EP0690749B1 - Method of milling with a zirconium silicate grinding medium - Google Patents

Method of milling with a zirconium silicate grinding medium Download PDF

Info

Publication number
EP0690749B1
EP0690749B1 EP95908662A EP95908662A EP0690749B1 EP 0690749 B1 EP0690749 B1 EP 0690749B1 EP 95908662 A EP95908662 A EP 95908662A EP 95908662 A EP95908662 A EP 95908662A EP 0690749 B1 EP0690749 B1 EP 0690749B1
Authority
EP
European Patent Office
Prior art keywords
powder
zirconium silicate
product
milling
slurry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95908662A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP0690749A4 (en
EP0690749A1 (en
Inventor
Thomas Ian Brownbridge
Phillip M. Story
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tronox LLC
Original Assignee
Kerr McGee Chemical LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kerr McGee Chemical LLC filed Critical Kerr McGee Chemical LLC
Priority to EP99103983A priority Critical patent/EP0930098B1/en
Publication of EP0690749A1 publication Critical patent/EP0690749A1/en
Publication of EP0690749A4 publication Critical patent/EP0690749A4/en
Application granted granted Critical
Publication of EP0690749B1 publication Critical patent/EP0690749B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C17/00Disintegrating by tumbling mills, i.e. mills having a container charged with the material to be disintegrated with or without special disintegrating members such as pebbles or balls
    • B02C17/18Details
    • B02C17/20Disintegrating members
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C23/00Auxiliary methods or auxiliary devices or accessories specially adapted for crushing or disintegrating not provided for in preceding groups or not specially adapted to apparatus covered by a single preceding group
    • B02C23/18Adding fluid, other than for crushing or disintegrating by fluid energy

Definitions

  • the invention relates to a method for milling a powder, using a zirconium silicate grinding medium.
  • milling devices such as disc mills, cage mills, and/or attrition mills are used with a milling medium to produce such finely divided powders, ideally to reduce the powder to its ultimate state of division such as, for example, to the size of a single powder crystallite.
  • Milling of some powders involves a de-agglomeration process according to which chemical bonds, such as hydrogen-bonded surface moisture, Van der Waals and electrostatic forces, such as between particles, as well as any other bonds which are keeping the particles together, must be broken and/or overcome in order to obtain particles in their state of ultimate division.
  • One pigment powder which entails a de-agglomeration milling process to reduce it to a finely divided powder is titanium dioxide.
  • Optimal dispersal of titanium dioxide pigment powder results in optimized performance properties, particularly improved gloss, durability and hiding power.
  • De-agglomeration processes are best performed using a grinding medium characterized by a small particle size which is the smallest multiple of the actual size of the product particles being milled which can still be effectively separated from the product powder.
  • the grinding medium can be separated from the product particles using density separation techniques.
  • separation of the grinding medium from the product can be effected on the basis of differences between settling rate, particle size or both parameters existing between the grinding medium and product powder particles.
  • a relatively inexpensive, dense and non-toxic, naturally occurring zirconium silicate sand grinding medium which has small particle size and a sufficiently high density is suitable for grinding a wide range of materials, while not contaminating the product powder with wear byproducts.
  • the invention provides a method for milling a powder comprising steps of providing a starting powder and a grinding medium comprising naturally occurring zirconium silicate sand characterized by a grinding medium density in the range of from 4.75 to 4.85 g/cm 3 absolute and a particle size of from 150 to 250 ⁇ m and mixing the starting powder and the grinding medium with a liquid medium to form a milling slurry; milling the milling slurry in a high energy mill selected from disk mills, cage mills and attrition mills for a time sufficient to produce a product slurry including a product powder having a desired product powder particle size and having substantially the same composition as the starting powder and separating the product slurry from the milling slurry so that the grinding medium remains in the milling slurry.
  • the term "naturally occurring" indicates that the zirconium silicate sand is mined in the form of zirconium silicate sand of a particular particle size and is distinguished from zirconium silicate materials which are synthesized, manufactured or otherwise artificially produced by man.
  • the zirconium silicate sand grinding medium used in the invention occurs in nature in the appropriate size and shape which can be sorted to obtain the appropriate fraction for use in a particular grinding operation.
  • the mined zirconium silicate sand is sorted to isolate the appropriate fraction of zirconium silicate sand, based on particle size considerations, to be used as a grinding medium.
  • grinding medium refers to a material which is placed in a milling device, such as a disc mill, cage mill or attrition mill, along with the powder to be ground more finely or de-agglomerated to transmit shearing action of the milling device to the powder being processed to break apart particles of the powder.
  • the method of the invention employs a grinding medium including naturally occurring zirconium silicate sand characterized by a density in the range of from 4.75 g/cm 3 to 4.85 g/cm 3 , and a particle size of from 150 to 250 ⁇ m.
  • the naturally occurring zirconium silicate sand tends to be single phase, while synthetic zirconium silicate ceramic beads are typically multiphase materials.
  • Surface contaminants such as aluminum, iron, uranium, thorium and other heavy metals as well as TiO 2 can be present on the surfaces of the naturally occurring zirconium silicate sand particles. Once the surface contaminants are removed by any surface preconditioning process known to one skilled in the art, such as, for example, washing and classifying, chemical analyses indicate that any remaining contaminants are within the crystal structure of the zirconium silicate and do not adversely affect the powder being milled.
  • the zirconium silicate sand grinding medium can be characterized by a particle size which is the smallest multiple of the particle size of the finished product particle size, the milled product powder particle size, which can be effectively separated from the milled product powder.
  • the naturally occurring zirconium silicate sand particle size is in the range of from 150 ⁇ m to 250 ⁇ m.
  • the mined, naturally occurring zirconium silicate sand can be screened using techniques well known to one skilled in the art to isolate a coarse fraction of sand having particles of an appropriate size to function as an effective grinding medium.
  • the grinding medium can be any liquid medium compatible with the product being milled and the milling process and can include water, oil, any other organic compound or a mixture thereof, and can be combined with the naturally occurring zirconium silicate sand to form a slurry.
  • the liquid medium is selected depending upon the product being milled.
  • the milled product powder may or may not be separated from the liquid medium after the milling process is complete; however, the grinding medium is usually separated from the liquid medium after the milling process is complete.
  • the liquid medium can be an oil such as a naturally derived oil like tung oil, linseed oil, soybean oil or tall oil or mixtures thereof. These naturally occurring oils can be mixed with solvents such as mineral spirits, naphtha or toluol or mixtures thereof which can further include substances such as gums, resins, dispersants and/or drying agents.
  • the liquid medium can also include other materials used in the manufacture of oil based paints and inks such as alkyd resins, epoxy resins, nitrocellulose, melamines, urethanes and silicones.
  • the liquid medium can be water, optionally including antifoaming agents and/or dispersants.
  • the powder is a ceramic or magnetic powder, the medium can be water and can also include dispersants.
  • the naturally occurring zirconium silicate sand and the liquid medium are combined to form a grinding slurry which is further characterized by a grinding slurry viscosity which can be in the range of from about 1mPas (1.0cps) to about 10kPas (10,000cps), more preferably in the range of from about 1 to 500 mPas (1.0cps to about 500cps) and most preferably in the range of from about 1 to 100 mPas (1.0cps to about 100cps).
  • a grinding slurry viscosity which can be in the range of from about 1mPas (1.0cps) to about 10kPas (10,000cps), more preferably in the range of from about 1 to 500 mPas (1.0cps to about 500cps) and most preferably in the range of from about 1 to 100 mPas (1.0cps to about 100cps).
  • the grinding slurry viscosity is determined by the concentration of solids in the grinding slurry and, thus, the higher the concentration of solids in the grinding slurry, the higher will be the grinding slurry viscosity and density.
  • concentration of solids in the grinding slurry there is no absolute upper limit to grinding slurry viscosity; however, at some viscosity, a point is reached where no grinding medium is needed, as is the case for plastics compounded in extruders, roll mills, etc. without a grinding medium.
  • the starting powder used in the method of the invention can be an agglomerated and/or aggregated powder.
  • the agglomerated powder can be characterized by an agglomerated powder particle size less tnan about 500 ⁇ m and more preferably can be in the range of from about 0.01 ⁇ m to about 200 ⁇ m.
  • the agglomerated powder has a particle size of in the range of from about 0.05 ⁇ m to about 100 ⁇ m which can be milled to approach the particle size of an individual titanium dioxide crystallite.
  • the starting powder can also be characterized by a starting powder density in the range of from about 0.8g/cm 3 absolute to about 5.0g/cm 3 absolute.
  • the method of the invention is suitable for organic powders which typically have densities on the lower end of the above range as well as for inorganic powders such as titanium dioxide, calcium carbonate, bentonite or kaolin or mixtures thereof.
  • the titanium dioxide starting powder can be an agglomerated titanium dioxide pigment which has a density in the range of from about 3.7g/cm 3 to about 4.2g/cm 3 .
  • the liquid medium used in the method of the invention can be oil or water selected according to the criteria already described.
  • Step (5) of milling can be carried out in any suitable milling device which employs a grinding medium, such as, but not limited to, a bead mill, cage mill, disc mill or pin mill designed to support a vertical flow or horizontal flow.
  • a grinding medium such as, but not limited to, a bead mill, cage mill, disc mill or pin mill designed to support a vertical flow or horizontal flow.
  • the milling process can be a batch or continuous process.
  • Step (6) of separating the product slurry from the milling slurry can be accomplished by distinguishing the product slurry, which contains the product powder along with liquid medium from the milling slurry on the basis of a difference between starting powder and grinding medium physical properties and product powder particle physical properties such as particle size, particle density and particle settling rate.
  • the product powder may or may not be separated from the liquid medium after the milling process is complete; however, the grinding medium is usually separated from the liquid medium after the milling process is complete.
  • the product powder can be separated from the product slurry and subjected to further processing such as dispersing the powder in a dispersing medium to form a dispersion.
  • the dispersing medium can be selected according to the same criteria as already described for the selection of the liquid medium. If the product powder is to be used in the product slurry, no further dispersing steps are needed.
  • the following example is provided to compare the performance as a grinding medium of conventional, commercially available synthetic zirconium silicate ceramic beads with the performance of standard 10-40 mesh (U.S.)silica sand.
  • Sand mills having nominal grinding chamber capacities of 1041 litres (275 gallons) and overall capacities of 1893 litres (500 gallons) were loaded separately with 1361 kg (3000 pounds) of synthetic zirconium silicate ceramic beads of nominal 300 ⁇ m and 210 ⁇ m size and with 544 kg (1200 pounds) of standard 10-40 mesh (U.S.) silica sand, the highest mill loading feasible with silica sand.
  • the mills loaded with 1361 kg (3000 pounds) of synthetic zirconium silicate ceramic beads as well as the mill loaded with 544 kg (1200 pounds) of 10-40 mesh (U.S.) silica sand were operated at 61, 87 and 14 litres per minute (16, 23 and 30 gallon per minute) flow rates.
  • the feed slurries fed through all mills had a density of 1.35g/cm 3 and contained titanium dioxide, approximately 40% of which was less than 0.5 ⁇ m in size in water.
  • the size of the titanium dioxide particles in the product slurry was measured using a Leeds and Northrupp 9200 series MicrotracTM particle size analyzer in water with 0.2% sodium hexametaphosphate surfactant at ambient temperature. The results are summarized in Table 1 and indicate that the grinding efficiency of the synthetic zirconium silicate ceramic beads as indicated by the percentage of product powder less than or equal to 0.5 ⁇ m in size compares favorably with the grinding efficiency of 10-40 mesh (U.S.) silica sand.
  • the naturally occurring zirconium silicate sand grinding medium because of its higher density and single phase microstructure, can produce a pigment powder having superior properties to those obtained using the synthetic zirconium silicate ceramic beads as described above.
  • Example 2 is provided to compare the performance of conventional silica sand with the performance of the naturally occurring zirconium silicate sand grinding medium of the invention. It is noted that the naturally occurring zirconium silicate sand has a higher density than the 3.8g/cm 3 density of synthetic zirconium silicate products which allows use of smaller naturally occurring zirconium silicate sand particles by comparison with the synthetic zirconium silicate product particle sizes, thereby providing greater grinding efficiency.
  • Example 2 was conducted by changing flowrates in mill B, operating with conventional silica sand, and of mill C, operating with naturally occurring zirconium silicate sand.
  • Sand loadings in mill B and mill C were similar to those used in Example 1, i.e., 544 kg (1200 pounds) of silica sand in mill B and 1361 kg (3000 pounds) of naturally occurring zirconium silicate sand in mill C. Samples were obtained concurrently from both sand mills. Mill feed was also sampled to measure any particle size variability in feed particle size.
  • Particle size data shows that at either a low flowrate (approximately 49 litres/minute (13 gallons/minute)) or at a high flowrate (approximately 132 litres/minute (35 gallons/minute)) the naturally occurring zirconium silicate sand is much more efficient in reducing particle size, compared with the performance of the conventional silica sand.
  • Contamination of the pigment product from the naturally occurring zirconium silicate sand grinding medium was minimal as measured by x-ray fluorescence examination of the pigment solids found in the mill overflow. Metal contaminant levels also measured by x-ray fluorescence were similar to those observed in pigments milled using a conventional silica sand grinding medium.
  • the optical quality of the pigment milled with the naturally occurring zirconium silicate sand as measured by the B381 dry color and brightness test which is defined as the total light reflected from a powder compact surface and the spectrum of reflected light i.e. color, was comparable to that obtained for samples milled using conventional silica sand. Results of these tests are summarized in Table 3.
  • Pigment Particle Size Data Parameter Mill B Mill C Flowrate l/min (gal/min) 50 (13.2) 50 (13.2) Median Particle Diameter 0.37 0.24 Fraction of Particles ⁇ 0.5 ⁇ m 86.94 99.55 Flowrate l/min (gal/min) 133 (35.2) 133 (35.2) Median Particle Diameter 0.38 0.37 Fraction of Particles ⁇ 0.5 ⁇ m 75.64 87.55 Pigment Chemical Composition and Optical Properties Property Mill B Mill C % Al 2 O 3 0.71 0.72 %ZrO 2 0.01 0.01 % Calgon 0.06 0.06 Fe ppm 35 34 Ni ppm 10 8 B381 Brightness 97.87 97.94 B381 Color 1.14 1.09
  • mill C was inspected for signs of wear on the rubber lining using a fiber optic probe inserted through a flange in the underside of the mill. Essentially no signs of wear on the rubber lining were observed as indicated by the condition of the weavelike pattern on the rubber mill lining which is normally present on the surface of freshly lined mills.
  • the mill lining showed considerable wear, especially to the leading edges of the mill rotor bars where the weavelike pattern had been almost completely worn away.
  • the following example is provided to show the differences in particle size, impurity content and grinding performance among naturally occurring zirconium silicate sands obtained from different natural sources.
  • Sample 1 Three naturally occurring zirconium silicate sand samples, hereinafter referred to as Sample 1, Sample 2 and Sample 3 were evaluated for particle size using a screen analysis conducted for thirty minutes on a RotapTM. Based on the data presented in Table 4, Sample 2 and Sample 3 are similar with respect to particle size, while Sample 1 is smaller, which can make it difficult to retain Sample 1 sand in a cage mill during a continuous process.
  • Particle Sizes of Zirconium Silicate Sand Samples Sample Origin Sample 1 Sample 2 Sample 3 %180 microns 0.61 75.1 67.2 %150microns 5.73 16 32.1 % less than 150microns 93.66 8.9 0.7
  • a laboratory scale grinding study was also performed with the three naturally occurring zirconium silicate sands. The study was conducted in a cage mill under a standard laboratory sand load of 1.8:1 zirconium sand to pigment load. Table 6 shows the percent of particles passing 0.5micron, i.e., particles having sizes smaller than 0.5micron, after 2, 4 and 8 minutes of grinding, as well as the median particle diameter at these times.
  • the pigment was an untreated interior enamel grade titanium dioxide pigment. Particle sizes were determined using a MicrotracTM particle size analyzer as has been described before.

Landscapes

  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Crushing And Grinding (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Disintegrating Or Milling (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Silicon Compounds (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Polishing Bodies And Polishing Tools (AREA)
EP95908662A 1994-01-25 1995-01-24 Method of milling with a zirconium silicate grinding medium Expired - Lifetime EP0690749B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP99103983A EP0930098B1 (en) 1994-01-25 1995-01-24 Zirconium silicate grinding medium

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US18608594A 1994-01-25 1994-01-25
US186085 1994-01-25
PCT/US1995/000963 WO1995019846A1 (en) 1994-01-25 1995-01-24 Zirconium silicate grinding medium and method of milling

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP99103983A Division EP0930098B1 (en) 1994-01-25 1995-01-24 Zirconium silicate grinding medium

Publications (3)

Publication Number Publication Date
EP0690749A1 EP0690749A1 (en) 1996-01-10
EP0690749A4 EP0690749A4 (en) 1996-10-30
EP0690749B1 true EP0690749B1 (en) 2000-03-29

Family

ID=22683601

Family Applications (2)

Application Number Title Priority Date Filing Date
EP95908662A Expired - Lifetime EP0690749B1 (en) 1994-01-25 1995-01-24 Method of milling with a zirconium silicate grinding medium
EP99103983A Expired - Lifetime EP0930098B1 (en) 1994-01-25 1995-01-24 Zirconium silicate grinding medium

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP99103983A Expired - Lifetime EP0930098B1 (en) 1994-01-25 1995-01-24 Zirconium silicate grinding medium

Country Status (18)

Country Link
EP (2) EP0690749B1 (es)
JP (1) JP2693039B2 (es)
KR (1) KR0164652B1 (es)
CN (1) CN1042104C (es)
AT (2) ATE235318T1 (es)
AU (1) AU671248B2 (es)
BR (1) BR9506238A (es)
CA (1) CA2158969C (es)
CZ (1) CZ284563B6 (es)
DE (2) DE69530132T2 (es)
ES (2) ES2190624T3 (es)
FI (1) FI954466A0 (es)
MX (1) MX9504066A (es)
PL (1) PL176837B1 (es)
SK (1) SK117895A3 (es)
TW (1) TW276208B (es)
WO (1) WO1995019846A1 (es)
ZA (1) ZA95590B (es)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2315505B (en) * 1996-07-24 1998-07-22 Sofitech Nv An additive for increasing the density of a fluid and fluid comprising such additve
DE102004040368B3 (de) * 2004-08-20 2006-02-23 Juhnke, Michael, Dipl.-Ing. Mahlkörper zur Herstellung feinstkörniger Produkte
US20080022900A1 (en) * 2006-07-25 2008-01-31 Venkata Rama Rao Goparaju Process for manufacturing titanium dioxide pigment
CN101722085B (zh) * 2008-10-15 2012-06-13 许兴康 高纯亚纳米级超细硅酸锆粉的研磨工艺
CN102795848B (zh) * 2012-08-02 2013-10-23 江苏锡阳研磨科技有限公司 低温烧结硅酸锆研磨球及制备方法
CN111180719A (zh) * 2020-01-07 2020-05-19 马鞍山科达普锐能源科技有限公司 一种三级研磨制备纳米硅的方法
CN115043620B (zh) * 2022-03-09 2023-03-10 湖北工业大学 一种以砂为研磨介质制备早强型预制构件混凝土的方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB679552A (en) * 1949-08-29 1952-09-17 British Titan Products Improvements relating to methods and apparatus for grinding, crushing and disintegrating
US3337140A (en) * 1964-06-03 1967-08-22 Pittsburgh Plate Glass Co Dispersion process
DE2832761B1 (de) * 1978-07-26 1979-10-31 Basf Ag Verfahren zur UEberfuehrung von rohen und/oder grobkristallisierten Perylen-tetracarbonsaeurediimiden in eine Pigmentform
JPS5815079A (ja) * 1981-07-14 1983-01-28 日本化学陶業株式会社 ジルコニア質焼結体からなる粉砕機用部材
US4547534A (en) * 1983-03-18 1985-10-15 Memorex Corporation Method to disperse fine solids without size reduction
JPS60211637A (ja) * 1984-04-05 1985-10-24 Hitachi Maxell Ltd 磁気記録媒体の製造方法
JPH04166246A (ja) * 1990-10-31 1992-06-12 Matsushita Electric Ind Co Ltd 媒体撹拌ミル及び粉砕方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KIRK-OTHMER: "Encyclopedia of Chemical Technology", 1984, JOHN WILEY AND SONS, VOL. 24, PAGES 864 - 865, NEW YORK *

Also Published As

Publication number Publication date
AU671248B2 (en) 1996-08-15
WO1995019846A1 (en) 1995-07-27
ES2143616T3 (es) 2000-05-16
PL310446A1 (en) 1995-12-11
ZA95590B (en) 1996-07-25
ATE235318T1 (de) 2003-04-15
KR960700819A (ko) 1996-02-24
ATE191160T1 (de) 2000-04-15
PL176837B1 (pl) 1999-08-31
CA2158969A1 (en) 1995-07-27
JPH08506527A (ja) 1996-07-16
EP0690749A4 (en) 1996-10-30
AU1690095A (en) 1995-08-08
BR9506238A (pt) 1997-09-30
CA2158969C (en) 2000-06-27
DE69530132T2 (de) 2004-01-08
TW276208B (es) 1996-05-21
FI954466A (fi) 1995-09-21
CZ284563B6 (cs) 1999-01-13
KR0164652B1 (ko) 1998-12-15
MX9504066A (es) 1997-05-31
SK117895A3 (en) 1996-01-10
JP2693039B2 (ja) 1997-12-17
CZ235795A3 (en) 1996-02-14
EP0930098B1 (en) 2003-03-26
DE69530132D1 (de) 2003-04-30
EP0930098A1 (en) 1999-07-21
CN1042104C (zh) 1999-02-17
DE69515935D1 (de) 2000-05-04
CN1122112A (zh) 1996-05-08
ES2190624T3 (es) 2003-08-01
FI954466A0 (fi) 1995-09-21
EP0690749A1 (en) 1996-01-10
DE69515935T2 (de) 2000-08-17

Similar Documents

Publication Publication Date Title
US4989794A (en) Method of producing fine particles
US5356470A (en) Media milling pigment slurries to eliminate or reduce oversize particles
EP0690749B1 (en) Method of milling with a zirconium silicate grinding medium
US5544817A (en) Zirconium silicate grinding method and medium
US8916121B2 (en) Treatment of talc in a solvent
US3476576A (en) Process for obtaining a size reduction of non-lamellar materials
US20080116303A1 (en) Method for Improved Agitator Milling of Solid Particles
RU2107548C1 (ru) Средство для перетира пигмента и наполнителя и способ перетира пигмента и наполнителя
US6036999A (en) Method of preparing grinding media consisting essentially of sintered TiO2 particles
KR100508961B1 (ko) 표면처리복합분체 및 그 제조방법
George et al. Alternate medium for improved wet milling of TiO2 suspensions in vertical sand mills
EP0783547B1 (en) Media milling pigment slurries to eliminate or reduce oversize particles
Smith et al. Some misconceptions about comminution and particle size

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19951009

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

A4 Supplementary search report drawn up and despatched

Effective date: 19960910

AK Designated contracting states

Kind code of ref document: A4

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 19961112

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: KERR-MCGEE CHEMICAL LLC

APAB Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPE

APBJ Interlocutory revision of appeal recorded

Free format text: ORIGINAL CODE: EPIDOS IRAPE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 20000329

Ref country code: LI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20000329

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000329

Ref country code: CH

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20000329

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20000329

REF Corresponds to:

Ref document number: 191160

Country of ref document: AT

Date of ref document: 20000415

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

ITF It: translation for a ep patent filed
REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 69515935

Country of ref document: DE

Date of ref document: 20000504

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2143616

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20000629

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20000629

ET Fr: translation filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010124

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010124

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010131

26N No opposition filed
REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20060103

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20060110

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20060118

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20060119

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060131

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20060215

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20060308

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070801

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20070124

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20070801

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20070930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070124

BERE Be: lapsed

Owner name: *KERR-MCGEE CHEMICAL LLC

Effective date: 20070131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070801

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20070125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070124