EP0712464A1 - Kolbenpumpe - Google Patents

Kolbenpumpe

Info

Publication number
EP0712464A1
EP0712464A1 EP95920733A EP95920733A EP0712464A1 EP 0712464 A1 EP0712464 A1 EP 0712464A1 EP 95920733 A EP95920733 A EP 95920733A EP 95920733 A EP95920733 A EP 95920733A EP 0712464 A1 EP0712464 A1 EP 0712464A1
Authority
EP
European Patent Office
Prior art keywords
piston
pump according
piston pump
transmission element
eccentric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP95920733A
Other languages
English (en)
French (fr)
Other versions
EP0712464B1 (de
Inventor
Manfred Ruoff
Helmut Rembold
Ernst Linder
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0712464A1 publication Critical patent/EP0712464A1/de
Application granted granted Critical
Publication of EP0712464B1 publication Critical patent/EP0712464B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/04Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinders in star- or fan-arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/04Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinders in star- or fan-arrangement
    • F04B1/0404Details or component parts
    • F04B1/0426Arrangements for pressing the pistons against the actuated cam; Arrangements for connecting the pistons to the actuated cam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/04Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinders in star- or fan-arrangement
    • F04B1/0404Details or component parts
    • F04B1/0448Sealing means, e.g. for shafts or housings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B9/00Piston machines or pumps characterised by the driving or driven means to or from their working members
    • F04B9/02Piston machines or pumps characterised by the driving or driven means to or from their working members the means being mechanical
    • F04B9/04Piston machines or pumps characterised by the driving or driven means to or from their working members the means being mechanical the means being cams, eccentrics or pin-and-slot mechanisms
    • F04B9/045Piston machines or pumps characterised by the driving or driven means to or from their working members the means being mechanical the means being cams, eccentrics or pin-and-slot mechanisms the means being eccentrics

Definitions

  • the invention is based on a radial piston pump according to the claim 1, as is already known from DE-Al-37 01 857.
  • an annular device is provided as the actuating element, which is mounted on one side of its axial extension on a ball bearing, which in turn is fixed on an eccentric at the free end of a drive shaft.
  • the known ring device overlaps a support-shaped housing part into which the pump cylinders are incorporated, with pump pistons emerging radially outwards, which come into contact with the ring device via cup-like designs.
  • the eccentric When the eccentric is driven, the ring device carries out a wobbling eccentric movement, in the course of which the pump pistons are moved alternately inwards or outwards and thereby perform their suction and delivery strokes.
  • the transferdoric movements between the actuating element and the pump piston are relatively small compared to known designs in which the pump pistons slide over centrally located cam tracks, but these are not completely prevented in the known embodiment.
  • the pump pistons assume positions in which they are not perpendicular to the inner surface of the driving ring device. This nevertheless results in transverse forces at the point of contact of the pump piston with the ring device and sliding friction gene, because of the design, the surface of the ring device shifts in relation to the pump piston.
  • the known radial piston pump is intended in particular for supplying a hydraulic anti-lock braking system, pressure medium which has more lubricating properties within limits can be selected as the conveying medium.
  • pressure medium which has more lubricating properties within limits can be selected as the conveying medium.
  • media which have only little or no lubricating properties, such as, for example, For example, gasoline
  • high sliding friction is to be expected in the contact areas between the pump pistons, which leads on the one hand to an increased power loss when driving the radial piston pump and on the other hand to increased wear. Due to material removal and seizure processes in the event of high suction on the drive side of the pump pistons, a considerably restricted service life is to be expected here. Pumps that are exposed to petrol in this area behave as if they are lubricated and run dry.
  • the radial piston pump according to the invention with the characterizing features of claim 1 has the advantage that sliding friction between the pump piston and its actuating element is completely switched off by the drive of the pump piston via a flexible transmission element. There is no sliding friction and thus loss of friction and wear are avoided.
  • the pump is thus very well suited for the delivery of fuel, in particular gasoline, which is delivered under high pressure to a pressure accumulator, from where the fuel of a fuel injector is electrically controlled is supplied, via which the fuel is injected into an internal combustion engine.
  • the configuration according to claim 4 results in particular in the advantage that a longitudinally symmetrical quadrilateral is formed by the transmission element and the transmission part together with the ring-shaped part that can be formed into a parallelogram without the presence of ring joints which are subject to sliding friction. Because the ring-shaped part is rotatably mounted on the eccentric, the assignment of the transmission part orientation and orientation of the ring-shaped element which is intended for one another is maintained when the latter is deflected via the eccentric.
  • the configuration according to claim 6 results in a construction that is particularly simple to implement, the parts of the transmission element running parallel to one another being able to be placed in end grooves of a part receiving the pump cylinder.
  • a deflection arrangement is provided on the ring-shaped part for producing the parallel course of the parts of the transmission element, which arrangement cooperates with the transmission part.
  • circular-cylindrical surface parts are provided on the contact areas of the parts of the transmission element, on which the two parts of the transmission element can unwind or wind up when the transmission part is displaced relative to the annular part.
  • the transmission element advantageously consists of flat strip material according to claims 15 and 16, which has great flexibility in the direction of the deformation plane with a high transmission cross-section and thus resilience.
  • Another advantageous embodiment According to claim 17, the storage of the annular part on the eccentric from the rest of the gasoline-filled housing is separated and sealed.
  • a bellows enclosing the bearing and the end of the eccentric is provided and, according to claim 21, a device is provided through which lubricant can be introduced into the region of the bearing of the ring-shaped part on the eccentric which is encapsulated by the gasoline-filled interior.
  • pressure lubrication can also be realized, since the spring clamped between the outside of the bottom and the housing wall, the axial position of the annular part is secured against the inflowing lubricant pressure.
  • FIG. 1 shows a longitudinal section through the radial piston pump according to the invention in a first exemplary embodiment
  • FIG. 2 shows a section along the line II-II from FIG. 1 through the first exemplary embodiment
  • FIG. 3 shows a partial view analogous to the section from FIG. 2 for a second exemplary embodiment
  • Figure 4 shows a third embodiment with a single band 5 shows an axial view of the exemplary embodiment according to FIG. 4
  • FIG. 6 shows a modified form of the sealing of the bearing on the eccentric using the exemplary embodiment according to FIG. 4
  • FIG. 7 shows a fourth exemplary embodiment with a two-part part lying along the axis of the drive shaft Transmission element
  • FIG. 8 shows a fifth exemplary embodiment with a part-ring-shaped part for fastening the transmission element
  • FIG. 9 shows a section perpendicular to FIG. 8, showing the drive shaft.
  • the radial piston pump shown in FIG. 1 has a pump housing 1 in which a drive shaft 2 of the radial piston pump is mounted. At one end protruding from the pump housing, a drive gear 4 is fastened to the drive shaft.
  • the shaft is supported by means of two ball bearings 5, which are sealed to the outside and to an interior 6 of the radial piston pump by seals 7, so that no fuel can escape from the interior 6, which is filled with gasoline, along the drive shaft to the ball bearings .
  • the drive shaft has a peg-shaped eccentric 12 which is eccentric to the central axis 11 of the drive shaft, with the eccentricity e shown in FIG.
  • a roller bearing 14 is arranged, which is a needle bearing in the example shown, the z. B. has only a needle cage and a liner and axially between a shoulder 15 and a locking ring 16 with Is secured.
  • On the needle bearing a ring-shaped part 20 is mounted, which in the present case is pot-shaped with a bottom 21 which is opposite the end face 17 of the eccentric 12 and there by a compression spring 22 which engages on the outside of the bottom and which is attached to a housing cover
  • the lubricant channel 10 enters the drive shaft radially in the area between the two ball bearings 5 and is supplied with lubricant from a lubricant source (not shown) by a lubricant feed opening 9 which opens into the annular groove 8 arranged between the two ball bearings .
  • Grease or lubricating oil which is supplied under pressure can be used as the lubricant.
  • the compression spring 22 is required to hold the annular part 20 in its intended position, which is predetermined by the ball 24. When lubricated with grease, there are no significant axial forces. In this case, the compression spring can be replaced by a ball, which secures the position of the ring-shaped part against axial accelerations transmitted from the internal combustion engine.
  • the annular part 20 has on its side facing away from the base 21 a diameter widening 25 which serves to receive a shaft seal 26. A closed space is thus formed between this shaft seal and the interior of the cup-shaped annular part, which is filled with lubricant for lubricating the needle bearing 14.
  • a plain bearing can also be used, which can also be used with a suitable material pairing Dry bearing can be formed, then a corresponding lubricant supply and shaft seal can be dispensed with.
  • the interior 6 is formed by a cup-shaped recess in the pump housing 1 and, with its cylindrical wall 28, comprises the eccentric 12 and the annular part in the circumferential direction.
  • the interior 6 is closed by the cover 23, which is also cup-shaped and encloses the housing 1 with its cylindrical wall 30 to form an annular space 31, for the tight sealing of the annular space 31 to the outside with the end of its cylindrical wall in one Front ring groove 32 of the pump housing 1 engages and there forms a tight connection to the outer boundary ring wall of the front ring groove 32 via a seal 33 which is inserted in an outer ring groove of the cylindrical wall 30.
  • pump cylinder bores 36 are arranged, which are designed as cylindrical blind bores arranged radially to the central axis 11 starting from the annular space 31.
  • three such cylinder bores 36 are arranged at a uniform angular distance from one another. They each hold a pump piston 38, which has an axially extended end on its part projecting outward into the annular space 31 Has pin 39 on which a transmission part 40 with its bore 41 is placed.
  • the transmission part is prismatic and mushroom-shaped in cross-section with a lower flat surface 42, which comes into contact with the remaining end face of the pump piston, with an upper curved surface 43 with a large radius and with a curved surface 44 adjoining this surface with a small radius.
  • the transmission part is constructed symmetrically.
  • a compression spring 46 is arranged within the cylinder bore 36 and is supported in an axial blind hole 47 in the pump piston 38.
  • the pump piston includes a pump working chamber 48 in the cylinder bore, which is supplied with pressure medium, in this case gasoline, via a radial bore 49, which is controlled by the outer surface of the pump piston, during the suction stroke of the pump piston.
  • pressure medium in this case gasoline
  • radial bore 49 which is controlled by the outer surface of the pump piston, during the suction stroke of the pump piston.
  • the radial bore is closed and the enclosed pressure medium is fed via a pressure channel 50 leading from the bottom of the cylinder bore 36, which contains a check valve 51 opening in the outflow direction, to a pressure accumulator from which, for example, fuel injection nozzles are supplied with fuel which but is not shown in more detail here.
  • a flexible transmission element 53 is provided between the pump piston and the annular part 20 mounted rotatably on the eccentric.
  • this consists of tape material, preferably made of steel strip, which is placed over the curved surface 43 with a large radius of the transmission element 40 and is penetrated there in the region of a form-fitting opening 54 by the pin 39 as a counterpart of a form-fitting connection.
  • the transmission element is thus secured against displacement on the transmission part.
  • the transmission element leads in two mutually parallel parts 55 after deflection on the curved surface 44 with a smaller radius through end-side recesses 56 of the ring web 34 to the annular part 20.
  • the mutually parallel parts 55 of the transmission element 53 are attached to cylindrical pins 58, which are inserted into the annular part 20 parallel to the eccentric axis, are deflected and then follow the cylindrical outer surface of the annular part 20 between the two cylindrical pins 58 until their ends, which also have positive-locking openings 59, form-fit into a corresponding, engage radially in the annular part inserted form-fitting pin.
  • the cylindrical pins 58 have the same radius as the curved surfaces 44 of the transmission part with a small radius, the distance between the centers of curvature of this surface being the same as the distance between the axes of the cylindrical pins.
  • the transfer element in the form of a flat ribbon which has been folded over in this way, forms a rectangle consisting of the two mutually parallel sides of the parts 55 of the transfer element and the imaginary connection between the centers of curvature of the curved surfaces with a small radius 44 of the transfer part and the imaginary connection between the axes of the cylinder pins 58, which imaginary connections are parallel to each other.
