JP6685506B2 - Waste incinerator - Google Patents

Waste incinerator Download PDF

Info

Publication number
JP6685506B2
JP6685506B2 JP2016069061A JP2016069061A JP6685506B2 JP 6685506 B2 JP6685506 B2 JP 6685506B2 JP 2016069061 A JP2016069061 A JP 2016069061A JP 2016069061 A JP2016069061 A JP 2016069061A JP 6685506 B2 JP6685506 B2 JP 6685506B2
Authority
JP
Japan
Prior art keywords
waste
moisture content
incinerator
meter
chute
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016069061A
Other languages
Japanese (ja)
Other versions
JP2017180963A (en
Inventor
太一 薄木
太一 薄木
知広 傳田
知広 傳田
中山 剛
剛 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2016069061A priority Critical patent/JP6685506B2/en
Publication of JP2017180963A publication Critical patent/JP2017180963A/en
Application granted granted Critical
Publication of JP6685506B2 publication Critical patent/JP6685506B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Incineration Of Waste (AREA)

Description

本発明は廃棄物の性状としての水分率を計測しその計測値に応じて廃棄物を焼却する廃棄物焼却炉に関する。   The present invention relates to a waste incinerator that measures a moisture content as a property of waste and incinerates the waste according to the measured value.

近年、廃棄物焼却炉における廃棄物の焼却処理によって発生する熱エネルギーの回収への関心が高まってきており、この熱エネルギーで駆動するボイラ発電設備が設置された廃棄物焼却炉が増加し、高い効率での熱回収を実現できる燃焼運転が要求されている。一方、廃棄物焼却炉から大気中に放出される環境汚染物質の規制が厳しくなるに従い、ダイオキシン類や窒素酸化物など燃焼由来の有害物質の排出を低減する燃焼運転も必要とされている。   In recent years, there has been an increasing interest in recovering the thermal energy generated by the incineration of waste in a waste incinerator, and the number of waste incinerators equipped with a boiler power generation facility driven by this thermal energy has increased and is high. Combustion operation that can achieve efficient heat recovery is required. On the other hand, as the regulation of environmental pollutants released from the waste incinerator into the atmosphere becomes stricter, combustion operation is required to reduce the emission of toxic substances derived from combustion such as dioxins and nitrogen oxides.

このように、廃棄物焼却炉に高度な燃焼運転制御が望まれているため、自動燃焼制御装置によって上記の要求を満たす運転制御が行われている。自動燃焼制御装置では、焼却炉が例えばストーカ式焼却炉の場合、操作量である給塵速度、燃焼火格子送り速度、燃焼空気量、及び冷却空気量などを制御することにより、蒸気発生量を安定化し、かつ排ガス中のダイオキシン類や窒素酸化物濃度を低く抑え、灰中の未燃成分を少なくする目的で、廃棄物を安定して燃焼するように運転されている。しかしながら、このような燃焼制御は、廃棄物の投入の時点で該廃棄物の性状を監視せずに、いずれも燃焼の結果発生する燃焼ガス温度、燃焼ガス中酸素濃度、燃焼ガス中一酸化炭素濃度等を監視する因子として検出して、各操作量の制御値へフィードバックする方法であり、そのため後追い型の制御となり、処理炉に投入する廃棄物の性状が変動した場合に必ずしも安定した運転制御が達成できないことがある。   As described above, since advanced combustion operation control is desired for the waste incinerator, operation control that satisfies the above requirements is performed by the automatic combustion control device. In the automatic combustion control device, when the incinerator is, for example, a stoker-type incinerator, the steam generation amount is controlled by controlling the operation amount such as the dust feed rate, the combustion grate feed rate, the combustion air amount, and the cooling air amount. For the purpose of stabilizing, suppressing the concentration of dioxins and nitrogen oxides in the exhaust gas to be low, and reducing the unburned components in the ash, the waste is stably burned. However, such combustion control does not monitor the properties of the waste at the time of inputting the waste, and in any case, the combustion gas temperature, the oxygen concentration in the combustion gas, the carbon monoxide in the combustion gas generated as a result of the combustion are all observed. This is a method of detecting the concentration etc. as a factor to monitor and feeding back to the control value of each manipulated variable, therefore it becomes a follow-up type control, and stable operation control is always required when the property of the waste to be put into the processing furnace changes. May not be achieved.

