EP0718553B1 - Method of combustion of wastes - Google Patents

Method of combustion of wastes Download PDF

Info

Publication number
EP0718553B1
EP0718553B1 EP95810746A EP95810746A EP0718553B1 EP 0718553 B1 EP0718553 B1 EP 0718553B1 EP 95810746 A EP95810746 A EP 95810746A EP 95810746 A EP95810746 A EP 95810746A EP 0718553 B1 EP0718553 B1 EP 0718553B1
Authority
EP
European Patent Office
Prior art keywords
waste
incineration
waste materials
calorific value
metering shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95810746A
Other languages
German (de)
French (fr)
Other versions
EP0718553A1 (en
Inventor
Peter Dübendorfer
John Millard
Martin Zweifel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Martin GmbH fuer Umwelt und Energietechnik
Original Assignee
ABB Asea Brown Boveri Ltd
Asea Brown Boveri AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Asea Brown Boveri Ltd, Asea Brown Boveri AB filed Critical ABB Asea Brown Boveri Ltd
Publication of EP0718553A1 publication Critical patent/EP0718553A1/en
Application granted granted Critical
Publication of EP0718553B1 publication Critical patent/EP0718553B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/50Control or safety arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2207/00Control
    • F23G2207/10Arrangement of sensing devices
    • F23G2207/112Arrangement of sensing devices for waste supply flowrate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2207/00Control
    • F23G2207/30Oxidant supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2900/00Special features of, or arrangements for incinerators
    • F23G2900/55Controlling; Monitoring or measuring
    • F23G2900/55007Sensors arranged in waste loading zone, e.g. feed hopper level
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2900/00Special features of, or arrangements for incinerators
    • F23G2900/55Controlling; Monitoring or measuring
    • F23G2900/55011Detecting the properties of waste to be incinerated, e.g. heating value, density

Definitions

  • the invention relates to a method for the combustion of Waste through an allotment shaft and a feed pusher are transported to a grate for burning air is supplied to maintain combustion.
  • the invention further relates to a device for Performing this procedure.
  • the invention is based on a prior art, such as it results, for example, from EP-A-0 317 731.
  • Waste is seen as fuel in its composition very inhomogeneous. Their properties such as calorific value, ignitability and burn rate fluctuate in a very wide range. Waste comes to incineration, for example from organic residual waste, industrial waste, wood, stones, plastics, Glass, ceramics, paper and cardboard are made. The trash should be used in such a combination for combustion provided that always a certain amount of combustible Ingredients is included. The intended for combustion There are different sizes of waste. In addition they have different proportions of water, which at the combustion must be taken into account. In contrast to are the compositions and the chemical-physical properties known from fuels such as coal, gas and oil. in the In contrast to the waste mentioned above, it is no problem possible an incinerator for these fuels to optimize.
  • Incineration plants for waste have so far mostly been low Degree of automation driven.
  • Most of the previously known Facilities of this type are provided with a control room is looked after by at least one surgeon.
  • the operator is responsible the task of managing the combustion in each case Adjust fuel. He is on his personal observation the combustion process.
  • Most of them Incinerators is at least one video camera provided, which is arranged above the combustion chamber. Corrective Interventions in the combustion process can, however only be carried out retrospectively, i.e. then when there is a change the composition of the waste to be incinerated has noticed a change in the quality of combustion. Then it is usually already for corrective interventions too late. Such a combustion process is becoming more and more or fluctuate less strongly around its optimal operating point.
  • EP-A-0 317 731 proposes to observe the area of the waste application on the combustion grate with optical radiation receivers which are preceded by optical filters which selectively detect the electromagnetic radiation emitted by H 2 O or CO 2 molecules.
  • the indicator for the water content of the waste obtained in this way is fed to the control device as a disturbance variable for controlling the combustion.
  • a signal is obtained which provides information about the water content of the waste before the waste is incinerated, so that the combustion parameters can be adapted directly to the incinerating waste.
  • a disadvantage of this method is that the time from the drop in the waste in the drop zone to the incineration on the grate is too short for changes in the combustion parameters to have a positive effect.
  • the dead times in this process are in the order of 30 to 60 minutes.
  • the transport time from the waste disposal area to the main incineration zone is in the range of 10 minutes.
  • the water content of the waste is determined only by the water evaporating on the surface. The water contained and bound inside the waste is not recorded and can therefore not be taken into account when controlling the combustion.
  • EP-A-0 352 620 describes a method in which the grate on which the waste is incinerated with With the help of a video camera is observed.
  • the video image received is processed automatically using a computer.
  • the signals obtained from this turn into information about the course of combustion, such as the temperature distribution and derived the location of the main fire zone and then fed to the process control system as a control variable.
  • a predictive driving style is the Waste incineration is not possible because only the surface temperature on the grate is detected. Embers or smoldering nests under the surface of the garbage to be incinerated, which is the incineration process influence, are disregarded.
  • the invention is therefore based on the object of a method to demonstrate that a predictive driving style of combustion of waste of all kinds, so that already before the incineration of the pending waste is known which parameters the furnace is to be set.
  • the invention is also the object of one with this method demonstrate operable waste incineration facility.
  • this object is achieved according to the invention solved in that the calorific value or at least a parameter that determines the calorific value for combustion upcoming waste (1) is already determined in the allocation shaft (2) and the measurement values determined from this in a process control unit (18) are saved, which are dependent on the size of the calorific value during combustion of waste (1) the amount of air to be fed to the grate and / or controls the amount of waste to be fed to the grate.
  • a corresponding facility for the incineration of waste is the subject of claim 11.
  • the calorific value of the waste to be incinerated or one their determining calorific value determines a certain size Time before the combustion in the allocation shaft recorded and calculated.
  • microwave signals sent out. Due to the water content of the waste signal weaknesses and / or phase changes these microwave signals. These are used to determine of the water content in the waste was evaluated. The information signals determined from this are the Process control unit fed.
  • the device for incinerating waste according to the invention is equipped with an allocation shaft, which is a feed slide is connected downstream. With it becomes the one to be burned Amount of waste on a designated Rust promotes air to maintain the combustion is fed. Inside the allocation shaft is at least a device for recording the calorific value of the waste is installed, connected to at least one evaluation unit are. The signal outputs of the evaluation units are on one Process control unit is connected. This is for the Control of the air supply to the grate or to control the feed slide intended.
  • the device for incinerating waste shown in Fig.1 1 of all types includes an upright allocation shaft 2 with rectangular cross-section, a feed slide 3 at its lower end for dosing and conveying the waste 1 on a grate attached to it 4.
  • Design section 5 of the allocation shaft 2 is a general one measuring device designated by reference numeral 6 for Determination of the calorific value of the waste there 1 intended.
  • the dimensioning section is designed in such a way that the time between passing waste 1 and task on the grate is typically 20 to 30 minutes.
  • this determines their calorific value - is in the design section 5 of the allocation shaft 2, a microwave measuring arrangement 6 provided.
  • this comprises the Dimensioning section 5 of the allocation shaft 2 in an enlarged view View shows two spatially distant measuring points with combined microwave transmitter / receiver modules 6a, 6b, 6c, 6d, 6a ', 6b', 6c ', 6d'.
  • the two measuring points is each assigned an evaluation unit (8,8 '), whose output signals are fed to the process control unit 9.
  • Two microwave transmitter / receiver modules 6a and 6b or 6c and 6d are on a straight line perpendicular to the conveying direction the allocation shaft 2 arranged opposite each other are.
  • the microwave transmission / reception modules belonging to the level ⁇ are in the same way 6a ', 6b', 6c ', 6d' arranged.
  • the microwave arrangements can consist of separate transmitters Receiving modules exist, which are located on the walls of the allocation shaft opposite. But it can also be combined Transmit / receive modules. In the first case it will Transmittance of waste recorded using microwaves. In the second case the reflectivity of the waste determined. A third option is in the design section 5 standing microwaves to generate and amplitudes and / or to detect phase changes in the microwaves, which in turn draw conclusions about the water content or the Allow calorific value of waste.
  • the amount of waste 1 that is incinerated on the grate 4 is loaded corresponds to the amount of waste entering the design section 5 of the allocation shaft 2 can be filled can. From signal weakening and / or phase changes the microwave signals can be analyzed using the evaluation unit 8 the water content and thus within certain error limits the calorific value of the transported in the design section 5 Waste 1 can be determined. The measurement in two separate Levels a and ⁇ prevent misinterpretations, e.g. if a larger piece of metal M is carried in the waste.
  • the evaluation unit 8 sends a signal with the information to the process control unit via the water content or calorific value 9 forwarded.
  • An air flap 10 is also provided by the process control unit 9 controlled in a pipe 11 below the grate 4th is arranged. This opens into channels 12 on the underside the grate 4, from where the grate 4 is for optimal combustion required amount of air is supplied.
  • Fig.3 and Fig.3a An alternative way to determine the calorific value of the waste is shown schematically in Fig.3 and Fig.3a.
  • the Design section are on or in two opposite Walls of the top surface electrodes 13 and 14 are arranged. This are from the wall of the feed shaft, which is regularly made of metal 2 electrically isolated by means of insulators 15. How 3a can be seen, there is the insulator 15 T-shaped cross-section, with the inward-facing Leg has the same length as the wall thickness of the feed shaft and electrodes 13 and 14. In this way the garbage does not slide through the isolator nor the electrode is obstructed. It is attached from the outside. au
  • a combined feed and current measuring device 16 is a current - supplied by a constant voltage source - passed through waste 1 in assessment section 5.
  • the size of the flowing current I is a measure of volume conductivity of waste and this in turn is a measure of the water content and thus the calorific value of the waste.
  • Analogous to the microwave measurement method described above can also do two with regard to the flow direction of the waste electrode arrangements spaced apart from one another are provided to avoid incorrect measurements e.g. as a result of being carried in the waste to avoid larger pieces of metal.
  • the density of waste 1 is determined using separate methods. This can e.g. by making the weight of the Waste column in the feed chute above that of the feed pusher 3 by means of load cells 17, which are in the supporting structure of the Feed slide are integrated, is measured. This information is also stored in the process control unit and taken into account when controlling the combustion. By Comparison of the weight of these waste columns to different ones Times can be combined in e.g. with the water content make a statement about the waste quality or the calorific value. Furthermore, the flow rate of the waste in the supply shaft can also 2 e.g. with a measuring wheel 18 that with a tachometer generator is coupled, determined and also via an associated evaluation unit 19 of the process control unit 9 are supplied.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Incineration Of Waste (AREA)
  • Processing Of Solid Wastes (AREA)
  • Gasification And Melting Of Waste (AREA)

