EP0156958B1 - Regulation method for the combustion air quantity of a burner apparatus - Google Patents

Regulation method for the combustion air quantity of a burner apparatus Download PDF

Info

Publication number
EP0156958B1
EP0156958B1 EP84112866A EP84112866A EP0156958B1 EP 0156958 B1 EP0156958 B1 EP 0156958B1 EP 84112866 A EP84112866 A EP 84112866A EP 84112866 A EP84112866 A EP 84112866A EP 0156958 B1 EP0156958 B1 EP 0156958B1
Authority
EP
European Patent Office
Prior art keywords
concentration
air
value
air volume
burner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP84112866A
Other languages
German (de)
French (fr)
Other versions
EP0156958A1 (en
Inventor
Walter Fabinski
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB Training Center GmbH and Co KG
Original Assignee
Hartmann and Braun AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hartmann and Braun AG filed Critical Hartmann and Braun AG
Publication of EP0156958A1 publication Critical patent/EP0156958A1/en
Application granted granted Critical
Publication of EP0156958B1 publication Critical patent/EP0156958B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/003Systems for controlling combustion using detectors sensitive to combustion gas properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2227/00Ignition or checking
    • F23N2227/20Calibrating devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2237/00Controlling
    • F23N2237/02Controlling two or more burners

Definitions

  • the invention relates to a control method for the amount of combustion air in a furnace according to the type of claims 1, 2 and 4.
  • the purpose of the invention is to reduce fuel costs, reduce certain pollutants and reduce pollution in the combustion chamber as well as in the exhaust gas ducts.
  • the invention relates to firing devices that are operated with solid, liquid or gaseous fuels.
  • the basic consideration for firing optimization is based on the well-known fact that the CO content in the exhaust gas - plotted against the relative excess air ⁇ - increases very steeply with decreasing air volume and that the knee point of the CO curve generally reaches the maximum for almost all fuels the efficiency coincides. If the excess air is too low, the efficiency drops because unburned substances get into the exhaust gas and ashes. If the excess air is too high, the thermal losses via the exhaust gas increase, which results in a decrease in efficiency. If the setpoint for CO is selected so that the maximum efficiency is adjusted, then significant fuel savings are possible.
  • the control method for firing optimization described below therefore takes into account the setting and diagnosis of each individual burning point, as well as the fact that the CO value fluctuates greatly in the area in which it is formed.
  • the object of the invention is to provide a method for regulating the amount of combustion air in a firing device which, using the known criteria for firing optimization, always works to a minimum of combustion losses even with changing firing conditions such as changes in load, fuel or combustion air.
  • the control method should also be suitable for systems with several burning points within one furnace.
  • the invention is achieved with the method steps specified in the characterizing part of claims 1, 2 or 4. Due to the cyclically repetitive readjustment of the fuel / air mixture, a firing device operated in this way is able to react to a load change in the shortest possible time and to set the optimum operating point for the new load condition.
  • the proposed control method is also suitable for firing devices with two or more burning points if it is ensured that the intended procedural steps are carried out separately for each burning point.
  • FIGS. 1-3. 1 to 3 show the concentration of the exhaust gas component CO as a function of the percentage excess air ⁇ in the burner chamber.
  • the optimum operating point of the firing device is approximately in the area of CO formation with an excess air ⁇ in the range of B.
  • an increased excess air in the range of a ⁇ value of A is first used.
  • the amount of fuel and the burner supply air are measured and the fuel / air mixture is set so that the CO content in the exhaust air drops to a very low value.
  • such a concentration lies in the range of the detection limit of the CO sensor.
  • the amount of air supplied to the burner is slowly throttled in a second process step; as the lack of air increases, the CO concentration increases.
  • a fuel / air mixture is selected in which a CO concentration can be reliably determined in the exhaust gas with the transmitter.
  • a CO concentration value of 50 ppm is assumed, which is denoted by the ⁇ value C in FIG.
  • the ⁇ value C lies in an approximately linear curve region, the slope of which is given by the straight line G.
  • the point of intersection of the straight line G with the X axis gives the operating point B, to which the excess air is adjusted in a third method step in order to achieve optimal combustion.
  • the CO concentration has to be determined at two ⁇ values during a first process step; in Figure 1 these are the ⁇ values C and C ', with the CO concentration values of 50 ppm and 25 ppm in the exhaust air.
  • the burner supply air quantities corresponding to the ⁇ values C and C ' are stored and the slope of the straight line G is determined from them in conjunction with the CO values. Since the characteristic curve determined in this way depends on the type of fuel and the power, this procedure is particularly suitable for those combustion plants which use only one fuel and preferably work under a load.
  • the time sequences for finding the ⁇ values C, C 'and B must be slow against the delay time for the CO measurement.
  • the slope of the CO concentration value against the burner air setting determined in the first method step makes it possible to find a working point corresponding to the desired excess air starting from the ⁇ value B.
  • the optimal ⁇ value to be set for the fuel / air mixture is also an empirical value that depends on the type of firing and on the boiler and the burners.
  • the accuracy requirements for the measuring sensor for the CO measurement with regard to its zero point are quite high; the combustion takes place in operating point B in the range of a few ppm CO concentration with a measuring range of the sensor between 30 and 100 ppm CO.
  • the cross sensitivity and the zero point drift of the transducer must therefore be small compared to the CO concentration present at the operating point.
  • the zero point drift should be less than 1 ppm within a maintenance interval.
  • the demands on the sensitivity stability of the transducer for CO are lower, because the finding of the working point B is only slightly dependent on the measuring accuracy of the CO transmitter.
  • the method according to FIG. 1 is difficult to implement for different types of burners and types of fuel.
  • the operating point B in the area of CO formation can be set by slowly reducing the amount of combustion air.
  • Figure 2 illustrates this case. It is assumed that there is an excess of air with a ⁇ value of A and an air deficiency at ⁇ equal to B *. The lack of air is determined in a fuel / air ratio in which carbon monoxide is currently being formed.
  • the working point of the optimal burner supply air in range B is narrowed and fixed by averaging. With this iterative approach to deliberately narrow down work area B, the CO measurement is largely limited to a yes / no statement; the accuracy requirement for the CO measurement with regard to sensitivity is low.
  • the proposed method for regulating the amount of combustion air in a combustion device as a function of the CO concentration in the exhaust gas works at very low concentration values; this makes it possible to identify a single burner with a CO measurement in the flue gas and the method can also be transferred to firing systems with several combustion systems.
  • the method for the combustion air quantity of a combustion device with two burners is explained with reference to FIG. 3. Analogously, it can also be transferred to a firing device with any number of burners.
  • FIG. 3 shows the concentration of the exhaust gas component CO as a function of the percentage excess air ⁇ in the burner chamber of a furnace with two burners.
  • both burners work with excess air in a region with the X value A.
  • a measuring transducer common to both burning points is provided for determining the CO concentration.
  • the working points B1 and B2 of the two burners are determined cyclically in a selectable order in accordance with the method of claim 1 or claim 2.
  • the working point of the burner that is not to be optimized is placed in the area of the low CO concentration.
  • the two burners are optimized with the control method according to claim 2, starting from an excess of air for both burners with a ⁇ value of A, the air volume for each individual burner is successively reduced and the CO concentration in the exhaust gas is measured after each air volume change.
  • the burner whose air volume change has led to the formation of the measured CO concentration is operated with so much excess air that CO is no longer formed in the exhaust gas.
  • the one burner is fixed to the working point B2.
  • the other burner is then checked and fixed at its working point B1 in the same way, with the CO concentration in the exhaust air being measured after each change in the air quantity on this burner.
  • the air volume is changed accordingly for all other burners by not changing the operating points of the burners that have already been set in a setting cycle.
  • each individual burner can be identified and thus adjusted by means of a CO measurement in the exhaust gases originating from all burners.