廃棄物焼却炉の燃焼運転の安定性を乱す大きな要因として、投入される廃棄物の性状が一定しないため廃棄物の発熱量が変動するという点がある。焼却炉へ投入される廃棄物の性状は、廃棄物が収集される地域や、収集される時刻、または天候や、季節によって大きく異なることから、廃棄物の発熱量は大きく変動する。そこで、投入される廃棄物の性状を投入前に求めて、求めた廃棄物の性状により燃焼制御を行う廃棄物焼却炉の制御方法が特許文献1で提案されている。廃棄物の性状のうち、上記発熱量を大きく左右する因子は廃棄物の水分率であり、特許文献1の技術では、廃棄物焼却炉へ廃棄物を供給するコンベアに、コンベア上の廃棄物の重量を計測する重量計測装置と、コンベア上の廃棄物の厚みを計測するレベル計測装置と、コンベア上の廃棄物の水分含有率を計測する赤外線水分計を備え、これらの計測値から廃棄物の性状としての水分率を推定し、その性状に応じた燃焼制御を行うことが記載されている。また、特許文献2では、廃棄物焼却炉の投入口から燃焼室へ向け垂下するシュートの高さ方向中間部に水分率計として静電容量計を配置し、一対の電極間での廃棄物の静電容量を計測することで廃棄物の水分率を得ることとしている。   A major factor that disturbs the stability of the combustion operation of the waste incinerator is that the heat generation amount of the waste fluctuates because the properties of the input waste are not constant. Since the properties of the waste that is put into the incinerator greatly vary depending on the area where the waste is collected, the time when the waste is collected, the weather, and the season, the calorific value of the waste greatly changes. Therefore, Patent Document 1 proposes a method for controlling a waste incinerator in which the properties of the waste to be input are obtained before the input and combustion control is performed according to the obtained properties of the waste. Among the properties of the waste, the factor that greatly affects the heat generation amount is the moisture content of the waste, and in the technique of Patent Document 1, the waste on the conveyor is supplied to the conveyor that supplies the waste to the waste incinerator. It is equipped with a weight measuring device that measures the weight, a level measuring device that measures the thickness of the waste on the conveyor, and an infrared moisture meter that measures the moisture content of the waste on the conveyor. It is described that the water content as a property is estimated and combustion control is performed according to the property. Further, in Patent Document 2, a capacitance meter is arranged as a moisture content meter at a middle portion in a height direction of a chute that is hung down from a charging port of a waste incinerator toward a combustion chamber, and a capacitance meter is disposed between a pair of electrodes. The moisture content of waste is obtained by measuring the capacitance.

赤外線水分計は、赤外線を測定対象物に照射しその対象物からの赤外線の反射を検出して水分率を求めている。水分は近赤外線の特定波長を吸収する性質があり、測定対象物に含まれる水分量が多くなれば、吸収される赤外線エネルギーも大きくなり、反射する赤外線エネルギー量が減少する。赤外線水分計はこのような現象を応用して、測定対象物の水分含有率を測定するものである。   The infrared moisture meter irradiates infrared rays on an object to be measured and detects the reflection of infrared rays from the object to obtain the moisture content. Moisture has a property of absorbing a specific wavelength of near-infrared light, and when the amount of water contained in the measurement target increases, the amount of infrared energy absorbed increases and the amount of reflected infrared energy decreases. The infrared moisture meter applies such a phenomenon to measure the moisture content of the measurement object.

静電容量計は、静電容量の値と水分率との値の対応関係を保有している水分率算定器に接続されており、静電容量計で計測された計測値から上記対応関係にもとづいて水分率を算定できるようになっている。   The capacitance meter is connected to the moisture content calculator that holds the correspondence relationship between the capacitance value and the moisture content value, and the correspondence value is calculated from the measurement value measured by the capacitance meter. The moisture content can be calculated based on this.

特開2000−283444Japanese Patent Laid-Open No. 2000-283444 特開2010−216990JP 2010-216990A

特許文献1に記載の技術では、コンベア上の廃棄物の重量とレベル(高さ)と水分率を計測し、廃棄物の性状を推定している。しかしながら、この技術では、廃棄物の水分率測定に赤外線水分計を用いて廃棄物表層部からの赤外線の反射を計測するため、廃棄物表層部の水分率しか計測できないという問題がある。   In the technique described in Patent Document 1, the weight and level (height) of the waste on the conveyor and the moisture content are measured to estimate the property of the waste. However, this technique has a problem that only the moisture content of the waste surface layer can be measured because the infrared moisture content is measured using an infrared moisture meter to measure the moisture content of the waste material.

また、特許文献2にあっては、シュート内の廃棄物層においてその高さ位置によって廃棄物の重量に起因して廃棄物の圧密度が変化し、したがって水分率も変化しているにも拘らず、廃棄物層の高さ方向中間位置で水分率を計測しているので、燃焼室へ送入される直前の水分率を計測していることにはならないという問題がある。詳述すると、シュート内へ廃棄物が順次投入されると、シュート内に廃棄物層を形成するが、この廃棄物層の上層では、廃棄物がばらばらに粗く積み重なっている状態であり、この廃棄物がシュート内を降下する間に、廃棄物の重量に起因して、廃棄物の空隙に細かい廃棄物が入り込み空隙が充填される。このように下層に向かうにつれて圧密度が変化する。圧密度が変化すると水分率も変化する。したがって、廃棄物焼却に際しては、焼却直前における廃棄物の水分率に基づく適切な運転制御が必要であるにも拘らず、特許文献2では、中間部における水分率を計測しているので、必ずしも適切な計測とは言えない。   Further, in Patent Document 2, the pressure density of the waste changes due to the weight of the waste due to the height position of the waste layer in the chute, and thus the moisture content also changes. However, since the moisture content is measured at the middle position in the height direction of the waste layer, there is a problem in that the moisture content immediately before being fed into the combustion chamber is not measured. To be more specific, when wastes are sequentially charged into the chute, a waste layer is formed in the chute, but the wastes in the upper layer of this waste layer are in a state of being roughly and coarsely stacked. Due to the weight of the waste, the waste voids are filled with fine waste and fill the voids as they descend through the chute. Thus, the pressure density changes toward the lower layer. When the pressure density changes, the water content also changes. Therefore, in the case of waste incineration, although it is necessary to perform appropriate operation control based on the moisture content of the waste immediately before incineration, in Patent Document 2, the moisture content in the middle portion is measured, so that it is not always appropriate. It cannot be said that it is a simple measurement.

本発明は、かかる事情に鑑み、燃焼室へ送入される直前の廃棄物の水分率を把握して、適正な運転条件で廃棄物焼却炉を運転制御することを可能とする廃棄物焼却炉を提供することを課題とする。   In view of such circumstances, the present invention is capable of grasping the moisture content of waste just before it is sent to the combustion chamber, and operating and controlling the waste incinerator under appropriate operating conditions. The challenge is to provide.

上述の課題は本発明によれば、次のように構成される廃棄物焼却炉によって解決される。   According to the present invention, the above-mentioned problems are solved by a waste incinerator configured as follows.

廃棄物を焼却する廃棄物焼却炉の廃棄物投入口から下方に延びるシュート内に廃棄物の水分率を計測する水分計の検出要素を設けた廃棄物焼却炉において、水分計の検出要素は、シュート内空間へ廃棄物が投入されて形成された廃棄物層の上部をなす高層部域よりも圧密度の高い低層部域に配設されていることを特徴とする廃棄物焼却炉。   In a waste incinerator in which a detection element of the moisture meter for measuring the moisture content of the waste is provided in a chute extending downward from the waste input port of the waste incinerator for incinerating the waste, the detection element of the moisture meter is A waste incinerator characterized by being disposed in a low-rise area having a higher pressure density than a high-rise area forming an upper part of a waste layer formed by throwing waste into a space inside a chute.

このような構成の本発明装置によれば、廃棄物の水分率がシュート内の廃棄物層の低層部域で計測されるので、廃棄物の水分率が燃焼室へ送入される直前で計測されることとなり、廃棄物焼却炉の運転条件を最適に制御できるようになる。   According to the device of the present invention having such a configuration, since the moisture content of the waste is measured in the lower layer region of the waste layer in the chute, the moisture content of the waste is measured immediately before being fed into the combustion chamber. As a result, the operating conditions of the waste incinerator can be optimally controlled.

本発明において、水分計が配置される低層部域は、廃棄物層の上面から3mの深さ位置よりも下方に形成される領域であれば十分である。   In the present invention, the lower layer region in which the moisture meter is arranged is sufficient if it is a region formed below the depth position of 3 m from the upper surface of the waste layer.

このように構成される本発明装置によれば、廃棄物の水分率が、燃焼室へ送入される直前となる廃棄物層の低層部域で計測されるので、廃棄物焼却炉は、燃焼室での焼却に最も適した運転条件に制御されて運転され、その効率が一段と向上する。   According to the device of the present invention configured as described above, the moisture content of the waste is measured in the lower layer region of the waste layer immediately before being fed into the combustion chamber. It is controlled and operated under the most suitable operating conditions for incineration in the room, and its efficiency is further improved.

本発明の一実施形態装置の概要構成図である。It is a schematic block diagram of the apparatus of one embodiment of the present invention.

図1は、廃棄物焼却炉としての火格子式廃棄物焼却炉1の構成を示す。本発明は、火格子式のみならず他の形式の廃棄物焼却炉にも適用可能である。   FIG. 1 shows the structure of a grate-type waste incinerator 1 as a waste incinerator. The present invention is applicable not only to the grate type but also to other types of waste incinerators.

廃棄物焼却炉1は、火格子11の下方に設けられた複数の空気供給系12から燃焼用空気を受け、上記火格子11の上方に形成される燃焼室13で火格子11上の廃棄物Pを焼却するようになっている。火格子11は右方に向けた送り速度で上記廃棄物Pを送っている。上記火格子11の左端上方位置には給塵装置14、例えばプッシャーがごみを火格子11上に送り出すように設けられている。該給塵装置14の上方にはシュート15が上方に延びており、その上端に投入口としてのホッパ16が設けられている。廃棄物焼却炉1の炉外には、ごみピット17が配置されている。そして、その上方には、ごみクレーン18が設けられていて、ごみピット17から廃棄物Pを取り出して上記ホッパ16へ投下するようになっている。   The waste incinerator 1 receives combustion air from a plurality of air supply systems 12 provided below the grate 11, and wastes on the grate 11 in a combustion chamber 13 formed above the grate 11. It is designed to incinerate P. The grate 11 is sending the waste P at a feed rate to the right. A dust supply device 14, for example, a pusher, is provided at a position above the left end of the grate 11 so as to send dust to the grate 11. A chute 15 extends upward above the dust supply device 14, and a hopper 16 as an input port is provided at the upper end of the chute 15. A waste pit 17 is arranged outside the waste incinerator 1. A refuse crane 18 is provided above it so that the waste P can be taken out from the refuse pit 17 and dropped into the hopper 16.

上記シュート15内に形成されている廃棄物Pの層は、既述のように、その圧密度から低圧密度の高層部域Aと高圧密度の低層部域Bとの二層に大別される。高層部域Aでは廃棄物がばらばらに粗く積み重なっている状態であり低圧密度であるが、低層部域Bでは該低層部域Bの廃棄物の自重に加えて上記高層部域Aの廃棄物の重量をも受けるので、廃棄物の空隙に細かい廃棄物が入り込み空隙が充填され高圧密度となっている。水分率は高圧密度の低層部域Bでの方が低圧密度の高層部域Aよりも高い。   As described above, the layer of the waste P formed in the chute 15 is roughly divided into two layers, that is, a high-rise area A having a low-pressure density and a low-rise area B having a high-pressure density. . In the high-rise area A, the waste is coarsely and randomly piled up and has a low pressure density, but in the low-rise area B, in addition to the dead weight of the waste in the low-rise area B, the waste in the high-rise area A is also added. Since it also receives weight, fine waste enters the voids of the waste and fills the voids, resulting in a high-pressure density. The water content is higher in the low-layer area B of high pressure density than in the high-layer area A of low pressure density.

低層部域Bは、多くの場合、廃棄物層の上面から3mの深さ位置よりも下方の域である。このことは下記の検討により確認されている。都市ごみ等一般廃棄物では2.5kPa以上の圧力がかかると、廃棄物の空隙に細かい廃棄物が充填され嵩密度が高くなり、加圧される圧力が高くなるにつれ嵩密度が高くなり5kPa以上の圧力下では嵩密度の増加はなく一定となる。一方、一般廃棄物の無加圧下での嵩密度は150〜200kg/mであり、高さが3mの堆積廃棄物の底部での廃棄物自重による圧力は5kPaになる。これらのことから、廃棄物層の上面から3mの深さ位置よりも下方の域が高圧密度の低層部域であることを確認した。 In many cases, the lower layer area B is an area below the depth position of 3 m from the upper surface of the waste layer. This has been confirmed by the following examination. In general waste such as municipal waste, when pressure of 2.5 kPa or more is applied, the void density of the waste is filled with fine waste and the bulk density becomes high. Under the pressure of 1, the bulk density does not increase and becomes constant. On the other hand, the bulk density of general waste without pressure is 150 to 200 kg / m 3 , and the pressure due to the dead weight of the waste at the bottom of the piled waste having a height of 3 m is 5 kPa. From these, it was confirmed that the region below the depth position of 3 m from the upper surface of the waste layer is the low-layer region of high pressure density.

上記空気供給系12での空気吹込み量、火格子11の送り速度、給塵装置14の送り出し速度は可変となっている。   The amount of air blown into the air supply system 12, the feed rate of the grate 11, and the feed rate of the dust supply device 14 are variable.

上記ごみクレーン18は、横方向に走行自在なクレーン本体18Aと、該クレーン本体18Aからワイヤ18Bにより垂下し昇降自在なバケット18Cとを有している。該バケット18Cは、上記ごみピット17の上方位置とごみピット17内位置との間を昇降自在で、ごみピット17内の廃棄物Pを掴んで上昇し、ホッパ16の上方位置まで横方向に移動した後に、廃棄物Pを該ホッパ16内へ落下投入するようになっている。   The waste crane 18 has a crane main body 18A that can travel laterally and a bucket 18C that can hang down from the crane main body 18A with a wire 18B and can move up and down. The bucket 18C can move up and down between a position above the waste pit 17 and a position inside the waste pit 17, grasps the waste P in the waste pit 17 and moves up, and moves laterally to a position above the hopper 16. After that, the waste P is dropped into the hopper 16.

本実施形態では、上記シュート15内の廃棄物Pの静電容量を計測する静電容量計20が設けられている。該静電容量計20は、検出要素20A(例えば電極)を有していて、該検出要素20Aは上記シュート15の低層部域Bにおける側壁の内面に取り付けられている。かくして、静電容量計20は、シュート15内の低層部域Bでの検出要素20A近傍に存在する高圧密度の廃棄物Pの静電容量を検出する。   In this embodiment, a capacitance meter 20 for measuring the capacitance of the waste P in the chute 15 is provided. The capacitance meter 20 has a detection element 20A (for example, an electrode), and the detection element 20A is attached to the inner surface of the side wall of the chute 15 in the lower layer area B. Thus, the capacitance meter 20 detects the capacitance of the waste P having a high pressure density and existing in the vicinity of the detection element 20A in the lower layer area B in the chute 15.

上記静電容量計20は、水分率算定器21に接続されている。この水分率算定器21では、予め保有しているごみの静電容量の値と水分率の値との関係から、上記静電容量計20で計測された静電容量の値から対応する水分率の値を算定できるようになっている。具体的には、水分率算定器21には、廃棄物の静電容量と廃棄物の水分率との関係を予め計測して明らかにした関係データベースが保持されており、静電容量計20から送られてきた廃棄物Pの静電容量の計測値を、上記関係データベースにおける静電容量と水分率との関係と照合して計測された廃棄物の水分率を算定する。   The capacitance meter 20 is connected to a moisture content calculator 21. In this moisture content calculator 21, the moisture content corresponding to the value of the capacitance measured by the capacitance meter 20 is calculated from the relationship between the value of the capacitance and the value of the moisture content of the dust that is stored in advance. The value of can be calculated. Specifically, the moisture content calculator 21 holds a relational database which is obtained by previously measuring and clarifying the relation between the capacitance of waste and the moisture percentage of waste. The measured moisture content of the waste P is collated with the relationship between the capacitance and the moisture content in the above-mentioned relational database to calculate the measured moisture content of the waste.

本実施形態では、検出要素20Aを含む静電容量計20そして水分率算定器21によって、静電容量接触式水分計が構成されている。また、水分計としては、該静電容量接触式水分計に限られず、例えば、静電容量透過式水分計、マイクロ波接触式水分計、マイクロ波透過式水分計や赤外線水分計を採用してもよい。   In the present embodiment, the capacitance meter 20 including the detection element 20A and the moisture content calculator 21 constitute a capacitance contact type moisture meter. Further, the moisture meter is not limited to the capacitance contact type moisture meter, and, for example, a capacitance transmission type moisture meter, a microwave contact type moisture meter, a microwave transmission type moisture meter or an infrared moisture meter is adopted. Good.

上記水分率算定器21は制御装置22に接続されており、この制御装置22は、上記シュート15内の低層部域Bの高圧密度の廃棄物Pについて水分率算定器21より受けた水分率の値から、予め保持している対応関係にもとづき、正確な廃棄物の発熱量を推定し、それに応じて安定的な廃棄物の焼却が行われるように、予め保持している制御フローにもとづき、空気供給系12、火格子11、給塵装置14へ指令信号を送り、空気供給系12での空気吹込み量、火格子11の送り速度、給塵装置14の送り出し速度等の各操作量を制御するようになっている。   The water content calculator 21 is connected to a controller 22, which controls the water content received from the water content calculator 21 with respect to the high-pressure-density waste P in the lower layer area B in the chute 15. From the value, the accurate calorific value of waste is estimated based on the correspondence that is held in advance, and based on the control flow that is held in advance so that stable waste incineration is performed accordingly. A command signal is sent to the air supply system 12, the grate 11, and the dust supply device 14, and each operation amount such as the amount of air blown in the air supply system 12, the feed speed of the grate 11, and the delivery speed of the dust supply device 14 is set. It is designed to be controlled.

このように本実施形態では、上記低層部域Bの廃棄物P、すなわち燃焼室13へ送入される直前の廃棄物Pについて算定された水分率にもとづいて、各操作量を制御するようになっているので、廃棄物焼却炉の運転条件を最適に制御できる。   As described above, in the present embodiment, each manipulated variable is controlled based on the moisture content calculated for the waste P in the low-rise area B, that is, the waste P immediately before being sent to the combustion chamber 13. Therefore, the operating conditions of the waste incinerator can be optimally controlled.

廃棄物焼却炉1に供給された廃棄物Pは次の要領で処理される。   The waste P supplied to the waste incinerator 1 is processed as follows.

ごみピット17内の廃棄物Pはホッパ16へごみクレーン18により投入される。該廃棄物Pは、シュート15の下部に設置された給塵装置14(プッシャー)により火格子11上に押し出される。火格子11上の廃棄物Pは火格子11下の空気供給系12から吹き込まれる燃焼用空気により燃焼される。   The waste P in the waste pit 17 is thrown into the hopper 16 by the waste crane 18. The waste P is pushed onto the grate 11 by a dust supply device 14 (pusher) installed in the lower part of the chute 15. The waste P on the grate 11 is burned by the combustion air blown from the air supply system 12 below the grate 11.

ホッパ16から垂下して設けられたシュート15の低層部域Bの側壁の内面に検出要素20Aが設けられ、低層部域Bでの検出要素20A近傍の高圧密度の廃棄物Pの静電容量を静電容量計20により計測する。水分率算定器21では水分率が算定される。   The detection element 20A is provided on the inner surface of the side wall of the low-rise area B of the chute 15 that is provided so as to hang down from the hopper 16, and the capacitance of the waste P of high pressure density in the vicinity of the detection element 20A in the low-rise area B It is measured by the capacitance meter 20. The moisture content calculator 21 calculates the moisture content.

制御装置22では、水分率算定器21から送られてきた水分率の値から、予め保持している対応関係に基づき、正確な廃棄物の発熱量を推定し、それに応じて予め保持している制御フローに基づき、安定的な廃棄物の焼却処理が行われるように指令信号を発する。この指令信号によって給塵装置14の送り速度、火格子11の送り速度、火格子11の下方の空気供給系12から吹き込まれる燃焼用空気の吹込み量等の操作量が調整される結果、廃棄物の燃焼状態が制御される。   The controller 22 estimates an accurate calorific value of the waste from the value of the moisture content sent from the moisture content calculator 21 based on the correspondence relation held in advance, and holds it in advance accordingly. Based on the control flow, a command signal is issued so that a stable waste incineration process is performed. This command signal adjusts the feed rate of the dust supply device 14, the feed rate of the grate 11, the operation amount such as the amount of combustion air blown from the air supply system 12 below the grate 11, and the like, resulting in the discarding. The combustion state of the object is controlled.

1 廃棄物焼却炉
15 シュート
16 投入口(ホッパ)
20 水分計(静電容量計)
20A 検出要素
A 高層部域
B 低層部域
P 廃棄物
1 Waste incinerator 15 Chute 16 Input port (hopper)
20 Moisture meter (capacitance meter)
20A Detection element A High-rise area B Low-rise area P Waste

Claims (1)

廃棄物を焼却する廃棄物焼却炉の廃棄物投入口から下方に延びるシュート内に廃棄物の水分率を計測する水分計の検出要素を設けた廃棄物焼却炉において、
水分計の検出要素は、シュート内空間へ廃棄物が投入されて形成された廃棄物層の上部をなす高層部域よりも圧密度の高い低層部域に配設されており、
低層部域は、廃棄物層の上面から3mの深さ位置よりも下方に形成される領域であることを特徴とする廃棄物焼却炉。
In a waste incinerator in which a detection element of a moisture meter for measuring the moisture content of waste is provided in a chute extending downward from the waste input port of the waste incinerator for incinerating waste,
The detection element of the moisture meter is arranged in a low-rise area having a higher pressure density than the high-rise area forming the upper part of the waste layer formed by throwing the waste into the chute space ,
The waste incinerator is characterized in that the low-rise area is an area formed below the depth position of 3 m from the upper surface of the waste layer .
JP2016069061A 2016-03-30 2016-03-30 Waste incinerator Active JP6685506B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016069061A JP6685506B2 (en) 2016-03-30 2016-03-30 Waste incinerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016069061A JP6685506B2 (en) 2016-03-30 2016-03-30 Waste incinerator

Publications (2)

Publication Number Publication Date
JP2017180963A JP2017180963A (en) 2017-10-05
JP6685506B2 true JP6685506B2 (en) 2020-04-22

Family

ID=60004255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016069061A Active JP6685506B2 (en) 2016-03-30 2016-03-30 Waste incinerator

Country Status (1)

Country Link
JP (1) JP6685506B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5486973A (en) * 1977-12-22 1979-07-10 Nippon Kokan Kk <Nkk> Automatic control of garbage incinerator
JPH01305213A (en) * 1988-06-02 1989-12-08 Kubota Ltd Incineration method for municipal refuse
DE4445954A1 (en) * 1994-12-22 1996-06-27 Abb Management Ag Waste incineration process
JP2005069630A (en) * 2003-08-27 2005-03-17 Kubota Corp Device for detecting property of substance to be treated for waste treatment furnace
JP5253787B2 (en) * 2007-10-30 2013-07-31 株式会社タクマ Waste specific gravity detection device and waste supply control device
JP2010216990A (en) * 2009-03-17 2010-09-30 Jfe Engineering Corp Device and method for measurement of moisture percentage in waste
JP6153090B2 (en) * 2014-05-28 2017-06-28 Jfeエンジニアリング株式会社 Waste incinerator and waste incineration method

Also Published As

Publication number Publication date
JP2017180963A (en) 2017-10-05

Similar Documents

Publication Publication Date Title
JP6927127B2 (en) Waste incinerator method
KR102236283B1 (en) Garbage incineration facility and control method of waste incineration facility
CN101484753A (en) Stoker-type incinerator and method for controlling combustion in the incinerator
JP2010216990A (en) Device and method for measurement of moisture percentage in waste
JP3135892B2 (en) Method of controlling the thermal power of an incinerator
JP6696790B2 (en) Stoker incinerator
RU2731612C1 (en) Stoker furnace
TW202311668A (en) Control device for incinerator equipment
JP6779779B2 (en) Garbage incineration equipment
JP6686633B2 (en) Waste treatment furnace device and method
JP6685506B2 (en) Waste incinerator
JP2019178848A (en) Waste incinerator and waste incineration method
US20130245353A1 (en) Dry ash collector
JP6624451B2 (en) Waste treatment furnace equipment
JP2019178844A (en) Waste moisture percentage measuring apparatus, stoker-type waste incinerator, waste moisture percentage measuring method, and waste incineration method
JP5976337B2 (en) Incineration equipment and incineration equipment control method
JP6973246B2 (en) Waste incinerator method
JP4036768B2 (en) Combustion control device for incinerator
JP2019178847A (en) Waste moisture percentage measuring apparatus, stoker-type waste incinerator, waste moisture percentage measuring method, and waste incineration method
JP2019178845A (en) Waste moisture percentage measuring apparatus, stoker-type waste incinerator, waste moisture percentage measuring method, and waste incineration method
WO2021095431A1 (en) Combustion method and combustion control method
JP2010216703A (en) Method of controlling input amount of waste in waste heat-treating furnace
JP6880143B2 (en) Combustion status evaluation method and combustion control method
JP2019007699A (en) Primary combustion gas supply control method, evaporation amount stabilization method, power generation amount stabilization method and fire grate type waste incinerator
JP2020094734A (en) Fire grate type waste incinerator and waste incineration method by using fire grate type waste incinerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180807

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190617

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200315

R150 Certificate of patent or registration of utility model

Ref document number: 6685506

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350