fuer einen extruder fuer die keramische industrie
EP0684384A1 (de) Innenzahnriemenpumpe
DE10049730A1 (de) Zahnradpumpe zur Förderung hochviskoser Medien und Verwendung dieser Zahnradpumpe
DE19842016A1 (de) Vorrichtung zum Pumpen von Fluiden
EP3253554B1 (de) Stopfschnecke
DE2033344A1 (de) Proportionalpumpe als Rollenpumpe
EP2881585A1 (de) Vorrichtung zum Fördern einer fließfähigen Fördermasse, insbesondere einer Baustoffmischung wie Mörtel
DE2161116B2 (de) Gehäuseeinsatz für Exzenterschnekkenpumpen
DE2439358A1 (de) Hydrostatische pumpe oder motor
DE3605663C2 (de)
DE19948520C1 (de) Einrichtung zum Fördern und/oder Verdichten von Materialien
DE2211786A1 (de) Foerdervorrichtung, insbesondere foerderpumpe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT DE ES FR GB IT NL

17P Request for examination filed

Effective date: 19960530

17Q First examination report despatched

Effective date: 19970811

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT DE ES FR GB IT NL

REF Corresponds to:

Ref document number: 176520

Country of ref document: AT

Date of ref document: 19990215

Kind code of ref document: T

ITF It: translation for a ep patent filed

Owner name: ING. A. GIAMBROCONO & C. S.R.L.

ET Fr: translation filed
REF Corresponds to:

Ref document number: 59505030

Country of ref document: DE

Date of ref document: 19990318

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19990316

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2127460

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20011008

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20011015

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20011130

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20011220

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20011228

Year of fee payment: 7

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021220

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030701

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20021220

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20030701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030901

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20021221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051220

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20091113

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59505030

Country of ref document: DE

Effective date: 20110701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110701