EP0706439A1 - Brillenglasrandschleifmaschine - Google Patents

Brillenglasrandschleifmaschine

Info

Publication number
EP0706439A1
EP0706439A1 EP94920937A EP94920937A EP0706439A1 EP 0706439 A1 EP0706439 A1 EP 0706439A1 EP 94920937 A EP94920937 A EP 94920937A EP 94920937 A EP94920937 A EP 94920937A EP 0706439 A1 EP0706439 A1 EP 0706439A1
Authority
EP
European Patent Office
Prior art keywords
spectacle lens
contour
grinding
measured
grinding wheel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP94920937A
Other languages
English (en)
French (fr)
Other versions
EP0706439B1 (de
Inventor
Lutz Gottschald
Klaus Eickmeyer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wernicke and Co GmbH
Original Assignee
Wernicke and Co GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wernicke and Co GmbH filed Critical Wernicke and Co GmbH
Publication of EP0706439A1 publication Critical patent/EP0706439A1/de
Application granted granted Critical
Publication of EP0706439B1 publication Critical patent/EP0706439B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B47/00Drives or gearings; Equipment therefor
    • B24B47/22Equipment for exact control of the position of the grinding tool or work at the start of the grinding operation
    • B24B47/225Equipment for exact control of the position of the grinding tool or work at the start of the grinding operation for bevelling optical work, e.g. lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B9/00Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor
    • B24B9/02Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground
    • B24B9/06Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain
    • B24B9/08Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain of glass
    • B24B9/14Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain of glass of optical work, e.g. lenses, prisms
    • B24B9/148Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain of glass of optical work, e.g. lenses, prisms electrically, e.g. numerically, controlled

Definitions

  • the invention relates to a spectacle lens edge grinding machine, in which the spectacle lens is given its circumferential contour by pre-grinding, then subjected to a final grinding, in particular a facet grinding, the U data of the circumferentially contour-cut glass is determined, entered into a computer and the radial movement and possibly the axial movement of the spectacle lens relative to the grinding wheel can be controlled by the computer using this circumferential data for a subsequent corrective grinding.
  • the data determining the circumferential contour of the spectacle lens is determined during or after the fine grinding by means of a contactless measuring transducer arranged in a housing of the spectacle lens edge grinding machine and input to the computer.
  • the ascertained actual values of the circumferential contour are compared in the computer with target values of the circumferential contour stored therein, and the achievement or exceeding of a predeterminable permissible deviation is determined, the final grinding being carried out in a controlled manner only if the permissible deviation is exceeded with the correction values resulting therefrom.
  • the measurement results should also take into account changes in the roof facet due to the wear of a grinding wheel used to manufacture the roof facet.
  • an eyeglass lens grinding machine of the type mentioned at the outset it has at least one support interacting with a contour-ground eyeglass lens and at least one measurement sensor for receiving an actual value of the circumferential contour with reference to the support.
  • this support can be connected fixedly or displaceably to a machine frame of the spectacle lens edge grinding machine.
  • the eyeglass lens is converted onto this support after it has been ground to the contour of the urine, and the radius of a predeterminable, associated angle of at least one circumferential point of the peripheral contour-ground eyeglass lens is measured with reference to the support.
  • the support can be arranged anywhere in the housing of the lens edge grinding machine, but must be accessible as a support for the contour-contoured lens.
  • a particularly simple and preferred embodiment of the support results if it consists of scfc len arranged on the side of the grinding wheel or grinding wheels and rings or ring segments which are fixed with respect to the grinding wheels and to which the spectacle lens is converted after the grinding of the peripheral contour.
  • the probe can have at least one radius value a keyway with a wedge angle equal to the permissible maximum acute angle of a roof facet on the spectacle lens.
  • the result is a measurement value that depends exclusively on the radial wear of the grinding wheel, as long as the angle of the roof facet of the contoured spectacle lens does not exceed the angle of the keyway on the probe. Until equality of angles is reached, it is sufficient to carry out a correction grinding that the linear Deviation corresponds.
  • the lens edge grinding machine can end the grinding process and emit a signal which gives the operator an indication that the grinding wheel must be dressed or has become unusable.
  • the probe has a flat area with the position of the spectacle lens unchanged and at least one radius value of the tip of the roof facet in the key groove and another radius value with respect to the flat area. From the difference between these values and the target value, it can easily be determined whether the change is still within permissible limits or not.
  • the grinding wheel (s) can preferably be closely surrounded by a fixed splash guard with the exception of the grinding area and the rings or ring segments can be arranged on the splash guard.
  • These rings or ring segments can preferably be arranged on both sides of a pre-grinding wheel and can be designed as a probe for measuring the spatial curve of the peripheral lens contour.
  • a pre-grinding wheel can be designed as a probe for measuring the spatial curve of the peripheral lens contour.
  • Such a device is described in German Patent 38 42 601 of the applicant and is used to the front and rear space curve Determine the circumferential contour of the shape-ground spectacle lens and the respective lens thickness. This is achieved in that the spectacle lens holding shaft with the spectacle lens or the grinding wheel with the probe head oscillate back and forth movements. On the one hand, this serves to ensure uniform wear of the pre-grinding disc and, on the other hand, to measure the spatial curves and the glass thickness of the shape-ground spectacle lens.
  • the computer available for the device according to German Patent 38 42 601 can be used to change the axial position of the lens holding shaft with the lens relative to the grinding wheel in accordance with the spatial curve of the lens contour not only for controlled grinding of a roof facet, but also when recording the actual values of the circumferential contour using the rings or ring segments.
  • These can therefore be carried out very narrowly, since by controlling the position of the spectacle lens holding shaft with the spectacle lens relative to the grinding wheel in accordance with the spatial curve of the spectacle lens contour, there is no danger that the spectacle lens leaves the area of the support when measuring the peripheral contour and onto the pre-grinding wheel or the finished grinding wheel or the gaps.
  • the contact between the spectacle lens and the rings or ring segments can be brought about by a drive which has an adjustable clutch, the clutch torque of which changes in the sense of a reduction in the recording of the actual values, the circumferential contour can be changed by means of a switching device.
  • the senor can be arranged with respect to the glass holding shaft if it is axially and radially movable on the machine frame relative to the rotating grinding wheels in order to measure the actual values of the peripheral contour.
  • a digital sensor can be used, the measured values of which are sent directly to the computer and processed there.
  • the method according to the invention for machining the edges of spectacle lenses by means of the above-described spectacle lens edge grinding machine can preferably consist in that the radius of a predeterminable, associated angle of at least one circumferential point of the circumferential contour of a shape-ground spectacle lens is measured with reference to a support, and the measured value is entered into a computer with compared to a stored target value and, if a permissible deviation of the actual value from the target values which can be entered into the computer is exceeded, an additional grinding process of the peripheral contour is carried out with a correction corresponding to the deviation.
  • the radius of at least one circumferential point of a roof facet of the contour-contoured spectacle lens can preferably be measured with reference to a keyway in the support, as a result of which it can be seen whether the angle of the roof facet is still in the range of a permissible value.
  • a still usable lens can be created by an additional grinding process of the peripheral contour with a correction according to the deviation.
  • the angle of the roof facet of the contour-contoured spectacle lens is greater than the angle of the keyway, this means that the grinding wheel used to grind the roof facet must be dressed or has become unusable. This is indicated by the machine with a corresponding signal.
  • the radius * of at least one circumferential point of the roof facet of the contour-contoured spectacle lens is measured both with reference to the keyway in the support and with reference to a flat area of the support, it can be determined in a simple manner by comparing these measured values whether a correction of the reference Deviation of the actual value from the target value measured on the keyway is still possible or whether the spectacle lens must be reground with a new or dressed grinding wheel.
  • the entire circumferential contour is corrected according to the deviation measured at this point. If this deviation only results from wear of the pre-grinding wheel or the finishing grinding wheel, which is usually evenly distributed over the circumference, this correction can already be used to produce a sufficiently precisely contoured lens that is dimensionally accurate enough to be used directly in a specific eyeglass frame become.
  • the deviations on the circumferential contour can be of different sizes, these deviations being determined by the shape of the spectacle lens and the space curve of the circumferential contour, greater accuracy of the correction grinding can be achieved if the entire circumferential contour is measured with the stored target values compared, if the permissible deviation of the actual values from the target values which can be input to the computer is exceeded, the computer averages the measured deviations and the additional grinding process of the peripheral contour is carried out in accordance with the averaged values.
  • a correction grinding is carried out in order to keep the actual value of the circumferential values at 0: 0.3 mm compared to the target values.
  • this measurement can be carried out at an increased rotational speed of the spectacle lens holding shaft compared to the grinding process.
  • This template is fastened to the spectacle lens holding shaft and rests on an adjustable counter bearing, which can be adjusted by the computer according to the invention for a correction grinding in the manner described.
  • the computer only serves to determine the relative axial displacement of the grinding wheel and the peripheral contour-ground lens when grinding a facet, the measurement of the peripheral contour and the possibly to control required correction grinding.
  • the peripheral contour of a spectacle lens can be ground in the form of a quantity of data.
  • the template corresponding to the lens contour can be replaced by a circular disk and the abutment is given a movement by the computer, which results in the lens contour to be ground.
  • Fig. 1 is a schematic sectional view of a
  • Fig. 2 is a perspective view of a two
  • FIG. 3 shows a detail of the measurement of at least one radius of the contour-contoured spectacle lens a roof facet ground using a new grinding wheel
  • FIG. 4 is an illustration similar to FIG. 3, in which the
  • FIG. 5 shows a representation according to FIG. 3, in which the roof facet produced by means of a very worn grinding wheel has already become so flat that the spectacle lens can no longer be inserted into a spectacle frame,
  • Fig. 6 is a representation of the measurement of the radius of a contour-ground spectacle lens, in which the tip of the roof facet is placed on a flat area of the probe and
  • Fig. 7 is an enlarged view of a
  • a cross slide 2 is arranged on a machine frame 1, the slide part 3 of which has guide rods 4 which are mounted in bores 5 of projections 6 of a slide part 7 so as to be radially displaceable to an eyeglass lens holding shaft 14 with an eyeglass lens 24 held thereby.
  • the slide part 7 is via guide rails 8 on the machine frame 1 in a direction parallel to the spectacle lens holding shaft 14 and a shaft 10 for a pre-grinding wheel 11 and one coaxially arranged thereto Finished and / or facet grinding wheel 12 arranged with a facet groove 33.
  • the shaft 10 is supported on the slide part 3 by means of bearing supports 9.
  • the grinding wheels 11, 12 and the spectacle lens 24 with their shafts 10, 14 are surrounded by a housing 13 which has a trough, not shown in detail below, which prevents coolant and grinding abrasion from reaching the cross slide 2.
  • An angle encoder 15 is connected to the spectacle lens holding shaft 14 and is connected to a computer 16.
  • a transducer 17 is arranged on the slide part 7 and absorbs the radial displacement of the slide part 3 with respect to the spectacle lens holding shaft 14. This transducer 17 is also connected to the computer 16.
  • the radial displacement of the slide part 3 is brought about by a drive motor 18 which is controlled by the computer 16 via control connections 21 and which is in drive connection with the guide rods 4 via an electromagnetic clutch 19.
  • peripheral contour values for a wide variety of spectacle lens shapes are stored as polar coordinates.
  • a lens blank is clamped into the lens holder shaft 14 and brought into contact with the pre-grinding disk 11.
  • the resulting contact pressure results from the setting of the electromagnetic clutch 19 and can be set differently for spectacle lenses made of plastic or silicate glass and according to the edge thickness of the spectacle lens which is dependent on the optical values of the spectacle lens.
  • the spectacle lens 24 is rotated with its shaft 14 in a known manner, the speed of rotation usually being at 10 to 13 rpm.
  • the angle encoder 15 transmits the computer 16 at equal angular intervals, for. B. in increments of 6 °, a pulse, which causes the computer 16 to set the associated radius of the spectacle lens to be ground via the drive motor 18.
  • the slide part 7 and thus the grinding wheel 11 are set into an oscillating movement parallel to the axis of rotation of the spectacle lens 24, which is reversed in the opposite direction at the edge of the pre-grinding wheel 11.
  • This movement is controlled by a drive, not shown, for the slide part 7, which is also connected to the computer 16.
  • ring segments 23 are arranged, the one on the pre-grinding wheel 11 and the
  • the ring segments 23 serve as buttons and are connected to a sensor 26, shown schematically in FIG. 2, which in turn is connected to the computer 16 via a control line connection 27.
  • the oscillating movements of the slide part 7 and thus the grinding wheels 11, 12 and the surrounding contactor 22 are controlled in the manner described in the German patent 38 42 601 by the sensor 26 and at the same time serve the circumferentially contoured spectacle lens 24 with respect to the spatial curve of the front - and back and the glass thickness to be measured.
  • These measured values are used to grind a facet to the peripheral contour-ground spectacle lens by means of the facet groove 33 in the finish grinding wheel 12, the course of which can be controlled by means of the computer 16.
  • the spectacle lens 24 is automatically moved onto the finish grinding wheel 12 and positioned in relation to the facet groove 33.
  • the spectacle lens 24 has sufficient machining allowance for the final grinding.
  • the spectacle lens 24, controlled by the computer 16 is placed in an exact position on one of the ring segments 23.
  • the ring segment 23 serves as a support for measuring the distance between the spectacle lens holding shaft 14 and this ring segment 23.
  • Which point of the spectacle lens 24 is placed on the ring segment 23 is determined by the computer 16 on the basis of input commands. In the simplest case, it is sufficient to carry out a single distance measurement, determine the deviation of the actual value from the corresponding target value, which is stored in the target value memory 20, for this point, and one by the computer 16 when a predeterminable deviation is exceeded carry out another fine adjustment with correction of this deviation.
  • This procedure with the detection of only one measuring point presupposes that deviations on the entire circumferential contour are essentially the same everywhere.
  • a measurement is more precise if the entire spectacle lens contour 25 is carried out over a complete revolution of the spectacle lens 24 with contact with the ring segment 23. Since the ring segments 23 are very narrow in order to keep the axial extent of the grinding wheels 11, 12 in the splash guard 22 as small as possible, the computer 16 gives the slide part 7 a movement parallel to the axis of the shaft 14, which takes into account the spatial curve of the lens contour or the facet , so that the spectacle lens 24 remains on the ring segment 23 during this one revolution for measuring the circumferential contour.
  • the distance values of the spectacle lens 24 are recorded by means of the sensor 17 and fed into the computer 16, where the comparison with the target values is carried out.
  • the computer 16 can either adjust this deviation over the circumference and set a correction cut according to this mean value, or the deviations are registered point by point, compared with the corresponding target values and a correction cut is only made carried out where a deviation actually occurred.
  • FIG. 7 shows a finished grinding wheel 12 with a facet groove 33 in solid lines, which has an angle *] that is smaller than the usual angle of a facet groove in an eyeglass frame.
  • a precisely contoured lens can therefore be easily inserted into a corresponding eyeglass frame and rests with the tip of the roof facet on the facet base of the eyeglass frame.
  • This state is shown in FIG. 3 with reference to a keyway 28 in the ring segment 23.
  • This keyway 28 is provided with an angle * O that is greater than the angle T 'X
  • Facet groove 33 in the finish grinding wheel 12 is approximately equal to the angle of the facet groove in the usual eyeglass frames.
  • the radius RX can be measured for the point.
  • the spectacle lens 24 is automatically returned to the finish grinding wheel 12 and a corrective grinding is carried out.
  • the facet groove in the finished grinding wheel 12 wears out and initially assumes a shape which is denoted by the reference number 34 in FIG. 7 and is hatched.
  • the angle of this facet groove of a worn finish grinding wheel 12 is indicated by. It can be seen that at the same time the depth of the facet groove 34 has increased by the amount A.
  • a contour-ground spectacle lens 24 with a roof facet, which has the angle r is inserted into the keyway 28 of the ring segment 23 according to FIG. 4, a measured radius R 2 results, which is around the value ⁇ _> R.
  • a correction grinding can be carried out, which reduces the contour-ground spectacle lens 24 by the value ⁇ ⁇ "* X.
  • this flattened roof facet with the angle f can no longer be inserted completely into the keyway 28 on the ring segment 23, but lies with its flanks, as shown in FIG. 5, on the outer edges of the keyway 28.
  • a radius R 3 is measured, which is not only around the RX
  • Amount ⁇ is increased, but by a larger amount, which is a function of this angle P.
  • Computer 16 can now be programmed so that it recognizes the boundary between the radius R 2 and the radius R3 and a
  • Outputs signal that indicates to the operator that the finish grinding wheel 12 is worn so far that a contour grinding can no longer be carried out.
  • This limit value can be determined very easily if, how 6, after the measurement of the radii RX, R2 or R 3 with reference to the keyway 28, a further radius R4 is measured in that the peripheral contour-ground spectacle lens 24 with its roof facet 30, 31, 32 on a flat area 29 of the Ring segment 23 is placed.
  • the difference between the radii RX, R2 or R3 and the radius R ⁇ directly results in a value that becomes greater than zero when P becomes greater than « P.
  • the comparison measurement need only be carried out with respect to a radius of the contour-ground spectacle lens 24, while for an exact correction grinding, the entire circumference of the spectacle lens 24 can be measured in the keyway 28 or on the flattened region 29 of the ring segment 23.
  • the device and the method according to the invention are suitable for use with fully automatic, CNC-controlled spectacle lens edge grinding machines.
  • the stored nominal values of the peripheral contour serve to control the cross slide carrying the grinding wheels 11 and 12 in such a way that the required spectacle lens circumferential contour is created directly.
  • the method and the device according to the invention are also suitable for use with spectacle lens edge grinding machines, in which the computer 16 only serves to compare the actual values of the shaped spectacle lens 24 with the stored nominal values of the peripheral contour and to carry out a correction grinding during the actual shape grinding of the spectacle lens by means of a shaping disc with the shape arranged on the spectacle lens holding shaft 14 of the spectacle lens to be ground is controlled.
  • the shaped wheel rests in a known manner on an abutment which is connected to the slide part 3 and causes the grinding wheels 11, 12 and the slide part 3 to be displaced.
  • the abutment is adjusted by the computer 16 in accordance with the deviation found.
  • the abutment can also be used, under computer control, to cause the slide part 3 and thus the grinding wheels 11, 12 to be displaced if a circular disk rests on the abutment instead of a shaped disk with the peripheral contour of the spectacle lens to be ground.
  • the measurement of the contour-contoured spectacle lens 24 can be carried out on a very narrow support in the form of the ring segment 23 if the spectacle lens 24 on the spectacle lens holding shaft 14 is displaced in the axial direction in accordance with its spatial curve.
  • This shift in the axial direction can also be purely mechanical, for. B. done by Panhard rod.
  • the circumferential contour of the spectacle lens 24 can be measured after the pre-grinding on the pre-grinding disc 11. This is advantageous since the pre-grinding wheel 11 wears out faster than the fine grinding wheel 13. a renewed measurement of the circumferential contour after the final grinding can then be dispensed with entirely. However, a measurement of the circumferential contour and, if necessary, a corrective grinding can also be carried out after the final grinding.
  • the invention can also be used in an analogous manner with a spectacle lens edge grinding machine in which the grinding wheels can only rotate, but are otherwise stationary, while the spectacle lens holding shaft is mounted so that it can move radially and axially with respect to the grinding wheels.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Abstract

Brillenglasrandschleifmaschine mit wenigstens einer Schleifscheibe, einer drehbaren, relativ zu der Schleifscheibe wenigstens radial verstellbaren Brillenglashaltewelle, wenigstens einem berührend mit einem umfangskonturgeschliffenen Brillenglas zusammenwirkenden Auflager, einem Meßwertaufnehmer zum Aufnehmen wenigstens eines Ist-Wertes der Umfangskontur mit Bezug auf das Auflager, einem die Brillenglasrandschleifmaschine steuernden Rechner zum Vergleichen von in ihm gespeicherten Soll-Werten der Umfangskontur des zu schleifenden Brillenglases mit wenigstens dem einen gemessenen Ist-Wert der Umfangskontur und zum Steuern eines zusätzlichen Schleifvorganges bei Überschreiten einer dem Rechner eingebbaren zulässigen Abweichung des bzw. der Ist-Werte.

Description

"Brillenglasrandschleifmaschine"
Die Erfindung betrifft eine Brillenglasrandschleifmaschine, bei der das Brillenglas durch einen Vorschliff seine Umfangskontur erhält, anschließend einem Fertigschliff, insbesondere einem Facettenschliff unterworfen wird, die U fangsdaten des umfangskonturgeschliffenen Glases ermittelt, einem Rechner eingegeben und die Radialbewegung und ggf. die Axialbewegung des Brillenglases relativ zu der Schleifscheibe für einen sich ggf. anschließenden Korrekturschliff mit Hilfe dieser Umfangsdaten durch den Rechner gesteuert werden.
Eine derartige Vorrichtung ist in der deutschen Patentschrift 40 12 660 der Anmelderin beschrieben. Bei dieser Vorrichtung werden die die Umfangskontur des Brillenglases bestimmenden Daten während oder nach dem Feinschliff mittels eines berührungslos arbeitenden, in einem Gehäuse der Brillenglasrandschleifmaschine angeordneten Meßwertaufnehmers ermittelt und dem Rechner eingegeben. Die ermittelten Ist-Werte der Umfangskontur werden in dem Rechner mit darin gespeicherten Soll-Werten der Umfangskontur verglichen und das Erreichen oder Überschreiten einer vorbestimmbaren zulässigen Abweichung festgestellt, wobei der Fertigschliff nur bei Überschreiten der zulässigen Abweichung mit den aus dieser folgenden Korrekturwerten gesteuert durchgeführt wird.
Obwohl sich das Prinzip der Ermittlung der Ist-Werte der Umfangskontur des formgeschliffenen Brillenglases und der sich daraus ggf. ergebende Korrekturschliff in der Anwendung bewährt haben, hat sich in der Praxis gezeigt, daß berührungslos arbeitende, im Gehäuse angeordnete Meßwertaufnehmer nachteiligerweise durch die im Gehäuse der Brillenglasrandschleifmaschine im Bereich des Brillenglases herrschende Atmosphäre, die von abgeschleudertem Kühlmittel und Schleifabrieb mehr oder weniger ungleichmäßig belastet ist, beeinflußt werden, so daß es erforderlich ist, wenn genaue Meßergebnisse und daraus folgend genaue Schleifergebnisse erzielt werden sollen, ein häufiges Reinigen durchzuführen.
Beim Schleifen einer Dachfacette eines Brillenglases ergibt sich eine Abnutzung der Schleifscheibe in der Facettennut, die nicht nur zu einer Vergrößerung des fertiggeschliffenen Brillenglases führt, sondern auch zu einer Vergrößerung des spitzen Winkels der Dachfacette, d. h. zu einer Abflachung. Die Abflachung der Dachfacette läßt sich bis zu einem gewissen Grad hinnehmen, solange das Brillenglas sicher in der Facettennut des betreffenden Brillengestells aufgenommen wird. Voraussetzung hierfür ist, daß das umfangskonturgeschliffene Brillenglas einen Korrekturschliff erhält, der die Abflachung der Dachfacette berücksichtigt.
Der Erfindung liegt die Aufgabe zugrunde, die Nachteile der bekannten Brillenglasrandschleifmaschine zu vermeiden und den Meßwertaufnehmer so zu gestalten, daß er bei einfachem Aufbau unabhängig von der in dem Gehäuse der
Brillenglasrandschleifmaschine herrschenden Atmosphäre, den sich ergebenden Verschmutzungen und ggf. Ablagerungen ausreichend genaue Meßergebnisse liefert. Des weiteren sollen die Meßergebnisse zusätzlich Veränderungen der Dachfacette aufgrund der Abnutzung einer zum Herstellen der Dachfacette benutzten Schleifscheibe berücksichtigen.
Ausgehend von dieser Aufgabenstellung wird bei einer Brillenglasrandschleifmaschine der eingangs erwähnten Art vorgeschlagen, daß sie wenigstens ein berührend mit einem umfangskonturgeschliffenen Brillenglas zusammenwirkendes Auflager und einen Meßwertaufnehmer zum Aufnehmen wenigstens eines Ist-Wertes der Umfangskontur mit bezug auf das Auflager aufweist.
Dieses Auflager kann bezüglich der Brillenglashaltewelle und dem davon gehaltenen Brillenglas fest oder verschiebbar mit einem Maschinengestell der Brillenglasrandschleifmaschine verbunden sein. Auf dieses Auflager wird das Brillenglas, nachdem es urofangskonturgeschliffen wurde, umgesetzt, und der Radius eines vorbestimmbaren, zugehörigen Winkels wenigstens eines Umfangspunktes des umfangskonturgeschliffenen Brillenglases wird mit bezug auf das Auflager gemessen.
Grundsätzlich läßt sich das Auflager an beliebiger Stelle im Gehäuse der Brillenglasrandschleifmaschine anordnen, muß jedoch für das umfangskonturgeschliffene Brillenglas als Auflager erreichbar sein. Eine besonders einfache und bevorzugte Ausführungsform des Auflagers ergibt, wenn dieses aus seitlich der Schleifscheibe bzw. Schleifscheiben angeordneten scfc len, bezüglich der Schleifscheiben feststehenden Ringen bzw. Ringsegmenten besteht, auf die das Brillenglas nach dem Schleifen der Umfangskontur umgesetzt wird.
Um Veränderungen der Dachfacette aufgrund der Abnutzung einer zum Herstellen der Dachfacette benutzten Schleifscheibe bei den Meßergebnissen zu berücksichtigen, kann der Tastkopf zum Aufnehmen wenigstens eines Radiuswertes eine Keilnut mit einem dem zulässigen maximalen spitzen Winkel einer Dachfacette am Brillenglas gleichen Keilwinkel aufweisen.
Wird das umfangskonturgeschliffene Brillenglas in die Keilnut eingesetzt, so ergibt sich solange ein ausschließlich von der radialen Abnutzung der Schleifscheibe abhängiger Meßwert, solange der Winkel der Dachfacette des konturgeschliffenen Brillenglases den Winkel der Keilnut am Tastkopf nicht überschreitet. Bis Winkelgleichheit erreicht ist, genügt es, einen Korrekturschliff vorzunehmen, der der linearen Abweichung entspricht.
Ist die Abnutzung der für den Facettenschliff benutzten Schleifscheibe allerdings so groß, daß der Winkel der Dachfacette größer ist als der Winkel der Keilnut am Tastkopf, kann das zu vermessende Brillenglas mit seiner Dachfacette nicht mehr vollständig in die Keilnut eintauchen, so daß eine größere Abweichung gemessen wird als der linearen Durchmesserveränderung der Schleifscheibe entspricht. In diesem Fall kann die Brillenglasrandschleifmaschine den SchleifVorgang beenden und ein Signal abgeben, das dem Betreiber einen Hinweis gibt, daß die Schleifscheibe abgerichtet werden muß bzw. unbrauchbar geworden ist.
Besonders einfach läßt sich feststellen, ob der Winkel der Dachfacette am konturgeschliffenen Brillenglas einen vorbestimmten Wert überschritten hat, wenn der Tastkopf zusätzlich zur Keilnut einen flachen Bereich bei unveränderter Lage des Brillenglases aufweist und wenigstens ein Radiuswert der Spitze der Dachfacette in der Keilnut und ein weiterer Radiuswert mit Bezug auf den flachen Bereich aufgenommen wird. Aus der Differenz dieser Werte im Vergleich zu dem Soll-Wert läßt sich ohne weiteres ermitteln, ob die Veränderung noch innerhalb zulässiger Grenzen liegt oder nicht.
Vorzugsweise können die Schleifscheibe(n) von einem feststehenden Spritzschutz mit Ausnahme des Schleifbereichs eng umgeben und die Ringe bzw. Ringsegmente an dem Spritzschutz angeordnet sein.
Diese Ringe bzw. Ringsegmente können vorzugsweise beiderseits einer Vorschleifscheibe angeordnet und als Tastkopf zum Vermessen der Raumkurve der Brillenglasumfangskontur ausgebildet sein. Eine derartige Vorrichtung ist in der deutschen Patentschrift 38 42 601 der Anmelderin beschrieben und dient dazu, die vordere und hintere Raumkurve der Umfangskontur des formgeschliffenen Brillenglases sowie die jeweilige Glasdicke zu ermitteln. Dies wird dadurch erreicht, daß die Brillenglashaltewelle mit dem Brillenglas oder die Schleifscheibe mit dem Tastkopf relativ zueinander oszillierende Hin- und Herbewegungen ausführen. Dies dient einerseits dazu, eine gleichmäßige Abnutzung der Vorschleifscheibe zu gewährleisten und andererseits dazu, die Raumkurven und die Glasdicke des formgeschliffenen Brillenglases zu messen. Auf diese Weise läßt sich der für die Vorrichtung gemäß der deutschen Patentschrift 38 42 601 vorhandene Rechner verwenden, die axiale Lage der Brillenglashaltewelle mit dem Brillenglas relativ zur Schleifscheibe entsprechend der Raumkurve der Brillenglaskontur nicht nur zum gesteuerten Schleifen einer Dachfacette zu verändern, sondern auch beim Aufnehmen der Ist-Werte der Umfangskontur mittels der Ringe bzw. Ringsegmente. Diese lassen sich daher sehr schmal ausführen, da durch die Steuerung der a> den Lage der Brillenglashaltewelle mit dem Brillenglas relativ zur Schleifscheibe entsprechend der Raumkurve der Brillenglaskσntur keine Gefahr besteht, daß das Brillenglas beim Vermessen der Umfangskontur den Bereich des Auflagers verläßt und auf die Vorschleifscheibe oder die Fertigschleifscheibe oder die Zwischenräume gerät.
Um Schleifspuren auf den Ringen bzw. Ringsegmenten und/oder dem umfangskonturgeschliffenen Brillenglas und eine daraus folgende Verfälschung der Meßergebnisse zu vermeiden, kann die Anlage des Brillenglases an den Ringen bzw. Ringsegmenten durch einen Antrieb bewirkt werden, der eine einstellbare Kupplung aufweist, deren Kupplungsmoment sich im Sinne einer Verminderung beim Aufnehmen der Ist-Werte der Umfangskontur mittels einer Umschaltvorrichtung verändern läßt.
Wenn die Schleifscheibe mit ihrem Antrieb verschiebbar auf einem Kreuzschütten relativ zur drehbar im Maschinengestell angeordneten Glashaltewelle angeordnet sind, läßt sich der Meßwertaufnehmer so anordnen, daß er die Verschiebung des Kreuzschlittens im Maschinengestell relativ zur Umfangskontur des umfangskonturgeschliffenen Brillenglases mißt. Da der Kreuzschlitten im Maschinengestell außerhalb einer die Kühlflüssigkeit und den Schleifabrieb auffangenden Wanne angeordnet ist, wird der Meßwertaufnehmer auch nicht durch die im Bereich der Schleifscheiben und des zu schleifenden Brillenglases herrschende Atmosphäre negativ beeinflußt.
Analog läßt sich der Meßwertaufnehmer bezüglich der Glashaltewelle anordnen, wenn diese am Maschinengestell relativ zur sich nur drehenden Schleifscheiben axial und radial beweglich gelagert ist, um die Ist-Werte der Umfangskontur zu messen.
Vorzugsweise kann ein Digital-Meßwertaufnehmer eingesetzt werden, dessen Meßwerte direkt zum Rechner geleitet und dort verarbeitet werden.
Das erfindungsgemäße Verfahren zum Bearbeiten der Ränder von Brillengläsern mittels der vorstehend beschriebenen Brillenglasrandschleifmaschine kann vorzugsweise darin bestehen, daß der Radius eines vorbestimmbaren, zugehörigen Winkels wenigstens eines Umfangspunktes der Umfangskontur eines formgeschliffenen Brillenglases mit Bezug auf ein Auflager gemessen, der Meßwert in einen Rechner eingegeben, mit einem gespeicherten Soll-Wert verglichen und bei Überschreiten einer dem Rechner eingebbaren, zulässigen Abweichung des Ist-Wertes von den Soll-Werten ein zusätzlicher Schleifvorgang der Umfangskontur mit einer Korrektur entsprechend der Abweichung durchgeführt wird.
Vorzugsweise kann der Radius wenigstens eines Umfangspunktes einer Dachfacette des umfangskonturgeschliffenen Brillenglases mit Bezug auf eine Keilnut in dem Auflager gemessen werden, wodurch erkennbar wird, ob der Winkel der Dachfacette noch im Bereich eines zulässigen Wertes liegt. In diesem Fall kann durch einen zusätzlich SchleifVorgang der Umfangskontur mit einer Korrektur entsprechend der Abweichung ein noch brauchbares Brillenglas geschaffen werden.
Ist der Winkel der Dachfacette des umfangskonturgeschliffenen Brillenglases größer als der Winkel der Keilnut, bedeutet dies, daß die zum Schleifen der Dachfacette benutzte Schleifscheibe abgerichtet werden muß bzw. unbrauchbar geworden ist. Dies wird von der Maschine durch ein entsprechendes Signal angezeigt.
Wird der Radius *enigstens eines Umfangspunktes der Dachfacette des umfangskonturgeschliffenen Brillenglases sowohl mit Bezug auf die Keilnut in dem Auflager als auch mit Bezug auf einen flachen Bereich des Auflagers gemessen, läßt sich durch Vergleich dieser Meßwerte auf einfache Weise feststellen, ob eine Korrektur der mit Bezug auf die Keilnut gemessenen Abweichung des Ist-Wertes vom Soll-Wert noch möglich ist bzw. ob das Brillenglas mit einer neuen oder abgerichteten Schleifscheibe nachgeschliffen werden muß.
Wird nur ein Umfangspunkt gemessen, erfolgt die Korrektur der gesamten Umfangskontur entsprechend der an diesem Punkt gemessenen Abweichung. Ergibt sich diese Abweichung nur aus einer Abnutzung der Vorschleifscheibe oder der Fertigschleifscheibe, die in der Regel gleichmäßig auf dem Umfang erfolgt, läßt sich mit dieser Korrektur bereits ein ausreichend genau umfangskonturgeschliffenes Brillenglas herstellen, das maßgenau genug ist, um direkt in ein bestimmtes Brillengestell eingesetzt zu werden.
Da die Abweichungen indessen auf der Umfangskontur unterschiedlich groß sein können, wobei diese Abweichungen durch die Form des Brillenglases und die Raumkurve der Umfangskontur bestimmt sind, läßt sich eine größere Genauigkeit des Korrekturschliffs erreichen, wenn die gesamte Umfangskontur vermessen, mit den gespeicherten Soll-Werten verglichen, bei Überschreiten der dem Rechner eingebbaren zulässigen Abweichung der Ist-Werte von den Soll-Werten durch den Rechner eine Mittelung der gemessenen Abweichungen durchgeführt und der zusätzliche Schleifvorgang der Umfangskontur entsprechend den gemittelten Werten durchgeführt wird.
In allen Fällen wird ein Korrekturschliff durchgeführt, um den Ist-Wert der Umfangswerte bei 0 : 0,3 mm gegenüber dem Soll-Werten zu halten.
Eine noch genauere Korrektur der Umfangskontur läßt sich erreichen, wenn die gesamte Umfangskontur vermessen, mit den gespeicherten Soll-Werten verglichen und bei bereichsweise Überschreiten der dem Rechner eingebbaren zulässigen Abweichung der Ist-Werte von den Soll-Werten der zusätzliche Schleifvorgang nur in den eine unzulässige Abweichung aufweisenden Bereichen der Umfangskontur durchgeführt wird.
Um beim Vermessen der gesamten Umfangskontur eines formgeschliffenen Brillenglases nicht zu viel Zeit zu verlieren, kann dieses Vermessen bei einer gegenüber dem Schleifvorgang erhöhten Drehzahl der Brillenglashaltewelle durchgeführt werden.
Die erfindungsgemäße Korrektur des Umfangskonturschliffs eines Brillenglases läßt sich mit
Brillenglasrandschleifmaschinen durchführen, bei denen die Brillenglaskontur durch eine Schablone vorgegeben wird. Diese Schablone wird auf der Brillenglashaltewelle befestigt und ruht auf einem verstellbaren Gegenlager, das sich durch den Rechner erfindungsgemäß für einen Korrekturschliff in der beschriebenen Weise verstellen läßt. Bei einer solchen Brillenglasrandschleifmaschine dient der Rechner nur dazu, die relative axiale Verschiebung der Schleifscheibe und des umfangskonturgeschliffenen Brillenglases beim Anschleifen einer Facette, das Vermessen der Umfangskontur und den ggf. erforderlichen Korrekturschliff zu steuern.
Es ist auch möglich, dem Rechner die Umfangskontur eines zu schleifenden Brillenglases in Form einer Datenmenge einzugeben. In diesem Fall läßt sich die der Brillenglaskontur entsprechende Schablone durch eine Kreisscheibe ersetzen und dem Widerlager wird eine Bewegung durch den Rechner erteilt, die die zu schleifende Brillenglaskontur ergibt.
Schließlich ist es auch noch möglich, den relativen Abstand zwischen der Brillenglashaltewelle und den Schleifscheiben direkt durch den Rechner zu steuern, indem z. B. der Kreuzschlitten, der die Schleifscheiben trägt, einen entsprechenden Antrieb erhält. Auch in diesem Fall läßt sich die erfindungsgemäße Korrektur des Umfangskonturschliffs in der angegebenen Weise durchführen.
Die Erfindung wird nachstehend anhand eines in der Zeichnung dargestellten Ausführungsbeispiels des näheren erläutert. In der Zeichnung zeigen:
Fig. 1 eine schematische Schnittansicht einer
Brillenglasrandschleifmaschine mit Darstellung des erfindungsgemäßen Auflagers und Meßwertaufnehmers,
Fig. 2 eine perspektivische Darstellung eines zwei
Schleifscheiben umgebenden Spritzschutzes mit als Ringsegment ausgebildetem Auflager und davor angeordneter Brillenglashaltewelle mit einem umfangskonturgeschliffenen Brillenglas,
Fig. 3 eine ausschnittweise Darstellung des Messens wenigstens eines Radius des umfangskonturgeschliffenen Brillenglases mit einer mittels einer neuen Schleifscheibe geschliffenen Dachfacette,
Fig. 4 eine Darstellung ähnlich Fig. 3, bei der die
Dachfacette mittels einer bereits bis zur zulässigen Grenze abgenutzten Schleifscheibe geschliffen wurde,
Fig. 5 eine Darstellung gemäß Fig. 3, bei der die mittels einer sehr stark abgenutzten Schleifscheibe hergestellte Dachfacette bereits so flach geworden ist, daß sich das Brillenglas nicht mehr in ein Brillengestell einsetzen läßt,
Fig. 6 eine Darstellung der Messung des Radius eines umfangskonturgeschliffenen Brillenglases, bei der die Spitze der Dachfacette auf einen flachen Bereich des Tastkopfes aufgesetzt ist und
Fig. 7 eine vergrößerte Darstellung einer
Facettennut in einer Schleifscheibe im neuen und in verschieden abgenutzten Zuständen.
An einem Maschinengestell 1 ist ein Kreuzschlitten 2 angeordnet, dessen Schlittenteil 3 FührungsStangen 4 aufweist, die in Bohrungen 5 von Ansätzen 6 eines Schlittenteils 7 radial zu einer Brillenglashaltewelle 14 mit einem davon gehaltenen Brillenglas 24 verschiebbar gelagert sind.
Der Schlittenteil 7 ist über Führungsschienen 8 am Maschinengestell 1 in einer Richtung parallel zur Brillenglashaltewelle 14 und einer Welle 10 für eine Vorschleifscheibe 11 und eine dazu koaxial angeordnete Fertig- und/oder Facettenschleifscheibe 12 mit einer Facettennut 33 angeordnet.
Die Welle 10 ist mittels Lagerstützen 9 am Schlittenteil 3 gelagert. Die Schleifscheiben 11, 12 und das Brillenglas 24 mit ihren Wellen 10, 14 sind von einem Gehäuse 13 umgeben, das unten eine im einzelnen nicht dargestellte Wanne aufweist, die verhindert, daß Kühlflüssigkeit und Schleifabrieb in den Bereich des Kreuzschlittens 2 gelangt.
Mit der Brillenglashaltewelle 14 ist ein Winkelgeber 15 verbunden, der mit einem Rechner 16 in Verbindung steht.
Ein Meßwertaufnehmer 17 ist am Schlittenteil 7 angeordnet und nimmt die Radialverschiebung des Schlittenteils 3 bezüglich der Brillenglashaltewelle 14 auf. Dieser Meßwertaufnehmer 17 ist ebenfalls mit dem Rechner 16 verbunden.
Die Radialverschiebung des Schlittenteils 3 wird durch einen vom Rechner 16 über Steuerungsverbindungen 21 angesteuerten Antriebsmotor 18 bewirkt, der mit den Führungsstangen 4 über eine elektromagnetische Kupplung 19 in Antriebsverbindung steht.
In einem Soll-Wert-Speicher 20 sind Umfangskonturwerte für die verschiedensten Brillenglasformen als Polarkoordinaten gespeichert.
Zum Schleifen einer vorgebbaren Brillenglasumfangskontur wird ein Brillenglasrohling in die Brillenglashaltewelle 14 eingespannt und mit der Vorschleifscheibe 11 in Berührung gebracht. Der dabei auftretende Anpreßdruσk ergibt sich aus der Einstellung der elektromagnetischen Kupplung 19 und ist unterschiedlich einstellbar für Brillengläser aus Kunststoff oder Silikatglas sowie entsprechend der von den optischen Werten des Brillenglases abhängigen Randdicke des Brillenglases. Das Brillenglas 24 wird mit seiner Welle 14 in bekannter Weise in Drehung versetzt, wobei die Drehgeschwindigkeit üblicherweise bei 10 bis 13 U/min beträgt. Der Winkelgeber 15 übermittelt dem Rechner 16 in gleichen Winkelabständen, z. B. in Inkrementen von je 6° einen Impuls, wodurch der Rechner 16 veranlaßt wird, den dazugehörigen, zu schleifenden Radius des Brillenglases über den Antriebsmotor 18 einzustellen. Während des Schleifens der Umfangskontur des Brillenglases 24 auf der Vorschleifscheibe 11 werden der Schlittenteil 7 und damit die Schleifscheibe 11 in eine oszillierende Bewegung parallel zur Drehachse des Brillenglases 24 versetzt, die jeweils am Rand der Vorschleifscheibe 11 in die entgegengesetzte Richtung umgesteuert wird. Diese Bewegung wird durch einen nicht dargestellten Antrieb für den Schlittenteil 7 gesteuert, der ebenfalls mit dem Rechner 16 in Verbindung steht. Beiderseits der Vorschleifscheibe 11 sind Ringsegmente 23 angeordnet, die an einem die Vorschleifscheibe 11 und die
Fertigschleifscheibe 12 eng umgreifenden Spritzschutz 22, der nur im Berührungsbereich mit dem Brillenglas 24 offen ist, befestigt sind. Die Ringsegmente 23 dienen als Taster und sind mit einem schematisch in Fig. 2 dargestellten Sensor 26 verbunden, der seinerseits über eine Steuerleitungsverbindung 27 mit dem Rechner 16 verbunden ist. Die oszillierenden Bewegungen des Schlittenteils 7 und damit der Schleifscheiben 11, 12 und des sie umgebenden Spitzschützes 22 werden in der in der deutschen Patentschrift 38 42 601 beschriebenen Weise durch den Sensor 26 gesteuert und dienen gleichzeitig dazu, das umfangskonturgeschliffene Brillenglas 24 hinsichtlich der Raumkurve der Vorder- und Rückseite und der Glasdicke zu vermessen. Diese Meßwerte dienen dazu, mittels der Facettennut 33 in der Fertigschleifscheibe 12 eine Facette an das umfangskonturgeschliffene Brillenglas anzuschleifen, deren Verlauf mittels des Rechners 16 steuerbar ist.
Nachdem mittels der Vorschleifscheibe 11 die Brillenglasumfangskontur entsprechend der Darstellung in Fig. 1 geschliffen wurde, wird das Brillenglas 24 automatisch auf die Fertigschleifscheibe 12 umgesetzt und lagegenau bezüglich der Facettennut 33 positioniert. Das Brillenglas 24 weist für den Fertigschliff eine ausreichende Bearbeitungszugabe auf.
Nach dem Fertigschliff wird das Brillenglas 24, gesteuert durch den Rechner 16, lagegenau auf einen der Ringsegmente 23 aufgesetzt. Das Ringsegment 23 dient als Auflager zum Messen des Abstandes zwischen der Brillenglashaltewelle 14 und diesem Ringsegment 23. Welcher Punkt des Brillenglases 24 auf das Ringsegment 23 aufgesetzt wird, bestimmt der Rechner 16 anhand eingegebener Befehle. Im einfachsten Fall genügt es, eine einzige Abstandsmessung vorzunehmen, für diesen Punkt die Abweichung des Ist-Werts zu dem entsprechenden Soll-Wert, der im Soll-Wert-Speicher 20 gespeichert ist, festzustellen und durch den Rechner 16 bei Überschreiten einer vorgebbaren Abweichung einen erneuten Feinschliff mit Korrektur dieser Abweichung durchzuführen. Dieses Verfahren mit Erfassen nur eines Meßpunktes setzt voraus, daß c.a Abweichungen auf der gesamten Umfangskontur überall im wesentlichen gleich sind.
Genauer ist eine Messung, wenn die gesamte Brillenglaskontur 25 über eine vollständige Umdrehung des Brillenglases 24 mit Anlage am Ringsegment 23 durchgeführt wird. Da die Ringsegmente 23 sehr schmal sind, um die Axialerstreckung der Schleifscheiben 11, 12 im Spritzschutz 22 möglichst gering zu halten, erteilt der Rechner 16 dem Schlittenteil 7 eine Bewegung parallel zur Achse der Welle 14, die die Raumkurve der Brillenglaskontur bzw. der Facette berücksichtigt, so daß das Brillenglas 24 während dieser einen Umdrehung zum Vermessen der Umfangskontur auf dem Ringsegment 23 verbleibt. Die Abstandswerte des Brillenglases 24 werden mittels des Meßwertaufnehmers 17 aufgenommen und in den Rechner 16 geleitet, wo der Vergleich mit den Soll-Werten vorgenommen wird.
Ergibt sich aus dem Vergleich der Ist-Werte mit den Soll-Werten eine unzulässige Abweichung auf der Brillenglasumfangskontur, so kann der Rechner 16 entweder diese Abweichung über den Umfang mittein und einen Korrekturschliff entsprechend diesem Mittelwert einstellen oder die Abweichungen werden Punkt für Punkt registriert, mit den entsprechenden Soll-Werten verglichen und ein Korrekturschliff wird nur dort durchgeführt, wo tatsächlich eine Abweichung aufgetreten ist.
Wird die Messung ausschließlich so durchgeführt, daß das umfangskonturgeschliffene Brillenglas mit seiner Dachfacette auf einen flachen Bereich des Ringsegments 23 aufgesetzt wird, läßt sich auch nur eine Veränderung im Durchmesser der Schleifscheibe 23 ermitteln und ggf. korrigieren.
In Fig. 3 bis 7 ist dargestellt, daß die Abnutzung der Facettennut 33 einer Schleifscheibe 12 nicht nur eine Durchmesserveränderung, sondern auch eine Winkelveränderung der Dachfacette bewirkt.
In Fig. 7 ist eine Fertigschleifscheibe 12 mit einer Facettennut 33 in ausgezogenen Linien dargestellt, die einen Winkel *] aufweist, der kleiner ist als der übliche Winkel einer Facettennut in einem Brillengestell. Ein maßgenau konturgeschliffenes Brillenglas läßt sich daher problemlos in ein entsprechendes Brillengestell einsetzen und liegt mit der Spitze der Dachfacette am Facettengrund des Brillengestells an.
In Fig. 3 ist dieser Zustand mit Bezug auf eine Keilnut 28 im Ringsegment 23 dargestellt. Diese Keilnut 28 ist mit einem Winkel * O versehen, der größer als der Winkel T ' X der
Facettennut 33 in der Fertigschleifscheibe 12 und etwa gleich dem Winkel der Facettennut in den üblichen Brillengestellen ist.
Wird ein umfangskonturgeschliffenes Brillenglas 24 mit seiner Dachfacette 30 in die Keilnut 28 des Ringsegments 23 eingesetzt, läßt sich für dien Punkt der Radius R X messen.
Weicht dieser gemessene Radius R von einem vorgegebenen Soll-Wert ab und ist zu groß, wird das Brillenglas 24 automatisch zur Fertigschleifscheibe 12 zurückgeführt, und es wird ein Korrekturschliff durchgeführt. Im Laufe der Zeit nutzt sich die Facettennut in der Fertigschleifscheibe 12 ab und nimmt zunächst eine in Fig. 7 mit der Bezugsziffer 34 bezeichnete und schräg schraffierte Form an. Der Winkel dieser Facettennut einer abgenutzten Fertigschleifscheibe 12 ist mit bezeichnet. Es ist erkennbar, daß gleichzeitig die Tiefe der Facettennut 34 um den Betrag A zugenommen hat. Wird ein konturgeschliffenes Brillenglas 24 mit einer Dachfacette, die den Winkel r aufweist, entsprechend Fig. 4 in die Keilnut 28 des Ringsegments 23 eingeführt, ergibt sich ein gemessener Radius R 2, der um den Wert Δ_ > R ist. Auch in diesem Fall läßt sich noch ein Korrekturschliff durchführen, der das konturgeschliffene Brillenglas 24 um den Wert ^ Λ"* X verkleinert.
Ist die Fertigschleifscheibe 12 so weit abgenutzt, daß eine Facettennut 35 mit einem Winkel γ * 3 erreicht ist, zu der eine
Vergrößerung der Tiefe von gehört, läßt sich diese abgeflachte Dachfacette mit dem Winkel f nicht mehr vollständig in die Keilnut 28 am Ringsegment 23 einführen, sondern liegt mit ihren Flanken, wie in Fig. 5 dargestellt, an den äußeren Kanten der Keilnut 28 an. In diesem Fall wird ein Radius R 3 gemessen, der bezüglich RX nicht nur um den
Betrag Δ vergrößert ist, sondern um einem demgegenüber größeren Betrag, der eine Funktion dieses Winkels P ist. Der
• 3
Rechner 16 läßt sich nun so programmieren, daß er die Grenze zwischen dem Radius R 2 und dem Radius R3 erkennt und ein
Signal abgibt, das dem Betreiber anzeigt, daß die Fertigschleifscheibe 12 so weit abgenutzt ist, daß sich ein Konturschliff nicht mehr durchführen läßt.
Sehr einfach läßt sich dieser Grenzwert bestimmen, wenn, wie in Fig. 6 dargestellt, nach der Messung der Radien RX , R2 bzw. R 3 mit Bezug auf die Keilnut 28 ein weiterer Radius R4 gemessen wird, indem das umfangskonturgeschliffene Brillenglas 24 mit seiner Dachfacette 30, 31, 32 auf einen flachen Bereich 29 des Ringsegments 23 aufgesetzt wird. Aus der Differenz der Radien R X, R2 bzw. R3 zu dem Radius R Λ ergibt sich direkt ein Wert, der größer als Null wird, wenn P größer als «P wird. Dies ist für den Rechner ein Meßwert, der ihn veranlaßt, das bereits erwähnte Signal abzugeben, daß ein Korrekturschliff nicht mehr möglich ist und daß die Fertigschleifscheibe ausgewechselt oder abgerichtet werden muß.
Die Vergleichsmessung braucht nur bezüglich eines Radius des konturgeschliffenen Brillenglases 24 durchgeführt zu werden, während für einen genauen Korrekturschliff ein Vermessen des gesamten Umfanges des Brillenglases 24 in der Keilnut 28 oder auf dem abgeflachten Bereich 29 des Ringsegments 23 erfolgen kann.
Die erfindungsgemäße Vorrichtung und das Verfahren sind geeignet, mit vollautomatischen, CNC-gesteuerten Brillenglasrandschleifmaschinen eingesetzt zu werden. Bei diesen Brillenglasrandschleifmaschinen dienen die gespeicherten Soll-Werte der Umfangskontur dazu, den die Schleifscheiben 11 und 12 tragenden Kreuzschlitten so anzusteuern, daß direkt die geforderte Brillenglasumfangskontur entsteht.
Das erfindungsgemäße Verfahren und die Vorrichtung sind auch geeignet, mit Brillenglasrandschleifmaschinen verwendet zu werden, bei denen der Rechner 16 nur dazu dient, die Ist-Werte des formgeschliffenen Brillenglases 24 mit den gespeicherten Soll-Werten der Umfangskontur zu vergleichen und einen Korrekturschliff durchzuführen, während der eigentliche Formschliff des Brillenglases durch eine auf der Brillenglashaltewelle 14 angeordnete Formscheibe mit der Form des zu schleifende Brillenglases gesteuert wird. Die Formscheibe liegt in diesem Fall in bekannter Weise an einem Widerlager an, das mit dem Schlittenteil 3 verbunden ist und die Verschiebung der Schleifscheiben 11, 12 und des Schlittenteils 3 bewirkt. Zum Durchführen eines Korrekturschliffs wird das Widerlager durch den Rechner 16 entsprechend der festgestellten Abweichung verstellt.
Schließlich kann das Widerlager auch dazu dienen, rechnergesteuert die Verlagerung des Schlittenteils 3 und somit der Schleifscheiben 11, 12 zu veranlassen, wenn an dem Widerlager statt einer Formscheibe mit der Umfangskontur des zu schleifenden Brillenglases eine kreisrunde Scheibe anliegt.
In allen Fällen läßt sich das Vermessen des umfangskonturgeschliffenen Brillenglases 24 auf einem sehr schmalen Auflager in Form des Ringsegments 23 durchführen, wenn das Brillenglas 24 an der Brillenglashaltewelle 14 in Achsrichtung entsprechend seiner Raumkurve verschoben wird. Diese Verschiebung in Achsrichtung kann auch rein mechanisch, z. B. mittels Panhard-Stabes erfolgen.
Selbstverständlich kann ein Vermessen der Umfangskontur des Brillenglases 24 bereits nach dem Vorschliff auf der Vorschleifscheibe 11 erfolgen. Dies ist vorteilhaft, da sich die Vorschleifscheibe 11 schneller abnutzt als die Feinschleifscheibe 13. Ggf. kann dann auf ein erneutes Vermessen der Umfangskontur nach dem Fertigschliff ganz verzichtet werden. Jedoch können auch nach dem Fertigschliff wiederum ein Vermessen der Umfangskontur und ggf. ein Korrekturschliff erfolgen.
Insbesondere beim Vermessen des Brillenglases nach dem Fertigschliff läßt sich die Drehzahl der
Brillenglashaltewelle 14 erhöhen, um die Messung beschleunigt durchführen zu können. Dabei kann über den Rechner 16 ein Steuerungsbefehl an die Magnetkupplung 19 gegeben werden, der den Anpreßdruck beim Messen gegenüber dem Schleifdruck vermindert, so daß eine Abnutzung oder Riefenbildung auf dem Ringsegment 23 bzw. am Brillenglasumfang vermieden werden.
Selbstverständlich läßt sich die Erfindung in analoger Weise auch mit einer Brillenglasrandschleifmaschine verwenden, bei der die Schleifscheiben sich nur drehen können, sonst aber feststehen, während die Brillenglashaltewelle radial und axial beweglich bezüglich der Schleifscheiben gelagert ist.

Claims

P a t e n t a n s p r ü c h e
1. Brillenglasrandschleifmaschine mit
- wenigstens einer Schleifscheibe (11),
- einer drehbaren, relativ zu der Schleifscheibe (11) wenigstens radial verstellbaren Brillenglashaltewelle (14),
- wenigstens einem berührend mit einem umfangskonturgeschliffenen Brillenglas (24) zusammenwirkenden Auflager (23),
- einem Meßwertaufnehmer (17) zum Aufnehmen wenigstens eines Ist-Wertes der Umfangskontur (25) mit Bezug auf das Auflager (23)
- einem die Brillenglasrandschleifmaschine steuernden Rechner (16) zum Vergleich von in ihm gespeicherten Soll-Werte der Umfangskontur (25) des zu schleifenden Brillenglases (24) mit wenigstens dem einen gemessenen Ist-Wert der Umfangskontur und zum Steuern eines zusätzlichen Schleif organges bei Überschreiten einer dem Rechner (16) eingebbaren zulässigen Abweichung des Ist-Wertes bzw. der Ist-Werte von den Soll-Werten.
2. Brillenglasrandschleifmaschine nach Anspruch 1, dadurch gekennzeichnet, daß der bzw. die Auflager aus seitlich der Schleifscheibe (11) bzw. Schleifscheiben (11, 12) angeordneten schmalen, bezüglich der Schleifscheibe(n) feststehenden Ringen (23) bzw. Ringsegmenten bestehen, auf den bzw. die das Brillenglas (24) nach dem Schleifen der Umfangskontur (25) umgesetzt wird.
3. Brillenglasrandschleifmaschine nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Tastkopf (23) zum Aufnehmen wenigstens eines Radiuswertes eine Keilnut (28) mit einem den zulässigen maximalen spitzen Winkel einer Dachfacette (30) am Brillenglas (24) gleichen Keilwinkel aufweist.
4. Brillenglasrandschleifmaschine nach Anspruch 3, dadurch gekennzeichnet, daß der Tastkopf (23) zusätzlich zu der Keilnut (28) einen flachen Bereich (29) zum Aufnehmen wenigstens eines Radiuswertes der Spitze der Dachfacette (30) aufweist.
5. Brillenglasrandschleifmaschine nach Anspruch 2, 3 oder 4, dadurch gekennzeichnet, daß die Ringe (23) bzw. Ringsegmente beiderseits einer Vorschleifscheibe (11) angeordnet sind und die Ringe (23) bzw. Ringsegmente einen Tastkopf zum Vermessen der Raumkurve der Brillenglaskontur (25) bilden.
6. Brillenglasrandschleifmaschine nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Schleifsσheibe(n) (11, 12) von einem feststehenden Spritzschutz (22) mit Ausnahme des Schleifbereichs eng umgeben sind und die Ringe (23) bzw. Ringsegmente an dem Spritzschutz angeordnet sind.
7. Brillenglasrandschleifmaschine nach einem oder mehreren der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß der Rechner (16) mit einer Vorrichtung zum Steuern der axialen Lage der Brillenglashaltewelle (14) mit dem Brillenglas (24) relativ zur Schleifscheibe (11, 12) entsprechend der Raumkurve der Brillenglasumfangskontur (25) zusammenwirkt, und diese Vorrichtung auch beim Aufnehmen der Ist-Werte der Umfangskontur (25) mittels des Auflagers (23) wirksam ist.
8. Brillenglasrandschleifmaschine nach einem oder mehreren der Ansprüche 1 bis 7, gekennzeichnet durch einen über eine einstellbare Kupplung (19) wirkenden Antrieb (18) für die Radialverstellung der Schleifscheibe(n) (11, 12) relativ zur Brillenglashaltewelle (14) und eine auf die Kupplung (19) im Sinne einer Verminderung des übertragenen Drehmoments beim Aufnehmen der Ist-Werte der Umfangskontur (25) wirkende Umschaltvorrichtung.
9. Brillenglasrandschleifmaschine nach einem oder mehreren der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß die Schleifscheibe(n) (11, 12) mit ihrem Antrieb verschiebbar auf einem Kreuzschlitten (2) relativ zur drehbar im Maschinengestell (1) angeordneten Glashaltewelle (14) angeordnet sind und der Meßwertaufnehmer (17) die Verschiebung des Kreuzschlittens (2) im Maschinengestell (1) relativ zur Umfangskontur (25) des formgeschliffenen Brillenglases (24) mißt.
10. Brillenglasrandschleifmaschine nach einem oder mehreren der Ansprüche 1 bis 9, gekennzeichnet durch einen Digital-Meßwertaufnehmer (17) .
11. Verfahren zum Bearbeiten der Ränder von Brillengläsern mittels eines Brillenglasrandschleifmaschine nach einem oder mehreren der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß der Radius eines vorbestimmbaren, zugehörigen Winkels wenigstens eines Umfangspunktes eines umfangskonturgeschliffenen Brillenglases mit Bezug auf ein Auflager gemessen, der Meßwert in einen Rechner eingegeben, mit einem gespeicherten Soll-Wert verglichen und bei Überschreiten einer dem Rechner eingebbaren zulässigen Abweichung des Ist-Wertes vom Soll-Wert ein zusätzlicher Schleifvorgang der Umfangskontur mit einer Korrektur entsprechend der Abweichung durchgeführt wird.
12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, daß der Radius wenigstens eines Umfangspunktes einer Dachfacette des umfangskonturgeschliffenen Brillenglases mit Bezug auf eine Keilnut in dem Auflager gemessen wird.
13. Verfahren nach Anspruch 12, dadurch gekennzeichnet, daß der Radius wenigstens eines Umfangspunktes der Dachfacette des umfangskonturgeschliffenen Brillenglases sowohl mit Bezug aufdie Keilnut in dem Auflager als auch mit Bezug auf einen flachen Bereich des Auflagers gemessen wird und durch Vergleich der Meßwerte bestimmt wird, ob eine Korrektur der mit Bezug auf die Keilnut gemessenen Abweichung des Ist-Wertes vom Soll-Wert möglich ist.
14. Verfahren nach einem der Ansprüche 11 bis 13, dadurch gekennzeichnet, daß die gesamte Umfangskontur vermessen, mit den gespeicherten Soll-Werten verglichen, bei Überschreiten der dem Rechner eingebbaren zulässigen Abweichung der Ist-Werte von den Soll-Werten durch den Rechner eine Mittelung der gemessenen Abweichungen durchgeführt und der zusätzliche Schleifvorgang der Umfangskontur entsprechend den gemittelten Werten durchgeführt wird.
15. Verfahren nach einem der Ansprüche 11 bis 13, dadurch gekennzeichnet, daß die gesamte Umfangskontur vermessen, mit den gespeicherten Soll-Werten verglichen und bei bereichsweise Überschreiten der dem Rechner eingebbaren zulässigen Abweichung der Ist-Werte von den Soll-Werten der zusätzliche Schleifvorgang nur in den eine unzulässige Abzweigung aufweisenden Bereichen der Umfangskontur durchgeführt wird.
16. Verfahren nach einem der Ansprüche 11 bis 15, dadurch gekennzeichnet, daß das Vermessen der Umfangskontur eines umfangskonturgeschliffenen Brillenglases bei einer gegenüber dem Schleifvorgang erhöhten Drehzahl der Brillenglashaltewelle durchgeführt wird.
EP94920937A 1993-06-24 1994-06-15 Brillenglasrandschleifmaschine Expired - Lifetime EP0706439B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4320934 1993-06-24
DE4320934A DE4320934C2 (de) 1993-06-24 1993-06-24 Brillenglasrandschleifmaschine
PCT/EP1994/001945 WO1995000292A1 (de) 1993-06-24 1994-06-15 Brillenglasrandschleifmaschine

Publications (2)

Publication Number Publication Date
EP0706439A1 true EP0706439A1 (de) 1996-04-17
EP0706439B1 EP0706439B1 (de) 1996-11-20

Family

ID=6491075

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94920937A Expired - Lifetime EP0706439B1 (de) 1993-06-24 1994-06-15 Brillenglasrandschleifmaschine

Country Status (4)

Country Link
US (1) US5630746A (de)
EP (1) EP0706439B1 (de)
DE (2) DE4320934C2 (de)
WO (1) WO1995000292A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6564111B1 (en) 1998-02-05 2003-05-13 Wernicke & Co. Gmbh Method and device for forming a bevel on the edge of a glass lens

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4320934C2 (de) * 1993-06-24 1995-04-20 Wernicke & Co Gmbh Brillenglasrandschleifmaschine
DE4417533C2 (de) * 1994-05-19 1996-03-21 Wernicke & Co Gmbh Verfahren zum CNC-gesteuerten Formschleifen der Dachfacette eines Brillenglases
JP4034842B2 (ja) * 1996-03-26 2008-01-16 株式会社ニデック レンズ研削加工装置
JPH09277148A (ja) * 1996-04-17 1997-10-28 Topcon Corp レンズ周縁研削方法及びその装置
DE19616536C2 (de) * 1996-04-25 2000-01-27 Wernicke & Co Gmbh Verfahren und Brillenglasrandschleifmaschine zum Formschleifen des Umfangsrandes von Brillengläsern und ggf. zum anschließenden Facettenschleifen
DE69709924D1 (de) * 1996-06-15 2002-02-28 Unova Uk Ltd Flexible verbindung einer schleifmaschinenspindel zu einer plattform
FR2751256B1 (fr) * 1996-07-22 1998-12-31 Briot Int Machine de meulage de verres optiques
US6168505B1 (en) * 1996-09-04 2001-01-02 Wernicke & Co. Gmbh Polishing machine for spectacle lenses
US5816897A (en) * 1996-09-16 1998-10-06 Corning Incorporated Method and apparatus for edge finishing glass
DE19643546C2 (de) * 1996-10-24 1998-08-06 Wernicke & Co Gmbh Reibradgetriebene Zusatzschleifspindel zum Anfasen der Kanten von Brillengläsern auf einer Brillenglasrandbearbeitungsmaschine
JPH10138108A (ja) * 1996-10-31 1998-05-26 Nidek Co Ltd 眼鏡レンズ研削加工機及び眼鏡レンズ研削加工方法
JP4002324B2 (ja) * 1997-07-08 2007-10-31 株式会社ニデック レンズ研削装置
WO1999026759A1 (fr) * 1997-11-20 1999-06-03 Essilor International Compagnie Generale D'optique Procede de retouche de verre de lunettes, et dispositif associe
FR2771665B1 (fr) * 1997-12-03 2000-02-18 Briot Int Procede et systeme de controle du fonctionnement d'une machine de taille d'une ebauche de verre optique
DE19804542C5 (de) * 1998-02-05 2009-04-30 Wernicke & Co Gmbh Verfahren und Vorrichtung zum Bearbeiten von Brillengläsern
JP3730406B2 (ja) * 1998-04-30 2006-01-05 株式会社ニデック 眼鏡レンズ加工装置
US6328630B1 (en) * 1998-10-05 2001-12-11 Hoya Corporation Eyeglass lens end face machining method
DE19914174A1 (de) * 1999-03-29 2000-10-12 Wernicke & Co Gmbh Verfahren und Vorrichtung zum Formbearbeiten des Umfangsrandes von Brillengläsern
JP3839185B2 (ja) * 1999-04-30 2006-11-01 株式会社ニデック 眼鏡レンズ加工装置
US6325704B1 (en) * 1999-06-14 2001-12-04 Corning Incorporated Method for finishing edges of glass sheets
JP4360764B2 (ja) * 2000-04-28 2009-11-11 株式会社トプコン 眼鏡レンズのレンズ周縁加工方法、レンズ周縁加工装置及び眼鏡レンズ
DE10254238B4 (de) * 2002-11-20 2007-04-19 Bärenz, Manfred Brillenglas-Randschleifmaschine
US7454264B2 (en) 2006-11-29 2008-11-18 Kurt William Schaeffer Method of beveling an ophthalmic lens blank, machine programmed therefor, and computer program
WO2009123143A1 (ja) * 2008-04-04 2009-10-08 Hoya株式会社 眼鏡レンズのヤゲン周長測定装置およびヤゲン周長測定方法
JP5372628B2 (ja) * 2009-07-08 2013-12-18 株式会社ニデック 眼鏡レンズ加工装置及び該装置に使用されるヤゲン加工具
US8721392B2 (en) * 2011-06-28 2014-05-13 Corning Incorporated Glass edge finishing method
JP6034582B2 (ja) 2012-03-29 2016-11-30 Hoya株式会社 眼鏡レンズの製造方法、周長算出装置および周長算出プログラム
JP6005498B2 (ja) * 2012-12-12 2016-10-12 Hoya株式会社 レンズ加工システム、工具交換時期検出方法および眼鏡レンズの製造方法
WO2016050655A1 (en) * 2014-09-30 2016-04-07 Essilor International (Compagnie Generale D'optique) A method for determining a lens blank intended to be used to manufacture an optical lens
IT201900002339A1 (it) * 2019-02-18 2020-08-18 Thelios S P A Metodo per realizzare una lente di occhiali rivestita mediante deposizione fisica di vapore pvd e corpo di supporto per uno sbozzato di lente

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3673738A (en) * 1971-03-17 1972-07-04 Ait Ind Inc Edge control device for grinding machine
FR2543039B1 (fr) * 1983-03-22 1985-08-09 Essilor Int Procede pour le biseautage d'une lentille ophtalmique, et machine a meuler automatique correspondante
FR2611560B1 (fr) * 1987-03-05 1992-10-02 Briot Int Perfectionnements aux machines a meuler et a biseauter les verres ophtalmiques
US5157878A (en) * 1987-03-19 1992-10-27 Canon Kabushiki Kaisha Polishing method with error correction
DE8706215U1 (de) * 1987-04-30 1988-09-01 Wernicke & Co Gmbh, 4000 Duesseldorf, De
DE3842601A1 (de) * 1988-12-17 1990-07-05 Wernicke & Co Gmbh Brillenglasrandschleifmaschine
FR2644718A1 (fr) * 1989-03-23 1990-09-28 Briot Internal Dispositif de reetalonnage d'une machine a meuler les verres ophtalmiques pour rattraper l'usure de la meule
FR2648244B1 (fr) * 1989-06-07 1992-04-17 Briot Int Machine pour le meulage de verres de correction optique
US5148637A (en) * 1990-02-27 1992-09-22 Bausch & Lomb Incorporated Lens edging system with programmable feed and speed control
DE4012660A1 (de) * 1990-04-20 1991-10-24 Wernicke & Co Gmbh Verfahren zum bearbeiten der raender von brillenglaesern
FR2682628B1 (fr) * 1991-10-21 1996-01-05 Buchmann Optical Eng Perfectionnements aux machines a meuler et a biseauter les verres ophtalmiques.
FR2689794B1 (fr) * 1992-04-14 1995-02-17 Wernicke & Co Gmbh Machine à usiner le bord d'un verre de lunettes.
DE4320934C2 (de) * 1993-06-24 1995-04-20 Wernicke & Co Gmbh Brillenglasrandschleifmaschine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9500292A1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6564111B1 (en) 1998-02-05 2003-05-13 Wernicke & Co. Gmbh Method and device for forming a bevel on the edge of a glass lens

Also Published As

Publication number Publication date
DE4320934A1 (de) 1995-01-12
DE59401095D1 (de) 1997-01-02
WO1995000292A1 (de) 1995-01-05
EP0706439B1 (de) 1996-11-20
DE4320934C2 (de) 1995-04-20
US5630746A (en) 1997-05-20

Similar Documents

Publication Publication Date Title
EP0706439B1 (de) Brillenglasrandschleifmaschine
EP1419030B1 (de) Verfahren und vorrichtung zum spitzenlosen rundschleifen
DE3410040C2 (de)
EP3116683B1 (de) Verfahren und vorrichtung zum schleifen von grosskurbelwellen
EP3283257B1 (de) Verfahren und system zum aussenschleifen von wellenteilen zwischen spitzen
EP2774721B1 (de) Verfahren zum Ermitteln von Topografieabweichungen eines Abrichtwerkzeugs in einer Schleifmaschine und entsprechend ausgestattete Schleifmaschine
DE2742307A1 (de) Verfahren und vorrichtung zum schleifen und/oder polieren von optischen flaechen
EP2384853B1 (de) Doppelseitenschleifmaschine
EP1427568A1 (de) Verfahren und vorrichtung zum schleifen von zentrischen lagerstellen von kurbelwellen
EP1053514B1 (de) Verfahren und vorrichtung zum herstellen einer facette auf dem rand eines brillenglases
EP0918589B1 (de) Maschine zum bearbeiten von werkstücken mit schneidzähnen, insbesondere von sägeblättern
DE1751028A1 (de)
DE4012660C2 (de)
EP0727280B1 (de) Vorrichtung zum Polieren sphärischer Linsenoberfläche
DE19738818B4 (de) Verfahren und Vorrichtung zur formgeregelten Feinstbearbeitung eines Werkstücks
DE4108391A1 (de) Kompensationseinrichtung fuer eine poliermaschine zur oberflaechenbehandlung von werkstuecken
DE19616572C2 (de) Verfahren und Vorrichtung zum Vermessen eines Brillengestells oder eines Brillenglases oder einer Formscheibe
DE2452396C3 (de) Profilschleifmaschine
DE2712029A1 (de) Nocken(wellen)schleifmaschine
EP0759834A1 (de) Verfahren zum cnc-gesteuerten formschleifen des umfangsrandes und der dachfacette eines brillenglases
DE4331253A1 (de) Verfahren zum Erzeugen eines Profils an einem Werkstück
DE102004058797A1 (de) Verfahren und Werkzeug zur Bearbeitung von Funktionselementen mit gekrümmten Oberflächen
DE10249358B4 (de) Verfahren und Vorrichtung zum Abrichten eines rotierenden Werkzeugs
WO2021069390A1 (de) Verfahren zum schleifen eines werkstücks mit einer verzahnung oder einem profil
EP0286027A2 (de) Verfahren und Vorrichtung zum Abrichten von Schleifscheiben

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19960111

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 19960513

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REF Corresponds to:

Ref document number: 59401095

Country of ref document: DE

Date of ref document: 19970102

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19970214

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020228

REG Reference to a national code

Ref country code: FR

Ref legal event code: D3

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20021122

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030615

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20030615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050615

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20080630

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20080618

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090630