EP0680627B1 - Elektrostatische toner, enthaltend aminodiessigsäurederivate - Google Patents

Elektrostatische toner, enthaltend aminodiessigsäurederivate Download PDF

Info

Publication number
EP0680627B1
EP0680627B1 EP94926166A EP94926166A EP0680627B1 EP 0680627 B1 EP0680627 B1 EP 0680627B1 EP 94926166 A EP94926166 A EP 94926166A EP 94926166 A EP94926166 A EP 94926166A EP 0680627 B1 EP0680627 B1 EP 0680627B1
Authority
EP
European Patent Office
Prior art keywords
formula
alkyl
compound
substituted
toner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94926166A
Other languages
English (en)
French (fr)
Other versions
EP0680627A1 (de
Inventor
Alfred Oftring
Juergen Schneider
Rainer Dyllick-Brenzinger
Karin Heidrun Beck
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of EP0680627A1 publication Critical patent/EP0680627A1/de
Application granted granted Critical
Publication of EP0680627B1 publication Critical patent/EP0680627B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/097Plasticisers; Charge controlling agents
    • G03G9/09733Organic compounds
    • G03G9/09741Organic compounds cationic
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/097Plasticisers; Charge controlling agents
    • G03G9/09733Organic compounds
    • G03G9/0975Organic compounds anionic
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/097Plasticisers; Charge controlling agents
    • G03G9/09733Organic compounds
    • G03G9/09758Organic compounds comprising a heterocyclic ring

Definitions

  • Latent electrostatic image recordings are developed by inductively depositing the toner on the electrostatic image.
  • the charge stabilizers stabilize the electrostatic charge on the toner. This makes the picture more vivid and sharper.
  • electrostatic toners which have N-acylated 3-aminopropionic acid derivatives as charge stabilizers.
  • electrostatic toners which have metal chelates of ethylenediamine-tetraacetic acid as charge stabilizers.
  • US-A-3 974 496 discloses light-sensitive photographic materials which contain, as light-sensitive material, silver salts of iminodiacetic acid and special derivatives thereof.
  • the object of the present invention was therefore to provide new electrostatic toners which have charge stabilizers which have advantageous performance properties.
  • substituted phenyl groups occur in the above formula I, they generally have 1 to 3 substituents.
  • R are, for example, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, isopentyl, neopentyl, tert-pentyl, hexyl, 2-methylpentyl, heptyl, octyl, 2-ethylhexyl, isooctyl, Nonyl, isononyl, decyl, isodecyl, undecyl, dodecyl, tridecyl, 3,5,5,7-tetramethylnonyl, isotridecyl (the above names isooctyl, isononyl, isodecyl and isotridecyl are trivial names and come from the alcohols obtained after oxo synthesis - cf.
  • M ⁇ means the equivalent of a cation. It is either a proton or is derived from ammonium or metal ions.
  • Ammonium ions in the sense of the invention are understood to mean unsubstituted or substituted ammonium cations.
  • Substituted ammonium cations are, for example, monoalkyl, dialkyl, trialkyl, tetraalkyl or benzyltrialkylammonium cations or those cations which differ from nitrogen-containing five or derive six-membered saturated heterocycles, such as pyrrolidinium, piperidinium, morpholinium, piperazinium or N-alkylpiperazinium cations or their N-monoalkyl or N, N-dialkyl-substituted products.
  • Alkyl is generally to be understood as straight-chain or branched C 1 -C 20 -alkyl which can be substituted by hydroxyl groups and / or interrupted by ether oxygen atoms.
  • Suitable metal ions derive e.g. from metals of group IA, IIA, IIIA, IVA, VA, IB, IIB, IIIB, IVB, VB, VIB, VIIB or VIII of the Periodic Table of the Elements.
  • electrostatic toners containing a compound of formula I in which RC 1 -C 18 alkyl, benzyl, which is optionally substituted by C 1 -C 4 alkyl or hydroxy, or phenyl optionally substituted by carboxyl.
  • Electrostatic toners containing a compound of the formula I in which RC 4 -C 16 -alkyl, benzyl which is substituted by C 1 -C 4 -alkyl and hydroxy, or phenyl substituted by carboxyl are particularly preferred.
  • Electrostatic toners containing a compound of the formula I in which RC 6 denotes C 12 -alkyl, 2-hydroxy-3,5-di-tert-butylbenzyl or 2-carboxylphenyl are very particularly preferred.
  • the iminodiacetic acid derivatives of the formula I are generally compounds which are known or can be obtained by methods known per se.
  • iminodiacetic acid esters of the formula II in the YC 1 -C 4 alkyl with a compound of formula III RX (III), in which R has the abovementioned meaning and X denotes chlorine, bromine or iodine, alkylate and saponify the resulting alkylated ester (J. General Chem. USSR, volume 44, pages 574 to 577, 1974).
  • Those iminodiacetic acid derivatives which contain an ortho-standing phenolate structure in the general formula can be prepared from commercially available phenols or phenol derivatives by a one-step Mannich reaction. In particular, they can be synthesized using the method described in Helv. Chim. Acta 35, 1785 (1952), or Keihei Ueno, Ed., "Chemistry of EDTA Complexane” pages 99-105, 1977. This synthesis is explained using example H1.
  • the synthesis of the alkyl and aryliminodiacetic acids can also be carried out by the known reaction of the commercially available amine starting component with halocarboxylic acids.
  • the synthesis of anthranilic acid diacetic acid can be carried out by reacting anthranilic acid with chloroacetic acid in an aqueous medium (Chem. Abstracts, volume 88, 89303p, 1978, or EP-A-520 547).
  • the free acid is isolated in a manner known per se, e.g. by acidifying the solution of a readily soluble salt down to the isoelectric point of the amino acid.
  • the synthesis of the generally moderately to poorly water soluble metal salts with divalent or higher cations is carried out by reacting the free acid or soluble salts of the amino acids with salts of the desired cation.
  • the end products generally crystallize out of the solution and can thus be isolated and dried.
  • Another possibility is to react the free acids with the metal oxides or hydroxides of the desired cations. Further details for the synthesis of these salts are given in the examples.
  • the proportion of the compounds of the formula I in the electrostatic toners is generally 0.01 to 10% by weight, based on the weight of the toner.
  • the polymeric binders contained in the new electrostatic toners are known per se. They are generally thermoplastic and have a softening point of 40 to 200 ° C, preferably 50 to 130 ° C and in particular 65 to 115 ° C.
  • Examples of polymeric binders are polystyrene, copolymers of styrene with an acrylate or methacrylate, copolymers of styrene with butadiene and / or acrylonitrile, polyacrylates, polymethacrylates, copolymers of an acrylate or methacrylate with vinyl chloride or vinyl acetate, polyvinyl chloride, copolymers of vinyl chloride with vinylidene chloride, copolymers of Vinyl chloride with vinyl acetate, polyester resins, epoxy resins, polyamides or polyurethanes.
  • the toners according to the invention can contain colorants, magnetically attractable material, waxes and flow agents in known amounts.
  • the colorants can be organic dyes or pigments such as nigrosine, aniline blue, 2,9-dimethylquinacridone, C.I. Disperse Red 15 (C.I. 6010), C.I. Solvent Red 19 (C.I. 26 050), C.I. Pigment Blue 15 (C.I. 74 160), C.I. Pigment Blue 22 (C.I. 69 810) or C.I. Solvent Yellow 16 (C.I. 12 700) or inorganic pigments such as carbon black, red lead, yellow lead oxide or chrome yellow. Generally, the amount of the colorant present in the toner does not exceed 15% by weight based on the weight of the toner.
  • the magnetically attractable material can be, for example, iron, nickel, chromium oxide, iron oxide or a ferrite of the formula MeFe204, in which Me is a divalent metal, e.g. Iron, cobalt, zinc, nickel or manganese.
  • Me is a divalent metal, e.g. Iron, cobalt, zinc, nickel or manganese.
  • the toners according to the invention are produced by customary processes, for example by mixing the constituents in a kneader and then pulverizing them or by melting the polymeric binder or a mixture of the polymeric binders, then finely dividing one or more compounds of the formula I and the other additives, if used, in the molten resin using the mixing and kneading machines known for this purpose, then cooling the melt to a solid mass and finally grinding the solid mass into particles of the desired particle size (usually 0.1 to 50 ⁇ m). It is also possible to dissolve the polymeric binder and the charge stabilizer in a common solvent and to add the other additives to the solution. The solution can be used as a liquid toner.
  • the liquid can also be spray-dried in a manner known per se, the solvents evaporated or the liquid freeze-dried and the solid residue ground into particles of the desired particle size.
  • toner preparation can then be used in a xerographic imaging system, for example according to US-A-4,265,990.
  • the compounds of formula I mentioned above are advantageous charge stabilizers. They generally satisfy the application profile initially mentioned and are particularly distinguished by the fact that, when added to a toner preparation, they give it a favorable electrostatic charging profile, i.e. the toners can be quickly and highly charged.
  • the charge stabilizers to be used according to the invention furthermore ensure that the charge is kept constant at a high level.
  • Example H4 0.2 g of the compound from Example H4 were introduced into a solution of 10 g of an uncrosslinked styrene / butyl acrylate resin in 100 ml of p-xylene at room temperature and then freeze-dried and ground. Toner particles with an average particle size of 50 ⁇ m were produced by screening.
  • Example H2 0.2 g of the compound from Example H2 were introduced into a solution of 10 g of a linear polyester resin in 100 ml of p-xylene at room temperature and then freeze-dried and ground. Toner particles with an average particle size of 50 ⁇ m were produced by screening.
  • Example H3 0.2 g of the compound from Example H3 were introduced into a solution of 10 g of a linear polyester resin in 100 ml of p-xylene at room temperature and then freeze-dried and ground. Toner particles with an average particle size of 50 ⁇ m were produced by screening.
  • Example H4 0.2 g of the compound from Example H4 were introduced into a solution of 10 g of a linear polyester resin in 100 ml of p-xylene at room temperature and then freeze-dried and ground. Toner particles with an average particle size of 50 ⁇ m were produced by screening.
  • Example H5 0.2 g of the compound from Example H5 was introduced into a solution of 10 g of a linear polyester resin in 100 ml of p-xylene at room temperature and then freeze-dried and ground. Toner particles with an average particle size of 50 ⁇ m were produced by screening.
  • Example H6 0.2 g of the compound from Example H6 were introduced into a solution of 10 g of a linear polyester resin in 100 ml of p-xylene at room temperature and then freeze-dried and ground. Toner particles with an average particle size of 50 ⁇ m were produced by screening.
  • a developer 99% by weight of a steel carrier, which had an average particle size of 100 ⁇ m, was precisely weighed in with 1% by weight of the toner and activated on a roller stand for a period specified below. The electrostatic charge of the developer was then determined. About 5 g of the activated developer were filled into a hard-blow-off cell, which was electrically connected to an electrometer, in a commercially available q / m meter (Epping GmbH, Neufahrn).
  • the mesh sizes of the sieves used in the measuring cell were 63 ⁇ m for the examples.
  • the toner was almost completely removed from the carrier particles by a strong air flow (approx. 4,000 cm 3 / min) and simultaneous suction, the latter remaining in the measuring cell.
  • the charge on the carrier was registered on the electrometer. It corresponded to the amount of charging of the toner particles, but with the opposite sign. The amount of q with the opposite sign was therefore used to calculate the q / m value.
  • the mass of blown-off toner was determined by weighing the measuring cell back and the electrostatic charge q / m was calculated therefrom.

Abstract

Elektrostatische Toner, enthaltend ein polymeres Bindemittel und als Ladungsstabilisator eine Verbindung der Formel (I), in der M+ das Äquivalent eines Kations und R gegebenenfalls substituiertes C¿1?-C18-Alkyl oder gegebenenfalls substituiertes Phenyl bedeuten, sowie die Verwendung der obengenannten Verbindungen als Ladungsstabilisatoren in elektrostatischen Tonern.

Description

  • Die vorliegende Erfindung betrifft neue elektrostatische Toner, enthaltend ein polymeres Bindemittel und als Ladungsstabilisator eine Verbindung der Formel I
    Figure imgb0001
    in der
  • M
    das Äquivalent eines Kations und
    R
    C1-C21-Alkyl, das gegebenenfalls durch Carboxyl oder Phenyl, das durch C1-C10-Alkyl, Hydroxy oder einen Rest der Formel L-N(CH2-COOM)2, worin L für C1-C4-Alkylen steht und M die obengenannte Bedeutung besitzt, substituiert sein kann, substituiert ist und durch 1 bis 4 Sauerstoffatome in Etherfunktion, 1 bis 4 Imino- oder C1-C4-Alkyliminogruppen oder den Rest der Formel N-CH2-COOM, worin M die obengenannte Bedeutung besitzt, unterbrochen sein kann, oder Phenyl, das gegebenenfalls durch Carboxyl substituiert ist, bedeuten,
    mit der Maßgabe, daß, wenn R Alkyl bedeutet, das ein oder mehrere Heteroatome aufweist, sich im Rest R mindestens 5 miteinander verbundene Kohlenstoffatome befinden, sowie die Verwendung der obengenannten Verbindungen als Ladungsstabilisatoren in elektrostatischen Tonern.
  • Latente elektrostatische Bildaufzeichnungen werden dadurch entwickelt, daß der Toner auf dem elektrostatischen Bild induktiv abgeschieden wird. Die Ladungsstabilisatoren stabilisieren die elektrostatische Ladung des Toners. Dadurch wird das Bild kräftiger und konturenschärfer.
  • Die verwendeten Ladungsstabilisatoren müssen dabei vielseitige Anforderungen erfüllen:
    • Fähigkeit zur Entwicklung des latenten elektrostatischen Bildes zu einem farbstarken sichtbaren Bild
    • Leichte Verteilbarkeit in der Tonerzubereitung, um ein störungsfreies, konturenscharfes, gleichförmiges Bild zu erzeugen
    • Unempfindlichkeit gegen Feuchtigkeit
    • Hohe Thermostabilität.
  • Aus der EP-A-132 718 sind elektrostatische Toner bekannt, die als Ladungsstabilisatoren N-acylierte 3-Aminopropionsäurederivate aufweisen.
  • Aus der DE-A-2 324 378 sind elektrostatische Toner bekannt, die als Ladungsstabilisatoren Metallchelate der Äthylendiamin-tetraessigsäure aufweisen.
  • Weiterhin sind aus der US-A-3 974 496 lichtempfindliche photographische Materialien bekannt, die als lichtempfindliches Material Silbersalze von Iminodiessigsäure und speziellen Derivaten davon enthalten.
  • Es hat sich jedoch gezeigt, daß die Ladungsstabilisatoren des Standes der Technik häufig Mängel in ihrem Anforderungsprofil aufweisen.
  • Aufgabe der vorliegenden Erfindung war es daher, neue elektrostatische Toner bereitzustellen, die über Ladungsstabilisatoren verfügen, die vorteilhafte anwendungstechnische Eigenschaften aufweisen.
  • Demgemäß wurden die eingangs näher bezeichneten elektrostatischen Toner, enthaltend Aminodiessigsäurederivate der Formel I als Ladungsstabilisatoren gefunden.
  • Alle in der obengenannten Formel I auftretenden Alkyl- und Alkylengruppen können sowohl geradkettig als auch verzweigt sein.
  • Wenn in der obengenannten Formel I substituierte Phenylgruppen auftreten, so weisen sie in der Regel 1 bis 3 Substituenten auf.
  • Reste R sind z.B. Methyl, Ethyl, Propyl, Isopropyl, Butyl, Isobutyl, sec-Butyl, tert-Butyl, Pentyl, Isopentyl, Neopentyl, tert-Pentyl, Hexyl, 2-Methylpentyl, Heptyl, Octyl, 2-Ethylhexyl, Isooctyl, Nonyl, Isononyl, Decyl, Isodecyl, Undecyl, Dodecyl, Tridecyl, 3,5,5,7-Tetramethylnonyl, Isotridecyl (die obigen Bezeichnungen Isooctyl, Isononyl, Isodecyl und Isotridecyl sind Trivialbezeichnungen und stammen von den nach der Oxosynthese erhaltenen Alkoholen - vgl. dazu Ullmanns Encyklopädie der technischen Chemie, 4. Auflage, Band 7, Seiten 215 bis 217, sowie Band 11, Seiten 435 und 436), Tetradecyl, Pentadecyl, Hexadecyl, Heptadecyl, Octadecyl, Nonadecyl, Eicosyl, Heneicosyl, 1-Carboxyethyl, 1-Carboxypropyl, 1-Carboxybutyl, Benzyl, 1- oder 2-Phenylethyl, 2-Hydroxybenzyl, 3,5-Dimethylbenzyl, 3,5-Dibutylbenzyl, 3,5-Di-tert-butylbenzyl, 2-Hydroxy-3,5-di-tert-butylbenzyl, 2-Methoxyethyl, 2-Ethoxyethyl, 2-Propoxyethyl, 2-Isopropoxyethyl, 2-Butoxyethyl, 2- oder 3-Methoxypropyl, 2- oder 3-Ethoxypropyl, 2- oder 3-Propoxypropyl, 2- oder 3-Butoxypropyl, 2- oder 4-Methoxybutyl, 2- oder 4-Ethoxybutyl, 2- oder 4-Propoxybutyl, 2- oder 4-Butoxybutyl, 3,6-Dioxaheptyl, 3,6-Dioxaoctyl, 4,8-Dioxanonyl, 3,7-Dioxaoctyl, 3,7-Dioxanonyl, 4,7-Dioxaoctyl, 4,7-Dioxanonyl, 4,8-Dioxadecyl, 3,6,8-Trioxadecyl, 3,6,9-Trioxaundecyl, 3,6,9,12-Tetraoxatridecyl, 3,6,9,12-Tetraoxatetradeyl, 2-Mono- oder Dimethylaminoethyl, 2-Mono- oder Diethylaminoethyl, 2- oder 3-Mono- oder Dimethylaminopropyl, 2- oder 3-Mono- oder Diethylaminopropyl, 2- oder 4-Mono- oder Dimethylaminobutyl, 2- oder 4-Mono- oder Diethylaminobutyl, 3,6-Diazaheptyl, 3,6,9-Triazadecyl, 3,6,9,12-Tetraazatetradecyl, 3,6-Dimethyl-3,6-diazaheptyl, 3,6,9-Trimethyl-3,6,9-triazadecyl, 3,6,9,12-Tetramethyl-3,6,9,12-tetraazatetradecyl, Phenyl, 2-, 3- oder 4-Carboxyphenyl oder ein Rest der Formel C2H4N(CH2COOM)C5H11, C2H4N(CH2COOM)C6H13, C2H4N(CH2COOM)C8H17, C2H4N(CH2COOM)-i-C8H17, C2H4N(CH2COOM)C13H27, C2H4N(CH2COOM)-i-C13H27, C2H4N(CH2COOM)C16H33, C2H4N(CH2COOM)C18H37, C3H6N(CH2COO M)C5H11, C3H6N(CH2COOM)C6H13, C3H6N(CH2COOM)C8H17, C3H6N(CH2COOM )-i-C8H17, C3H6N(CH2COOM )C13H27, C3H6N(CH2COOM)-i-C13H27, C3H6N(CH2COOM)C16H33, C3H6N(CH2COOM)C18H37,
    Figure imgb0002
    oder
    Figure imgb0003
    Reste L sind z.B. CH2, (CH2)2, (CH2)3, (CH2)4, CH(CH3)CH2 oder CH(CH3)CH(CH3).
  • M bedeutet das Äquivalent eines Kations. Es stellt entweder ein Proton dar oder leitet sich von Ammonium- oder Metallionen ab.
  • Unter Ammoniumionen im erfindungsgemäßen Sinne sind unsubstituierte oder substituierte Ammoniumkationen zu verstehen. Substituierte Ammoniumkationen sind z.B. Monoalkyl-, Dialkyl-, Trialkyl-, Tetraalkyl- oder Benzyltrialkylammoniumkationen oder solche Kationen, die sich von stickstoffhaltigen fünfoder sechsgliedrigen gesättigten Heterocyclen ableiten, wie Pyrrolidinium-, Piperidinium-, Morpholinium-, Piperazinium- oder N-Alkylpiperaziniumkationen oder deren N-monoalkyl- oder N,N-dialkylsubstituierte Produkte. Unter Alkyl ist dabei im allgemeinen geradkettiges oder verzweigtes C1-C20-Alkyl zu verstehen, das durch Hydroxylgruppen substituiert und/oder durch Sauerstoffatome in Etherfunktion unterbrochen sein kann.
  • Geeignete Metallionen leiten sich z.B. von Metallen der Gruppe IA, IIA, IIIA, IVA, VA, IB, IIB, IIIB, IVB, VB, VIB, VIIB oder VIII des Periodensystems der Elemente ab.
  • Bevorzugt sind elektrostatische Toner, enthaltend eine Verbindung der Formel I, in der M ein Proton darstellt oder sich von einem Metall der Gruppe IA, IIA oder IIB des Periodensystems der Elemente ableitet, wobei Protonen oder Natrium-, Calcium- oder Zinkionen besonders zu nennen sind.
  • Bevorzugt sind weiterhin elektrostatische Toner, enthaltend eine Verbindung der Formel I, in der R C1-C18-Alkyl, Benzyl, das gegebenenfalls durch C1-C4-Alkyl oder Hydroxy substituiert ist, oder gegebenenfalls durch Carboxyl substituiertes Phenyl bedeutet.
  • Besonders bevorzugt sind elektrostatische Toner, enthaltend eine Verbindung der Formel I, in der R C4-C16-Alkyl, Benzyl, das durch C1-C4-Alkyl und Hydroxy substituiert ist, oder durch Carboxyl substituiertes Phenyl bedeutet.
  • Ganz besonders bevorzugt sind elektrostatische Toner, enthaltend eine Verbindung der Formel I, in der R C6-C12-Alkyl, 2-Hydroxy-3,5-di-tert-butylbenzyl oder 2-Carboxylphenyl bedeutet.
  • Bei den Iminodiessigsäurederivaten der Formel I handelt es sich in der Regel um Verbindungen, die bekannt sind oder nach an sich bekannten Methoden erhalten werden können.
  • Beispielsweise kann man Iminodiessigsäureester der Formel II
    Figure imgb0004
    in der Y C1-C4-Alkyl bedeutet, mit einer Verbindung der Formel III

            R-X     (III),

    in der R die obengenannte Bedeutung besitzt und X Chlor, Brom oder Iod bedeutet, alkylieren und den resultierenden alkylierten Ester verseifen (J. General Chem. USSR, Band 44, Seiten 574 bis 577, 1974).
  • Es ist auch möglich, die Verbindungen der Formel I z.B. mittels einer Strecker-Synthese, wie sie beispielsweise in der US-A-3 733 355 beschrieben ist, durch Verseifung der entsprechenden Nitrile (GB-A-1 202 133), durch Dehydrierung der entsprechenden Aminoalkohole (GB-A-2 148 287) oder aus cyclischen Diglykol-imiden (US-A-4 082 748) herzustellen.
  • Diejenigen Iminodiessigsäurederivate, die in der allgemeinen Formel eine orthoständige Phenolatstruktur enthalten, können aus im Handel verfügbaren Phenolen oder Phenolderivaten durch eine einstufige Mannich-Reaktion hergestellt werden. Speziell können sie durch die Methode synthetisiert werden, die in Helv. Chim. Acta 35, 1785 (1952), oder Keihei Ueno, Ed., "Chemistry of EDTA Complexane" Seite 99 bis 105, 1977, angegeben wird. Diese Synthese wird an Beispiel H1 erläutert.
  • Die Synthese der Alkyl- und Aryliminodiessigsäuren kann auch durch die bekannte Umsetzung der handelsüblichen Aminausgangskomponente mit Halogencarbonsäuren durchgeführt werden. So kann zum Beispiel die Synthese der Anthranilsäurediessigsäure durch Umsetzung von Anthranilsäure mit Chloressigsäure in wäßrigem Medium durchgeführt werden (Chem. Abstracts, Band 88, 89303p, 1978, oder EP-A-520 547).
  • Die Isolierung der freien Säure erfolgt auf an sich bekannte Weise, z.B. durch Ansäuern der Lösung eines leicht löslichen Salzes bis auf den isoelektrischen Punkt der Aminosäure.
  • Die Synthese der im allgemeinen in Wasser mäßig bis schlecht löslichen Metallsalze mit zwei- oder höherwertigen Kationen, z.B. der Zink- oder Calciumsalze, erfolgt durch Umsetzung der freien Säure oder von löslichen Salzen der Aminosäuren mit Salzen des gewünschten Kations. Die Endprodukte kristallisieren im allgemeinen aus der Lösung aus und können so isoliert und getrocknet werden. Eine weitere Möglichkeit besteht auch in der Umsetzung der freien Säuren mit den Metalloxiden oder -hydroxiden der gewünschten Kationen. Nähere Einzelheiten für die Synthese dieser Salze sind in den Beispielen angegeben.
  • Der Anteil der Verbindungen der Formel I in den elektrostatischen Tonern beträgt in der Regel 0,01 bis 10 Gew.-%, bezogen auf das Gewicht des Toners.
  • Die in den neuen elektrostatischen Tonern enthaltenen polymeren Bindemittel sind an sich bekannt. Sie sind in der Regel thermoplastisch und haben einen Erweichungspunkt von 40 bis 200°C, vorzugsweise 50 bis 130°C und insbesondere 65 bis 115°C. Beispiele für polymere Bindemittel sind Polystyrol, Copolymere von Styrol mit einem Acrylat oder Methacrylat, Copolymere von Styrol mit Butadien und/oder Acrylnitril, Polyacrylate, Polymethacrylate, Copolymere eines Acrylates oder Methacrylates mit Vinylchlorid oder Vinylacetat, Polyvinylchlorid, Copolymere von Vinylchlorid mit Vinylidenchlorid, Copolymere von Vinylchlorid mit Vinylacetat, Polyesterharze, Epoxyharze, Polyamide oder Polyurethane.
  • Zusätzlich zu den obengenannten Verbindungen der Formel I und den polymeren Bindemitteln können die erfindungsgemäßen Toner in bekannten Mengen Farbmittel, magnetisch anziehbares Material, Wachse und Fließmittel enthalten.
  • Die Farbmittel können organische Farbstoffe oder Pigmente, wie Nigrosin, Anilinblau, 2,9-Dimethylchinacridon, C.I. Disperse Red 15 (C.I. 6010), C.I. Solvent Red 19 (C.I. 26 050), C.I. Pigment Blue 15 (C.I. 74 160), C.I. Pigment Blue 22 (C.I. 69 810) oder C.I. Solvent Yellow 16 (C.I. 12 700) oder anorganische Pigmente, wie Ruß, Rotblei, gelbes Bleioxid oder Chromgelb, sein. Allgemein überschreitet die Menge des im Toner vorhandenen Farbmittels nicht 15 Gew.-%, bezogen auf das Gewicht des Toners.
  • Das magnetisch anziehbare Material kann beispielsweise Eisen, Nickel, Chromoxid, Eisenoxid oder ein Ferrit der Formel MeFe204, worin Me ein zweiwertiges Metall, z.B. Eisen, Kobalt, Zink, Nickel oder Mangan, darstellt, sein.
  • Die Herstellung der erfindungsgemäßen Toner erfolgt nach üblichen Verfahren, z.B. durch Vermischen der Bestandteile in einem Kneter und anschließendes Pulverisieren oder durch Schmelzen des polymeren Bindemittels oder eines Gemisches der polymeren Bindemittel, anschließende feine Zerteilung einer oder mehrerer Verbindungen der Formel I, sowie der anderen Zusätze, falls verwendet, in dem geschmolzenen Harz unter Anwendung der für diesen Zweck bekannten Misch- und Knetmaschinen, anschließende Abkühlung der Schmelze zu einer festen Masse und schließlich Vermahlen der festen Masse zu Teilchen der gewünschten Teilchengröße (in der Regel 0,1 bis 50 µm). Es ist auch möglich, das polymere Bindemittel und den Ladungsstabilisator in einem gemeinsamen Lösungsmittel zu lösen und die anderen Zusätze in die Lösung zu geben. Die Lösung kann so als Flüssigtoner verwendet werden.
  • Man kann die Flüssigkeit aber auch in an sich bekannter Weise sprühtrocknen, die Lösungsmittel abdampfen oder die Flüssigkeit gefriertrocknen und den festen Rückstand zu Teilchen der gewünschten Teilchengröße vermahlen.
  • Es ist weiterhin möglich, die als Ladungstabilisatoren verwendeten Verbindungen der Formel I nicht zu lösen, sondern fein in der Lösung des polymeren Bindemittels zu dispergieren. Die so erhaltene Tonerzubereitung kann dann, beispielsweise gemäß der US-A-4 265 990, in einem xerographischen Bildaufzeichnungssystem verwendet werden.
  • Die obengenannten Verbindungen der Formel I sind vorteilhafte Ladungsstabilisatoren. Sie genügen in der Regel dem eingangs geforderten Anwendungsprofil und zeichnen sich besonders dadurch aus, daß sie bei Zusatz zu einer Tonerpräparation dieser ein günstiges elektrostatisches Aufladungsprofil verleihen, d.h. die Toner lassen sich schnell und hoch aufladen. Die erfindungsgemäß anzuwendenden Ladungsstabilisatoren bewirken weiterhin, daß die Ladung auf einem hohen Niveau konstant gehalten wird.
  • Die folgenden Beispiele sollen die Erfindung näher erläutern.
  • A) Herstellung der Aminodiessigsäurederivate Beispiel H1 2,4-Di-tert-butylphenol-6-(aminomethylen-N,N-diessigsäure)-Dinatriumsalz
  • In einem Kolben wurden 133 g Iminodiessigsäure, 200 g Wasser, 500 g Methanol, 206 g 2,5-Di-tert-butylphenol und 88 g Natriumhydroxid vorgelegt. Zu dieser Lösung gab man innerhalb von 2 h 100 g 30 gew.-%ige wäßrige Formaldehydlösung. Man rührte 4 h bei Raumtemperatur und erhitzte 5 h unter Rückfluß. Anschließend wurde auf Raumtemperatur abgekühlt, mit weiteren 50 g 30 gew.-%iger wäßriger Formaldehydlösung versetzt, 4 h unter Rückfluß erhitzt und anschließend auf Raumtemperatur abgekühlt. Man erhielt so 235 g (60 %) eines farblosen Pulvers.
  • Beispiel H2 2,4-Di-tert-butylphenol-6-(aminomethylen-N,N-diessigsäure)-Zinksalz
  • Zu der Lösung von 31,6 g des nach Beispiel H1 erhaltenen Pulvers in 250 ml Wasser gab man bei 70°C 11 g Zinkchlorid, erhitzte 15 min unter Rückfluß und filtrierte den nach Abkühlen erhaltenen Rückstand ab. Dieser wurde mit Wasser chloridfrei gewaschen und getrocknet. Man erhielt so 30 g (90 %) des Zinksalzes von H1. Das feingepulverte Produkt kann direkt verwendet werden.
  • Beispiel H3 Anthranilsäurediessigsäure-Zinksalz
  • Zu einer Lösung von 50,6 g Anthranilsäurediessigsäure und 16 g Natriumhydroxid in 300 g Wasser gab man bei 75°C 24,5 g Zinkchlorid und hielt hierbei durch Zugabe von Natronlauge einen pH-Wert von 3 ein. Man erhitzte noch 15 min auf 95°C, kühlte auf 10°C ab und trennte den ausgefallenen Feststoff ab. Man erhielt so 154 g (60 % d. Th.) eines farblosen Feststoffs. Das so isolierte Zinksalz kann direkt verwendet werden.
  • Beispiel H4 Octylamindiessigsäure
  • Zu einer Lösung von 38,8 g Octylamin in 500 g Wasser wurden 63 g 30 gew.-%ige wäßrige Formaldehydlösung, 17,8 g Cyanwasserstoff und 7,3 g Schwefelsäure zugegeben. Nach 3 h bei Raumtemperatur war die Reaktion beendet. Man gab, ohne zu isolieren, den kompletten Ansatz zu 67,2 g 50 gew.-%iger Natronlauge und verseifte bei 100°C für 7 h. Das Reaktionsgemisch wurde mit Schwefelsäure auf einen pH-Wert von 2 gestellt, das ausgefallene Produkt abgesaugt und mit Wasser sulfatfrei gewaschen. Man erhielt nach Trocknen 59,6 g (81 % d. Th.) Octylamindiessigsäure.
  • Beispiel H5 Octylamindiessigsäure-Zinksalz
  • Zu 12,3 g des nach Beispiel H5 erhaltenen Feststoffs und 8 g 50 gew.-%iger Natronlauge in 60 ml Wasser gab man bei 75°C 6,9 g Zinkchlorid. Nach der Zugabe wurde 10 min auf 100°C erhitzt, das nach Abkühlen erhaltene Produkt abgesaugt und mit Wasser chloridfrei gewaschen. Man erhielt so 15 g (97 % d. Th.) eines farblosen Feststoffs, der direkt verwendet werden kann.
  • Beispiel H6 Nonylglycindiessigsäure
  • In eine Suspension von 95 g Iminodiacetonitril in 500 g Wasser wurden nacheinander 14 g 96 gew.-%ige Schwefelsäure, 30,2 g 98,4 gew.-%iger Cyanwasserstoff und 172 g Decanal getropft und 17 h bei 60°C und 2 h bei 80°C gerührt, bis durch Titration keine Änderung des Blausäuregehaltes mehr feststellbar war. Nach Abkühlen auf 10°C wurde die Wasserphase abgetrennt und das verbleibende Öl zweimal mit 500 ml Wasser ausgeschüttelt. Aus der organischen Phase wurden 205 g (79 % d. Th.) Nonylglycinnitril-N,N-diacetonitril erhalten.
  • Von diesem Öl wurden dann 205 g in 600 g 18 gew.-%iger Natronlauge zusammen mit 600 ml Butanol bei 40°C eingetragen und 30 h bei 95°C nachgerührt. Anschließend wurden die flüchtigen Anteile abdestilliert und der Rückstand in Wasser aufgenommen, mit Salzsäure auf einen pH-Wert von 1 gestellt und der sich bildende Niederschlag durch Filtration isoliert. Man erhielt dadurch 209 g (68 % d.Th.) Nonylglycindiessigsäure.
  • B) Anwendung
  • Die Anwendungsbeispiele wurden mit farbmittelfreien Tonermodellen, bestehend aus Harz und den erfindungsgemäßen Ladungsstabilisatoren, durchgeführt.
  • I. Herstellung der Toner Beispiel A1
  • In eine Lösung von 10 g eines nicht vernetzten Styrol/Butylacrylatharzes in 100 ml p-Xylol wurden bei Raumtemperatur 0,2 g der Verbindung aus Beispiel H4 eingetragen und anschließend gefriergetrocknet und gemahlen. Es wurden durch Sichtung Tonerteilchen einer mittleren Partikelgröße von 50 µm erzeugt.
  • Beispiel A2
  • In einem Mixer wurden 10 g eines nicht vernetzten Styrol/Butylacrylatharzes und 0,2 g der Verbindung aus Beispiel H4 intensiv gemischt, bei 120°C geknetet, extrudiert und gemahlen. Es wurden durch Sichtung Tonerteilchen einer mittleren Partikelgröße von 50 µm erzeugt.
  • Beispiel A3
  • In eine Lösung von 10 g eines linearen Polyesterharzes in 100 ml p-Xylol wurden bei Raumtemperatur 0,2 g der Verbindung aus Beispiel H2 eingetragen und anschließend gefriergetrocknet und gemahlen. Es wurden durch Sichtung Tonerteilchen einer mittleren Partikelgröße von 50 µm erzeugt.
  • Beispiel A4
  • In einem Mixer wurden 10 g eines linearen, nicht vernetzten Polyesterharzes und 0,2 g der Verbindung aus Beispiel H2 intensiv gemischt, bei 120°C geknetet, extrudiert und gemahlen. Es wurden durch Sichtung Tonerteilchen einer mittleren Partikelgröße von 50 µm erzeugt.
  • Beispiel A5
  • In eine Lösung von 10 g eines linearen Polyesterharzes in 100 ml p-Xylol wurden bei Raumtemperatur 0,2 g der Verbindung aus Beispiel H3 eingetragen und anschließend gefriergetrocknet und gemahlen. Es wurden durch Sichtung Tonerteilchen einer mittleren Partikelgröße von 50 µm erzeugt.
  • Beispiel A6
  • In eine Lösung von 10 g eines linearen Polyesterharzes in 100 ml p-Xylol wurden bei Raumtemperatur 0,2 g der Verbindung aus Beispiel H4 eingetragen und anschließend gefriergetrocknet und gemahlen. Es wurden durch Sichtung Tonerteilchen einer mittleren Partikelgröße von 50 µm erzeugt.
  • Beispiel A7
  • In eine Lösung von 10 g eines linearen Polyesterharzes in 100 ml p-Xylol wurden bei Raumtemperatur 0,2 g der Verbindung aus Beispiel H5 eingetragen und anschließend gefriergetrocknet und gemahlen. Es wurden durch Sichtung Tonerteilchen einer mittleren Partikelgröße von 50 µm erzeugt.
  • Beispiel A8
  • In eine Lösung von 10 g eines linearen Polyesterharzes in 100 ml p-Xylol wurden bei Raumtemperatur 0,2 g der Verbindung aus Beispiel H6 eingetragen und anschließend gefriergetrocknet und gemahlen. Es wurden durch Sichtung Tonerteilchen einer mittleren Partikelgröße von 50 µm erzeugt.
  • II. Herstellung der Developer und Prüfung
  • Zur Herstellung eines Developers wurden 99 Gew.-% eines Stahlcarriers, der eine mittlere Teilchengröße von 100 µm aufwies, mit 1 Gew.-% des Toners genau eingewogen und für einen unten näher bestimmten Zeitraum auf einem Rollenbock aktiviert. Danach wurde die elektrostatische Aufladung des Developers bestimmt. Etwa 5 g des aktivierten Developers wurden in einem handelsüblichen q/m-Meter (Firma Epping GmbH, Neufahrn) in eine hard-blow-off-Zelle, die mit einem Elektrometer elektrisch verbunden war, eingefüllt.
  • Die Maschenweiten der in der Meßzelle eingesetzten Siebe betrug für die Beispiele 63 µm.
  • Damit war gewährleistet, daß der Toner möglichst vollständig ausgeblasen wurde, der Carrier aber in der Meßzelle verblieb. Durch einen kräftigen Luftstrom (ca. 4 000 cm3/min) und gleichzeitiges Absaugen wurde der Toner nahezu vollständig von den Carrierteilchen entfernt, wobei letztere in der Meßzelle verblieben. Die Aufladung des Carriers wurde am Elektrometer registriert. Sie entsprach dem Betrag der Aufladung der Tonerteilchen, nur mit umgekehrten Vorzeichen. Zur Berechnung des q/m-Wertes wurde deshalb der Betrag von q mit den umgekehrten Vorzeichen verwendet. Durch Zurückwiegen der Meßzelle wurde die Masse an ausgeblasenem Toner bestimmt und daraus die elektrostatische Aufladung q/m berechnet.
  • Die an den Tonern bestimmte Aufladung ist in der folgenden Tabelle zusammengefaßt. Tabelle
    Beispiel Nr. Verbindung aus Beispiel Zubereitung des Toners* Aufladung nach einer Aktivierung von
    10 min 30 min 60 min 120min
    [µC/g]
    A1 H4 G -13,1 -19,2 -21,8 -22,4
    A2 H4 K -14,5 -15,3 -15,1 -16,2
    A3 H2 G -12,7 -13,6 -13,8 -14,1
    A4 H2 K -11,5 -12,0 -11,8 -11,7
    A5 H3 G -13,1 -12,4 -11,3 -10,2
    A6 H4 G - 8,8
    A7 H5 G - 9,5 -13,7 -16,2 -18,7
    A8 H6 G - 3,5 - 3,9 - 3,4 - 3,4
    * Die Zubereitung des Toners erfolgte entweder durch Gefriertrocknung gemäß Beispiel A1 (in der Tabelle mit "G" gekennzeichnet) oder durch Kneten bei einer Temperatur oberhalb des Erweichungspunktes des Harzes gemäß Beispiel A2 (in der Tabelle mit "K" gekennzeichnet).

Claims (6)

  1. Elektrostatische Toner, enthaltend ein polymeres Bindemittel und als Ladungsstabilisator eine Verbindung der Formel I
    Figure imgb0005
    in der
    M   das Äquivalent eines Kations und
    R   C1-C21-Alkyl, das gegebenenfalls durch Carboxyl oder Phenyl, das durch C1-C10-Alkyl, Hydroxy oder einen Rest der Formel L-N(CH2-COOM)2, worin L für C1-C4-Alkylen steht und M die obengenannte Bedeutung besitzt, substituiert sein kann, substituiert ist und durch 1 bis 4 Sauerstoffatome in Etherfunktion, 1 bis 4 Imino- oder C1-C4-Alkyliminogruppen oder den Rest der Formel N-CH2-COO M, worin M die obengenannte Bedeutung besitzt, unterbrochen sein kann, oder Phenyl, das gegebenenfalls durch Carboxyl substituiert ist, bedeuten,
    mit der Maßgabe, daß, wenn R Alkyl bedeutet, das ein oder mehrere Heteroatome aufweist, sich im Rest R mindestens 5 miteinander verbundene Kohlenstoffatome befinden.
  2. Elektrostatische Toner nach Anspruch 1, enthaltend eine Verbindung der Formel I, in der M ein Proton darstellt oder sich von Ammonium- oder Metallionen ableitet.
  3. Elektrostatische Toner nach Anspruch 1, enthaltend eine Verbindung der Formel I, in der R C1-C18-Alkyl, Benzyl, das gegebenenfalls durch C1-C4-Alkyl oder Hydroxy substituiert ist, oder gegebenenfalls durch Carboxyl substituiertes Phenyl bedeutet.
  4. Elektrostatische Toner nach Anspruch 1, enthaltend eine Verbindung der Formel I, in der R C4-C16-Alkyl, Benzyl, das durch C1-C4-Alkyl oder Hydroxy substituiert ist, oder durch Carboxyl substituiertes Phenyl bedeutet.
  5. Elektrostatische Toner nach Anspruch 1, enthaltend 0,01 bis 10 Gew.-%, bezogen auf das Gewicht des Toners, einer Verbindung der Formel I.
  6. Verwendung der Verbindungen der Formel I gemäß Anspruch 1 als Ladungsstabilisatoren in elektrostatischen Tonern.
EP94926166A 1993-08-13 1994-08-09 Elektrostatische toner, enthaltend aminodiessigsäurederivate Expired - Lifetime EP0680627B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4327179A DE4327179A1 (de) 1993-08-13 1993-08-13 Elektrostatische Toner, enthaltend Aminodiessigsäurederivate
DE4327179 1993-08-13
PCT/EP1994/002635 WO1995005624A1 (de) 1993-08-13 1994-08-09 Elektrostatische toner, enthaltend aminodiessigsäurederivate

Publications (2)

Publication Number Publication Date
EP0680627A1 EP0680627A1 (de) 1995-11-08
EP0680627B1 true EP0680627B1 (de) 1997-10-29

Family

ID=6495085

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94926166A Expired - Lifetime EP0680627B1 (de) 1993-08-13 1994-08-09 Elektrostatische toner, enthaltend aminodiessigsäurederivate

Country Status (5)

Country Link
US (1) US5663028A (de)
EP (1) EP0680627B1 (de)
JP (1) JPH09501777A (de)
DE (2) DE4327179A1 (de)
WO (1) WO1995005624A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0757294A1 (de) * 1995-07-28 1997-02-05 Eastman Kodak Company Tonerzusammensetzungen die vernetztes polymeres Bindemittel und N-Alkylsarcosinseifen enthalten
JP4736834B2 (ja) * 2006-02-10 2011-07-27 コニカミノルタビジネステクノロジーズ株式会社 静電荷像現像用トナー

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1668927C3 (de) * 1968-02-02 1978-03-02 Hoechst Ag, 6000 Frankfurt Verfahren zur Herstellung von Alkalisalzen von Aminopolycarbonsäuren
US3733355A (en) * 1970-07-28 1973-05-15 Hooker Chemical Corp Production of nitrilotriacetic acid and the analogs therefor
JPS511434B2 (de) * 1972-05-15 1976-01-17
US3794496A (en) * 1972-05-26 1974-02-26 Itek Corp Photographic processes and imaging media therefor
US4082748A (en) * 1976-08-27 1978-04-04 The Dow Chemical Company Process for production of oxazine diones
US4265990A (en) * 1977-05-04 1981-05-05 Xerox Corporation Imaging system with a diamine charge transport material in a polycarbonate resin
JPS58211159A (ja) * 1982-06-02 1983-12-08 Konishiroku Photo Ind Co Ltd 磁性トナ−
JPS6021056A (ja) * 1983-07-14 1985-02-02 Fuji Photo Film Co Ltd 静電荷像用液体現像剤
GB2148287B (en) * 1983-10-05 1987-04-15 Nippon Catalytic Chem Ind Preparation of aminocarboxylic acid salts from amino alcohols
JPH0623864B2 (ja) * 1984-08-20 1994-03-30 富士写真フイルム株式会社 荷電調節剤の製造方法
US4673631A (en) * 1984-12-15 1987-06-16 Canon Kabushiki Kaisha Toner, charge-imparting material and composition containing metal complex
JPH0616181B2 (ja) * 1985-04-30 1994-03-02 キヤノン株式会社 トナ−
US5250402A (en) * 1991-06-26 1993-10-05 Fuji Photo Film Co., Ltd. Photographic bleaching composition and a processing method therewith

Also Published As

Publication number Publication date
EP0680627A1 (de) 1995-11-08
DE4327179A1 (de) 1995-02-16
JPH09501777A (ja) 1997-02-18
WO1995005624A1 (de) 1995-02-23
DE59404476D1 (de) 1997-12-04
US5663028A (en) 1997-09-02

Similar Documents

Publication Publication Date Title
DE2815857C2 (de) Toner für elektrostatografische Entwickler
DE3144017C2 (de) Elektrostatographischer Toner
EP0233544B1 (de) Elektrophotographische Toner
EP0551336B1 (de) Aryl- und aralkylsulfid-, -sulfoxid- oder -sulfonverbindungen als ladungssteuermittel
EP0548826B1 (de) Diallylammonium-Verbindungen, Verfahren zu ihrer Herstellung sowie ihre Verwendung
DE3148069A1 (de) Toner zum entwickeln elektrostatischer bilder
DE4106122A1 (de) Neue naphthalimide, diese enthaltende toner und die verwendung der neuen naphthalimide als additive fuer toner
DE3912396A1 (de) Verwendung farbloser hochgradig fluorsubstituierter phosphoniumverbindungen als ladungssteuermittel fuer elektrophotographische aufzeichnungsverfahren
EP0656131B1 (de) Elektrostatische toner, enthaltend einen metallkomplexfarbstoff als ladungsstabilisator
DE2450203C3 (de) Toner für elektrostatographische Trockenentwickler
EP0355006B1 (de) Elektrophotographischer Toner
EP0680627B1 (de) Elektrostatische toner, enthaltend aminodiessigsäurederivate
EP0590446B1 (de) Benzimidazole und ihre Anwendung als Ladungsstabilisatoren
EP0576472B1 (de) Elektrostatischer toner, enthaltend eine ketoverbindung als ladungsstabilisator
DE3738948A1 (de) Farblose salze von heteropolysaeuren und kationischen aromatischen imiden als ladungskontrollsubstanzen in tonern
EP0681225B1 (de) Elektrostatische Toner, enthaltend Phenacylverbindungen
EP0654474B1 (de) Verdoppelte Benzimidazole und ihre Anwendung als Ladungsstabilisatoren
DE4237661A1 (de) Elektrostatische Toner, enthaltend amphiphile Flüssigkristalle
EP0628884B1 (de) Elektrostatischer Toner, enthaltend Polyamine als Ladungsstabilisatoren
DE1772248A1 (de) Toner fuer das Sichtbarmachen elektrostatischer Bilder
JPH02211455A (ja) 正荷電性トナー

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19950831

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB LI NL

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19970304

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB LI NL

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59404476

Country of ref document: DE

Date of ref document: 19971204

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19971118

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20000717

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20000724

Year of fee payment: 7

Ref country code: CH

Payment date: 20000724

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20000728

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20000819

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010809

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES

Effective date: 20010811

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020301

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20010809

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020430

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20020301

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST