EP0651067B1 - Matériau composite céramo-métallique à haute ténacité et procédé pour sa fabrication - Google Patents

Matériau composite céramo-métallique à haute ténacité et procédé pour sa fabrication Download PDF

Info

Publication number
EP0651067B1
EP0651067B1 EP94116793A EP94116793A EP0651067B1 EP 0651067 B1 EP0651067 B1 EP 0651067B1 EP 94116793 A EP94116793 A EP 94116793A EP 94116793 A EP94116793 A EP 94116793A EP 0651067 B1 EP0651067 B1 EP 0651067B1
Authority
EP
European Patent Office
Prior art keywords
alumina
fact
process according
particles
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94116793A
Other languages
German (de)
English (en)
Other versions
EP0651067A2 (fr
EP0651067A3 (fr
Inventor
Denis Gonseth
Daniele Mari
Paul Bowen
Claude Paul Carry
Pascal Streit
Roberto Mulone
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gonseth Denis
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0651067A2 publication Critical patent/EP0651067A2/fr
Publication of EP0651067A3 publication Critical patent/EP0651067A3/fr
Application granted granted Critical
Publication of EP0651067B1 publication Critical patent/EP0651067B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1003Use of special medium during sintering, e.g. sintering aid
    • B22F3/1007Atmosphere
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/02Nitrogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12014All metal or with adjacent metals having metal particles
    • Y10T428/12028Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, etc.]
    • Y10T428/12049Nonmetal component
    • Y10T428/12056Entirely inorganic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12014All metal or with adjacent metals having metal particles
    • Y10T428/12028Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, etc.]
    • Y10T428/12146Nonmetal particles in a component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12014All metal or with adjacent metals having metal particles
    • Y10T428/1216Continuous interengaged phases of plural metals, or oriented fiber containing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12014All metal or with adjacent metals having metal particles
    • Y10T428/1216Continuous interengaged phases of plural metals, or oriented fiber containing
    • Y10T428/12167Nonmetal containing

Definitions

  • the present invention relates to a composite material high tenacity containing a strengthening phase based on oxide, and a method of manufacturing the same.
  • Ceramic-metallic composite materials can be used as well as materials structural (engine parts, aeronautical parts and the space industry) that as materials functional (cutting, drilling, drilling tools).
  • materials structural engine parts, aeronautical parts and the space industry
  • materials functional cutting, drilling, drilling tools.
  • Al 2 O 3 aluminum oxide or alumina
  • Al 2 O 3 aluminum oxide or alumina
  • the toughness and impact resistance of polycrystalline Al 2 O 3 are very low.
  • ceramics based on alumina are often added, for example, other ceramics such as ZrO 2 and Y 2 O 3 or carbides such as TiC. Even with such additions, however, the toughness of metals and ceramic-metal composites is never achieved.
  • the metals of the group Fe, Ni, Co, also called metals ferrous, are interesting for applications with high temperature, because their melting point is at temperatures well above those reached in the most industrial processes and yet easily obtainable during manufacture.
  • the alloys ferrous metals have excellent resistance to oxidation.
  • Ferrous metals form a pseudoeutectic lower than their melting point in the presence carbides and carbonitrides such as TiC, TaC, WC, TiCN. These carbides and carbonitrides in combination with ferrous metals (mainly Ni and Co) are the basis of the vast majority of cermets currently produced.
  • cermets nowadays, the application of cermets is targeting increasingly higher temperatures, which leads to problems of resistance to oxidation, resistance to creep and decohesion of interfaces.
  • the introduction of a strengthening phase based on aluminum oxide could give cermets better temperature resistance thanks to the chemical resistance of Al 2 O 3 and its refractory properties.
  • the document Us 3,098,723 discloses for example a composite material, more specifically intended for the manufacture of turbine blades, which comprises long alumina fibers in a steel matrix, these reinforcing filaments being able to be coated with titanium nitride before being introduced into said matrix.
  • the object of this invention therefore is to provide a composite material with high toughness and refractory properties which are specific to ceramic, by forming a layer around the ceramic oxide phase interfacial guaranteeing good wettability and good toughness of the interface.
  • the object of the invention aims at achieving the aim mentioned above, consists of a process for manufacturing a sintered ceramic-metallic material comprising a phase ceramic with alumina particles or solution solid based on alumina, a refractory phase comprising titanium nitride and / or carbonitride, and a matrix metallic based on Ni, Co and / or Fe, the interface between alumina particles or solid solution alumina and the metallic matrix being rich in nitrogen and made of titanium or compounds thereof, which is characterized by the fact that it includes the sintering of the elements components in a non-oxidizing nitrogen atmosphere, at a temperature from 1300 to 1600 ° C and under a pressure of 1 to 2000 MPa, and by the fact that we form, in situ during the sintering under nitrogen, around particles of alumina or solid alumina solution, said titanium-rich interface and nitrogen or their compounds at a temperature between 950 and 1600 ° C and in the presence of carbon.
  • the interface mentioned above is usually formed by a continuous TiN-rich layer around the particles alumina or solid alumina solution promoting a good wettability of the metal matrix, and which can contain aluminum, in the form of compounds with the titanium, nitrogen and / or a metal of the metallic phase, to proximity to this metallic matrix.
  • Alumina can be in the form of powder, whose grains have a diameter of 0.1 to 50 ⁇ m, preferably 0.5 to 10 ⁇ m, or platelets monocrystalline whose form factor varies between 5 and 20 and the diameter between 5 and 50 ⁇ m, or even whiskers or filaments.
  • the volume content of the ceramic phase can be between 10 and 80%, preferably between 20 and 50%, that of the phase refractory between 10 and 70% and that of the matrix metallic between 3 and 50%.
  • the content of the ceramic phase is between 5 and 30% vol., that of the phase refractory between 35 and 65% vol. and that of the matrix metallic between 5 and 25% vol.
  • the ceramic metal material may also contain as another main ingredient of titanium carbide in plus carbonitride or titanium nitride, or a mixture of the three.
  • the metal matrix may contain additional dissolved ingredients, such as metals that Sc, Y, Ti, Zr, Hf, V, Nb, Cr, Re, Ru, Al, C and N, between 0.1 and 5% vol. and the refractory phase of carbides of Mo, W, V, Hf, Nb, Cr, Ta, or nitrides such as AlN, TaN, ZrN and BN, between 0.5 and 15% vol.
  • additional dissolved ingredients such as metals that Sc, Y, Ti, Zr, Hf, V, Nb, Cr, Re, Ru, Al, C and N, between 0.1 and 5% vol. and the refractory phase of carbides of Mo, W, V, Hf, Nb, Cr, Ta, or nitrides such as AlN, TaN, ZrN and BN, between 0.5 and 15% vol.
  • the ceramic phase can also contain other oxides, such as ZrO 2 or Y 2 0 3 or a mixture of these oxides.
  • the sintering of constituent elements is carried out preferably from 1450 to 1500 ° C and under a pressure of 1 to 200 MPa. He can be combined with hot pressing or pressing hot isostatic.
  • one of the main characteristics of the present invention consists in forming on the surface of the ceramic phase an intermediate layer having affinities with the matrix, this layer being rich in nitrogen and titanium. It is well known that metals wet ceramics by forming chemical bonds. When the wetting is poor, the reaction between the metal and the atoms on the surface of the ceramic is not thermodynamically favorable. The presence of a reactive prelayer can thus provide the driving force necessary for the wetting reaction. Maintaining the reactive preliminary layer during sintering thus allows the formation of the interface is done by the addition of nitrogen and a metallic element, preferably titanium, in solution in the matrix. There is thus the deposition of a nitride.
  • the energy supplied by this reaction during sintering increases the wetting and the epitaxial precipitation of the nitride guarantees the homogeneity and the tenacity of the interface.
  • the reactive preliminary layer can be obtained by PVD or CVD deposition, in which case it leads to an interface thickness between 0.5 and 5 ⁇ m, or by nitriding of Al 2 O 3 before sintering, in which case it leads to a interface thickness between 10 and 1000 nm. Nitriding can be helped by the addition of carbon which allows the reduction of alumina.
  • Another possibility is the deposition of a TiN layer or of TiCN on the ceramic before sintering. In this case the wetting is ensured by the maintenance reactions 3a, b.
  • the manufacturing of the composite material generally includes first mixing the powders of the binding phase. More particularly, a slip is first prepared by mixing the binding phase in the form of powders with a liquid organic product such as polyethylene glycol. The slurry is mixed for 12 h in a mill beads, then degassed to adjust the viscosity. We add to this mixes the ceramic with oxides. Light grinding of the total mass is necessary to obtain good homogeneity. We then move on to formatting which can be performed by dry pressing, filter pressing, pouring in slip, extrusion or injection. The exhibits form are then sintered. Pre-sintering at one temperature between 300 and 700 ° C may be necessary to release the organic binder completely. Sintering is carried out at a temperature between 1300 and 1600 ° C, for 1-4 hours, under nitrogen at a pressure between 1 and 2000 MPa.
  • the thickness of the interface between the alumina particles and the metal matrix is 100 to 10,000 Angstroms when obtained by prior surface nitriding of said particles. This thickness can be by against 0.1 to 1 ⁇ m if the interface is obtained after deposition chemical of a titanium compound on the particles alumina, and from 0.05 to 5 ⁇ m in the case where this interface is obtained during sintering without a prior reactive layer.
  • the powders of the composite matrix were previously mixed with 2% polyethylene glycol and ground for 12 h in a ball mill.
  • the Al 2 O 3 plates are added to the slip and the whole is mixed in a ball mill for 2 hours.
  • This mixture is then dried in air at 50 ° C., deagglomerated in a ball mixer and dry press with a pressure of 140 MPa. Sintering is then carried out at 1500 ° C. for 1 hour under a nitrogen atmosphere.
  • the composite powders are mixed with 2% polyethylene glycol and ground for 12 hours in a mill ball. This mixture is then dried in air at 50 ° C, deagglomerated in a ball mixer and dry pressed with a pressure of 140 MPa. We then proceed to sintering at 1500 ° C for 1 h under nitrogen atmosphere.
  • the same shaped mixing process is used here, sintering and the same matrix composition as in Example 1.
  • the alumina strengthening phase is formed wafers coated with a TiN layer according to the method described below.
  • Platelets of Al 2 O 3 suspended in hexane are introduced into a laboratory autoclave.
  • the Al 2 O 3 platelets are dispersed in hexane for 15 minutes with an ultrasonic probe.
  • a 10% solution of TiCl 4 in hexane is introduced, and simultaneously a stream of ammonia is passed through for 10 minutes.
  • the TiCl 4 .NH 3 complex is thus precipitated on the platelets.
  • the powders obtained are then dried under vacuum. After this treatment, the powders are oxidized in an oven in air at 900 ° C. for 1 h.
  • the powders obtained are mixed at equal weight with powdered graphite powder and heated to 1150 ° C. under a flow of nitrogen. We stay at this temperature for 4 h.
  • a TiN layer of less than about 1 ⁇ m was thus obtained on the surface of the Al 2 0 3 powders according to the reaction: 2Ti0 2 + 4C + N 2 ⁇ 2TiN + 4CO ⁇
  • Sample 8 TiCN 65%, TiN 20%, Mo 2 C 5%, Ni 10% Absence of reinforcement phase (Al 2 0 3 ); obtained by sintering under nitrogen.
  • microstructure of composite materials according to the invention shows the particles of aluminum oxide uniformly dispersed in one phase made up of metal islands in a ceramic skeleton of titanium carbonitride. Metal also surrounds the oxide particles.
  • the interface between metal and the oxide which has a thickness between 0.03 and 0.1 ⁇ m is mainly consisting of titanium nitride.
  • the present invention significantly improves toughness cermets, while keeping a high hardness, by the introduction of alumina particles, provided that whether the alumina is treated before or during the sintering of so as to favor the formation of an interface rich in nitrogen and titanium. It can also be noted that sintering under pressure (Sample 4) provides properties excellent mechanical properties with a significant reduction the duration of said sintering.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Powder Metallurgy (AREA)

Description

La présente invention se rapporte à un matériau composite à haute ténacité contenant une phase de renforcement à base d'oxyde, et à un procédé de fabrication de celui-ci.
Les matériaux composites céramo-métalliques, parfois nommés cermets, peuvent être utilisés aussi bien comme matériaux structuraux (pièces de moteur, pièces pour l'aéronautique et l'industrie spatiale) que comme matériaux fonctionnels (outils de coupe, de perçage, de forage). Dans ces matériaux, on vise à associer les propriétés mécaniques propres de la céramique, comme la dureté, la résistance à l'usure et un module élastique élevé, à celles d'un métal, comme la ténacité et la résistance aux chocs mécaniques et thermiques.
Parmi les céramiques, l'oxyde d'aluminium ou alumine (Al2O3) est un composé extrêmement répandu grâce à ses propriétés : stabilité chimique, dureté, faible densité, et son prix compétitif par rapport aux autres céramiques dans toutes ses formes (fibres, poudres, whiskers, etc.). Toutefois, la ténacité et la résistance aux chocs de l'Al2O3 polycristallin sont très faibles. Pour cette raison, on ajoute souvent, dans les céramiques à base d'alumine, par exemple d'autres céramiques comme ZrO2 et Y2O3 ou des carbures comme le TiC. Toutefois, même avec de tels additions, on n'atteint jamais la ténacité des métaux et des composites céramo-métalliques.
Les métaux du groupe Fe, Ni, Co, aussi dits métaux ferreux, sont intéressants pour des applications à haute température, car leur point de fusion se situe à des températures bien au-dessus de celles atteintes dans la plupart des procédés industriels et toutefois facilement obtenables lors de la fabrication. De plus, les alliages des métaux ferreux ont une excellente résistance à l'oxydation. Les métaux ferreux forment un pseudoeutectique plus bas que leur point de fusion en présence de carbures et carbonitrures comme le TiC, TaC, WC, TiCN. Ces carbures et carbonitrures en association avec les métaux ferreux (principalement Ni et Co) sont à la base de la grande majorité des cermets actuellement produits.
De nos jours, l'application des cermets vise des températures de plus en plus hautes, ce qui entraíne des problèmes de résistance à l'oxydation, résistance au fluage et décohésion d'interfaces. L'introduction d'une phase de renforcement à base d'oxyde d'aluminium pourrait donner aux cermets une meilleure tenue en température grâce à la résistance chimique d'Al2O3 et à ses propriétés réfractaires. Le document Us 3.098.723 divulgue par exemple un matériau composite, plus spécifiquement destiné à la fabrication d'aubes de turbines, qui comprend des fibres longues d'alumine dans une matrice en acier, ces filaments de renforcement pouvant être revêtus de nitrure de titane avant d'être introduits dans ladite matrice.
On connaít également, notamment du document WO90/07017, un matériau composite dur renforcé par des particules d'alumine, de borures, carbures, nitrures ou carbonitrures monocristallines, qui peuvent être pourvues d'un revêtement de protection inerte par rapport à la matrice.
Toutefois, la formation d'oxydes intermédiaires fragilise les interfaces entre l'alumine et le métal. D'autre part, le mauvais mouillage de métaux ferreux envers l'alumine rend impossible la réalisation de tels cermets par frittage.
Différentes tentatives ont été effectuées pour fabriquer des cermets à base d'oxyde d'aluminium et remédier aux problèmes décrits ci-dessus. Par exemple, dans des cermets à base de TiCN, TiN et Ni, on a essayé de remplacer une partie de la phase carbonitrure par des oxydes. Toutefois, la densification reste problématique dans ces matériaux, et seul le pressage à chaud a été envisagé comme moyen de densification à chaud, le frittage restant exclu. Pour éviter la formation des oxydes d'interface et améliorer la mouillabilité, il a été proposé de recouvrir l'oxyde d'aluminium avec une couche de TiC. Selon cette proposition, le frittage pourrait être un moyen de densification possible. Toutefois, l'expérience des revêtements des outils de coupe montre que l'adhérence entre TiC et Al2O3 est mauvaise et que le TiC est fragile Il est bien connu que des métaux fortement électropositifs comme le titane augmentent la mouillabilité de l'alumine. L'adjonction de ce métal est donc une pratique très courante lors de la préparation d'alliages de brasage pour céramique. Or, même avec l'adjonction de titane, l'angle de mouillage reste trop faible pour que l'infiltration du métal dans la céramique permette un bon frittage. En conclusion, malgré les efforts de la recherche, l'introduction d'alumine dans les cermets ne semble pas donner, jusqu'à présent, une amélioration sensible de leurs propriétés mécaniques. La raison de cet insuccès est la mauvaise mouillabilité de l'alumine (des oxydes à caractère ionique en général) qui empêche une densification à chaud optimale et une bonne adhésion avec la matrice.
Le but de cette invention consiste donc à fournir un matériau composite présentant une ténacité élevée et les propriétés réfractaires qui sont propres à la céramique, en formant autour de la phase céramique d'oxyde une couche interfaciale garantissant une bonne mouillabilité et une bonne ténacité de l'interface.
L'objet de l'invention, visant à atteindre le but précité, consiste en un procédé de fabrication d'un matériau céramo-métallique fritté comprenant une phase céramique avec des particules d'alumine ou d'une solution solide à base d'alumine, une phase réfractaire comportant du nitrure et/ou du carbonitrure de titane, et une matrice métallique à base de Ni, Co et/ou Fe, l'interface entre les particules d'alumine ou de la solution solide d'alumine et la matrice métallique étant riche en azote et en titane ou en composés de ceux-ci, qui est caractérisé par le fait qu'il comporte le frittage des éléments constitutifs en atmosphère d'azote non oxydante, à une température de 1300 à 1600°C et sous une pression de 1 à 2000 MPa, et par le fait qu'on forme, in situ pendant le frittage sous azote, autour des particules d'alumine ou de solution solide d'alumine, ledit interface riche en titane et en azote ou en composés de ceux-ci, à une température comprise entre 950 à 1600°C et en présence de carbone.
L'interface mentionné ci-dessus est généralement formé par une couche continue riche en TiN autour des particules d'alumine ou de solution solide d'alumine favorisant une bonne mouillabilité de la matrice métallique, et qui peut contenir de l'aluminium, sous la forme de composés avec le titane, l'azote et/ou un métal de la phase métallique, à proximité de cette matrice métallique.
L'alumine peut se présenter sous la forme de poudre, dont les grains ont un diamètre de 0,1 à 50µm, de préférence de 0,5 à 10µm, ou de plaquettes monocristallines dont le facteur de forme varie entre 5 et 20 et le diamètre entre 5 et 50µm, ou encore de whiskers ou de filaments.
Dans le matériau céramo-métallique selon l'invention avec l'alumine sous forme de poudre, la teneur en volume de la phase céramique peut être comprise entre 10 et 80%, de préférence entre 20 et 50%, celle de la phase réfractaire entre 10 et 70 % et celle de la matrice métallique entre 3 et 50%.
Lorsque l'alumine est sous forme de plaquettes ou de whiskers ou filaments, la teneur de la phase céramique est comprise entre 5 et 30% vol., celle de la phase réfractaire entre 35 et 65% vol. et celle de la matrice métallique entre 5 et 25 % vol.
Le matériau céramo-métallique peut également contenir comme autre ingrédient principal du carbure de titane en plus du carbonitrure ou du nitrure de titane, ou un mélange des trois.
De plus, la matrice métallique peut contenir des ingrédients additionnels dissous, comme des métaux tels que Sc, Y, Ti, Zr, Hf, V, Nb, Cr, Re, Ru, Al, C et N, entre 0,1 et 5% vol. et la phase réfractaire des carbures de Mo, W, V, Hf, Nb, Cr, Ta, ou des nitrures tels que AlN, TaN, ZrN et BN, entre 0,5 et 15% vol.
Enfin, la phase céramique peut également contenir d'autres oxydes, tels que ZrO2 ou Y203 ou un mélange de ces oxydes.
Dans le procédé selon l'invention, le frittage des éléments constitutifs est effectué de préférence de 1450 à 1500°C et sous une pression de 1 à 200 MPa. Il peut être combiné avec un pressage à chaud ou avec un pressage isostatique à chaud.
Comme mentionné précédemment, une des caractéristiques principales de la présente invention consiste à former sur la surface de la phase céramique une couche intermédiaire présentant des affinités avec la matrice, cette couche étant riche en azote et en titane. Il est bien connu que les métaux mouillent les céramiques par formation de liaisons chimiques. Lorsque le mouillage est mauvais, la reaction entre le métal et les atomes à la surface de la céramique n'est pas favorable thermodynamiquement. La présence d'une couche préalable réactive peut ainsi fournir la force motrice nécessaire à la réaction de mouillage. Le maintien de la couche préalable reactive pendant le frittage permettent ainsi la formation de l'interface se fait par l'apport d'azote et d'un élément métallique, de préférence le titane, en solution dans la matrice. On a ainsi le dépôt d'un nitrure. L'énergie fournie par cette réaction pendant le frittage augmente le mouillage et la précipitation épitaxiale du nitrure garantit l'homogénéité et la ténacité de l'interface. La couche préalable réactive peut être obtenue par dépôt PVD ou CVD, auquel cas elle conduit à une épaisseur de l'interface entre 0,5 et 5 µm, ou par nitruration d'Al2O3 avant frittage, auquel cas elle conduit à une épaisseur de l'interface entre 10 et 1000 nm. La nitruration peut être aidée par l'apport de carbone qui permet la réduction de l'alumine. La séquence la plus favorable entre les réactions chimiques possibles est donnée par les réactions : Al2O3 + 3C + N2 → 2AlN + 3CO↑ AlN + Ti → TiN + Al suivies par la réaction de maintien de la couche de nitrure : 2Ti + N2 → 2TiN
On peut aussi former un carbonitrure par la réaction : 2Ti + (1-x).N2+2x.C → 2TiCxNl-x
Une autre possibilité est le dépôt d'une couche de TiN ou de TiCN sur la céramique avant le frittage. Dans ce cas le mouillage est assuré par les réactions de maintien 3a,b.
La fabrication du matériau composite comprend généralement d'abord le mélange des poudres de la phase liante. plus particulièrement, on prépare d'abord une barbotine en mélangeant la phase liante sous forme de poudres avec un produit organique liquide comme le polyéthylène-glycol. La barbotine est mélangée pendant 12 h dans un moulin à billes, puis dégazée pour régler la viscosité. On ajoute à ce mélange la céramique d'oxydes. Un broyage léger de la masse totale est nécessaire pour obtenir une bonne homogénéité. On passe ensuite à la mise en forme qui peut être effectuée par pressage à sec, filtre pressage, coulage en barbotine, extrusion ou injection. Les pièces mises en forme sont ensuite frittées. Un pré-frittage à une température entre 300 et 700 °C peut être nécessaire pour dégager complètement le liant organique. Le frittage est effectué à une température entre 1300 et 1600 °C, pendant 1-4 heures, sous azote à une pression entre 1 et 2000 MPa.
L'épaisseur de l'interface entre les particules d'alumine et la matrice métallique est de 100 à 10000 Angströms lorsqu'il est obtenu par nitruration superficielle préalable desdites particules. Cette épaisseur peut être par contre de 0,1 à 1µm si l'interface est obtenu après déposition chimique d'un composé du titane sur les particules d'alumine, et de 0,05 à 5µm dans le cas où cet interface est obtenu pendant le frittage sans couche réactive préalable.
Le matériau composite selon l'invention et son procédé de fabrication seront maintenant illustrés plus en détails en référence aux exemples suivants :
Exemple 1
Plaquettes d'alumine α monocristallines d'un diamètre de 5 à 10 µm, et d'une épaisseur d'environ 0,3µm, mélangées avec du TiCN équiatomique en carbone et azote, du TiN, du carbure de molybdène, du nickel et du carbone sous forme de graphite.
Echantillon 1 :
10% Al203 + 90 % (TiCN 65 % , TiN 19%, Mo2C 5%, C 1%, Ni 10%)
Les poudres de la matrice du composite ont été préalablement mélangées avec 2% polyéthylène-glycol et broyées pendant 12 h dans un moulin à billes. On ajoute à la barbotine les plaquettes d'Al2O3 et on mélange l'ensemble dans un moulin à billes pendant 2h. Ce mélange est ensuite séché sous air à 50°C, désaggloméré dans un mélangeur à billes et presse a sec avec une pression de 140 MPa. On procède ensuite au frittage à 1500°C pendant 1h sous atmosphère d'azote.
Exemple 2
Poudre d'alumine α mélangée avec du TiCN, du TiN, du carbure de molybdène et du nickel.
Echantillon 2:
30% Al2O3 + 70% (TiCN 65%, TiN 19%, Mo2C 5%, C 1%, Ni 10%)
Les poudres du composite sont mélangées avec 2% polyéthylène-glycol et broyées pendant 12h dans un moulin à billes. Ce mélange est ensuite séché sous air à 50°C, désaggloméré dans un mélangeur à billes et pressé à sec avec une pression de 140 MPa. On procède ensuite au frittage à 1500°C pendant 1 h sous atmosphère d'azote.
Exemple 3
Plaquettes d'alumine α monocristallines recouvertes de TiN, mélangées avec du TiCN, du TiN, du carbure de molybdène, du nickel et du carbone sous forme de poudre de graphite.
Echantillon 3:
10% Al2O3(TiN) + 90% (TiCN 65%, TiN 19%, Mo2C 5%, C 1%, Ni 10%)
On utilise ici le même procédé de mélange mise en forme, frittage et la même composition de la matrice que dans l'Exemple 1. La phase de renforcement d'alumine est formé de plaquettes revêtues par une couche de TiN selon la méthode décrite ci-dessous.
On introduit dans un autoclave de laboratoire des plaquettes d'Al2O3 en suspension dans l'hexane. Les plaquettes d'Al2O3 sont dispersées dans l'hexane pendant 15 minutes avec une sonde à ultrasons. On introduit ensuite une solution à 10% de TiCl4 dans l'hexane, et simultanément on fait passer un flux d'ammoniac pendant 10 minutes. Le complexe TiCl4.NH3 est ainsi précipité sur les plaquettes. Les poudres obtenues sont ensuite séchées sous vide. Après ce traitement, les poudres sont oxydées dans un four sous air à 900°C pendant 1 h. Les poudres obtenues sont mélangées à poids égal avec de la poudre de graphite pulvérulent et chauffées à 1150°C sous flux d'azote. On reste à cette température pendant 4 h. On a ainsi obtenu une couche de TiN inférieure à environ 1µm à la surface des poudres d'Al203 selon la réaction : 2Ti02 + 4C + N2 → 2TiN + 4CO↑
Exemple 4
Poudres d'alumine α mélangées avec du TiCN, du TiN, du carbure de molybdène et du nickel.
Echantillon 4:
30% Al2O3 + 70% (TiCN 65%, TiN 20%, Mo2C 5%, Ni 10%)
Le procédé de formation de la couche réactive sur les particules d'oxyde peut être accéléré et amélioré par frittage sous pression d'azote. On utilise dans cet Exemple un échantillon avec même composition et même procédé de mise en forme que de l'Exemple 2. Le frittage est effectuée sous pression d'azote à 100 atmosphères, en maintenant une température de 1450 °C pendant 20 minutes. Exemple 5
Poudre d'alumine α mélangée avec du TiCN, du TiN, du TiC, du carbure de molybdène et du nickel.
Echantillon 5 :
30% Al2O3 + 70% (TiCN 65%, TiN 5%, TiC 15%, Mo2C 5%, Ni 10%)
Le TiN de la phase refractaire est donc remplacé en partie par du TiC dans cet échantillon. On utilise dans cet Exemple le même procédé de mélange, de mise en forme et de frittage que l'Exemple 2. Exemple 6
Cermets de contrôle.
Echantillon 6:
10% Al2O3 + 90% (TiCN 65%, TiN 19%, Mo2C 5%, C 1%, Ni 10%)
Même composition que l'Echantillon 1, mais obtenu par frittage sous argon à 1 atmosphère.
Echantillon 7:
30% Al2O3 + 70% (TiCN 65%, TiN 20%, Mo2C 5%, Ni 10%)
Même composition que l'Echantillon 2, mais obtenu par frittage sous argon à 1 atmosphère.
Echantillon 8: TiCN 65%, TiN 20%, Mo2C 5%, Ni 10% Absence de phase de renforcement (Al203); obtenu par frittage sous azote.
Exemple 7
Après le frittage des échantillons, des éprouvettes ont été coupées à la lame diamantée pour la caractérisation des échantillons; des pastilles frittées sont enrobées dans une résine et polies pour l'analyse de la microstructure. La microstructure des matériaux composites selon l'invention (Echantillons 1 à 5) montre les particules d'oxyde d'aluminium uniformément dispersées dans une phase constituée par des ílots de métal dans un squelette céramique de carbonitrure de titane. Le métal entoure aussi les particules d'oxyde. L'interface entre le métal et l'oxyde qui a une épaisseur entre 0,03 et 0,1 µm est constituée principalement de nitrure de titane.
La caractérisation des propriétés mécaniques des échantillons a été effectuée par mesure de dureté Vickers (Hv) et de la ténacité KIC, et les résultats obtenus sont réunis dans le tableau ci-dessous.
Propriétés mécaniques des échantillons.
Echantillon Dureté Hv (Kg/mm2) Tenacité KIC (MPa m1/2)
1 1487 11,9
2 1422 10,9
3 1305 10,6
4 1510 12,8
5 1498 12,1
6 (contrôle) 1235 7,3
7 (contrôle) 1250 7,0
8 (contrôle) 1540 6,9
Il ressort clairement des exemples ci-dessus que la présente invention permet d'améliorer sensiblement la ténacité des cermets, tout en gardant une dureté élevée, par l'introduction des particules d'alumine, ceci à condition que l'alumine soit traitée avant ou pendant la frittage de façon à favoriser la formation d'une interface riche en azote et en titane. On peut également relever que le frittage sous pression (Echant. 4) permet d'obtenir des propriétés mécaniques excellentes avec une réduction importante de la durée dudit frittage.

Claims (12)

  1. Procédé de fabrication d'un matériau composite céramo-métallique fritté comprenant une phase céramique avec des particules d'alumine ou d'une solution solide à base d'alumine, une phase réfractaire comportant du nitrure et/ou du carbonitrure de titane, et une matrice métallique à base de Ni, Co et/ou Fe, l'interface entre les particules d'alumine ou de solution solide d'alumine et la matrice métallique étant riche en azote et en titane ou en composés de ceux-ci, caractérisé par le fait qu'il comporte le frittage des éléments constitutifs en atmosphère d'azote non oxydante, a une température de 1300 à 1600°C et sous une pression de 1 à 2000 MPa, et par le fait qu'on forme, in situ pendant le frittage sous azote, autour des particules d'alumine ou de solution solide d'alumine, ledit interface riche en titane et en azote ou en composés de ceux-ci, à une température comprise entre 950 à 1600°C et en présence de carbone.
  2. Procédé selon la revendication 1, caractérisé par le fait que ledit interface est formé par une couche continue riche en TiN autour des particules d'alumine ou de solution solide d'alumine et pouvant contenir de l'aluminium, sous forme de composés au moins avec le titane et l'azote, à proximité de la matrice métallique.
  3. Procédé selon la revendication 1 ou la revendication 2, caractérisé par le fait que les particules d'Al203 sont sous la forme de poudre dont les grains ont un diamètre de 0,1 à 50µm, et préférablement de 0,5 à 10µm.
  4. Procédé selon la revendication 1 ou la revendication 2, caractérisé par le fait que les particules d'Al203 sont sous la forme de plaquettes monocristallines dont le facteur de forme varie entre 5 et 20 et le diamètre entre 5 et 50 µm, ou de whiskers ou de filaments.
  5. Procédé selon la revendication 3, caractérisé par le fait que la teneur en volume de la phase céramique est comprise entre 10 et 80%, de préférence 20 à 50%, celle de la phase réfractaire entre 10 et 70% et celle de la matrice métallique entre 3 et 50%.
  6. Procédé selon la revendication 4, caractérisé par le fait que la teneur en volume de la phase céramique est comprise entre 5 et 30%, celle de la phase réfractaire entre 35 et 65% et celle de la matrice métallique entre 5 et 25%.
  7. Procédé selon l'une des revendications 1 à 6, caractérisé par le fait que la phase céramique comporte d'autres oxydes, tels que ZrO2 et Y2O3.
  8. Procédé selon l'une des revendications 1 à 7, caractérisé par le fait que la matrice métallique contient des éléments dissous dans celle-ci choisi parmi Sc, Y, Ti, Zr, Hf, V, Nb, Cr, Mo, W, Re, Ru, Al, C et N.
  9. Procédé selon l'une des revendications 1 à 8, caractérisé par le fait que la phase réfractaire contient, en plus de TiCN et TiN, du TiC et/ou un ou plusieurs composants choisis parmi les carbures de W, Cr, V, Mo, Ta, Hf, Nb et les nitrures ZrN, TaN, AlN et BN.
  10. Procédé selon l'une des revendications 1 à 9, caractérisé par le fait que l'interface entre les particules d'alumine ou de solution solide d'alumine et la matrice métallique a une épaisseur comprise entre 0,01 et 5 µm.
  11. Procédé selon l'une des revendications 1 à 10, caractérisé par le fait que le frittage des éléments constitutifs est effectué a une température de 1450 à 1500°C et sous une pression de 1 à 200 MPa.
  12. Procédé selon l'une des revendications 1 à 11, caractérisé par le fait qu'on effectue une mise en forme avant frittage par pressage uniaxial à environ 100 MPa, par pressage isostatique à environ 300 MPa, par filtre pressage ou par coulage en barbotine.
EP94116793A 1993-11-01 1994-10-25 Matériau composite céramo-métallique à haute ténacité et procédé pour sa fabrication Expired - Lifetime EP0651067B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CH03288/93A CH686888A5 (fr) 1993-11-01 1993-11-01 Matériau composite céramo-métallique à haute tenacité et procédé pour sa fabrication.
CH328893 1993-11-01
CH3288/93 1993-11-01

Publications (3)

Publication Number Publication Date
EP0651067A2 EP0651067A2 (fr) 1995-05-03
EP0651067A3 EP0651067A3 (fr) 1996-12-18
EP0651067B1 true EP0651067B1 (fr) 2000-03-22

Family

ID=4252746

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94116793A Expired - Lifetime EP0651067B1 (fr) 1993-11-01 1994-10-25 Matériau composite céramo-métallique à haute ténacité et procédé pour sa fabrication

Country Status (6)

Country Link
US (1) US5682595A (fr)
EP (1) EP0651067B1 (fr)
JP (1) JPH07188803A (fr)
AT (1) ATE191015T1 (fr)
CH (1) CH686888A5 (fr)
DE (1) DE69423565D1 (fr)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998051419A1 (fr) 1997-05-13 1998-11-19 Richard Edmund Toth Poudres dures a revetement resistant et articles frittes produits a partir de ces poudres
US20040052984A1 (en) * 1997-05-13 2004-03-18 Toth Richard E. Apparatus and method of treating fine powders
DE19800689C1 (de) * 1998-01-10 1999-07-15 Deloro Stellite Gmbh Formkörper aus einem verschleißfesten Werkstoff
US8603181B2 (en) 2000-01-30 2013-12-10 Dimicron, Inc Use of Ti and Nb cemented in TiC in prosthetic joints
US20100025898A1 (en) * 2000-01-30 2010-02-04 Pope Bill J USE OF Ti AND Nb CEMENTED TiC IN PROSTHETIC JOINTS
SE526851C2 (sv) * 2003-06-13 2005-11-08 Seco Tools Ab Sätt att tillverka titanbaserade karbonitridlegeringar
EP1671391A2 (fr) * 2003-09-17 2006-06-21 Tiax LLC Dispositifs electrochimiques et composants de ceux-ci
KR101228906B1 (ko) * 2004-03-29 2013-02-01 쿄세라 코포레이션 세라믹 소결체와 그 제조방법 및 세라믹 소결체를 사용한장식용 부재
US7736582B2 (en) * 2004-06-10 2010-06-15 Allomet Corporation Method for consolidating tough coated hard powders
US8449991B2 (en) 2005-04-07 2013-05-28 Dimicron, Inc. Use of SN and pore size control to improve biocompatibility in polycrystalline diamond compacts
JP5604981B2 (ja) * 2009-05-28 2014-10-15 Jfeスチール株式会社 粉末冶金用鉄基混合粉末
US8663359B2 (en) 2009-06-26 2014-03-04 Dimicron, Inc. Thick sintered polycrystalline diamond and sintered jewelry
KR102478654B1 (ko) 2017-07-11 2022-12-16 한국재료연구원 계면 물질을 포함하는 복합재료 및 이의 제조방법
RU2707216C1 (ru) * 2019-09-27 2019-11-25 Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Образования "Новосибирский Государственный Технический Университет" СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИЦИОННОГО МАТЕРИАЛА НА ОСНОВЕ Al2O3 -TiCN
EP3974405A1 (fr) * 2020-09-25 2022-03-30 The Swatch Group Research and Development Ltd Article décoratif en ceramique

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA641647A (en) * 1962-05-22 M. Trent Edward Hard sintered materials of alumina
US3098723A (en) * 1960-01-18 1963-07-23 Rand Corp Novel structural composite material
US3652304A (en) * 1969-11-21 1972-03-28 Du Pont Nitride-oxide refractories
JPS6044271B2 (ja) * 1977-04-12 1985-10-02 住友電気工業株式会社 強靭セラミツク工具材料
JPS53130208A (en) * 1977-04-20 1978-11-14 Nippon Tungsten Production of material for cutting tool
SE417818B (sv) * 1979-09-03 1981-04-13 Sandvik Ab Keramisk legering vesentligen omfattande aluminiumoxid samt nitrider och/eller karbonitrider av en eller flera metaller tillhorande grupperna iv b, v b och vi b i periodiska systemet samt en eller flera ...
JPS6041019B2 (ja) * 1980-02-07 1985-09-13 三菱マテリアル株式会社 高強度を有するアルミナ系焼結セラミツク
JPS6055468B2 (ja) * 1982-09-30 1985-12-05 京セラ株式会社 金色セラミックス装飾品の製造方法
JPS5978973A (ja) * 1982-10-27 1984-05-08 株式会社日立製作所 導電性セラミツクス
US5173107A (en) * 1988-12-16 1992-12-22 Krupp Widia Gmbh Composite hard metal body and process for its production
US5188908A (en) * 1990-02-23 1993-02-23 Mitsubishi Materials Corporation Al2 O3 Based ceramics
EP0468486B1 (fr) * 1990-07-25 1995-03-29 Kyocera Corporation Matériau céramique, renforcé par de fibres d'alumine courtes et son procédé de fabrication

Also Published As

Publication number Publication date
ATE191015T1 (de) 2000-04-15
DE69423565D1 (de) 2000-04-27
EP0651067A2 (fr) 1995-05-03
US5682595A (en) 1997-10-28
JPH07188803A (ja) 1995-07-25
EP0651067A3 (fr) 1996-12-18
CH686888A5 (fr) 1996-07-31

Similar Documents

Publication Publication Date Title
EP0651067B1 (fr) Matériau composite céramo-métallique à haute ténacité et procédé pour sa fabrication
FR2715929A1 (fr) Synthèse d'un nitrure de bore cubique polycristallin.
FR2476139A1 (fr) Alliage dur sans tungstene et procede d'elaboration de cet alliage
CN105734390B (zh) 一种高熵合金结合的立方氮化硼聚晶复合材料的制备方法
US4217113A (en) Aluminum oxide-containing metal compositions and cutting tool made therefrom
JP4065666B2 (ja) 高耐クレータ性高強度焼結体
JPH0782031A (ja) 立方晶窒化ホウ素含有焼結体およびその製造方法
EP0263427B1 (fr) Matériau composite céramo-métallique et procédé pour sa fabrication
US4889836A (en) Titanium diboride-based composite articles with improved fracture toughness
US5078031A (en) Titanium diboride-eased composite articles with improved fracture toughness
JP5079940B2 (ja) 炭化タングステン系超硬基複合材料焼結体
JP2001181776A (ja) 超硬合金焼結体及びその製造方法
FR2644159A1 (fr) Ceramique frittee a base de diborure de metal et procede pour sa production
JP4976626B2 (ja) 焼結合金材料、その製造方法、およびそれらを用いた機械構造部材
EP0255709A2 (fr) Corps céramiques ayant une haute résistance à la rupture
JPH11217258A (ja) アルミナ基セラミックス焼結体とその製造方法
JP2002501983A (ja) 鉄アルミナイド複合材及びその製造方法
EP0298151A2 (fr) Matériau composite à haute ténacité
JPH01215754A (ja) 酸化アルミニウム基焼結体及びその製造方法
JP4540791B2 (ja) 切削工具用サーメット
JP3152783B2 (ja) チタン化合物ウイスカーおよびその製造方法並びに複合材料
JP4428805B2 (ja) 酸化アルミニウム含有複合セラミックス焼結体および被覆複合セラミックス焼結体
JP3092887B2 (ja) 表面調質焼結合金及びその製造方法
JP2000143351A (ja) 高靭性窒化珪素質焼結体
JP2003236707A (ja) 耐チッピング性のすぐれた立方晶窒化ほう素基超高圧焼結材料製切削チップ

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE DE ES FR GB IT LU NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE DE ES FR GB IT LU NL SE

17P Request for examination filed

Effective date: 19970227

17Q First examination report despatched

Effective date: 19971229

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: GONSETH, DENIS

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RIN1 Information on inventor provided before grant (corrected)

Inventor name: MULONE, ROBERTO

Inventor name: STREIT, PASCAL

Inventor name: CARRY, CLAUDE PAUL

Inventor name: BOWEN, PAUL

Inventor name: MARI, DANIELE

Inventor name: GONSETH, DENIS

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RIC1 Information provided on ipc code assigned before grant

Free format text: 7C 22C 29/00 A, 7C 22C 47/00 B

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE DE ES FR GB IT LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 20000322

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20000322

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 20000322

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20000322

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 20000322

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20000322

REF Corresponds to:

Ref document number: 191015

Country of ref document: AT

Date of ref document: 20000415

Kind code of ref document: T

RIC1 Information provided on ipc code assigned before grant

Free format text: 7C 22C 29/00 A, 7C 22C 47/00 B

REF Corresponds to:

Ref document number: 69423565

Country of ref document: DE

Date of ref document: 20000427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20000624

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20000322

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20001002

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001031

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
BERE Be: lapsed

Owner name: GONSETH DENIS

Effective date: 20001031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030630

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011031