  • the mutually parallel parts 55 are seen in the direction of rotation of the eccentric in front and behind the pump piston, what z. B. is also fulfilled in that they lie in a common radial plane to the axis of the drive shaft.
  • the annular space 31 is hydraulically connected to the inner space 6 via the end recesses, which are provided parallel to the pump piston on the left and right of the latter.
  • the interior is supplied with fuel via a filling opening 61, which can then be supplied to the pump working space 48 via the radial bore 49 opening into the front recess.
  • the center point of the eccentric pin moves in a circle around the central axis 11 of the drive shaft and in doing so conveys the ring-shaped element 20.
  • the pump piston 38 is subsequently moved inward as the eccentric continues to rotate in the direction of the arrow.
  • the ring-shaped part 20 moves from its shown central position to the right, so that a parallelogram is now formed from the rectangle formed by the transmission element 53 and the transmission part 40.
  • the rotational position of the annular element is maintained so that the connection between the axes of the cylindrical pins 58 is further parallel to the transmission part.
  • the left part 55 of the transmission element must lie somewhat on the left curved surface 44 of the transmission part and unwind from the cylinder pin 58 located underneath. Correspondingly mutually, this process takes place in the other of the parallel parts 55.
  • the pump piston 38 executes its pressure stroke and conveys it from there closed pump working chamber 48 the pressure medium in the pressure channel 50. Meanwhile, the pump piston adjacent in the direction of rotation executes an outward movement corresponding to its suction stroke, while the pump piston adjacent to the pump piston 38 in the opposite direction of rotation is approximately at the end of its pressure stroke.
  • the actuating devices of the pump pistons consisting of the annular part 20 and the respective transmission element 53 and the transmission part 40, do not influence one another, as can easily be seen.
  • the successive running portions, the annular portion and the eccentric '12 are housed 6 getrenn ⁇ th space within a closed, filled from the fuel interior, so that here also the wear is kept low and a high durability of the radial piston pump with drive is achieved with gasoline as a pressure medium. Because the annular part 20 does not movement, but only a circular movement around the central axis 6, it is possible for it to be held in position with the aid of the compression spring against axial accelerations which are transmitted by the internal combustion engine.
  • the two parallel parts 55 of the transmission element 53 are two individual tapes, which in the area of the pin 39 and the pin 60 overlap each other, each have the positive-locking opening 54 and 59 and are welded together for securing.
  • Other types of connection are also possible, such as folding, screwing and the like.
  • An infinity band is also advantageous, which is manufactured to the exact required length and thus has a ring shape without the overlaps shown.
  • a flat strip made of metal is advantageous. Because of its inherent elasticity, this is not as easily deformable as a non-steel material, but the energy invested for the deformation is recovered almost completely in the course of the successive work steps. Is instead of steel z. B.
  • the interior 31 or 6 of the radial piston pump is supplied with a fuel by a prefeed pump, which is approximately below 3-5 bar and by the radial piston pump z. B. is brought to pressures greater than 100 bar.
  • the transmission element can also be formed from two flat strips 755 according to FIG. 7 lying parallel to one another and next to one another, with their plane pointing in the circumferential direction, both of which, on the one hand, on the annular part 720, . B. are attached to a radially projecting rib 769 corresponding to the rib 249 of Figure 4 and on the other hand are attached to a bridge-like part 740 serving as a transfer part.
  • the flat strips are guided through a corresponding recess 756 through the housing separating the interior 6 from the annular space 31. They can also be easily deformed following the deflection of the ring-shaped element and transmit the axial forces symmetrically to the pump piston.
  • FIG. 3 A modification of the embodiment shown in FIGS. 1 and 2 can also be seen in FIG. 3.
  • the transmission element 153 which is built from a single piece, is placed with a corresponding guide over the transmission part 140 and deflected via deflection pieces 158 on the side of the ring-shaped part 120 in such a way that, in turn, two mutually parallel parts 155 in the intermediate region between the transmission part 140 and the annular part 120 arise.
  • the deflecting part is again preferably cylindrical in cross-section and has a central transverse bore 66 through which a transverse bolt 67 is drawn perpendicular to the band plane and the deflecting part 158 and which extends through a corresponding bore 68 in a radially projecting rib 69 of the annular part 120 is guided.
  • the end of the transmission element 153 is clamped between this rib and the deflection part 158 and folded onto the end face 70 of the rib 69. This results in a very good interlocking connection between the ends of the transmission element 53 and the annular part 120, the ends of this transmission element 153 for the passage of the bolt 67 being broken through twice.
  • the radial piston pump according to the invention can also be designed according to FIG. 4.
  • the pump piston 238 is designed as a piston which is guided in a corresponding cylinder bore 236 designed as a stepped bore.
  • the part 72 of the stepped piston 238 which is larger in diameter serves as the actual pump piston which, together with its part 73 having a smaller diameter, encloses the pump working chamber 248 in the larger bore 74.
  • a compression spring 246 is arranged in this, which moves the pump piston back during its suction stroke movement.
  • such a spring can also act as a tension spring on the outside of the pump piston, as shown in FIG. 5.
  • the pump working chamber 248 is in turn supplied with fuel via a suction line 75 which, if control by the pump piston itself is no longer present, now contains a filling check valve 76. Via a corresponding pressure channel 250 and the delivery pressure valve 251, the compressed fuel is delivered to the reservoir (not shown).
  • the stepped piston part 73 which is smaller in diameter and projects into the interior 206 on the side facing away from the pump working space 248, is connected there to a transmission element 253 which is modified compared to the above exemplary embodiments.
  • This consists of a leaf-shaped part which is connected on the one hand at the end of the stepped piston part 73, which is smaller in diameter, and on the other end is connected to a rib 269 which projects radially from the annular part 220 in the axial direction.
  • the annular part 220 is now supported by a ball bearing 77 on the eccentric 12, which bearing can absorb both radial and axial forces, so that no axial securing of the annular part 22 is required. Otherwise, however, this is carried out in the same way as the ring-shaped part 20 from FIG. 1 in such a way that it is cup-shaped with a lip seal 226 that closes off the interior of the cup-shaped part.
  • Figure 5 shows a modification of Figure 4, the axial plan view of this embodiment, from which it can be seen that the leaf-shaped transmission element 253 can deform according to the offset e of the eccentric 12.
  • the pump piston is shown schematically there by a tension spring 78, which is suspended from the housing, acted radially outwards.
  • the transmission element 253 ′ can also be fastened to the peripheral surface of the annular part 220 instead of to a rib 269, as shown in FIG. 5.
  • 6 finally shows a modified form of the exemplary embodiment according to FIG. 4, in which the ring-shaped element 320 has only a ring shape with radially projecting ribs 369, to which the sheet-shaped transmission elements 253 already known from FIG.
  • this solution has the disadvantage that mass balancing, as provided in the exemplary embodiment according to FIG. 1, cannot be used.
  • a weight compensation is provided, in the form of a mass part 86 as a compensating mass, which initially as a radially extending part 87 and then as Part 88 running axially parallel, which overlaps the annular element 20, is arranged diametrically to the eccentricity of the eccentric.
  • the mass sitting on the eccentric can be reduced by using a plain bearing instead of a roller bearing, which at the same time also has dry running properties in such a way that it can be flushed with petrol, then the mass of the annular part can can also be significantly reduced by omitting the shaft seal 26 and such a mass balance is not required.
  • FIG. 8 shows a fifth exemplary embodiment as a section perpendicular to the view of the drive shaft 802 of this exemplary embodiment shown in FIG. 9.
  • This embodiment is suitable for a series arrangement of several pump pistons, for which purpose the drive shaft 802 is supported on both sides with eccentrics 812 arranged between them. These are either separated from one another by bearings 90, as shown on the left half of FIG. 9, or by intermediate disks 89, as shown on the right half.
  • Bearing shells 820 are supported on the eccentrics 812 by means of semi-cylindrical bearing surfaces 887, each of which forms a bearing surface 888 for a transmission element 853 with its rounded outer surface opposite the bearing surface. This is subsequently designed in the same way as the transmission element 53 from FIG. 2.
  • the bearing shell After leaving the bearing shell, it branches at its rounded outer edge into two mutually parallel parts 855 which are formed by recesses 856 inside the housing lead through to the transmission part 840, which is designed in the same way as that of FIG. 2 and which, as in FIG. 2, acts on a pump piston 38. against the force of a compression spring 46 which is arranged in the pump working space 48.
  • the transmission element 853 can be designed as a continuous band or at one point joined together, the outer contour of the bearing shell 820 at the position area of the transmission element being designed analogously to the outer contour of the transmission part 840.
  • the compression spring 46 ensures that the transmission element 853 is always tensioned and the bearing shell 820 with its open bearing surface is constantly held on the eccentric 812 so that it can carry out the required drive on the pump piston by adjusting the eccentric.
  • the pump working space 48 which is enclosed by the pump piston in the housing part lying between the recesses 856, is in turn supplied with fuel by a filling check valve 876 and a suction line 875, which is then brought to high pressure via the check valve 851 and the pressure channel 850 is discharged.
  • the check valves are accommodated in blind bores in the housing, which blind bores are closed by plugs 190.
  • the bearing shells 820 are guided axially, either between the housing wall and an intermediate bearing 90 or between two intermediate bearings in the central region of the drive shaft 802 or by means of intermediate discs 89 or 89 provided on the drive shaft 802 between the eccentrics 820 the housing wall.
  • This arrangement also results in a very compact unit with small moving masses due to the semi-annular bearing shells.
  • the embodiments of the piston pump according to the invention described here can also be used as a hydraulic drive machine in that, in a kinematic reversal, pressure medium is supplied to the pump work space from a high-pressure source in a controlled manner until the pump piston, now serving as the work piston, extends its working stroke has led, which he transmits via the eccentric 12 to the shaft 2, which is now an output shaft in the sense of a crankshaft, via the transmission elements 53, 55 and at the same time drives out another pump piston for its return stroke.
  • the pressure medium supply to the work space is interrupted and a relief line to a relief space is opened so that the pump piston can move through one or more of the other pump pistons via the eccentric and the transmission element, whereby it can execute its return stroke the amount of pressure medium present in the work area conveys into the open relief line.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Reciprocating Pumps (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Lubrication Of Internal Combustion Engines (AREA)

Abstract

Es wird eine Kolbenpumpe vorgeschlagen, die für die Bereitstellung von auf Hochdruck gebrachtem Kraftstoff, insbesondere Benzin mit geringen Selbstschmiereigenschaften, vorgesehen ist, wobei zur Vermeidung von antriebsseitigem Verschleiß als Betätigungseinrichtung des Pumpenkolbens (38) der Kolbenpumpe ein rotierend angetriebener Exzenter (12) vorgesehen ist, dessen Antriebsbewegung über ein biegsames Übertragungselement (53) auf den Pumpenkolben übertragen wird.

Description

Kolbenpumpe
Stand der Technik
Die Erfindung geht von einer Radialkolbenpumpe nach der Gat¬ tung des Patentanspruchs 1 aus, wie sie bereits aus der DE- Al-37 01 857 bekannt ist. Dort ist als Betätigungselement eine Ringvorrichtung vorgesehen, die auf der einen Seite ihrer axialen Erstreckung auf einem Kugellager gelagert ist, das seinerseits auf einem Exzenter am freien Ende einer An¬ triebswelle fixiert ist. Die bekannte Ringvorrichtung über¬ greift dabei einen stützenförmigen Gehäuseteil, in den ra¬ dial die Pumpenzylinder eingearbeitet sind mit radial nach auswärts austretenden Pumpenkolben, die dort über topfartige Ausbildungen an der Ringvorrichtung zur Anlage kommen. Bei angetriebenem Exzenter führt die Ringvorrichtung eine taumelnde Extenterbewegung durch, im Laufe der die Pumpen¬ kolben wechselweise nach innen oder nach außen bewegt werden und dabei ihre Saug- und Förderhübe ausführen. Bei dieser Ausgestaltung einer Radialkolbenpumpe sind zwar gegenüber bekannten Ausführungen, bei denen die Pumpenkolben über zen¬ trisch liegende Nockenbahnen gleiten, die transferdorischen Bewegungen zwischen dem Betätigungselement und dem Pumpen¬ kolben relativ gering, doch sind diese bei der bekannten Ausgestaltung auch nicht völlig unterbunden. Insbesondere nehmen die Pumpenkolben je nach Drehstellung der Ringvor¬ richtung Lagen ein, in denen sie nicht senkrecht zur In¬ nenoberfläche der antreibenden Ringvorrichtung liegen. Damit ergeben sich dennoch Querkräfte an der Berührungsstelle der Pumpenkolben mit der Ringvorrichtung und gleitende Reibun- gen, da konstruktionsbedingt sich die Oberfläche der Ringvorrichtung im Verhältnis zu den Pumpenkolben ver¬ schiebt. Die bekannte Radialkolbenpumpe ist insbesondere für die Versorgung einer hydraulischen Antiblockieranlage vorgesehen, wobei als Fördermedium Druckmittel gewählt wer¬ den kann, das in Grenzen mehr Schmiereigenschaften aufweist. Soll eine solche Pumpe jedoch zur Druckerzeugung von Medien dienen, die nur geringe bis keine Schmiereigenschaften ha¬ ben, wie z. B. Benzin, so ist in den Kontaktbereichen zwischen den Pumpenkolben mit einer hohen Gleitreibung zu rechnen, die zum einen zu einer erhöhten Verlustleistung beim Antrieb der Radialkolbenpumpe führt und zum anderen zu erhöhtem Verschleiß. Aufgrund von Materialabtragungen und Freßvorgängen bei hohem Sog an der Antriebsseite der Pum¬ penkolben ist hier mit einer erheblich eingeschränkten Le¬ bensdauer zu rechnen. Pumpen, die in diesem Bereich Benzin ausgesetzt sind, verhalten sich so, als ob sie geschmiert im Trockenlauf betrieben werden.
Vorteile der Erfindung
Die erfindungsgemäße Radialkolbenpumpe mit den kennzeich¬ nenden Merkmalen des Patentanspruchs 1 hat demgegenüber den Vorteil, daß durch den Antrieb des Pumpenkolbens jeweils über ein biegsames Übertragungselement eine Gleitreibung zwischen dem Pumpenkolben und seinem Betätigungselement völ¬ lig ausgeschaltet wird. Es tritt keine Gleitreibung auf, und somit werden Reibleistungsverluste und Verschleiß vermieden. Somit wird die Pumpe sehr gut geeignet für die Förderung von Kraftstoff, insbesondere Benzin, der unter hohem Druck in einen Druckspeicher gefördert wird, von wo elektrisch gesteuert der Kraftstoff einer Kraftstoffeinspritzdüse zugeführt wird, über die der Kraftstoff an einer Brennkraft¬ maschine eingespritzt wird.
Durch die Ausgestaltung gemäß Patentanspruch 4 ergibt sich insbesondere der Vorteil, daß durch das Übertragungselement und das Übertragungsteil zusammen mit dem ringförmigen Teil ein längs-symmetrisches Viereck gebildet wird, daß sich zu einem Parallelogramm formen läßt, ohne daß gleitreibungbe¬ haftete Ringgelenke vorhanden sind. Dadurch, daß das ring¬ förmige Teil auf dem Exzenter drehbar gelagert ist, bleibt die zueinander vorgesehene Zuordnung von Übertragungs¬ teilausrichtung und Ausrichtung des ringförmigen Elements bei einer Auslenkung desselben über den Exzenter erhalten. Durch die Ausgestaltung nach Anspruch 6 ergibt sich dabei eine besonders einfach zu verwirklichende Konstruktion, wobei die zueinander parallel verlaufenden Teile des Über¬ tragungselements in stirnseitigen Nuten eines den Pumpen¬ zylinder aufnehmenden Teils gelegt werden können. In beson¬ ders vorteilhafter Weise wird gemäß Patentanspruch 8 zur Erzeugung des parallelen Verlaufes der Teile des Übertra¬ gungselements eine Umlenkanordnung am ringfömigen Teil vorgesehen, die mit dem Übertragungsteil zusammenwirkt. Dabei sind gemäß Patentanspruch 13 an den Anlagebereichen der Teile des Übertragungselements kreiszylindrisch ver¬ laufende Oberflächenteile vorgesehen, an denen bei einer Verschiebung des Übertragungsteils relativ zum ringförmigen Teil die beiden Teile des Übertragungselements sich ab- bzw. aufwickeln können. Vorteilhaft besteht das Übertragungsele¬ ment aus Flachbandmaterial gemäß Patentansprüche 15 und 16, welches eine große Flexibilität in Richtung der Verfor¬ mungsebene aufweist bei hohem Übertragungsquerschnitt und damit Beanspruchbarkeit. Weiterhin vorteilhafte Ausführung gemäß Patentanspruch 17 ist die Lagerung des ringförmigen Teils auf dem Exzenter vom übrigen, benzingefüllten Gehäuse abgetrennt und abgedichtet. Damit werden gute Lagerungs¬ verhältnisse erreicht unter Vermeidung eines durch Ein¬ wirkung des Benzins möglichen Trockenlauf, wie eingangs er¬ wähnt. In Abwandlung dazu ist gemäß Patentanspruch 19 ein das Lager und das Ende des Exzenters einschließender Balg vorgesehen und gemäß Patentanspruch 21 eine Einrichtung bereitgestellt, durch die Schmiermittel in den vom Benzin gefüllten Innenraum abgekapselten Bereich des Lagers des ringförmigen Teils auf dem Exzenter eingebracht werden kann. Gemäß Patentanspruch 13 kann dabei auch eine Druckmittel- Schmierung verwirklicht werden, da durch die zwischen Außenseite des Bodens und der Gehäusewand eingespannten Feder die axiale Lage des ringförmigen Teils gesichert ist gegen den einströmenden Schmiermitteldruck.
Weitere Vorteile der in den Unteransprüchen aufgeführten Ausgestaltungen der Erfindung sind der nachfolgenden Beschreibung zu entnehmen.
Zeichnung
Vier Ausführungsbeispiele der Erfindung sind in der Zeich¬ nung dargestellt und werden in der nachfolgenden Beschreibung näher erläutert. Es zeigen Figur 1 einen Längsschnitt durch die erfindungsgemäße Radialkolbenpumpe in einem ersten Ausführungsbeispiel, Figur 2 einen Schnitt gemäß der Linie II-II von Figur 1 durch das erste Aus- führungsbeispiel, Figur 3 eine Teilansicht analog dem Schnitt von Figur 2 für ein zweites Ausführungsbeispiel, Figur 4 ein drittes Ausführungsbeispiel mit einem Einzelband als Übertragungselement pro Pumpenkolben, Figur 5 eine Axialsicht auf das Ausführungsbeispiel nach Figur 4, Figur 6 eine abgewandelte Form der Abdichtung des Lagers auf dem Exzenter anhand des Ausführungsbeispiels nach Figur 4, Figur 7 ein viertes Ausführungsbeispiel mit in einem längs zur Achse der Antriebswelle liegenden zweiteiligen Übertra¬ gungselement, Figur 8 ein fünftes Ausführungsbeispiel mit einem teilringförmigen Teil zur Befestigung des Übertra¬ gungselements und Figur 9 einen Schnitt senkrecht zu Figur 8 mit Darstellung der Antriebswelle.
Beschreibung der Ausführungsbeispiele
Die in Figur 1 wiedergegebene Radialkolbenpumpe weist ein Pumpengehäuse 1 auf, in der eine Antriebswelle 2 der Ra¬ dialkolbenpumpe gelagert ist. An ihrem einen aus dem Pum¬ pengehäuse herausragenden Ende ist auf der Antriebswelle ein Antriebszahnrad 4 befestigt. Die Welle ist mittels zweier Kugellager 5 gelagert, die nach außen und zu einem Innenraum 6 der Radialkolbenpumpe durch Dichtungen 7 abgedichtet ist, so daß aus dem Innenraum 6, der mit Benzin gefüllt ist, kein Kraftstoff entlang der Antriebswelle zu den Kugellagern aus¬ treten kann.
An ihrem in den Innenraum 6 hereinragenden Ende weist die Antriebswelle einen zapfenförmigen zur Mittelachse 11 der Antriebswelle exzentrischen Exzenter 12 auf mit der der Figur 2 entnehmbaren Exzentrizität e. Auf dem Exzenter ist ein Wälzlager 14 angeordnet, das im ausgeführten Beispiel ein Nadellager ist, das aus Platzgründen z. B. nur einen Nadelkäfig und eine Laufbüchse aufweist und axial zwischen einer Schulter 15 und einem Sicherungsring 16 mit Gleitscheibe gesichert ist. Auf dem Nadellager ist ein ring¬ förmiges Teil 20 gelagert, das im vorliegenden topfförmig ausgebildet ist mit einem Boden 21, der gegenüber der Stirn¬ seite 17 des Exzenters 12 und dort durch eine außen am Boden angreifende Druckfeder 22, die sich an einem Gehäusedeckel
23 abstützt in Anlage mit der Bodeninnenseite an einer Kugel
24 gehalten ist, die in eine Austrittsöffnung 18 eines axial durch den Exzenter 12 verlaufenden Schmiermittelkanals 10 eingesetzt ist. Der Schmiermittelkanal 10 tritt radial im Bereich zwischen den beiden Kugellagern 5 in die An¬ triebswelle ein und wird von einer Schmiermittelzuführöff- nung 9, die in die zwischen den beiden Kugellagern angeord¬ neten Ringnut 8 mündet, aus einer nicht weiter gezeigten Schmiermittelquelle mit Schmiermittel versorgt. Als Schmier¬ mittel kann Fett oder Schmieröl, das unter Druck zugeführt wird, verwendet werden. Insbesondere in letzterem Fall ist die Druckfeder 22 erforderlich, um das ringförmige Teil 20 in seiner vorgesehenen Position, die durch die Kugel 24 vorgegeben ist, zu halten. Bei einer Schmierung mit Fett treten keine nennenswerten axialen Kräfte auf. In diesem Fall kann die Druckfeder durch eine Kugel ersetzt werden, die die Position des ringförmigen Teils gegen von der Brenn¬ kraftmaschine her übertragene Axialbeschleunigungen sichert.
Das ringförmige Teil 20 weist an seiner dem Boden 21 abge- wanden Seite eine Durchmessererweiterung 25 auf, die zur Aufnahme einer Wellendichtung 26 dient. Somit wird zwischen dieser Wellendichtung und dem Innern des topfförmig ausge¬ bildeten ringförmigen Teils ein geschlossener Raum gebildet, der mit Schmiermittel zur Schmierung des Nadellagers 14 gefüllt ist. Statt eines Nadellagers ist auch ein Gleitlager verwendbar, das bei geeigneter Materialpaarung auch als Trockenlager ausgebildet werden kann, dann kann auf eine entsprechende Schmiermittelzufuhr und Wellendichtung ver¬ zichtet werden.
Der Innenraum 6 wird durch eine topfförmige Ausnehmung im Pumpengehäuse 1 gebildet und umfaßt mit seiner zylindrischen Wand 28 den Exzenter 12 und das ringförmige Teil in Umfangs- richtung. Stirnseitig ist der Innenraum 6 durch den Deckel 23 verschlossen, der ebenfalls tassenförmig ausgebildet ist und mit seiner zylindrischen Wand 30 unter Bildung eines Ringraumes 31 das Gehäuse 1 umschließt, zum dichten Ver¬ schluß des Ringraumes 31 nach außen mit dem Ende seiner zylindrischen Wand in eine Stirnringnut 32 des Pumpenge¬ häuses 1 eingreift und dort über eine Dichtung 33, die in einer Außenringnut der zylindrischen Wand 30 eingelegt ist, eine dichte Verbindung zur äußeren Begrenzungsringwand der Stirnringnut 32 eingeht. Da beim Betrieb der Radialkolben¬ pumpe in dem Ringraum 33 ein höherer Druck als der at¬ mosphärische Umgebungsdruck herrscht, unterstützt die Druck¬ differenz zwischen Ringraum 31 und Umgebung die dichte An¬ lage der zylindrischen Wand 30 mit der Dichtung 33 an der zylindrischen Wand der Ringnut 32.
In dem zwischen den Pumpeninnenraum 6 und dem Ringraum 31 gebildeten Ringsteg 34 des Pumpengehäuses sind Pumpenzylin- derbohrungen 36 angeordnet, die als vom Ringraum 31 ausge¬ hende radial zur Mittelachse 11 angeordnete zylindrische Sackbohrungen ausgeführt sind. Im ausgeführten Beispiel sind drei solche Zylinderbohrungen 36 im gleichmäßigen Winkelab¬ stand zueinander angeordnet. Sie nehmen jeweils einen Pum¬ penkolben 38 auf, der auf seinem nach außen in den Ringraum 31 ragenden Teil stirnseitig in axialer Verlängerung einen Zapfen 39 aufweist, auf den ein Übertragungsteil 40 mit seiner Bohrung 41 aufgesetzt ist. Der Übertragungsteil ist prismatisch ausgebildet und im Querschnitt pilzförmig mit einer unteren Planfläche 42, die in Anlage an der verblei¬ benden Stirnseite des Pumpenkolbens kommt, mit einer oberen gewölbten Fläche 43 mit großem Radius und mit einer gewölb¬ ten sich an diese Fläche anschließenden Fläche 44 mit kleinem Radius. In bezug auf eine durch die Pumpenkolben- achse und die Mittelachse 11 gehende Ebene ist das Übertra¬ gungsteil symmetrisch aufgebaut.
Innerhalb der Zylinderbohrung 36 ist eine Druckfeder 46 angeordnet, die sich in einem axialen Sackloch 47 im Pum¬ penkolben 38 abstützt. Der Pumpenkolben schließt in der Zylinderbohrung einen Pumpenarbeitsraum 48 ein, der über eine Radialbohrung 49, die von der Mantelfläche des Pumpen¬ kolbens gesteuert wird, beim Saughub des Pumpenkolbens mit Druckmittel, in diesem Falle Benzin, versorgt wird. Beim Druckhub des Pumpenkolbens wird die Radialbohrung ver¬ schlossen und das eingeschlossene Druckmittel über einen vom Boden der Zylinderbohrung 36 abführenden Druckkanal 50, der ein in Ausflußrichtung öffnendes Rückschlagventil 51 enthält, einem Druckspeicher zugeführt, aus dem beispielsweise Kraftstoffeinspritzdüsen mit Kraftstoff ver¬ sorgt werden, der aber im vorliegenden nicht näher dar¬ gestellt ist.
Der Pumpenkolben wird von dem Exzenter 12 angetrieben. Dazu ist zwischen dem Pumpenkolben und dem auf dem Exzenter dreh¬ bar gelagerten ringförmigen Teil 20 ein biegsames Übertra¬ gungselement 53 vorgesehen. Dieses besteht im ausgeführten Beispiel nach Figuren 1 und 2 aus Bandmaterial, vorzugsweise aus Stahlband, das über die gewölbte Fläche 43 mit großem Radius des Übertragungselements 40 gelegt ist und dort im Bereich einer Formschlußöffnung 54 vom Zapfen 39 als Pendant einer Formschlußverbindung durchdrungen ist. Damit ist das Übertragungselement gegen Verschieben auf dem Übertragungs¬ teil gesichert. Das Übertragungselement führt in zwei zu¬ einander parallelen Teilen 55 nach Umlenkung an der gewölb¬ ten Fläche 44 mit kleinerem Radius durch stirnseitige Ausnehmungen 56 des Ringstegs 34 hindurch zum ringförmigen Teil 20. Dort werden die zueinander parallelen Teile 55 des Übertragungselements 53 an Zylinderstifte 58, die achs¬ parallel zur Exzenterachse in das ringförmige Teil 20 ein¬ gesetzt sind, umgelenkt und folgen dann der zylindrischen Außenfläche des ringförmigen Teils 20 zwischen den beiden Zylinderstiften 58, bis sie mit ihren Enden, die ebenfalls Formschlußδffnungen 59 aufweisen, formschlüssig in einen entsprechenden, radial in das ringförmige Teil eingesetzten Formschlußzapfen eingreifen. Die Zylinderstifte 58 haben dabei denselben Radius wie die gewölbten Flächen 44 des Übertragungsteils mit kleinem Radius, wobei der Abstand der Krümmungsmittelpunkte dieser Fläche gleich groß ist wie der Abstand der Achsen der Zylinderstife voneinander. Auf diese Art und Weise wird durch das so umgelegte Übertragungsele¬ ment in Form von Flachband ein Rechteck gebildet bestehend aus den beiden zueinander parallelen Seiten der Teile 55 des Übertragungselements und der gedachten Verbindung zwischen den Krümmungsmittelpunkten der gewölbten Flächen mit kleinem Radius 44 des Übertragungsteils und der gedachten Verbindung zwischen den Achsen der Zylinderstifte 58, welche gedachten Verbindungen zueinander parallel liegen. Die zueinander parallel verlaufenden Teile 55 liegen dabei in Drehrichtung des Exzenters gesehen vor und hinter dem Pumpenkolben, was z. B. auch dadurch erfüllt ist, daß sie in einer gemein¬ samen, zur Achse der Antriebswelle radialen Ebene liegen.
Über die stirnseitigen Ausnehmungen, die parallel zum Pum¬ penkolben links und rechts von diesem vorgesehen sind, ist der Ringraum 31 mit dem Innenraum 6 hydraulisch verbunden. Der Innenraum wird über eine Füllδffnung 61 mit Kraftstoff versorgt, der dann über die in die stirnseitige Ausnehmung mündende Radialbohrung 49 dem Pumpenarbeitsraum 48 zugeführt werden kann.
Im Betrieb bewegt sich der Mittelpunkt des Exzenterzapfens kreisförmig um die Mittelachse 11 der Antriebswelle und befördert dabei das ringförmige Element 20. Ausgehend von der Position des einen Pumpenkolbens 38 in Figur 2, bei dem sich die Achse 62 des Exzenters in bezug auf den oberen Pum¬ penkolben 38 und die Förderung unteren Totpunktstellung be¬ findet, wird bei Weiterdrehung des Exzenters in Pfeilrich¬ tung der Pumpenkolben 38 in der Folge nach innen bewegt. Dabei bewegt sich das ringförmige Teil 20 aus seiner gezeigten Mittelstellung nach rechts, so daß aus dem vom Übertragungselement 53 und dem Übertragungsteil 40 gebilde¬ ten Rechteck jetzt ein Parallelogramm entsteht. Die Drehlage des ringförmigen Elements wird dabei beibehalten, so daß die Verbindung zwischen den Achsen der Zylinderstifte 58 weiter¬ hin parallel zu dem Übertragungsteil liegt. Dabei muß sich der linke Teil 55 des Übertragungselements etwas auf die linke gewölbte Oberfläche 44 des Übertragungsteils auflegen und von dem darunter liegenden Zylinderstift 58 abwickeln. Entsprechend gegenseitig erfolgt dieser Vorgang bei dem anderen der parallelen Teile 55. In der Folge führt der Pum¬ penkolben 38 seinen Druckhub aus und fördert aus dem nun verschlossenen Pumpenarbeitsraum 48 das Druckmittel in den Druckkanal 50. Währenddessen führt der in Drehrichtung be¬ nachbarte Pumpenkolben eine Auswärtsbewegung entsprechend seinem Saughub aus, während der dem Pumpenkolben 38 entgegen Drehrichtung benachbarte Pumpenkolben in etwa am Ende seines Druckhubs ist. Die Betätigungseinrichtungen der Pumpenkolben bestehend aus dem ringförmigen Teil 20 und dem jeweiligen Übertragungselement 53 und dem Übertragungsteil 40 beein¬ flussen, wie leicht ersichtlich, einander nicht. Auf diese Art und Weise werden die Bewegungen des Exzenters ohne Gleitreibung und Reibverluste auf die Pumpenkolben über¬ tragen. Die gleich großen Radien, auf denen die parallelen Teile sich abwickeln bzw. aufwickeln, garantieren eine exakte Parallelführung ohne relative Schiebebewegung zu¬ einander und mit sehr geringen Realpressungen. Das ringför¬ mige Element führt dabei in bezug auf die Achse 62 des Exzenters keine Drehbewegung aus, vielmehr bewegt sich der Exzenter selbst unter dem ringförmigen Teil. Durch die Auslenkung der zueinander parallelen Teile 55 von der Recht¬ eckform zum Parallelogramm ergibt sich ein sanfterer Anlauf des jeweiligen Pumpenkolbenförderhubes, was vorteilhaft ist für die Minderung von Druckpulsationen und die Minderung von Geräuschentwicklung. Diese besondere Betätigungseinrichtung der Pumpenkolben erlaubt es, von Benzin umgeben mit geringstmδglichem Verschleiß die Radialkolbenpumpe zu be¬ treiben. Dagegen sind die aufeinander ablaufenden Teile, der ringförmige Teil und der Exzenter' 12 innerhalb eines geschlossenen, von dem Benzin gefüllten Innenraum 6 getrenn¬ ten Raumes untergebracht, so daß auch hier der Verschleiß niedrig gehalten ist und eine hohe Lebensdauer der Radial- kolbenpumpe bei Trieb mit Benzin als Druckmittel erreicht wird. Dadurch, daß der ringförmige Teil 20 keine Dreh- bewegung, sondern nur eine Kreisbewegung rund um die Mit¬ telachse 6 ausführt, ist es möglich, daß er mit Hilfe der Druckfeder gegen Axial-Beschleunigungen, die von der Brenn¬ kraftmaschine her übertragen werden, in Position gehalten wird.
Im vorstehenden sind die beiden parallelen Teile 55 des Übertragungselements 53 zwei Einzelbänder, die im Bereich des Zapfens 39 bzw. des Zapfens 60 einander überlappend jeweils die Formschlußöffnung 54 bzw. 59 aufweisen und zur Sicherung miteinander verschweißt sind. Es sind auch andere Verbindungsarten möglich, wie Falzung, Verschraubung und ähnliches. Vorteilhaft ist auch ein Unendlichband, das auf die exakte, erforderliche Länge gefertigt wird und also Ringform hat ohne die gezeigten Überlappungen. Bei der Mate¬ rialauswahl für das Übertragungselement ist ein Flachband aus Metall vorteilhaft. Dieses ist wegen der Eigen¬ elastizität zwar nicht so leicht verformbar wie ein Nicht¬ stahlmaterial, doch wird die für die Verformung investierte Energie im Laufe der aufeinander abfolgenden Arbeitsgänge nahezu restlos wieder zurückgewonnen. Wird statt Stahl z. B. ein Übertragungselement aus Textilband verwendet, so muß mit einem Leistungsverlust durch innere Erwärmung des Materials bei seiner Verformung gerechnet werden. Dank Flachbandmate¬ rial ist es auch ohne weiteres denkbar, andere Querschnitts- formen des Übertragungselements zu verwenden, wenn auch Flachband im vorliegenden wegen der geometrischen Führung und seiner hohen Flexibilität in Umfangsrichtung zum ring¬ förmigen Teil Vorteile aufweist. Der Innenraum 31 bzw. 6 der Radialkolbenpumpe wird im Betrieb von einer Vorförderpumpe mit einem Kraftstoff versorgt, der ca. unter 3 - 5 bar steht und durch die Radialkolbenpumpe z. B. auf Drucke größer 100 bar gebracht wird.