Description

Die Erfindung betrifft ein Regelverfahren für die Verbrennungsluftmenge einer Feuerungseinrichtung nach der Gattung der Ansprüche 1, 2 und 4.The invention relates to a control method for the amount of combustion air in a furnace according to the type of claims 1, 2 and 4.

Zweck der Erfindung ist die Reduktion von Brennstoffkosten, Verminderung bestimmter Schadstoffe und Reduktion der Verschmutzung im Feuerungsraum wie auch in den Abgaskanälen. Die Erfindung betrifft Feuerungseinrichtungen, die mit festen, flüssigen oder gasförmigen Brennstoffen betrieben werden.The purpose of the invention is to reduce fuel costs, reduce certain pollutants and reduce pollution in the combustion chamber as well as in the exhaust gas ducts. The invention relates to firing devices that are operated with solid, liquid or gaseous fuels.

In dem Aufsatz "Automatic control ups heater combustion efficiency" von D.H. Leonhard u.a, in der Zeitschrift "Oil & Gas Journal", Band 79, Nr. 38, September 1981, Seiten 134-138, Tulsa, Oklahoma, USA, ist ein Regelverfahren der eingangs genannten Art beschrieben. Für die Verbrennungsluftmenge einer Prozeßheizung in einer Raffinerieanlage wird unter Verwendung zweier Analysatoren zur Messung des Kohlenmonoxyd- und des Sauerstoff-Gehaltes im Abgas die Luftmenge für den Verbrennungsprozeß so geregelt, daß die Konzentration beider Gase im Abgas einen geringen Wert erreicht.In the article "Automatic control ups heater combustion efficiency" by D.H. Leonhard and others, in the magazine "Oil & Gas Journal", Volume 79, No. 38, September 1981, pages 134-138, Tulsa, Oklahoma, USA, describe a control method of the type mentioned at the beginning. For the amount of combustion air in a process heater in a refinery plant, the amount of air for the combustion process is controlled using two analyzers for measuring the carbon monoxide and oxygen content in the exhaust gas so that the concentration of both gases in the exhaust gas reaches a low value.

Durch die Veröffentlichung in der Zeitschrift "Brennstoff-Wärme-Kraft" 35 (1983) Nr. 10, Oktober, S. 447 ist ein Verfahren zur kontinuierlichen Regelung für Verbrennungsanlagen bekannt geworden, bei dem unter Verwendung einer inline-Meßanordnung der Gehalt an Kohlenmonoxyd (CO) in einem Rauchgas-Kanal ermittelt und zur Einstellung des Brennstoff-Luft-Verhältnisses benutzt wird. Solche Anordnungen arbeiten mit CO-Werten von 100 bis 700 ppm im Abgas. Diese Arbeitsweise kann Kesselverunreinigungen hervorrufen und führt nicht zu einer optimalen Verbrennungsregelung.A continuous control method for combustion plants is known from the publication in the journal "Heiz-Kraft-Kraft" 35 (1983) No. 10, October, p. 447, in which the carbon monoxide content (using an inline measuring arrangement) CO) is determined in a flue gas duct and used to adjust the fuel-air ratio. Such arrangements work with CO values of 100 to 700 ppm in the exhaust gas. This way of working can cause boiler contamination and does not lead to optimal combustion control.