Abstract

The waste burning method involves passing the waste (1) via a feed shaft (2) and an output slider (3) for burning on a burner (4) to which air is fed to maintain combustion. At least one parameter which influences the combustion is controlled according to the calorific value of the waste to be burnt. The calorific value, or a parameter defining it, is determined in the feed shaft using a microwave technique and the resulting measurement value stored in a process control unit (9). The process control unit controls the quantity of air and/or waste fed to the burner depending on the magnitude of the calorific value of the waste.

Description

TECHNISCHES GEBIETTECHNICAL AREA

Die Erfindung bezieht auf ein Verfahren zur Verbrennung von Abfällen, die über einen Zuteilungsschacht und einen Aufgabeschieber zum Verbrennen auf einen Rost befördert werden, dem zur Aufrechterhaltung der Verbrennung Luft zugeführt wird.The invention relates to a method for the combustion of Waste through an allotment shaft and a feed pusher are transported to a grate for burning air is supplied to maintain combustion.

Die Erfindungs bezieht sich ferner auf eine Vorrichtung zur Durchführung dieses Verfahrens.The invention further relates to a device for Performing this procedure.

Die Erfindung geht dabei aus von einem Stand der Technik, wie er sich beispielsweise aus der EP-A-0 317 731 ergibt.The invention is based on a prior art, such as it results, for example, from EP-A-0 317 731.

TECHNOLOGISCHER HINTERGRUND UND STAND DER TECHNIKTECHNOLOGICAL BACKGROUND AND PRIOR ART

Abfälle als Brennstoff gesehen sind in ihrer Zusammensetzung sehr inhomogen. Ihre Eigenschaften wie Heizwert, Zündfähigkeit und Abbrandgeschwindigkeit schwanken in einem sehr breiten Bereich. Zur Verbrennung gelangen Abfälle, die bespielsweise aus organischem Restmüll, Industrieabfällen, Holz, Steinen, Kunststoffen, Glas, Keramik, Papier und Pappe bestehen. Die Abfälle werden möglichst in einer solchen Kombination zur Verbrennung bereitgestellt, dass immer ein bestimmter Anteil an brennbaren Bestandteilen enthalten ist. Die für die Verbrennung vorgesehenen Abfälle liegen in unterschiedlicher Grösse vor. Zudem weisen sie unterschiedliche Anteile an Wasser auf, was bei der Verbrennung berücksichtigt werden muss. Im Gegensatz dazu sind die Zusammensetzungen und die chemisch-physikalischen Eigenschaften von Brennstoffen wie Kohle, Gas und Öl bekannt. Im Gegensatz zu den obengenannten Abfällen ist es hierbei problemlos möglich, eine Verbrennungsanlage für diese Brennstoffe zu optimieren.Waste is seen as fuel in its composition very inhomogeneous. Their properties such as calorific value, ignitability and burn rate fluctuate in a very wide range. Waste comes to incineration, for example from organic residual waste, industrial waste, wood, stones, plastics, Glass, ceramics, paper and cardboard are made. The trash should be used in such a combination for combustion provided that always a certain amount of combustible Ingredients is included. The intended for combustion There are different sizes of waste. In addition they have different proportions of water, which at the combustion must be taken into account. In contrast to are the compositions and the chemical-physical properties known from fuels such as coal, gas and oil. in the In contrast to the waste mentioned above, it is no problem possible an incinerator for these fuels to optimize.

Verbrennungsanlagen für Abfälle werden bisher meist mit geringem Automatisierungsgrad gefahren. Bei den meisten bisher bekannten Anlagen dieser Art ist eine Warte vorgesehen, die von wenigstens einem Operateur betreut wird. Dem Operateur obliegt die Aufgabe, die Verbrennungsführung dem jeweils anfallenden Brennstoff anzupassen. Er ist dabei auf seine persönliche Beobachtung des Verbrennungsprozesses angewiesen. Bei den meisten Verbrennungsanlagen ist wenigstens eine Videokamera vorgesehen, die über dem Verbrennungsraum angeordnet ist. Korrigierende Eingriffe in den Verbrennungsprozess können allerdings nur nachträglich erfolgen, d.h. dann, wenn sich eine Änderung der Zusammensetzung des zu verbrennenden Abfalls durch eine Änderung der Verbrennungsqualität bemerkbar gemacht hat. Dann ist es für korrigierende Eingriffe in der Regel oft schon zu spät. Ein so gefahrener Verbrennungsprozess wird immer mehr oder weniger stark um seinen optimalen Betriebspunkt schwanken. Um diese Schwankungen zu minimieren, sind Ansätze zu erkennen, um den Automatisierungsgrad der Verbrennung von Abfällen zu erhöhen. Dazu werden neue Messwertaufnehmer im Verbrennungsraum installiert, die den Verbrennungsprozess beobachten. Die hierbei gewonnenen Informationen, die der Operateur bis jetzt visuell erfasst, werden automatisch erfasst und unmittelbar einem die Verbrennung steuernden System als Korrekturfaktor zur Verfügung gestellt.Incineration plants for waste have so far mostly been low Degree of automation driven. Most of the previously known Facilities of this type are provided with a control room is looked after by at least one surgeon. The operator is responsible the task of managing the combustion in each case Adjust fuel. He is on his personal observation the combustion process. Most of them Incinerators is at least one video camera provided, which is arranged above the combustion chamber. Corrective Interventions in the combustion process can, however only be carried out retrospectively, i.e. then when there is a change the composition of the waste to be incinerated has noticed a change in the quality of combustion. Then it is usually already for corrective interventions too late. Such a combustion process is becoming more and more or fluctuate less strongly around its optimal operating point. In order to minimize these fluctuations, approaches can be identified the degree of automation of waste incineration to increase. For this purpose, new sensors are installed in the combustion chamber installed that watch the combustion process. The information obtained here, which the surgeon up to now visually recorded, are automatically recorded and immediately a combustion control system as a correction factor made available.

In der EP-A-0 317 731 wird vorgeschlagen, den Bereich der Abfallaufgabe auf dem Verbrennungsrost mit optischen Strahlungsempfängern zu beobachten, denen optische Filter vorgeschaltet sind, welche die von H2O bzw. CO2 Molekülen emittierte elektromagnetische Strahlung selektiv erfassen. Der so gewonnene Indikator für den Wassergehalt des Abfalls wird zur Regelung der Verbrennung als Störgrösse der Regelvorrichtung zugeleitet. Mit dem hier beschriebenen Verfahren wird ein Signal gewonnen, das Auskunft über den Wassergehalt des Abfalls ermöglicht, bevor der Abfall verbrannt wird, so dass die Verbrennungsparameter unmittelbar dem verbrennenden Müll angepasst werden können. Nachteilig an diesem Verfahren ist jedoch, dass die Zeit von der Aufgabe des Abfalls in der Aufgabezone bis zur Verbrennung auf dem Rost zu kurz ist, als dass sich Änderungen der Verbrennungsparameter noch positiv auswirken können. Die Totzeiten bei diesem Verfahren liegen in der Grössenorndung von 30 bis 60 Minuten. Die Transportzeit von der Aufgabezone des Abfalls in die Hauptverbrennungszone dagegen im Bereich von 10 Minuten. Bei dem hier beschriebenen Verfahren wird der Wassergehalt des Abfalls nur durch das an der Oberfläche verdampfende Wasser ermittelt. Das im inneren des Abfalls enthaltene und gebundene Wasser wird nicht erfasst, und kann deshalb bei der Steuerung der Verbrennung nicht berücksichtigt werden.EP-A-0 317 731 proposes to observe the area of the waste application on the combustion grate with optical radiation receivers which are preceded by optical filters which selectively detect the electromagnetic radiation emitted by H 2 O or CO 2 molecules. The indicator for the water content of the waste obtained in this way is fed to the control device as a disturbance variable for controlling the combustion. With the method described here, a signal is obtained which provides information about the water content of the waste before the waste is incinerated, so that the combustion parameters can be adapted directly to the incinerating waste. However, a disadvantage of this method is that the time from the drop in the waste in the drop zone to the incineration on the grate is too short for changes in the combustion parameters to have a positive effect. The dead times in this process are in the order of 30 to 60 minutes. The transport time from the waste disposal area to the main incineration zone, on the other hand, is in the range of 10 minutes. In the method described here, the water content of the waste is determined only by the water evaporating on the surface. The water contained and bound inside the waste is not recorded and can therefore not be taken into account when controlling the combustion.

In der EP-A-0 352 620 ist ein Verfahren beschrieben, bei dem der Rost, auf dem die Verbrennung des Abfalls erfolgt, mit Hilfe einer Videokamera beobachtet wird. Das erhaltene Videobild wird automatisch mittels eines Rechners verarbeitet. Aus den hieraus gewonnenen Signalen werden Informationen über den Verbrennungsverlauf, wie beispielsweise die Temperaturverteilung und die Lage der Hauptbrandzone hergeleitet und dem Prozessleitsystem dann als Steuerungsgrösse zugeführt. Mit diesem Verfahren ist eine vorausschauende Fahrweise der Müllverbrennung nicht möglich, da nur die Oberflächentemperatur auf dem Rost erfasst wird. Glut oder Schwelnester unter der Oberfläche des zu verbrennenden Mülls, die den Verbrennungsablauf beeinflussen, bleiben unberücksichtigt.EP-A-0 352 620 describes a method in which the grate on which the waste is incinerated with With the help of a video camera is observed. The video image received is processed automatically using a computer. The signals obtained from this turn into information about the course of combustion, such as the temperature distribution and derived the location of the main fire zone and then fed to the process control system as a control variable. With this method, a predictive driving style is the Waste incineration is not possible because only the surface temperature on the grate is detected. Embers or smoldering nests under the surface of the garbage to be incinerated, which is the incineration process influence, are disregarded.

KURZE DASTELLUNG DER ERFINDUNGBRIEF SUMMARY OF THE INVENTION

Der Erfindung liegt deshalb die Aufgabe zugrunde, ein Verfahren aufzuzeigen, das eine vorausschauende Fahrweise der Verbrennung von Abfällen aller Art ermöglicht, so dass bereits vor der Verbrennung des anstehenden Abfalls bekannt ist, auf welche Parameter die Feuerung einzustellen ist. Der Erfindung liegt ferner die Aufgabe zugrunde, eine mit diesem Verfahren betreibbare Einrichtung zur Verbrennung von Abfällen aufzuzeigen.The invention is therefore based on the object of a method to demonstrate that a predictive driving style of combustion of waste of all kinds, so that already before the incineration of the pending waste is known which parameters the furnace is to be set. The invention is also the object of one with this method demonstrate operable waste incineration facility.

Ausgehend vom Stand der Technik wird diese Aufgabe erfindungsgemäss dadurch gelöst, dass dass der Heizwert oder zumindest eine den Heizwert bestimmende Messgrösse der zur Verbrennung anstehenden Abfälle (1) bereits im Zuteilungsschacht (2) ermittelt und die hieraus ermittelten Messwerte in einer Prozesssteuerungseinheit (18) gespeichert werden, welche in Abhängigkeit von der Grösse des Heizwertes bei der Verbrennung der Abfälle (1) die Menge der dem Rost zuzuführenden Luft und/oder die Menge des dem Rost zuzuführenden Abfalls steuert.Starting from the prior art, this object is achieved according to the invention solved in that the calorific value or at least a parameter that determines the calorific value for combustion upcoming waste (1) is already determined in the allocation shaft (2) and the measurement values determined from this in a process control unit (18) are saved, which are dependent on the size of the calorific value during combustion of waste (1) the amount of air to be fed to the grate and / or controls the amount of waste to be fed to the grate.

Eine entsprechende Einrichtung zur Verbrennung von Abfällen ist Gegenstand des Patentanspruchs 11.A corresponding facility for the incineration of waste is the subject of claim 11.

Der Heizwert der zur Verbrennung anstehenden Abfälle bzw. eine deren Heizwert massgebend bestimmende Grösse wird eine gewissen Zeitspanne vor der Verbrennung bereits im Zuteilungsschacht erfasst und berechnet.The calorific value of the waste to be incinerated or one their determining calorific value determines a certain size Time before the combustion in the allocation shaft recorded and calculated.

Senkrecht zur Förderrichtung des Zuteilungsschachtes, in dem die Abfälle zu einem für die Verbrennung vorgesehenen Rost transportiert werden, werden Mikrowellensignale ausgesendet. Durch den Wassergehalt der Abfälle werden Signalschwächungen und/oder Phasenveränderungen bei diesen Mikrowellensignalen verursacht. Diese werden zur Ermittlung des Wassergehaltes in den Abfällen ausgewertet. Die hieraus ermittelten Informationssignale werden der Prozesssteuerungseinheit zugeführt. Perpendicular to the conveying direction of the allocation shaft, in which the waste becomes one for the Combustion provided rust are transported, microwave signals sent out. Due to the water content of the waste signal weaknesses and / or phase changes these microwave signals. These are used to determine of the water content in the waste was evaluated. The information signals determined from this are the Process control unit fed.

Die erfindungsgemässe Vorrichtung zur Verbrennung von Abfällen ist mit einem Zuteilungsschacht ausgerüstet, dem ein Aufgabeschieber nachgeschaltet ist. Mit ihm wird die gerade zu verbrennende Menge an Abfällen auf einen hierfür vorgesehenen Rost befördert, dem zur Aufrechterhaltung der Verbrennung Luft zuführt wird. Innerhalb des Zuteilungsschachtes ist mindestens eine Einrichtung zur Erfassung des Heizwerts der Abfälle installiert, die mit mindestens einer Auswerteeinheit verbunden sind. Die Signalausgänge der Auswerteeinheiten sind an eine Prozesssteuerungseinheit angeshlossen ist. Diese ist für die Steuerung der Luftzufuhr zum Rost oder zur Steuerung des Aufgabeschiebers vorgesehen.The device for incinerating waste according to the invention is equipped with an allocation shaft, which is a feed slide is connected downstream. With it becomes the one to be burned Amount of waste on a designated Rust promotes air to maintain the combustion is fed. Inside the allocation shaft is at least a device for recording the calorific value of the waste is installed, connected to at least one evaluation unit are. The signal outputs of the evaluation units are on one Process control unit is connected. This is for the Control of the air supply to the grate or to control the feed slide intended.

Die Erfindung wird nachfolgend an Hand der Zeichnungen näher erläutert.The invention is explained in more detail below with reference to the drawings.

KURZE BESCHREIBUNG DER ZEICHNUNGBRIEF DESCRIPTION OF THE DRAWING

In den Zeichnungen sind Ausführungsbeispiele der Erfindung schematisch dargestellt. Dabei zeigt

Fig. 1
eine Einrichtung zur Verbrennung von Abfällen im Vertikalschnitt:
Fig.2
den mit einer Mikrowellenanordnung zur Erfassung des Heizwerts der Abfälle versehenen Zuteilungsschacht der Einrichtung gemäss Fig.1;
Fig.3
den mit einer Einrichtung zur Messung des elektrischen Widerstandes der Abfälle versehenen Zuteilungsschacht der Einrichtung gemäss Fig.1;
Fig.3a
einen Schnitt durch die Wandung des Zuteilungsschachtes gemäss Fig.3.
Exemplary embodiments of the invention are shown schematically in the drawings. It shows
Fig. 1
a device for the incineration of waste in vertical section:
Fig. 2
the allocation shaft of the device according to FIG. 1 provided with a microwave arrangement for recording the calorific value of the waste;
Fig. 3
the allocation shaft of the device according to FIG. 1 provided with a device for measuring the electrical resistance of the waste;
Fig.3a
a section through the wall of the allocation shaft according to Figure 3.

WEGE ZUR AUSFÜHRUNG DER ERFINDUNGWAYS OF CARRYING OUT THE INVENTION

Die in Fig.1 dargestellte Einrichtung zur Verbrennung von Abfällen 1 aller Art umfasst einen aufrecht stehenden Zuteilungsschacht 2 mit Rechteckquerschnitt, einen Aufgabeschieber 3 am seinem unteren Ende zur Dosierung und Förderung der Abfälle 1 auf einen sich daran anschliessenden Rost 4. In einem Bemessungsabschnitt 5 des Zuteilungsschachtes 2 ist eine generell mit der Bezugsziffer 6 bezeichnete Messeinrichtung zur Bestimmung des Heizwerts der dort befindlichen Abfälle 1 vorgesehen. Der Bemessungsabschnitt ist derart angelegt, dass die Zeitspanne zwischen Passieren der Abfälle 1 und Aufgabe auf den Rost zwischen typisch 20 bis 30 Minuten beträgt.The device for incinerating waste shown in Fig.1 1 of all types includes an upright allocation shaft 2 with rectangular cross-section, a feed slide 3 at its lower end for dosing and conveying the waste 1 on a grate attached to it 4. In one Design section 5 of the allocation shaft 2 is a general one measuring device designated by reference numeral 6 for Determination of the calorific value of the waste there 1 intended. The dimensioning section is designed in such a way that the time between passing waste 1 and task on the grate is typically 20 to 30 minutes.

Bei einer ersten bevorzugten Ausführungsform der Erfindung ist zur Ermittlung des Wassergehaltes in diesen Abfällen 1 - dieser bestimmt massgeblich deren Heizwert - ist im Bemessungsabschnitt 5 des Zuteilungsschachtes 2 eine Mikrowellen-Messanordnung 6 vorgesehen. Diese umfasst gemäss Fig.2, welche den Bemessungsabschnitt 5 des Zuteilungsschachtes 2 in vergrösserter Ansicht zeigt, zwei räumlich distanzierte Messstellen mit kombinierten Mikrowellen-Sende/Empfangsmodulen 6a, 6b, 6c, 6d, 6a', 6b', 6c', 6d'. Hierbei sind in zwei senkrecht untereinander liegenden und sich senkrecht zur Förderrichtung des Zuteilungsschachtes 2 erstreckenden Ebenen α und β jeweils vier kombinierte Mikrowellen-Sende/Empfangsmodule 6a, 6b, 6c, 6d bzw. 6a', 6b', 6c', 6d' an der Innenseite der Wand 2A des Zuteilungsschachtes 2 angeordnet. Den beiden Messstellen ist jeweils eine Auswerteeinheit (8,8') zugeordnet, deren Ausgangssignale der Prozesssteuereinheit 9 zugeführt werden.In a first preferred embodiment of the invention to determine the water content in these wastes 1 - this determines their calorific value - is in the design section 5 of the allocation shaft 2, a microwave measuring arrangement 6 provided. According to FIG. 2, this comprises the Dimensioning section 5 of the allocation shaft 2 in an enlarged view View shows two spatially distant measuring points with combined microwave transmitter / receiver modules 6a, 6b, 6c, 6d, 6a ', 6b', 6c ', 6d'. Here are in two perpendicular to each other lying and perpendicular to the conveying direction of the allocation shaft 2 extending levels α and β four each Combined microwave transmitter / receiver modules 6a, 6b, 6c, 6d or 6a ', 6b', 6c ', 6d' on the inside of the wall 2A of the Allocation shaft 2 arranged. The two measuring points is each assigned an evaluation unit (8,8 '), whose output signals are fed to the process control unit 9.

Jeweils zwei Mikrowellen-Sende/Empfangsmodule 6a und 6b bzw. 6c und 6d sind auf einer Geraden senkrecht zur Förderrichtung des Zuteilungsschachtes 2 einander gegenüberliegend angeordnet sind. In gleichen Weise sind die zu der Ebene β gehörigen Mikrowellen-Sende/Empfangsmodule 6a', 6b', 6c', 6d' angeordnet. Two microwave transmitter / receiver modules 6a and 6b or 6c and 6d are on a straight line perpendicular to the conveying direction the allocation shaft 2 arranged opposite each other are. The microwave transmission / reception modules belonging to the level β are in the same way 6a ', 6b', 6c ', 6d' arranged.

Die Mikrowellenanordnungen können dabei aus getrennten Sendeund Empfangsmodulen bestehen, die sich an den Wänden des Zuteilungsschachtes gegenüberliegen. Es können aber auch kombinierte Sende-/Empfangsmodule sein. Im ersten Fall wird das Transmissionsvermögen der Abfälle mittels der Mikrowellen erfasst. Im zweiten Fall wird das Reflexionsvermögen der Abfälle ermittelt. Eine dritte Möglichkeit besteht darin, im Bemessungsabschnitt 5 stehende Mikrowellen zu erzeugen und Ampltiduden und/oder Phasenänderungen der Mikrowellen zu detektieren, die wiederum Rückschlüsse auf den Wassergehalt bzw. den Heizwert der Abfälle ermöglichen.The microwave arrangements can consist of separate transmitters Receiving modules exist, which are located on the walls of the allocation shaft opposite. But it can also be combined Transmit / receive modules. In the first case it will Transmittance of waste recorded using microwaves. In the second case the reflectivity of the waste determined. A third option is in the design section 5 standing microwaves to generate and amplitudes and / or to detect phase changes in the microwaves, which in turn draw conclusions about the water content or the Allow calorific value of waste.

Die Menge der Abfälle 1, die zur Verbrennung auf den Rost 4 geladen wird, entspricht der Menge an Abfällen, die in den Bemessungsabschnitt 5 des Zuteilungsschacht 2 gefüllt werden kann. Aus der Signalschwächungen und/oder Phasenveränderungen der Mikrowellensignale kann mit Hilfe der Auswerteeinheit 8 der Wassergehalt und damit innerhalb gewisser Fehlergrenzen der Heizwert der in den Bemessungsabschnitt 5 transportierten Abfälle 1 ermittelt werden. Die Messung in zwei getrennten Ebenen a und β verhindert dabei Fehlinterpretationen, z.B. wenn ein grösseres Metallstück M im Abfall mitgeführt wird. Von der Auswerteeinheit 8 wird ein Signal mit der Information über den Wassergehalt bzw. Heizwert an eine Prozesssteuereinheit 9 weitergeleitet.The amount of waste 1 that is incinerated on the grate 4 is loaded corresponds to the amount of waste entering the design section 5 of the allocation shaft 2 can be filled can. From signal weakening and / or phase changes the microwave signals can be analyzed using the evaluation unit 8 the water content and thus within certain error limits the calorific value of the transported in the design section 5 Waste 1 can be determined. The measurement in two separate Levels a and β prevent misinterpretations, e.g. if a larger piece of metal M is carried in the waste. The evaluation unit 8 sends a signal with the information to the process control unit via the water content or calorific value 9 forwarded.

Diese Signale stehen bei der Verbrennung der Abfälle 1 für die Steuerung der Luftzufuhr zum Rost 4 zur Verfügung. Die in dem Zuteilungsschacht 2 enthaltenen Abfälle 1 werden mit Hilfe des Aufgabeschiebers 3 zur Verbrennung auf den Rost befördert. Die Menge der Abfälle 1, die auf den Rost 4 geladen wird, entspricht der Menge an Abfällen, die sich gerade in dem Bemessungsabschnitt 5 des Zuteilungsschacht 2 befindet. Mit Hilfe des Aufgabeschiebers 3 kann genau die Menge an Abfällen 1 auf den Rost 4 transportiert werden, deren Wassergehalt z.B. 30 Minuten vor der Verbrennung beim Einfüllen in den Bemessungsabschnitt 5 ermittelt wurde. Um eine fehlerfreie Zuordnung zwischen den Messwerten, die in der Prozesssteuereinheit gespeichert werden und den gerade auf den Rost zur Verbrennung beförderten Abfällen 1 sicherzustellen, wird der Aufgabeschieber 3 ebenfalls von der Prozesssteuereinheit 9 gesteuert.These signals represent the incineration of waste 1 Control of the air supply to grate 4 is available. The one in the Allocation shaft 2 contained waste 1 with the help of Feed slide 3 transported to the grate for combustion. The Amount of waste 1 that is loaded onto the grate 4 corresponds the amount of waste currently in the design section 5 of the allocation shaft 2 is located. With help the feed slide 3 can exactly the amount of waste 1 the grate 4 are transported, the water content of which e.g. 30th Minutes before combustion when filling in the dimensioning section 5 was determined. To make a correct assignment between the measured values stored in the process control unit be put on the grate for combustion Ensure transported waste 1, the feed pusher 3 also controlled by the process control unit 9.

Von der Prozesssteuereinheit 9 wird zudem eine Luftklappe 10 gesteuert, die in einer Rohrleitung 11 unterhalb des Rostes 4 angeordnet ist. Diese mündet in Kanäle 12 an der Unterseite des Rostes 4, von wo aus dem Rost 4 die für eine optimale Verbrennung erforderliche Menge an Luft zugeführt wird.An air flap 10 is also provided by the process control unit 9 controlled in a pipe 11 below the grate 4th is arranged. This opens into channels 12 on the underside the grate 4, from where the grate 4 is for optimal combustion required amount of air is supplied.

Eine alternative Möglichkeit, den Heizwert der Abfälle zu ermitteln, ist in Fig.3 und Fig.3a schematisch dargestellt. Im Bemessungsabschnitt sind an oder in zwei gegenüberliegenden Wänden gossflächige Elektroden 13 und 14 angeordnet. Diese sind von der regelmässig aus Metall bestehenden Wand des Aufgabeschachtes 2 mittels Isolatoren 15 elektrisch isoliert. Wie aus Fig.3a zu erkennen ist, besteht weist dabei der Isolator 15 T-förmigen Querschnitt auf, wobei der nach innen weisenden Schenkel dieselbe Länge aufweist wie die Wandstärke des Aufgabeschachtes und der Elektroden 13 bzw. 14. Auf diese Weise wird das Nachrutschen des Mülls weder durch den Isolator noch die Elektrode behindert. Er ist von aussen befestigt. au Mittels einer kombinierten Speise- und Strommesseinrichtung 16 wird ein Strom - geliefert von einer Konststantspannungsquelle - durch die Abfälle 1 im Bemessungsabschnitt 5 geleitet. Die Grösse des fliessenden Stromes I ist dabei ein Mass für Volumenleitfähigkeit der Abfälle und diese wiederum ein Mass für den Wassergehalt und damit den Heizwert des Mülls. Das Ausgangssignal der kombinierten Speise- und Strommesseinrichtung 16 wird der Prozesssteuereinheit 9 zugeführt.An alternative way to determine the calorific value of the waste is shown schematically in Fig.3 and Fig.3a. in the Design section are on or in two opposite Walls of the top surface electrodes 13 and 14 are arranged. This are from the wall of the feed shaft, which is regularly made of metal 2 electrically isolated by means of insulators 15. How 3a can be seen, there is the insulator 15 T-shaped cross-section, with the inward-facing Leg has the same length as the wall thickness of the feed shaft and electrodes 13 and 14. In this way the garbage does not slide through the isolator nor the electrode is obstructed. It is attached from the outside. au By means a combined feed and current measuring device 16 is a current - supplied by a constant voltage source - passed through waste 1 in assessment section 5. The The size of the flowing current I is a measure of volume conductivity of waste and this in turn is a measure of the water content and thus the calorific value of the waste. The output signal the combined feed and current measuring device 16 is fed to the process control unit 9.

Analog dem vorstehend beschriebenen Messverfahren mit Mikrowellen können auch hier zwei bezüglich Fliessrichtung des Abfalls voneinander distanzierte Elektrodenanordnungen vorgesehen sein, um Fehlmessungen z.B. infolge im Abfall mitgeführten grösseren Metallstücken zu vermeiden.Analogous to the microwave measurement method described above can also do two with regard to the flow direction of the waste electrode arrangements spaced apart from one another are provided to avoid incorrect measurements e.g. as a result of being carried in the waste to avoid larger pieces of metal.

Die Dichte der Abfälle 1 wird mit getrennten Verfahren ermittelt. Dies kann z.B. dadurch erfolgen, dass das Gewicht der Abfallsäule im Aufgabeschacht über dem des Aufgabeschiebers 3 mittels Kraftmessdosen 17, die in die Stützkonstruktion des Aufgabeschiebers integriert sind, gemessen wird. Diese Information wird ebenfalls in der Prozesssteuereinheit gespeichert und bei der Steuerung der Verbrennung berücksichtigt. Durch Vergleich des Gewichts dieses Abfallsäulen zu verschiedenen Zeiten lässt sich in Kombination z.B. mit dem Wassergehalt eine Aussage über die Müllqualität bzw. den Heizwert machen. Ferner kann auch die Fliessgeschwindigkeit des Abfalls im Zuleitungsschacht 2 z.B. mit einem Messrad 18, das mit einem Tachogenerator gekuppelt ist, ermittelt werden und ebenfalls über eine zugehörige Auswerteeinheit 19 der Prozesssteuereinheit 9 zugeführt werden.The density of waste 1 is determined using separate methods. This can e.g. by making the weight of the Waste column in the feed chute above that of the feed pusher 3 by means of load cells 17, which are in the supporting structure of the Feed slide are integrated, is measured. This information is also stored in the process control unit and taken into account when controlling the combustion. By Comparison of the weight of these waste columns to different ones Times can be combined in e.g. with the water content make a statement about the waste quality or the calorific value. Furthermore, the flow rate of the waste in the supply shaft can also 2 e.g. with a measuring wheel 18 that with a tachometer generator is coupled, determined and also via an associated evaluation unit 19 of the process control unit 9 are supplied.

Das im vorstehenden beschriebene Verfahren zur Verbrennung von Abfällen mit vorausschauender Fahrweise ist insbesondere für die Prozessregelung bei der Verbrennung von heterogenem Abfällen, insbesondere Müll, geeignet. Die Müllqualität geht als übergeordnete Führungsgrösse in die Regelung und Steuerung des Verbrennungsprozesses ein dergestalt, dass die Müllqualität als Leitparameter für die wesentlichen Stellglieder des Verbrennungsprozesses eingesetzt wird. Die Müllqualität in Form des Heizwertes und des Wassergehaltes ist dabei der wesentliche Leitparameter. Daneben spielen eine Reihe von weiteren Führungsgrössen und Störgrössen eine Rolle, die einzeln oder in Kombination berücksichtigt werden können:

  • die erzeugte Dampfmenge als weitere Führungsgrösse
  • der O2-Gehalt im Rauchgas als Störgrösse für die Dampfmenge als (weitere) Führungsgrösse
  • der O2-Gehalt im Rauchgas neben der Müllqualität als weitere Führungsgrösse für den Verbrennungsprozess
  • die Dampfmenge als Störgrösse auf den O2-Gehalt als Führungsgrösse
  • die Steuerung der Abfallbeschickung über den Aufgabeschieber in Abhängigkeit von der Müllqualität, dergestalt, dass Anzahl und Grösse der Zuteilportionen (der zuzuteilenden Abfallportion) selbstätig an die Müllqualität angepasst werden, wobei die Anzahl und Grösse der Zuteilportionen, z.B. über die Hublänge des Aufgabeschiebers, leistungsabhängig festgelegt werden
  • die Abfallschichtdicke über dem Verbrennungsrost, die z.B. über die Strömungswiderstände durch Rost und Abfallbett erfassbar und regelbar ist. Auf diese Weise lässt sich ein Ueberfüllen des Rostes verhindern und das Leerfahren des Rostes vermeiden. Dabei können auch die einzelnen Unterwindzonen des Rostes getrennt erfasst und der Müllqualität entsprechend geregelt werden.
  • Erfassung der Primärluftverteilung in den Unterwindzonen und deren Steuerung/Regelung in Abhängigkeit von der Müllqualität
  • Primärlufttemperatur über den Luftvorwärmer und daneben auch deren Verteilung aaaauf die einzelnen Unterwindzonen in Abhängigkeit von der Müllqualität
  • Variation der Rostgeschwindigkeiten in den einzelnen Rostzonen in Abhängigkeit von der Müllqualität
  • Beschickte Abfallmenge aufgrund der Fliessgeschwindigkeit des Abfalls im Zuteilungsschacht
  • Strömungswiderstände in den einzelnen Unterwindzonen zur Regelung der Feuerlage.
The method described above for the incineration of waste with a forward-looking mode of operation is particularly suitable for process control in the incineration of heterogeneous waste, in particular waste. The waste quality is the overriding benchmark in the regulation and control of the incineration process in such a way that the waste quality is used as a guiding parameter for the essential actuators of the incineration process. Waste quality in the form of calorific value and water content is the main guiding parameter. In addition, a number of other command variables and disturbance variables play a role, which can be taken into account individually or in combination:
  • the amount of steam generated as a further benchmark
  • the O2 content in the flue gas as a disturbance variable for the amount of steam as a (further) reference variable
  • the O2 content in the flue gas in addition to the waste quality as a further guide variable for the combustion process
  • the amount of steam as a disturbance variable on the O2 content as a reference variable
  • the control of the waste loading via the feed pusher depending on the waste quality, such that the number and size of the portion portions (the portion of waste to be allocated) are automatically adjusted to the waste quality, the number and size of the portion portions being determined depending on the output, e.g. via the stroke length of the feed pusher will
  • the thickness of the waste layer above the combustion grate, which can be detected and regulated, for example, by the flow resistances through the grate and waste bed. This prevents overfilling of the grate and prevents the grate from running empty. The individual underwind zones of the grate can also be recorded separately and regulated according to the waste quality.
  • Detection of the primary air distribution in the underwind zones and their control / regulation depending on the waste quality
  • Primary air temperature above the air preheater and also its distribution aaa to the individual underwind zones depending on the waste quality
  • Variation of the grate speeds in the individual grate zones depending on the waste quality
  • Quantity of waste loaded due to the flow rate of the waste in the allocation shaft
  • Flow resistances in the individual underwind zones to control the fire situation.

BezeichnungslisteLabel list

11
AbfälleWaste
22nd
ZuteilungsschachtAllocation shaft
33rd
AufgabeschieberFeed pusher
44th
Rostrust
55
Bemessungsabschnitt von 2Design section of 2
66
Einrichtung zur Ermittlung des Heizwertes von 1Device for determining the calorific value of 1
6a,...6a, ...
MikrowellenanordnungenMicrowave arrangements
8,8'8.8 '
AuswerteeinheitenEvaluation units
99
ProzesssteuereinheitProcess control unit
1010th
LuftklappeAir damper
1111
RohrleitungPipeline
1212th
Lüftkanäle in 11Air ducts in 11
13,1413.14
plattenförmige Elektrodenplate-shaped electrodes
1515
IsolatorenIsolators
1616
kombinierte Speise- und Messeinrichtungcombined feeding and measuring device
1717th
KraftmessdosenLoad cells
1818th
MessradMeasuring wheel
1919th
Auswerteeinheit für 17Evaluation unit for 17th

Claims (16)

  1. Method for the incineration of waste materials (1) which are conveyed onto a grate (4) for incineration via a metering shaft (2) and a feeder slide (3), to which grate (4) air is supplied to maintain the incineration, at least one parameter which affects the incineration being controlled as a function of the calorific value of the waste material to be incinerated, characterized in that the calorific value or at least a measurement variable, which determines the calorific value, of the waste materials (1) available for incineration is already determined in the metering shaft (2), and the measurement values determined therefrom are stored in a process control unit (9) which controls the quantity of air to be supplied to the grate and/or the quantity of the waste material to be supplied to the grate as a function of the magnitude of the calorific value during the incineration of the waste materials (1).
  2. Method according to Claim 1, [lacuna] in that the calorific value of the waste materials (1) available for incineration is determined at a given time prior to the feed onto the grate (4).
  3. Method according to either Claim 1 or 2, characterized in that the calorific value of the waste materials (1) is determined 30 minutes prior to the incineration within a measuring portion (5) of the metering shaft (2) which has a defined magnitude.
  4. Method according to one of Claims 1 to 3, characterized in that microwaves are transmitted within the measuring portion (5) perpendicular to the conveying direction of the metering shaft (2), and signal attenuations and/or phase shifts of these microwaves are evaluated to determine the calorific value in the waste materials (1) available for incineration.
  5. Method according to one of Claims 1 to 4, characterized in that microwaves are transmitted perpendicular to the conveying direction of the metering shaft (2) from the inner side of a first wall of the measuring portion (5) to the opposite wall and are received there and, when the microwaves pass through the waste materials (1), the water content thereof is calculated from the signal attenuation and/or phase shift of the microwaves received, and the measurement values determined are stored in the process control unit (9).
  6. Method according to one of Claims 1 to 5, characterized in that microwaves microwaves [sic] are transmitted perpendicular to the conveying direction of the metering shaft (2) from the inner side of a first wall of the measuring portion (5), and the signal changes of the microwaves reflected on the waste materials (1) are evaluated to determine the water content in these waste materials (1), and the measurement values determined are stored in the process control unit (9).
  7. Method according to one of Claims 1 to 6, characterized in that at least one vertical microwave is formed inside the measuring portion (5) between two opposite walls (2A, 2B) to determine the water content in waste materials (1), and the water content of the waste materials (1) available for incineration is determined from the signal attenuation and/or phase shift of this vertical microwave, and the measurement values is [sic] stored in the process control unit (9).
  8. Method according to one of Claims 1 to 7, characterized in that the microwave signals transmitted and received are passed to an evaluation unit (8) to determine the water content in the waste materials (1) available for incineration, which evaluation unit calculates, from the differences between the microwave signals transmitted and received, the water content of the waste materials (1) checked and passes an information signal on to the process control unit (9).
  9. Method according to one of Claims 1 to 3, characterized in that the electrical resistance in the waste materials available for incineration is measured perpendicular to the conveying direction of the metering shaft (2) within the measuring portion (5), which electrical resistance is evaluated to determine the calorific value in the waste materials (1) available for incineration.
  10. Method according to one of Claims 1 to 9, characterized in that, in addition to the calorific value of the waste materials (1) available for incineration, their flow rate and/or their weight are determined in the metering shaft and are evaluated in the process control unit (9).
  11. Apparatus for the incineration of waste materials, having a metering shaft (2), downstream of which a feeder slide (3) is disposed, which conveys the quantity of waste materials (1) to be incinerated in each case onto a grate (4) which is provided for this purpose and to which air can be supplied to maintain the incineration, characterized in that at least one measuring device (5) is installed within the metering shaft (2) to determine the calorific value of the waste materials (1) and is connected to at least one evaluation unit (8; 16) whose signal outputs is [sic] connected to a process control unit (9) which is provided for controlling the air supply to the grate (4) and/or for controlling the feeder slide (3).
  12. Apparatus according to Claim 11, characterized in that the measuring device (5) is installed within the measuring portion (5) of the metering shaft (2) and has microwave transmitters, microwave receivers or combined microwave transmission/reception modules which are connected to the evaluation unit (8) and whose signal output is connected to the process control unit (9).
  13. Apparatus according to either Claim 11 or 12, characterized in that at least four combined microwave transmission/reception modules (6a, 6b, 6c, 6d and 6a', 6b', 6c', 6d') are provided respectively in two planes (Â and β) lying vertically one below the other and running perpendicular to the conveying direction of the metering shaft (2).
  14. Apparatus according to Claim 11, characterized in that two plate-shaped electrodes (13, 14) are provided on the inner side of two opposite walls of the metering shaft (2), which electrodes are electrically insulated from said walls and are connected to a voltage source (16) which comprises a current measuring device for recording the current through the waste material located in the feeder shaft.
  15. Apparatus according to one of Claims 11 to 14, characterized in that means are provided for recording the weight of the waste materials (1) in the metering shaft (2).
  16. Apparatus according to one of Claims 11 to 15, [lacuna] in that means (18, 19) are provided in the metering shaft for recording the flow rate of the waste material in the metering shaft (2).
EP95810746A 1994-12-22 1995-11-29 Method of combustion of wastes Expired - Lifetime EP0718553B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4445954A DE4445954A1 (en) 1994-12-22 1994-12-22 Waste incineration process
DE4445954 1994-12-22

Publications (2)

Publication Number Publication Date
EP0718553A1 EP0718553A1 (en) 1996-06-26
EP0718553B1 true EP0718553B1 (en) 1999-09-29

Family

ID=6536698

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95810746A Expired - Lifetime EP0718553B1 (en) 1994-12-22 1995-11-29 Method of combustion of wastes

Country Status (9)

Country Link
EP (1) EP0718553B1 (en)
JP (1) JPH08219428A (en)
KR (1) KR100416114B1 (en)
AT (1) ATE185187T1 (en)
DE (2) DE4445954A1 (en)
DK (1) DK0718553T3 (en)
ES (1) ES2139873T3 (en)
NO (1) NO305338B1 (en)
TW (1) TW301699B (en)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19706606A1 (en) * 1997-02-20 1998-08-27 Babcock Anlagen Gmbh Process for controlling the temperature in thermal waste treatment plants and waste treatment plant
DE19917572A1 (en) 1999-04-19 2000-10-26 Abb Alstom Power Ch Ag Method for automatically setting the combustion of a waste incineration plant
DE19919222C1 (en) * 1999-04-28 2001-01-11 Orfeus Comb Engineering Gmbh Method for controlling the combustion of fuel with a variable calorific value
NL1014515C2 (en) * 1999-06-04 2000-12-06 Tno Determining system for process parameters relating to thermal process e.g. waste incineration, has computer which determines percentages and combustion heat of carbon dioxide, oxygen and water based on its mole
EP1259760A1 (en) * 2000-02-28 2002-11-27 Nederlandse Organisatie voor toegepast-natuurwetenschappelijk Onderzoek TNO System for continuous thermal combustion of matter, such as waste matter
US6499412B2 (en) * 2000-09-15 2002-12-31 Rohm And Haas Company Method of firebox temperature control for achieving carbon monoxide emission compliance in industrial furnaces with minimal energy consumption
KR100434650B1 (en) * 2000-12-22 2004-06-07 현대중공업 주식회사 Automatic Combustion Control System for Stoker Type Refuse Incinerator
WO2003029477A1 (en) * 2001-09-25 2003-04-10 F. Hoffmann-La Roche Ag Enzymatic process for the preparation of substituted 2-amino-3-(2-amino-phenylsulfanyl)-propionic acid
DE10327471B3 (en) * 2003-06-18 2005-04-07 Sar Elektronic Gmbh Method and device for controlling the fire performance of incinerators
DE10330376B4 (en) * 2003-07-04 2007-09-13 Pfister Gmbh Method and device for continuous, gravimetric dosing of flowable goods for combustion plants
ATE504784T1 (en) 2004-11-02 2011-04-15 Ae & E Inova Ag WASTE FLOW LIMIT REGULATION
DE102010031528B4 (en) * 2010-07-19 2013-04-25 Klaus Seeger System for determining an energy content of a solid fuel and use of the system
IT1402556B1 (en) * 2010-11-08 2013-09-13 Amsa S P A Societa Per Azioni Con Socio Unico LOADING AND COMBUSTION CONTROL SYSTEM, FOR WASTE COMBUSTION SYSTEMS.
EP2543997B1 (en) 2011-07-07 2014-08-13 Mantex AB Method and apparatus for the estimation of the heat value
WO2013107509A1 (en) * 2012-01-18 2013-07-25 Heinrich Unland System for determining an energy content of a fuel
WO2015051853A1 (en) 2013-10-11 2015-04-16 Mantex Ab Method and apparatus for estimation of heat value using dual energy x-ray transmission measurements and x-ray fluorescence measurements
KR101436067B1 (en) * 2014-04-08 2014-09-12 (주)씨엠환경에너지 Incinerator Containing Combustion Control Methode Using Exhaust GAS
JP6685506B2 (en) * 2016-03-30 2020-04-22 Jfeエンジニアリング株式会社 Waste incinerator
JP6624451B2 (en) * 2016-03-30 2019-12-25 Jfeエンジニアリング株式会社 Waste treatment furnace equipment
DE102017120222B3 (en) 2017-09-01 2018-11-29 Technische Universität Dresden Method and system for predicting a fuel composition in the thermal utilization of waste
JP2019178846A (en) * 2018-03-30 2019-10-17 Jfeエンジニアリング株式会社 Waste moisture percentage measuring apparatus, stoker-type waste incinerator, waste moisture percentage measuring method, and waste incineration method
JP2019178844A (en) * 2018-03-30 2019-10-17 Jfeエンジニアリング株式会社 Waste moisture percentage measuring apparatus, stoker-type waste incinerator, waste moisture percentage measuring method, and waste incineration method
JP2019178845A (en) * 2018-03-30 2019-10-17 Jfeエンジニアリング株式会社 Waste moisture percentage measuring apparatus, stoker-type waste incinerator, waste moisture percentage measuring method, and waste incineration method
JP2019178847A (en) * 2018-03-30 2019-10-17 Jfeエンジニアリング株式会社 Waste moisture percentage measuring apparatus, stoker-type waste incinerator, waste moisture percentage measuring method, and waste incineration method
JP6889346B1 (en) * 2019-08-20 2021-06-18 日本たばこ産業株式会社 Manufacturing method and manufacturing equipment for cylindrical heated smoking articles
JP6998485B1 (en) * 2021-06-29 2022-01-18 三菱重工環境・化学エンジニアリング株式会社 Incinerator equipment control device

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56141541A (en) * 1980-04-07 1981-11-05 Yamatake Honeywell Co Ltd Calorific value measuring device
JPS58195707A (en) * 1982-05-11 1983-11-15 Kawasaki Heavy Ind Ltd Combustion control method for refuse incinerator
DE3537945A1 (en) * 1985-10-25 1987-04-30 Babcock Anlagen Ag Method for combustion of waste
DE3871729D1 (en) 1987-10-24 1992-07-09 Mindermann Kurt Henry METHOD FOR CONTROLLING THE COMBUSTION OF FUEL WITH A VARIETY VARIABLE HEATING VALUE.
IT1226691B (en) * 1987-11-27 1991-02-04 Enichem Anic Spa Refuse derived fuel
DE3825931A1 (en) 1988-07-29 1990-02-01 Martin Umwelt & Energietech METHOD AND DEVICE FOR CONTROLLING THE FIRING POWER OF COMBUSTION PLANTS
DE3904272C3 (en) * 1989-02-14 1998-01-08 Steinmueller Gmbh L & C Method for detecting the radiation emanating from at least two spatially separate locations of at least one combustion zone on a grate and device for detecting such radiation
ATE114367T1 (en) * 1989-10-30 1994-12-15 Honeywell Inc COMBUSTION CONTROL WITH MICRO LIQUID BRIDGE.
EP0439645A1 (en) * 1990-01-30 1991-08-07 Officine Metalmeccaniche Nova S.P.A. Method for the controlled feeding of thermal destruction plants for urban and/or special refuse, and the plant for implementing the method
WO1991014915A1 (en) * 1990-03-27 1991-10-03 Nkk Corporation Method of controlling combustion in fluidized bed incinerator
JPH0659293B2 (en) * 1990-04-27 1994-08-10 川崎重工業株式会社 Medical waste treatment method and device
DE4028486A1 (en) * 1990-09-09 1992-05-27 Mindermann Kurt Henry Refuse incineration process control - is optimised w.r.t. variability of time taken to compress slack or compacted material entering process chamber
DE4106225C2 (en) * 1991-02-23 1993-12-16 Arndt Dipl Ing Goeller Sensor for determining the moisture of coarse and fine-grained bulk goods or fine-grained bulk goods with coarse-grained components in online operation
DE4215997C2 (en) * 1992-05-13 1995-09-07 Noell Abfall & Energietech Process for regulating the amount of waste or the layer of waste on combustion grates
DE4220149C2 (en) * 1992-06-19 2002-06-13 Steinmueller Gmbh L & C Method for regulating the combustion of waste on a grate of a furnace and device for carrying out the method
US5397551A (en) * 1992-07-09 1995-03-14 Daesung Industrial Co., Ltd. Incinerator
SG47890A1 (en) * 1993-04-20 1998-04-17 Martin Umwelt & Energietech Method for burning fuels particularly for incinerating garbage

Also Published As

Publication number Publication date
NO955178L (en) 1996-06-24
ES2139873T3 (en) 2000-02-16
EP0718553A1 (en) 1996-06-26
NO305338B1 (en) 1999-05-10
DE59506948D1 (en) 1999-11-04
KR960024010A (en) 1996-07-20
NO955178D0 (en) 1995-12-20
DE4445954A1 (en) 1996-06-27
TW301699B (en) 1997-04-01
JPH08219428A (en) 1996-08-30
DK0718553T3 (en) 2000-04-10
ATE185187T1 (en) 1999-10-15
KR100416114B1 (en) 2004-04-21

Similar Documents

Publication Publication Date Title
EP0718553B1 (en) Method of combustion of wastes
DE4344906C2 (en) Process for controlling individual or all factors influencing the combustion on a grate
EP1698827B1 (en) Process for burning fuels and more particularly wastes
EP0696708B1 (en) Method for controlling the burning in combustion plants, especially waste incineration plants
CH668641A5 (en) METHOD AND DEVICE FOR AUTOMATICALLY DETECTING THE THROUGHPUT OF A FLOW OF MATERIALS, e.g. GRAIN.
EP0317731A1 (en) Combustion-controlling method of fuel with a highly variable calorific value
DE2515807A1 (en) PROCESS FOR ROESTING PETROL COOK
EP0955499A2 (en) Process for regulating the firing power in combustion plants
EP0897086A2 (en) Method for determining the average radiation of a burner bed in an incinerating plant and for the control of the combustion process
DE3852397T2 (en) Device and method for conveying waste materials into an oven.
DE4217070A1 (en) BOILERS AND OTHER COMBUSTION CHAMBERS AND A METHOD FOR MIXING COMBUSTION OF COAL AND RUBBER
DE4426280A1 (en) Measuring concentration of solid particles in gas esp. for controlling administration of coal dust in coal-powered power station
EP0156958B1 (en) Regulation method for the combustion air quantity of a burner apparatus
EP2210044B1 (en) Method for regulating a solid fuel firing unit
EP0718555A1 (en) Method and device for waste combustion
WO2006089693A1 (en) Method for increasing the package throughput in rotary kiln plants
DE60110100T2 (en) METHOD FOR THE AUTOMATIC CONTROL OF A SOLID FUEL BURNER
DE1927606C3 (en) Incinerator
DE102007050318B4 (en) Device for the automatic control of a combustion device for solid fuels
EP1046861B1 (en) Process to regulate automatically the combustion of a waste incinerator
DE10327471B3 (en) Method and device for controlling the fire performance of incinerators
DE3616995C2 (en)
DE19504544A1 (en) Method for determining the loading of a gas stream with solid components
DE69204960T2 (en) Method and device for load control of boilers with mechanical traveling grate
DE1301868B (en) Shaft firing for waste incineration

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB IT LI NL PT SE

17P Request for examination filed

Effective date: 19961125

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ASEA BROWN BOVERI AG

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19981214

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB IT LI NL PT SE

REF Corresponds to:

Ref document number: 185187

Country of ref document: AT

Date of ref document: 19991015

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59506948

Country of ref document: DE

Date of ref document: 19991104

ITF It: translation for a ep patent filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ABB BUSINESS SERVICES LTD INTELLECTUAL PROPERTY (S

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19991222

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2139873

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 19991229

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

NLS Nl: assignments of ep-patents

Owner name: ALSTOM

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: ASEA BROWN BOVERI AG TRANSFER- ALSTOM

Ref country code: CH

Ref legal event code: NV

Representative=s name: GIACOMO BOLIS C/O ALSTOM (SWITZERLAND) LTD

REG Reference to a national code

Ref country code: PT

Ref legal event code: PC4A

Free format text: ALSTOM FR

Effective date: 20011109

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Ref country code: FR

Ref legal event code: CD

Ref country code: FR

Ref legal event code: CA

BECH Be: change of holder

Free format text: 20020130 *ALSTOM

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: MARTIN GMBH FUER UMWELT- UND ENERGIETECHNIK

Free format text: ALSTOM#25, AVENUE KLEBER#75116 PARIS (FR) -TRANSFER TO- MARTIN GMBH FUER UMWELT- UND ENERGIETECHNIK#LEOPOLDSTRASSE 248#80807 MUENCHEN (DE)

Ref country code: CH

Ref legal event code: NV

Representative=s name: ZIMMERLI, WAGNER & PARTNER AG

NLS Nl: assignments of ep-patents

Owner name: MARTIN GMBH FUER UMWELT- UND ENERGIETECHNIK

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: PT

Ref legal event code: PC4A

Free format text: MARTIN GMBH FUR UMWELT- UND ENERGIETECHNIK DE

Effective date: 20031104

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: MARTIN GMBH FUER UMWELT- UND ENERGIETECHNIK

Free format text: MARTIN GMBH FUER UMWELT- UND ENERGIETECHNIK#LEOPOLDSTRASSE 248#80807 MUENCHEN (DE) -TRANSFER TO- MARTIN GMBH FUER UMWELT- UND ENERGIETECHNIK#LEOPOLDSTRASSE 248#80807 MUENCHEN (DE)

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: WAGNER PATENT AG, CH

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20141119

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20141119

Year of fee payment: 20

Ref country code: FR

Payment date: 20141119

Year of fee payment: 20

Ref country code: ES

Payment date: 20141126

Year of fee payment: 20

Ref country code: CH

Payment date: 20141119

Year of fee payment: 20

Ref country code: DE

Payment date: 20141119

Year of fee payment: 20

Ref country code: GB

Payment date: 20141119

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20141120

Year of fee payment: 20

Ref country code: PT

Payment date: 20141127

Year of fee payment: 20

Ref country code: NL

Payment date: 20141119

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20141125

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20141118

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59506948

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

Ref country code: DK

Ref legal event code: EUP

Effective date: 20151129

REG Reference to a national code

Ref country code: NL

Ref legal event code: MK

Effective date: 20151128

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: MAXIMUM VALIDITY LIMIT REACHED

Effective date: 20151129

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20151128

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK07

Ref document number: 185187

Country of ref document: AT

Kind code of ref document: T

Effective date: 20151129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20151128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20151207

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20160304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20151130