In Abwandlung der in den Figuren 1 und 2 gezeigten Aus- führungsform kann das Übertragungselement auch aus zwei parallel zueinander und nebeneinander liegenden, mit ihrer Ebene in Umfangsrichtung weisenden Flachbänder 755 gemäß Figur 7 gebildet sein, die beide einerseits an dem ringför¬ migen Teil 720 z. B. an einer radial abstehenden Rippe 769 entsprechend der Rippe 249 von Figur 4 befestigt sind und andererseits an einem brückenartig ausgebildeten, als Über¬ tragsteil dienenden Teil 740 befestigt sind. Dieses greift an dem zwischen den Flachbändern liegenden Pumpenkolben 738 an. Die Flachbänder sind dabei durch entsprechende Ausneh¬ mung 756 durch das den Innenraum 6 vom Ringraum 31 trennende Gehäuse geführt. Auch sie können der Auslenkung des ringför¬ migen Elements folgend leicht verformt werden und übertragen die axialen Kräfte symmetrisch auf den Pumpenkolben.
Eine Abwandlung der in den Figuren 1 und 2 gezeigten Aus¬ führungsform ist ferner der Figur 3 zu entnehmen. Dort ist das aus einem einzigen Stück gebaute Übertragungselement 153 mit einer entsprechenden Führung über das Übertragungsteil 140 gelegt und über Umlenkstücke 158 auf der Seite des ring¬ förmigen Teils 120 umgelenkt derart, daß wiederum zwei zu¬ einander parallele Teile 155 im Zwischenbereich zwischen dem Übertragungsteil 140 und dem ringförmigen Teil 120 entste¬ hen. Das Umlenkteil ist hierbei wiederum vorzugsweise zylin¬ drisch im Querschnitt und weist eine mittige Querbohrung 66 auf, durch die senkrecht zur Bandebene und dem Umlenkteil 158 ein Querbolzen 67 gezogen ist, der durch eine entspre¬ chende Bohrung 68 in einer radial vorstehenden Rippe 69 des ringförmigen Teils 120 geführt ist. Zwischen dieser Rippe und dem Umlenkteil 158 ist das Ende des Übertragungselement 153 jeweils eingespannt und auf die Stirnseite 70 der Rippe 69 umgelegt. Somit ergibt sich eine sehr gute formschlüssige Verbindung zwischen den Enden des Übertragungselements 53 und dem ringförmigen Teil 120, wobei die Enden dieses Über¬ tragungselements 153 der Durchführung des Bolzens 67 zweimal durchbrochen sind.
Im vorstehenden wurde zwischen Anlenkung am Pumpenkolben und Anlenkung am ringförmigen Teil ein möglichst großer Abstand gewählt, womit erreicht wurde, daß das Übertragungselement 53 bzw. 153 nicht sehr stark verformt wird. Will man eine größere Verformung erlauben, so läßt sich die erfindungs¬ gemäße Radialkolbenpumpe auch gemäß Figur 4 ausführen. In diesem Falle ist der Pumpenkolben 238 als Kolben ausgeführt, der in einer entsprechenden als Stufenbohrung ausgeführten Zylinderbohrung 236 geführt ist. Dabei dient der im Durch¬ messer größere Teil 72 des Stufenkolbens 238 als eigentli¬ cher Pumpenkolben, der zusammen mit seinem im Durchmesser kleinerem Teil 73 in der im Durchmesser größeren Bohrung 74 den Pumpenarbeitsraum 248 einschließt. In diesem ist wie¬ derum eine Druckfeder 246 angeordnet, die den Pumpenkolben bei seiner Saubhubbewegung zurückfährt. In diesem Aus¬ führungsbeispiel kann eine solche Feder auch als Zugfeder an der Außenseite des Pumpenkolbens angreifen, wie das in Figur 5 gezeigt ist. Der Pumpenarbeitsraum 248 wird wiederum über eine Saugleitung 75, die, bei Wegfall einer Steuerung durch den Pumpenkolben selbst, nun ein Füllrückschlagventil 76 enthält, mit Kraftstoff versorgt. Über einen entsprechenden Druckkanal 250 und dem Förder¬ druckventil 251 wird der komprimierte Kraftstoff zum nicht weiter dargestellten Speicher gefördert. Zum Antrieb des Pumpenkolbens ist der im Durchmesser kleinere Stufenkolben- teil 73, der auf der dem Pumpenarbeitsraum 248 abgewandten Seite in den Innenraum 206 ragt, dort mit einem gegenüber den vorstehenden Ausführungsbeispielen abgewandelten Über¬ tragungselement 253 verbunden. Dieses besteht aus einem blattförmigen Teil, das einerseits am Ende des im Durch¬ messer kleineren Stufenkolbenteils 73 verbunden ist und am anderen Ende mit einer Rippe 269 verbunden ist, die radial vom ringförmigen Teil 220 in Achsrichtung verlaufend ab¬ steht. In diesem gezeigten Ausführungsbeispiel ist der ring¬ förmige Teil 220 nun durch ein Kugellager 77 auf dem Exzen¬ ter 12 gelagert, welches Lager sowohl radiale als auch axiale Kräfte aufnehmen kann, so daß keine axiale Sicherung des ringförmigen Teils 22 erforderlich ist. Dieses ist an¬ sonsten jedoch in gleicher Weise ausgeführt wie das ringför¬ mige Teil 20 von Figur 1 derart, daß es topfförmig ausge¬ bildet ist mit einer das Innere des topfförmigen Teils ab¬ schließenden Lippendichtung 226.
Figur 5 zeigt in Abwandlung zu Figur 4 die axiale Aufsicht dieses Ausführungsbeispiels, woraus zu ersehen ist, daß sich das blattförmige Übertragungselement 253 entsprechend dem Versatz e des Exzenters 12 verformen kann. Der Pumpenkolben ist dort schematisch gezeigt durch eine Zugfeder 78, die am Gehäuse eingehängt ist, radial nach außen beaufschlagt. In Abwandlung kann das Übertragungselement 253 ' auch statt an einer Rippe 269 an der Umfangsflache des ringförmigen Teils 220 befestigt sein, wie Figur 5 zeigt. Figur 6 zeigt schließlich eine abgewandelte Form des Aus¬ führungsbeispiels nach Figur 4, bei dem das ringförmige Ele¬ ment 320 nur noch Ringform hat mit radial abstehenden Rippen 369, an denen die von Figur 4 bereits bekannten blattför¬ migen Übertragungselemente 253 befestigt sind zur Betätigung des stufenförmigen Kolbens 238. Zur Abdichtung der Lager¬ stelle des ringförmigen Elements 320 ist nun zwischen dem Kugellager 77 von Figur 4 und dem ringförmigen Element 320 ein Balg 79 eingespannt, der sackförmig ausgebildet ist und mit seinen äußeren Enden über Flansche 81 dicht mit der den Austritt der Antriebswelle 2 umgebenden Stirnwand des Pum¬ pengehäuses verbunden ist. Innerhalb des sackförmigen Balges befindet sich dann der Austritt der Antriebswelle 2, der Exzenter 12, das Kugellager 77 und ein Befestigungselement 82, das eine Gewindebohrung aufweist, in die das Ende einer Schraube 83 schraubbar ist, die durch die Gehäusewand 84 des Pumpengehäuses in einer Bohrung 85 hindurchgeführt ist, durch eine Öffnung im Boden des sackförmigen Balgs hindurch¬ tritt und bei Einschrauben in das Befestigungselement 58 zwischen diesem und der Gehäusewand den angrenzenden Teil des sackförmigen Balges einspannt unter dichtem Verschluß des Inneren des Balges.
Diese Lösung hat jedoch den Nachteil, daß ein Massenaus¬ gleich, wie er in dem Ausführungsbeispiel nach Figur 1 vorgesehen ist, nicht anwendbar ist. Dort ist, um Unwuchten aufgrund der exzentrischen Lage des Exzenters und der auf ihn laufenden Massenteile zu vermeiden, ein Gewichtsaus¬ gleich vorgesehen, in Form eines Massenteiles 86 als Aus¬ gleichsmasse, das zunächst als radial verlaufender, von der Antriebswelle 2 abstehender Teil 87 und dann als achsparallel verlaufender, das ringförmige Element 20 über¬ greifenden Teil 88 ausgeführt ist und diametral der Exzen¬ trizität des Exzenters angeordnet ist. Kann jedoch die Masse, die auf dem Exzenter sitzt, dadurch vermindert wer¬ den, daß statt eines Wälzlagers ein Gleitlager verwendet werden kann, daß zugleich auch noch Trockenlaufeigenschaften aufweist derart, daß es von Benzin umspült sein kann, so kann die Masse des ringförmigen Teils auch durch Weglassen der Wellendichtung 26 erheblich vermindert werden und ein solcher Massenausgleich entfallen.
In Figur 8 ist ein fünftes Ausführungsbeispiel als Schnitt senkrecht zur in Figur 9 wiedergegebenen Ansicht der An¬ triebswelle 802 dieses Ausführungsbeispiels gezeigt. Diese Ausführung ist für eine Reihenanordnung von mehreren Pum¬ penkolben geeignet, wozu die Antriebswelle 802 beidseitig gelagert wird mit dazwischen angeordneten Exzentern 812. Diese sind entweder durch Lager 90, wie auf der linken Hälfte von Figur 9 dargestellt, voneinander getrennt oder durch Zwischenscheiben 89, wie auf der rechten Hälfte darg¬ estellt. Auf den Exzentern 812 sind mittels halbzylin¬ drischer Lagerflächen 887 Lagerschalen 820 gelagert, die jeweils mit ihrer der Lagerfläche gegenüberliegenden gerun¬ deten Außenfläche eine Auflagefläche 888 für ein Übertra¬ gungselement 853 bildet. Dieses ist in der Folge in gleicher Weise ausgebildet wie das Übertragungselement 53 von Figur 2. Es verzweigt sich nach Verlassen der Lagerschale an des¬ sen gerundeter.Außenkante in zwei zueinander parallel ver¬ laufende Teile 855, die innerhalb des Gehäuses durch Ausneh¬ mungen 856 hindurch zum Übertragungsteil 840 führen, das gleicherweise wie das von Figur 2 ausgebildet ist und das, wie auch in Figur 2 einen Pumpenkolben 38 beaufschlagt ent- gegen der Kraft einer Druckfeder 46, die im Pumpenarbeits¬ raum 48 angeordnet ist. Das Übertragungselement 853 kann dabei als durchgehendes oder an einer Stelle miteinander zusammengefügtes Band ausgeführt werden, wobei die Außenkon¬ tur der Lagerschale 820 am Lagebereich des Übertragungsele¬ mentes analog der Außenkontur des Übertragungsteils 840 aus¬ gebildet ist. Die Druckfeder 46 sorgt dabei dafür, daß das Übertragungselement 853 immer gespannt ist und die Lager¬ schale 820 mit ihrer offenen Lagerfläche ständig am Exzenter 812 gehalten wird, so daß sie den erforderlichen Antrieb auf dem Pumpenkolben durch die Verstellung des Exzenters durch¬ führen kann.
Der Pumpenarbeitsraum 48, der durch den Pumpenkolben im zwischen den Ausnehmungen 856 liegenden Gehäuseteil eingeschlossen ist, wird wiederum durch ein Füllrück¬ schlagventil 876 und eine Saugleitung 875 mit Kraftstoff versorgt, der dann, auf Hochdruck gebracht, über das Rück¬ schlagventil 851 und den Druckkanal 850 abgeführt wird. Die Rückschlagventile sind in Sackbohrungen des Gehäuses un¬ tergebracht, welche Sackbohrungen durch Stopfen 190 ver¬ schlossen sind.
Der Figur 9 entnimmt man, daß die Lagerschalen 820 axial geführt werden, und zwar entweder zwischen Gehäusewand und einem Zwischenlager 90 oder zwischen zwei Zwischenlager im mittleren Bereich der Antriebswelle 802 oder aber durch auf der Antriebswelle 802 zwischen den Exzentern 820 vorgese¬ henen Zwischenscheiben 89 bzw. der Gehäusewand. Diese Anord¬ nung ergibt ebenfalls eine sehr kompakt bauende Einheit mit aufgrund der halbringförmigen Lagerschalen gering gehaltenen bewegten Massen. Die hier beschriebenen Ausführungsformen der erfindungs- gemäßen Kolbenpumpe können auch als hydraulische An¬ triebsmaschine verwendet werden, indem in kinematischer Um¬ kehrung dem Pumpenarbeitsraum Druckmittel aus einer Hoch- druckquelle gesteuert zugeführt wird, bis der Pumpenkolben, jetzt als Arbeitskolben dienend, seinen Arbeitshub aus¬ geführt hat, den er über den Exzenter 12 auf die Welle 2, die jetzt eine Abtriebswelle im Sinne einer Kurbelwelle ist, über die Übertragungselemente 53, 55 überträgt und diese und über diese zugleich einen anderen Pumpenkolben zu seinem Rückhub austreibt. Nach Erreichen seines oberen Totpunktes wird die Druckmittelzufuhr in den Arbeitsraum unterbrochen und eine Entlastungsleitung zu einem Entlastungsraum geöff¬ net, so daß der Pumpenkolben, durch einen oder mehrere andere der Pumpenkolben über den Exzenter und das Übertra¬ gungselement bewegt seinen Rückhub ausführen kann, wobei er die im Arbeitsraum vorhandene Druckmittelmenge in die geöff¬ nete Entlastungsleitung fördert.

Claims

Ansprüche
1. Kolbenpumpe mit wenigstens einem radial zu einer Mit¬ telachse (11) einer Antriebswelle (2) in einem Pumpengehäuse
(1) angeordneten Pumpenzylinder (36, 236), in dem ein Pum¬ penkolben (38, 238) durch eine Betätigungseinrichtung zu seinem Druckhub zur Mittelachse (11) hin angetrieben wird, wobei das Betätigungselement auf einem von der Antriebswelle
(2) angetriebenen Exzenter (12) gelagert ist, dadurch ge¬ kennzeichnet, daß die Betätigungseinrichtung aus einem auf dem Exzenter drehbar gelagerten zumindest teilringförmigen Teil (20, 820) und einem mit diesem einerseits und mit dem Pumpenkolben andererseits verbundenen, in Umfangsrichtung biegsamen Übertragungselement (53, 153, 253) besteht.
2. Kolbenpumpe nach Anspruch 1, dadurch gekennzeichnet, daß der Pumpenkolben durch eine Rückstellfeder (60, 246, 78, 860) axial auswärts beaufschlagt ist.
3. Kolbenpumpe nach Anspruch 2, dadurch gekennzeichnet, daß der Pumpenkolben als Stufenkolben (238) ausgebildet ist und mit seinem im Durchmesser kleineren Teil (73) durch die im Durchmesser kleinere Bohrung einer den Pumpenkolben aufneh¬ menden stufenförmigen Zylinderbohrung (236) radial nach in¬ nen einem vom Pumpengehäuse umgebenen Innenraum (6) austritt und dort mit dem Übertragungselement (253) verbunden ist
(Figuren 5 und 6) .
4. Kolbenpumpe nach Anspruch 2, dadurch gekennzeichnet, daß das Übertragungselement aus zwei zu einander parallel ver- laufenden Teilen (55, 155) besteht, die an einem Übertra¬ gungsteil (40, 140) angreifen, das mit dem zwischen den parallel zueinander verlaufenden Teilen des Übertragungsele¬ ments angeordneten Pumpenkolben (38) verbunden ist (Figuren 1 bis 3 und 8) .
5. Kolbenpumpe nach Anspruch 4, dadurch gekennzeichnet, daß das zumindest teilringförmige Teil eine halbringförmige, mit halbzylindrischer Lagerfläche (87) versehene Lagerschale
(820) ist, die auf der der Lagerfläche (87) gegenüberlie¬ genden Seite eine gerundete Auflagefläche (88) für das Über¬ tragungselement (853) aufweist, wobei die Lagerschale mit ihrer Lagerfläche (87) durch die Rückstellfeder (860) am Exzenter (12) gehalten wird.
6. Kolbenpumpe nach Anspruch 5, dadurch gekennzeichnet, daß die Antriebswelle wenigstens einen zwischen zwei Zwischen¬ scheiben (89) oder Lager der Antriebswelle liegenden Exzen¬ ter (812) aufweist, zwischen welchen Zwischenscheiben und/oder axiale Begrenzungswand des Lagers die Lagerschale axial geführt ist.
7. Kolbenpumpe nach Anspruch 4 oder 5, dadurch gekennzeich¬ net, daß die zueinander parallel verlaufenden Teile des Übertragungselements in einer gemeinsamen, axial gerichteten Ebene angeordnet sind.
8. Kolbenpumpe nach Anspruch 4 oder 5, dadurch gekennzeich¬ net, daß die zueinander parallel verlaufenden Teile (55, 155) des Übertragungselements in Drehrichtung des Exzenters (12) gesehen vor und hinter dem Pumpenkolben (38) am Über¬ tragungsteil (40, 140) angreifen (Figuren 1 bis 3 und 8) .
9. Kolbenpumpe nach Anspruch 7 oder 8, dadurch gekennzeich¬ net, daß die zueinander parallel verlaufenden Teile (55, 155) des Übertragungselements jeweils als Einzelteile mit dem Übertragungsteil und dem ringförmigen Teil verbunden sind (Figur 2 und 7) .
10. Kolbenpumpe nach Anspruch 7 oder 8, dadurch gekennzeich¬ net, daß das Übertragungselement über eine Umlenkanordnung
(58, 158) am ringförmigen Teil (20, 120) und über das Über¬ tragungteil (40, 140) geführt ist, mit wenigstens einer Fixiervorrichtung (54, 39, 60, 59, 67, 68, 69) gegen Längs¬ verschiebung des Übertragungselements an einem der Teile, dem ringförmigen Teil oder dem Übertragungsteil.
11. Kolbenpumpe nach Anspruch 10, dadurch gekennzeichnet, daß das Übertragungselement (153) durch ein einziges Teil gebildet wird.
12. Kolbenpumpe nach Anspruch 10, dadurch gekennzeichnet, daß das Übertragungselement ein Ringelement ist.
13. Kolbenpumpe nach Anspruch 9 oder 10, dadurch gekenn¬ zeichnet, daß die parallel zueinander verlaufenden Teile (55, 155) des Übertragungselements an ihren Enden ein Form¬ schlußteil (54, 59) aufweisen, mit dem sie in entsprechende Formschlußteile (39, 60) am Übertragungsteil (40) einerseits und am ringförmigen Teil (20) andererseits eingreifen.
14. Kolbenpumpe nach Anspruch 13, dadurch gekennzeichnet, daß die Formschlußteile eine Loch-Zapfen-Verbindung bilden.
15. Kolbenpumpe nach Anspruch 10 bis 14, dadurch gekenn¬ zeichnet, daß das Übertragungsteil (40) prismatisch ausge¬ bildet ist mit pilzförmigem Querschnitt und mit gerundeten Kanten, über die das Übertragungselement geführt wird, und das ringförmige Teil Zapfen (58) als Umlenkanordnung hat, zwischen den die zueinander parallelen Teile (55) des Über¬ tragungselements mit ihren die Formschlußteile aufweisenden Enden am ringförmigen Teil anliegen und dort die Form¬ schlußverbindung mit dem ringförmigen Teil eingehen.
16. Kolbenpumpe nach Anspruch 15, dadurch gekennzeichnet, daß die Rundung (44) am Übertragungsteil im Querschnitt einen Teilkreis bildet, dessen Durchmesser gleich groß ist wie der Durchmesser der aus zylindrischen Bolzen (58) ge¬ bildeten Umlenkvorrichtung.
17. Kolbenpumpe nach Anspruch 3, dadurch gekennzeichnet, daß das Übertragungselement aus Flachbandmaterial besteht mit einer Bandebene, die senkrecht zur Längsrichtung der Mit¬ telachse liegt.
18. Kolbenpumpe nach Anspruch 1 bis 16, dadurch gekennzeich¬ net, daß das Übertragungselement aus Flachbandmaterial besteht mit einer Bandebene, die in Längsrichtung zur Mit¬ telachse liegt.
19. Kolbenpumpe nach Anspruch 3 oder 4, dadurch gekennzeich¬ net, daß das ringförmige Teil (20) auf seiner einen Axialseite eine das ringförmige Teil stirnseitig ver¬ schließenden, den Exzenter (12) stirnseitig umfassenden Boden (21) hat und auf seiner anderen Axialseite ein mit dem Exzenter zusammenwirkendes Dichtelement (26) aufweist.
20. Kolbenpumpe nach Anspruch 1, dadurch gekennzeichnet, daß an der Antriebswelle (2) diametral zum Exzenter (12) ein zum Teil parallel zu diesem verlaufendes Ausgleichsmassenteil (88) angeordnet ist.
21. Kolbenpumpe nach Anspruch 3 oder 4, dadurch gekennzeich¬ net, daß mit dem ringförmigen Teil ein den Exzenter dicht umschließender Balg (79) verbunden ist.
22. Kolbenpumpe nach Anspruch 21, dadurch gekennzeichnet, daß der Balg zwischen ringförmigem Teil (320) und Wälzlager (77) eingespannt ist und einerseits dicht mit dem den Aus¬ tritt der Antriebswelle umgebenen Pumpengehäuse verbunden ist und andererseits mit einer der Stirnseite des Exzenters gegenüberliegenden Gehäusewand verbunden ist.
23. Kolbenpumpe nach Anspruch 18, dadurch gekennzeichnet, daß an der Stirnseite des Exzenters eine Schmiermittelaus¬ trittsöffnung (18) vorgesehen ist, in der eine Kugel (24) gelagert ist, an der der Boden des ringförmigen Teils (20) durch eine zwischen der Außenseite des Bodens und einer Ge¬ häusewand eingespannte Feder (22) gehalten wird.
24. Kolbenpumpe nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß die Kolbenpumpe einen gesteuer¬ ten DruckmittelZulauf von einer Hochdruckquelle her zum Pum¬ penarbeitsraum (48) und einen gesteuerten Druckmittelablauf zu einem Entlastungsraum aufweist und als hydraulische An¬ triebsmaschine betrieben wird.
EP95920733A 1994-06-08 1995-05-27 Kolbenpumpe Expired - Lifetime EP0712464B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4419927A DE4419927A1 (de) 1994-06-08 1994-06-08 Kolbenpumpe
DE4419927 1994-06-08
PCT/DE1995/000698 WO1995033924A1 (de) 1994-06-08 1995-05-27 Kolbenpumpe

Publications (2)

Publication Number Publication Date
EP0712464A1 true EP0712464A1 (de) 1996-05-22
EP0712464B1 EP0712464B1 (de) 1997-08-06

Family

ID=6520027

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95920733A Expired - Lifetime EP0712464B1 (de) 1994-06-08 1995-05-27 Kolbenpumpe

Country Status (7)

Country Link
US (1) US5626466A (de)
EP (1) EP0712464B1 (de)
JP (1) JPH09501481A (de)
KR (1) KR960702888A (de)
DE (2) DE4419927A1 (de)
ES (1) ES2106643T3 (de)
WO (1) WO1995033924A1 (de)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09195926A (ja) * 1996-01-17 1997-07-29 Unisia Jecs Corp ラジアルプランジャポンプ
DE19627757A1 (de) * 1996-07-10 1998-01-15 Bosch Gmbh Robert Kraftstoffpumpe
US6030185A (en) * 1996-07-11 2000-02-29 Itt Manufacturing Enterprises Inc. Radial piston pump
DE19633170A1 (de) 1996-08-17 1998-02-19 Teves Gmbh Alfred Eelektromotor-/Pumpenaggregat
DE19635164A1 (de) * 1996-08-30 1998-03-05 Bosch Gmbh Robert Kolbenpumpe
DE19705205A1 (de) * 1997-02-12 1998-08-13 Bosch Gmbh Robert Kolbenpumpe
DE29705445U1 (de) * 1997-03-26 1998-04-23 OMB Oberdorfer Maschinenfabrik AG, Bütschwil Hochdruckpumpe
DE19712872A1 (de) * 1997-03-27 1998-10-01 Bosch Gmbh Robert Pumpe, insbesonder Hochdruckpumpe für eine Kraftstoffeinspritzvorrichtung eines Verbrennungsmotors
WO1998058172A1 (de) * 1997-06-17 1998-12-23 Mannesmann Rexroth Ag Radialkolbenpumpe
DE19729789A1 (de) * 1997-07-11 1999-01-14 Bosch Gmbh Robert Radialkolbenpumpe zur Kraftstoffhochdruckversorgung
US6135681A (en) * 1998-08-21 2000-10-24 Allied Machine & Engineering Flat bottom tool
DE19953248A1 (de) 1999-11-04 2001-05-23 Luk Fahrzeug Hydraulik Radialkolbenpumpe
IT1310755B1 (it) * 1999-11-30 2002-02-22 Elasis Sistema Ricerca Fiat Pompa idraulica ad alta pressione, in particolare pompa a pistoniradiali per il carburante di un motore a combustione interna.
DE10012887C5 (de) * 2000-03-16 2014-06-18 Grundfos A/S Dosierpumpe
DE102004024060A1 (de) * 2004-05-13 2005-12-08 Continental Teves Ag & Co. Ohg Elektrohydraulisches Aggregat für eine elektronische geregelte Bremsanlage
US8147226B2 (en) * 2006-02-01 2012-04-03 Black & Decker Inc. Valve assembly for pressure washer pump
SI22392B (sl) * 2006-09-27 2013-04-30 Tajfun Planina Proizvodnja Strojev, D.O.O. Hidravlični agregat za oskrbo in krmiljenje manjših hidravličnih porabnikov, še zlasti zavore in sklopke pri gozdarskem vitlu
CH703310A1 (de) 2010-06-03 2011-12-15 Medela Holding Ag Kolbenpumpenvorrichtung.
DE102010043365A1 (de) * 2010-11-04 2012-05-10 Robert Bosch Gmbh Kraftstoff-Fördereinrichtung für eine Brennkraftmaschine
JP7209135B2 (ja) * 2018-11-09 2023-01-20 聖 丘野 往復動ポンプ

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2118492A (en) * 1936-01-27 1938-05-24 Internat Engineering Corp Operating mechanism
GB472241A (en) * 1936-03-17 1937-09-17 John Edward Mills Improvements in or relating to reciprocating ram pumps
US3141309A (en) * 1962-07-10 1964-07-21 Carlos I Gesell Air conditioning apparatus
DE2253022C2 (de) * 1972-10-28 1974-12-12 G.L. Rexroth Gmbh, 8770 Lohr Radialkolbenmaschine
DE2315599A1 (de) * 1973-03-29 1974-10-17 Jun Heinrich Schlingmann Entlueftungseinrichtung fuer kreiselpumpen, insbesondere feuerloeschkreiselpumpen
DE3701857A1 (de) * 1987-01-23 1988-08-04 Teves Gmbh Alfred Radialkolbenpumpe
JPH01244175A (ja) * 1988-03-23 1989-09-28 Nippon Denso Co Ltd ラジアルピストンポンプ
JP2587712Y2 (ja) * 1992-04-27 1998-12-24 自動車機器株式会社 ラジアルプランジャポンプのピントル固定構造

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9533924A1 *

Also Published As

Publication number Publication date
DE4419927A1 (de) 1995-12-14
DE59500473D1 (de) 1997-09-11
KR960702888A (ko) 1996-05-23
WO1995033924A1 (de) 1995-12-14
EP0712464B1 (de) 1997-08-06
ES2106643T3 (es) 1997-11-01
JPH09501481A (ja) 1997-02-10
US5626466A (en) 1997-05-06

Similar Documents

Publication Publication Date Title
EP0712464B1 (de) Kolbenpumpe
EP0566845B1 (de) Vorrichtung zum Verstellen der relativen Drehlage einer Nockenwelle
DE10227176A1 (de) Kraftstoffeinspritzpumpe
DE19523283B4 (de) Pumpe, insbesondere Hochdruckpumpe für eine Kraftstoffeinspritzvorrichtung eines Verbrennungsmotors
DE10212492A1 (de) Kolbenpumpe
DE19643134A1 (de) Kraftstoffpumpe
DE60301312T2 (de) Treibstoffpumpenanordnung
DE3030285A1 (de) Axialkolbenpumpe
DE3542938C2 (de)
DE2137543C3 (de) Hydrostatische Schubkolbenmaschine
DE60203777T2 (de) Kraftstoffeinspritzpumpe
DE968651C (de) Schiefscheibentriebwerk
EP1651866B1 (de) Exzentertriebwerk für volumetrisch wirkende pumpen oder motoren
DE19844326A1 (de) Radialkolbenpumpe
DE102006044294B3 (de) Radialkolbenpumpe
DE10351473B3 (de) Axialkolbenmaschine
EP0881380A1 (de) Hochdruckförderpumpe
DE102004019626B4 (de) Kraftstoffeinspritzpumpe und Dreh-/Linearbewegungsumwandlungsmechanismus mit Sicherungseinrichtung
DE10313745A1 (de) Hochdruckpumpe für eine Kraftstoffeinspritzeinrichtung einer Brennkraftmaschine
DE4315646A1 (de) Kraftstoffeinspritzpumpe für Brennkraftmaschinen
DE4312498C2 (de) Förderpumpe
DE19701392A1 (de) Radialkolbenpumpe
DE10226492B4 (de) Axialkolbenmaschine mit verstellbarem Kolbenhub
DE102009003256A1 (de) Kolbenpumpe, insbesondere Kraftstoff-Hochdruckpumpe, mit einer Antriebswelle und einem Antriebsabschnitt
DE3313611A1 (de) Motor-/pumpen-aggregat

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES GB IT

17P Request for examination filed

Effective date: 19960614

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 19961223

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES GB IT

REF Corresponds to:

Ref document number: 59500473

Country of ref document: DE

Date of ref document: 19970911

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19971007

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN P. & C. S.N.C.

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2106643

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19991230

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20010516

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20010519

Year of fee payment: 7

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020528

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20020527

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20030611

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050527