Die grundlegende Überlegung zur Feuerungsoptimierung basiert auf der bekannten Tatsache, daß der CO-Gehalt im Abgas - über dem relativen Luftüberschuß λ aufgetragen - bei abnehmender Luftmenge sehr steil ansteigt und daß in der Regel der Kniepunkt der CO-Kurve für nahezu alle Brennstoffe mit dem Maximum des Wirkungsgrades zusammenfällt. Bei zu geringem Luftüberschuß sinkt der Wirkungsgrad, weil unverbrannte Stoffe in das Abgas und in die Asche gelangen. Bei zu hohem Luftüberschuß steigen die thermischen Verluste über das Abgas, was ein Absinken des Wirkungsgrades zur Folge hat. Wenn der Sollwert für CO so gewählt ist, daß das Maximum des Wirkungsgrades eingeregelt wird, dann sind erhebliche Brennstoffeinsparungen möglich.The basic consideration for firing optimization is based on the well-known fact that the CO content in the exhaust gas - plotted against the relative excess air λ - increases very steeply with decreasing air volume and that the knee point of the CO curve generally reaches the maximum for almost all fuels the efficiency coincides. If the excess air is too low, the efficiency drops because unburned substances get into the exhaust gas and ashes. If the excess air is too high, the thermal losses via the exhaust gas increase, which results in a decrease in efficiency. If the setpoint for CO is selected so that the maximum efficiency is adjusted, then significant fuel savings are possible.

Bei der Feuerungsführung mit dem Wert für die CO-Konzentration kann es jedoch je nach Feuerungsart zu einer Kollision mit anderen Auflagen oder Zielen kommen (Überschreitung des zugelassenen CO-Wertes, Bildung von Ruß). Bekanntlich ist der CO-Wert im Bereich seiner Bildung nicht stabil, sondern starken Schwankungen unterworfen. Ein weiteres Problem bildet auch die Diagnose und Einstellung des Luft-/Brennstoffverhältnisses der einzelnen Brenner bei Mehrbrennersystemen.However, depending on the type of firing, firing with the value for the CO concentration can lead to a collision with other requirements or targets (exceeding the approved CO value, soot formation). As is well known, the CO value in the area of its formation is not stable, but is subject to strong fluctuations. Another problem is the diagnosis and adjustment of the air / fuel ratio of the individual burners in multi-burner systems.

Bei einer integralen Nachstellung des Luft-/Brennstoffverhältnisses über alle Brenner können Fehler auftreten, die das Ziel der Optimierung der Feuerung ins Gegenteil verkehren. Das im folgenden beschriebene Regelverfahren zur Feuerungsoptimierung berücksichtigt daher die Einstellung und Diagnose jeder einzelnen Brennstelle, wie auch die Tatsache, daß der CO-Wert im Bereich seiner Bildung stark schwankt.With an integral adjustment of the air / fuel ratio across all burners, errors can occur that reverse the goal of optimizing the furnace. The control method for firing optimization described below therefore takes into account the setting and diagnosis of each individual burning point, as well as the fact that the CO value fluctuates greatly in the area in which it is formed.

Die Aufgabe der Erfindung besteht darin, ein Verfahren zur Regelung der Verbrennungsluftmenge einer Feuerungseinrichtung anzugeben, das unter Ausnutzung der bekannten Kriterien für eine Feuerungsoptimierung auch bei wechselnden Feuerungskonditionen wie Last-, Brennstoff- oder Verbrennungsluftänderungen stets im Minimum der Verbrennungsverluste arbeitet. Das Regelverfahren soll auch für Anlagen mit mehreren Brennstellen innerhalb einer Feuerungseinrichtung geeignet sein.The object of the invention is to provide a method for regulating the amount of combustion air in a firing device which, using the known criteria for firing optimization, always works to a minimum of combustion losses even with changing firing conditions such as changes in load, fuel or combustion air. The control method should also be suitable for systems with several burning points within one furnace.

Der Erfindung ist mit den im Kennzeichen der Ansprüche 1, 2 oder 4 angegebenen Verfahrensschritten gelöst. Durch die zyklisch sich wiederholende Neueinstellung des Brennstoff/Luftgemisches ist eine so betriebene Feuerungseinrichtung in der Lage, in kürzester Zeit auf eine Laständerung zu reagieren und für den neuen Belastungszustand den optimalen Arbeitspunkt einzustellen. Das vorgeschlagene Regelverfahren ist auch für Feuerungseinrichtungen mit zwei oder mehr Brennstellen geeignet, wenn dafür gesorgt wird, daß für jede Brennstelle die vorgesehenen Verfahrensschritte gesondest durchgeführt werden.The invention is achieved with the method steps specified in the characterizing part of claims 1, 2 or 4. Due to the cyclically repetitive readjustment of the fuel / air mixture, a firing device operated in this way is able to react to a load change in the shortest possible time and to set the optimum operating point for the new load condition. The proposed control method is also suitable for firing devices with two or more burning points if it is ensured that the intended procedural steps are carried out separately for each burning point.

Im folgenden wird die Erfindung anhand der Figuren 1 - 3 näher erläutert. In den Figuren 1 bis 3 ist die Konzentration der Abgaskomponente CO in Abhängigkeit vom prozentualen Luftüberschuß λ im Brennerraum dargestellt.The invention is explained in more detail below with reference to FIGS. 1-3. 1 to 3 show the concentration of the exhaust gas component CO as a function of the percentage excess air λ in the burner chamber.

Das Auffinden des optimalen Arbeitspunktes für das Luft/Brennstoffverhältnis wird an einer Feuerungseinrichtung mit einer Brennstelle anhand der Figur 1 erläutert. Nach Figur 1 liegt der optimale Arbeitspunkt der Feuerungseinrichtung etwa im Bereich der CO-Bildung bei einem Luftüberschuß λ im Bereich von B. Zum Auffinden dieses Arbeitspunktes wird zunächst mit einem erhöhten Luftüberschuß im Bereich eines λ-Wertes von A gearbeitet. Mit Hilfe der heute üblichen Verfahren wird die Brennstoffmenge und die Brennerzuluft gemessen und das Brennstoff-/Luftgemisch so eingestellt, daß der CO-Anteil in der Abluft auf einen sehr geringen Wert absinkt. In der Regel liegt eine solche konzentration im Bereich der Nachweisgrenze des CO-Meßwertaufnehmers.Finding the optimum working point for the air / fuel ratio is explained on a firing device with a burning point with reference to FIG. 1. According to FIG. 1, the optimum operating point of the firing device is approximately in the area of CO formation with an excess air λ in the range of B. To find this operating point, an increased excess air in the range of a λ value of A is first used. With the help of the currently customary methods, the amount of fuel and the burner supply air are measured and the fuel / air mixture is set so that the CO content in the exhaust air drops to a very low value. As a rule, such a concentration lies in the range of the detection limit of the CO sensor.

Ausgehend von der Verbrennungsluftmengen-Einstellung entsprechend dem X-Wert-A wird in einem zweiten Verfahrensschritt die dem Brenner zugeführte Luftmenge langsam gedrosselt; bei zunehmendem Luftmangel steigt die CO-Konzentration an. Im Bereich der zunehmenden CO-Bildung wird ein Brennstoff-/Luftgemisch gewählt, bei dem sich im Abgas eine mit dem Meßwertgeber sicher erfaßbare CO-Konzentration einstellt. Es sei ein CO-Konzentrationswert von 50 ppm angenommen, der in Figur 1 mit dem λ-Wert C bezeichnet ist. Der λ-Wert C liegt in einem etwa linear verlaufenden Kurvenbereich, dessen Steigung durch die Gerade G gegeben ist. Der Schnittpunkt der Geraden G mit der X-Achse ergibt den Arbeitspunkt B, auf den in einem dritten Verfahrensschritt die Überschußluft eingestellt wird, um eine optimale Verbrennung zu erzielen. Um den Arbeitspunkt B aus der CO-Konzentration bestimmen zu können, ist während eines ersten Verfahrensschrittes bei zwei λ-Werten die CO-Konzentration zu ermitteln; in Figur 1 sind dies die λ-Werte C und C', mit den CO-Konzentrationswerten von 50 ppm und 25 ppm in der Abluft. Die den λ-Werten C und C' entsprechenden Brennerzuluftmengenwerden gespeichert und daraus in Verbindung mit den CO-Werten die Steigung der Geraden G bestimmt. Da die so ermittelte Kennlinie von der Brennstoffart und der Leistung abhängt, eignet sich diese Vorgehensweise vorzugsmäßig für solche Verbrennungsanlagen, die nur einen Brennstoff verwenden und vorzugsweise bei einer Last arbeiten.Starting from the combustion air volume Setting according to the X-value-A, the amount of air supplied to the burner is slowly throttled in a second process step; as the lack of air increases, the CO concentration increases. In the area of increasing CO formation, a fuel / air mixture is selected in which a CO concentration can be reliably determined in the exhaust gas with the transmitter. A CO concentration value of 50 ppm is assumed, which is denoted by the λ value C in FIG. The λ value C lies in an approximately linear curve region, the slope of which is given by the straight line G. The point of intersection of the straight line G with the X axis gives the operating point B, to which the excess air is adjusted in a third method step in order to achieve optimal combustion. In order to be able to determine the working point B from the CO concentration, the CO concentration has to be determined at two λ values during a first process step; in Figure 1 these are the λ values C and C ', with the CO concentration values of 50 ppm and 25 ppm in the exhaust air. The burner supply air quantities corresponding to the λ values C and C 'are stored and the slope of the straight line G is determined from them in conjunction with the CO values. Since the characteristic curve determined in this way depends on the type of fuel and the power, this procedure is particularly suitable for those combustion plants which use only one fuel and preferably work under a load.

Die Zeitabläufe für das Auffinden der λ-Werte C, C' und B müssen langsam gegen die Verzögerungszeit für die CO-Messung sein. Als Richtlinie kann gelten: Zum Auffinden der λ-Werte gilt mindestens die doppelte Zeit wie für die 90 %-Zeit der CO-Messung.The time sequences for finding the λ values C, C 'and B must be slow against the delay time for the CO measurement. As a guideline, the following can apply: To find the λ values, at least twice the time as for the 90% time of the CO measurement applies.

In einigen Anwendungsfällen ist es erwünscht, die Überschußluft nicht auf den Schnittpunkt B der Geraden G mit der Ä-Achse einzustellen, sondern abweichend hiervon mit mehr oder weniger Luftüberschuß zu arbeiten. Durch die im ersten Verfahrensschritt ermittelte Steigung des CO-Konzentrationswertes gegen die Brennerlufteinstellung ist es möglich, ausgehend von dem λ-Wert B, einen dem gewünschten Luftüberschuß entsprechenden Arbeitspunkt zu finden. Der optimal einzustellende λ-Wert für das Brennstoff-/Luftgemisch ist auch ein Erfahrungswert, der von der Feuerungsart und vom Kessel und den Brennern abhängt.In some applications it is desirable not to adjust the excess air to the point of intersection B of the straight line G with the A-axis, but to work with a more or less excess air in a different manner. The slope of the CO concentration value against the burner air setting determined in the first method step makes it possible to find a working point corresponding to the desired excess air starting from the λ value B. The optimal λ value to be set for the fuel / air mixture is also an empirical value that depends on the type of firing and on the boiler and the burners.

Bei dem beschriebenen Verfahren zum Auffinden des optimalen Arbeitspunktes für eine Feuerungseinrichtung mit einer Brennstelle sind die Genauigkeitsforderungen an den Meßwertaufnehmer für die CO-Messung hinsichtlich seines Nullpunktes recht hoch; die Verbrennung erfolgt im Arbeitspunkt B im Bereich von einigen ppm CO-Konzentration bei einem Meßbereichsumfang des Meßaufnehmers zwischen 30 und 100 ppm CO. Die Querempfindlichkeit und die Nullpunktdrift des Meßwertaufnehmers muß daher klein gegen die im Arbeitspunkt vorhandene CO-Konzentration sein. Die Nullpunktdrift sollte innerhalb eines Wartungsintervalls kleiner als 1 ppm sein. Dagegen sind die Forderungen an die Empfindlichkeitsstabilität des Meßwertaufnehmers für CO geringer, denn das Auffinden des Arbeitspunktes B ist von der Meßgenauigkeit des CO-Gebers nur wenig abhängig.In the described method for finding the optimum working point for a furnace with a burning point, the accuracy requirements for the measuring sensor for the CO measurement with regard to its zero point are quite high; the combustion takes place in operating point B in the range of a few ppm CO concentration with a measuring range of the sensor between 30 and 100 ppm CO. The cross sensitivity and the zero point drift of the transducer must therefore be small compared to the CO concentration present at the operating point. The zero point drift should be less than 1 ppm within a maintenance interval. In contrast, the demands on the sensitivity stability of the transducer for CO are lower, because the finding of the working point B is only slightly dependent on the measuring accuracy of the CO transmitter.

Wegen den starken Schwankungen der CO-Konzentration im Bereich der CO-Bildung läßt sich das Verfahren nach Figur 1 für verschiedenartig Brenner und Brennstoffarten nur schwer realisieren. In derartigen Fällen kann der Arbeitspunkt B im Bereich der CO-Bildung durch eine langsame Reduktion der Vebrennungsluftmenge eingestellt werden. Figure 2 veranschaulicht diesen Fall. Ausgegangen wird von einem Luftüberschuß mit einem λ-Wert von A zu einem Luftmangel bei λ gleich B*. Der Luftmangel wird bei einem Brennstoff-/Luftverhältnis festgestellt, bei dem sich gerade Kohlenmonoxyd bildet. Durch Zugabe und Wegnahme der Luft im Bereich der vorgebbaren λ-Werte A' und B' wird der Arbeitspunkt der optimalen Brennerzuluft im Bereich B eingeengt und durch eine Mittelbildung fixiert. Bei diesem iterativen Vorgehen zur gezielten Einengung des Arbeitsbereiches B bleibt die CO-Messung weitgehend auf eine Ja/Nein-Aussage beschränkt; die Genauigkeitsanforderung an die CO-Messung hinsichtlich der Empfindlichkeit ist gering.Because of the strong fluctuations in the CO concentration in the area of CO formation, the method according to FIG. 1 is difficult to implement for different types of burners and types of fuel. In such cases, the operating point B in the area of CO formation can be set by slowly reducing the amount of combustion air. Figure 2 illustrates this case. It is assumed that there is an excess of air with a λ value of A and an air deficiency at λ equal to B *. The lack of air is determined in a fuel / air ratio in which carbon monoxide is currently being formed. By adding and removing the air in the range of the predeterminable λ values A 'and B', the working point of the optimal burner supply air in range B is narrowed and fixed by averaging. With this iterative approach to deliberately narrow down work area B, the CO measurement is largely limited to a yes / no statement; the accuracy requirement for the CO measurement with regard to sensitivity is low.

Das vorgeschlagene Verfahren zur Regelung der Verbrennungsluftmenge einer Feuerungseinrichtung in Abhängigkeit von der CO-Konzentration im Abgas arbeitet bei sehr kleinen Konzentrationswerten; dadurch wird ein einzelner Brenner mit einer CO-Messung im Rauchgas identifizierbar und das Verfahren läßt sich auch auf Feuerungseinrichtungen mit mehreren Brennsystemen übertragen.The proposed method for regulating the amount of combustion air in a combustion device as a function of the CO concentration in the exhaust gas works at very low concentration values; this makes it possible to identify a single burner with a CO measurement in the flue gas and the method can also be transferred to firing systems with several combustion systems.

Anhand der Figur 3 wird das Verfahren für die Verbrennungsluftmenge einer Feuerungseinrichtung mit zwei Brennern erläutert. Es läßt sich sinngemäß auch auf eine Feuerungseinrichtung mit einer beliebigen Anzahl von Brennern übertragen.The method for the combustion air quantity of a combustion device with two burners is explained with reference to FIG. 3. Analogously, it can also be transferred to a firing device with any number of burners.

Figur 3 zeigt die Konzentration der Abgaskomponente CO in Abhängigkeit von dem prozentualen Luftüberschuß λ im Brennerraum einer Feuerungseinrichtung mit zwei Brennern. Wie die Figur 3 erkennen läßt, arbeiten beide Brenner mit Überschußluft in einem Bereich mit dem X-Wert A. An einer geeigneten Stelle im Brennerraum mit guter Durchmischung der einzelnen Abgase ist ein für beide Brennstellen gemeinsamer Meßwertaufnehmer zur Bestimmung der CO-Konzentration vorgesehen. Die Arbeitspunkte B1 und B2 der beiden Brenner werden zyklisch in einer wählbaren Reihenfolge entsprechend dem Verfahren nach Anspruch 1 oder Anspruch 2 ermittelt. Der Arbeitspunkt des gerade nicht zu optimierenden Brenners wird im Bereich der niedrigen CO-Konzentration gelegt.FIG. 3 shows the concentration of the exhaust gas component CO as a function of the percentage excess air λ in the burner chamber of a furnace with two burners. As can be seen in FIG. 3, both burners work with excess air in a region with the X value A. At a suitable point in the burner chamber with thorough mixing of the individual exhaust gases, a measuring transducer common to both burning points is provided for determining the CO concentration. The working points B1 and B2 of the two burners are determined cyclically in a selectable order in accordance with the method of claim 1 or claim 2. The working point of the burner that is not to be optimized is placed in the area of the low CO concentration.

Werden die beiden Brenner mit dem Regelverfahren nach Anspruch 2 optimiert, wird ausgehend von einem Luftüberschuß für beide Brenner bei einem λ-Wert von A nacheinander die Luftmenge für jeden einzelnen Brenner schrittweise verringert und nach jeder Luftmengenänderung die CO-Konzentration im Abgas gemessen. Bei Entstehung von CO wird derjenige Brenner, dessen Luftmengenänderung zur Bildung der gemessenen CO-Konzentration geführt hat, wieder mit soviel Überschußluft betrieben, daß sich im Abgas gerade kein CO mehr bildet. Bei dem gewählten Beispiel nach Figur 3 wird der eine Brenner auf den Arbeitspunkt B2 fixiert. Die Überprüfung und Fixierung des anderen Brenners auf seinen Arbeitspunkt B1 erfolgt dann in der gleichen Weise, wobei nach jeder Luftmengenänderung an diesem Brenner die CO-Konzentration in der Abluft gemessen wird.If the two burners are optimized with the control method according to claim 2, starting from an excess of air for both burners with a λ value of A, the air volume for each individual burner is successively reduced and the CO concentration in the exhaust gas is measured after each air volume change. When CO is formed, the burner whose air volume change has led to the formation of the measured CO concentration is operated with so much excess air that CO is no longer formed in the exhaust gas. In the selected example according to FIG. 3, the one burner is fixed to the working point B2. The other burner is then checked and fixed at its working point B1 in the same way, with the CO concentration in the exhaust air being measured after each change in the air quantity on this burner.

Sind mehr als zwei Brenner in einer Feuerungseinrichtung vorhanden, so erfolgt die Luftmengenänderung sinngemäß für alle weiteren Brenner, indem in einem Einstellzyklus die Arbeitspunkte der bereits eingestellten Brenner nicht verändert werden. Durch das jeweilige Zurücksetzen der Brenner mit Überschußluft in den Bereichen sehr kleiner CO-Konzentrationen wird jeder einzelne Brenner durch eine CO-Messung in den von allen Brennern stammenden Abgasen identifizierbar und damit einstellbar.If there are more than two burners in a firing device, the air volume is changed accordingly for all other burners by not changing the operating points of the burners that have already been set in a setting cycle. By resetting the burners with excess air in the areas of very low CO concentrations, each individual burner can be identified and thus adjusted by means of a CO measurement in the exhaust gases originating from all burners.

Mit dem Abschluß eines Einstellzyklus zur Ermittlung der optimalen Brennstoff-Luftverhältnisse B1 und B2 kann im Prinzip sofort ein neuer Einstellvorgang beginnen, so daß die Feuerungsoptimierung fortlaufend wirksam ist.With the conclusion of an adjustment cycle for determining the optimal fuel-air ratios B1 and B2, a new adjustment process can in principle begin immediately, so that the firing optimization is continuously effective.

Bei der Erfassung der CO-Konzentration im Abgas kommt es darauf an, die Entstehung von CO quantitativ möglichst rechtzeitig zu erkennen. In Feuerungseinrichtungen mit mehreren Brennern kann es immer dann zweckmäßig sein, auch mehrere Meßwertaufnehmer zu verwenden, wenn nicht gewährleistet ist, daß sich die Abgase der beteiligten Brennstellen nicht ausreichend durchmischen. Um einen repräsentativen Meßwert für die jeweilige CO-Konzentration in der gesamten Abluft zu erhalten, sind verschiedene Möglichkeiten der Meßwertauswertung denkbar. Beispielsweise kann als Maß für die CO-Konzentration der Mittelwert aus den CO-Meßwerten der einzelnen Aufnehmer dienen. Es lassen sich auch andere von dem Aufbau der Feuerungseinrichtung abhängige Bewertungen der CO-Meßwerte vornehmen, z. B. durch einen Meßwertaufnehmer und mehreren Entnahmestellen, wobei die verschiedenen Probegase durchmischt und dann dem Meßwertaufnehmer zugeführt werden.When recording the CO concentration in the exhaust gas, it is important to recognize the formation of CO quantitatively as early as possible. In firing systems with several burners, it can always be useful to also use several transducers if it is not guaranteed that the exhaust gases from the participating burners do not mix sufficiently. In order to obtain a representative measured value for the respective CO concentration in the entire exhaust air, various possibilities for evaluating the measured values are conceivable. For example, the mean value from the CO measured values of the individual sensors can serve as a measure of the CO concentration. Other evaluations of the CO measured values dependent on the structure of the firing device can also be carried out, e.g. B. by a transducer and several tapping points, the various sample gases are mixed and then fed to the transducer.

Es gibt Feuerungseinrichtungen, bei denen mehrere Brennstellen zu einer Gruppe zusammengefaßt sind (Kohlemühlen) und mehrere solcher Gruppen mit unterschiedlichen Brennstoffen versorgt werden. Die Abgase werden über einen gemeinsamen Abzug geführt. Hier ist es schon wegen der Redundanz der Meßwerterfassung zweckmäßig, mit mehreren Meßwertaufnehmern zu arbeiten und die Überschußluft so zu steuern, daß die Luftzufuhr für jeweils eine Gruppe von Brennern gemeinsam geregelt wird.There are firing systems in which several burning points are grouped together (coal mills) and several such groups are supplied with different fuels. The exhaust gases are routed through a common exhaust. Because of the redundancy of the measured value acquisition, it is expedient here to work with several transducers and to control the excess air in such a way that the air supply is regulated jointly for one group of burners each.

Claims (7)

1. Method of controlling the combustion air volume (air volume λ) of a furnace plant with a burner as a function of the CO content (CO concentration) in the flue gas measured by a transducer, in which excess air is fed to the burner until the CO concentration in the flue gas reaches a low value, characterised by the following method stages:
a) when the air volume is deficient, various values of CO concentration are determined and stored with the associated air volumes (λ values C and C') and the gradient of a straight line (G) for the CO values versus the air volume (λ axis) is determined from the stored values;
b) starting from the air volume setting with excess air (λ value A), the excess air is reduced until a CO concentration which is presettable and reliably recordable with the transducer is obtained in the flue gas (for example 50 ppm CO, λ value C);
c) starting from the value for the CO concentration in the flue gas set according to method stage b) and the associated air volume, the working point of the burner is fixed at an air volume which corresponds to the point of intersection of the straight line (G) with the λ axis (λ value B) or deviates therefrom to a desired extent;
d) method stages b) and c) are repeated continuously or at presettable intervals of time in a cyclic sequence so that an optimal quantity of air and fuel for the combustion is obtained (Fig. 1
2. Method of controlling the combustion air volume (air volume λ) of a furnace plant with a burner as a function of the CO content (CO concentration) in the flue gas measured by a transducer, in which excess air is fed to the burner until the CO concentration in the flue gas reaches a low initial value (A), characterised by the following method stages:
a) starting from the initial value (A) set for the CO concentration, the excess air of the air volume is reduced until a reliably measurable second value (B*) for the CO concentration in the flue gas is obtained (e.g. 10 - 50 ppm CO);
b) starting from the two values (A, B*) for the CO concentration thus found, the working point of the burner is narrowed down iteratively in the range of presettable values for the air volume (λ values A' and B') by the addition or extraction of air and fixed by averaging until an air volume (λ value B) in the range of low CO concentration is obtained;
c) method stage b) is repeated continuously or at presettable intervals of time in a cyclic sequence so that an optimal quantity of air and fuel for the combustion is obtained (Fig. 2).
3. Method of control according to Claim 1 or Claim 2, characterised in that the working point (λ value B) of the burner is so fixed that a CO concentration which can still just be reliably determined is obtained.
4. Method of controlling the combustion air volume (λ) of a furnace plant with two or more burners, characterised in that
- a transducer common to all the burners for measuring the CO concentration is provided at a suitable point with good intermingling of the individual flue gases and
- that the working points (B1, B2) of the individual burners are determined cyclically in a selectable sequence according to the method in Claim 1 or Claim 2, the working points of all the other burners apart from the burner to be optimized being placed in the range of very low CO concentrations (Fig. 3).
5. Method of control according to Claim 4, characterised in that several transducers for measuring the CO concentration in the flue gas are provided and that a measured value for the CO concentration in the exhaust air is determined from the measured values of the individual transducers by averaging or another suitable evaluation of the CO concentration.
6. Method of control according to Claim 4, characterised in that a transducer and several gas sampling points are provided, the gas samples being first mixed and then supplied to the transducer.
7. Method of control according to Claim 4, characterised in that several burners are combined into one group and that in order to set the excess air, the air supply is controlled jointly for one group at a time.
EP84112866A 1984-03-21 1984-10-25 Regulation method for the combustion air quantity of a burner apparatus Expired EP0156958B1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE3410294 1984-03-21
DE3410294 1984-03-21
DE3423946 1984-06-29
DE19843423946 DE3423946A1 (en) 1984-03-21 1984-06-29 CONTROL METHOD FOR THE COMBUSTION AIR AMOUNT OF A COMBUSTION DEVICE

Publications (2)

Publication Number Publication Date
EP0156958A1 EP0156958A1 (en) 1985-10-09
EP0156958B1 true EP0156958B1 (en) 1989-05-10

Family

ID=25819555

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84112866A Expired EP0156958B1 (en) 1984-03-21 1984-10-25 Regulation method for the combustion air quantity of a burner apparatus

Country Status (2)

Country Link
EP (1) EP0156958B1 (en)
DE (2) DE3423946A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4340534A1 (en) * 1993-11-29 1995-06-01 Abb Patent Gmbh Control and monitoring procedures
DE19923059A1 (en) * 1999-05-20 2000-12-07 Steag Ag Process for controlling a combustion process
DE19712771C2 (en) * 1996-04-01 2001-02-15 Elektrownia Iaziska S A Method and arrangement for automatic combustion control in boilers

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3809556A1 (en) * 1987-05-23 1988-12-01 Hartmann & Braun Ag METHOD FOR OPTIMIZING THE BURNING OF HYDROGENOUS FUELS
DE3737354C1 (en) * 1987-11-04 1989-05-11 Schoppe & Faeser Gmbh Control method for adjusting the individual air/fuel ratios of the individual burners of a furnace with several burners
FR2628827B1 (en) * 1988-03-21 1990-07-06 Haan Andre METHOD FOR OPTIMIZING COMBUSTION, DEVICE FOR CARRYING OUT SAID METHOD, AS WELL AS DETECTOR EQUIPPED WITH SUCH A DEVICE
DE3834795A1 (en) * 1988-10-12 1990-04-19 Riedhammer Gmbh Co Kg INDUSTRIAL OVEN
DK187891A (en) * 1991-11-18 1993-05-19 Danfoss As METHOD AND APPARATUS FOR SETTING A BURNER'S WORK POINT
DE4315969A1 (en) * 1993-05-10 1995-02-23 Mannesmann Ag Method and equipment for optimising combustion plants
DE4333751A1 (en) * 1993-10-04 1995-04-06 Bosch Gmbh Robert Control system for a fuel-operated heat generator, especially a water heater
DE19749506C1 (en) * 1997-11-08 1999-01-07 Hartmuth Dipl Phys Dambier Method for continuous optimisation of air supply to furnace installations
DE10116133B4 (en) 2000-09-06 2004-10-14 Dambier, Hartmuth, Dipl.-Phys. Procedure for determining and verifying the CO points of use in multi-burner combustion plants
DE10044033C2 (en) * 2000-09-06 2003-01-30 Hartmuth Dambier Procedure for optimizing the air supply or for determining the fuel distribution in combustion plants with several burners
US7549858B2 (en) 2006-12-04 2009-06-23 Praxair Technology, Inc. Combustion with variable oxidant low NOx burner
DE102010044762A1 (en) * 2010-09-08 2012-03-08 Honeywell Technologies S.A.R.L. Device for calibrating a gas burner control

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL7908279A (en) * 1979-11-13 1981-06-01 Estel Hoogovens Bv Furnace gas-firing system - uses carbon mon:oxide content of exhaust gases to control excess air quantity
US4253404A (en) * 1980-03-03 1981-03-03 Chevron Research Company Natural draft combustion zone optimizing method and apparatus
CA1192793A (en) * 1981-12-31 1985-09-03 James H. Sun Damper controller for natural draft heater

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4340534A1 (en) * 1993-11-29 1995-06-01 Abb Patent Gmbh Control and monitoring procedures
DE19712771C2 (en) * 1996-04-01 2001-02-15 Elektrownia Iaziska S A Method and arrangement for automatic combustion control in boilers
DE19923059A1 (en) * 1999-05-20 2000-12-07 Steag Ag Process for controlling a combustion process

Also Published As

Publication number Publication date
DE3423946A1 (en) 1985-09-26
DE3478138D1 (en) 1989-06-15
EP0156958A1 (en) 1985-10-09

Similar Documents

Publication Publication Date Title
EP0156958B1 (en) Regulation method for the combustion air quantity of a burner apparatus
EP0259382B1 (en) Device for regulating the proportion of combustion air to gaz
EP0670490B1 (en) Method and apparatus for measuring a gaseous medium with a chemical sensor
DE3220832C2 (en)
DE3822415C2 (en)
DE4304966A1 (en) Device for determining lambda values
EP0156200A1 (en) Method of and device for determining the mixing ratio of a mixture containing an oxygen carrier and a fuel
DE2941753C2 (en)
EP0530655A2 (en) Method and apparatus for controlling an internal combustion engine and testing its catalytic converter
EP0969192A1 (en) Method to equalize the fuel distribution in a gas turbine with several burners
DE3310336C2 (en)
EP1051585B1 (en) Method and device for operating an incinerator plant
DE10014881B4 (en) Apparatus and method for calibrating lambda probes
DE2833553C2 (en)
EP0416197A1 (en) Method and apparatus to alter the exhaust gas content of an internal-combustion engine
EP0352619B1 (en) Process for regulating the firing power in combustion plants
DE3732301C1 (en) Emission control device for an internal combustion engine
DE3321165C1 (en) Method of continuously estimating and monitoring the oxygen required to burn gas mixtures containing hydrogen sulphide in order to extract sulphur and purify exhaust gas
EP1136670A2 (en) Monitoring device and method of a 3-way catalyst in the exhaust pipe of an internal combustion engine
EP0655583B1 (en) Method for controlling and monitoring combustion
DE3314225C2 (en)
EP1265068A1 (en) Method and apparatus for the determination of changes in the calorific value of a gas mixture
EP0501242B1 (en) Method for determining the flow of exhaust gases
AT398345B (en) DEVICE FOR REGULATING THE SECONDARY AIR SUPPLY FOR A FIRE, IN PARTICULAR A BOILER
DE3737354C1 (en) Control method for adjusting the individual air/fuel ratios of the individual burners of a furnace with several burners

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE FR GB NL

17P Request for examination filed

Effective date: 19860211

17Q First examination report despatched

Effective date: 19871103

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB NL

REF Corresponds to:

Ref document number: 3478138

Country of ref document: DE

Date of ref document: 19890615

ET Fr: translation filed
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: DANFOSS A/S

Effective date: 19900209

NLR1 Nl: opposition has been filed with the epo

Opponent name: DANFOSS A/S.

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 19920524

NLR2 Nl: decision of opposition
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19930913

Year of fee payment: 10

Ref country code: FR

Payment date: 19930913

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19931031

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19931123

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19941025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19950501

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19941025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19950630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19950701

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST