EP0646199B1 - Trieuse sous pression pour suspensions fibreuses - Google Patents

Trieuse sous pression pour suspensions fibreuses Download PDF

Info

Publication number
EP0646199B1
EP0646199B1 EP92912886A EP92912886A EP0646199B1 EP 0646199 B1 EP0646199 B1 EP 0646199B1 EP 92912886 A EP92912886 A EP 92912886A EP 92912886 A EP92912886 A EP 92912886A EP 0646199 B1 EP0646199 B1 EP 0646199B1
Authority
EP
European Patent Office
Prior art keywords
rotor
pressure sorter
screen
sorter according
axial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92912886A
Other languages
German (de)
English (en)
Other versions
EP0646199A1 (fr
Inventor
Wilhelm Hagen Hutzler
Erich Czerwoniak
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Voith Finckh Fiber Systems GmbH and Co KG
Original Assignee
Hermann Finckh Maschinenfabrik GmbH and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=37429236&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0646199(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Hermann Finckh Maschinenfabrik GmbH and Co filed Critical Hermann Finckh Maschinenfabrik GmbH and Co
Priority to AT92912886T priority Critical patent/ATE146239T1/de
Publication of EP0646199A1 publication Critical patent/EP0646199A1/fr
Application granted granted Critical
Publication of EP0646199B1 publication Critical patent/EP0646199B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21DTREATMENT OF THE MATERIALS BEFORE PASSING TO THE PAPER-MAKING MACHINE
    • D21D5/00Purification of the pulp suspension by mechanical means; Apparatus therefor
    • D21D5/02Straining or screening the pulp
    • D21D5/023Stationary screen-drums
    • D21D5/026Stationary screen-drums with rotating cleaning foils

Definitions

  • the invention relates to a pressure sorter for fiber suspensions, in particular for the preparation of fiber suspensions obtained from waste paper, with a housing in which a stationary sieve, which is rotationally symmetrical to a sieve axis, is arranged, which separates an inlet space encompassed by the sieve from an accept material space located outside the sieve , and with a rotor that can be driven by a motor around the sieve axis, the circumferential surface of which, together with an inlet side of the sieve, delimits the inlet chamber in the radial direction, an inlet communicating with a first axial end of the inlet chamber for the fiber suspension to be treated and one with a second axial end of the inflow space communicating with rejects outlet, profile elements being provided on the peripheral surface of the rotor for generating positive and negative pressure surges in the fiber suspension.
  • pressure sorters of the type mentioned at the outset are those with their profile elements generated negative pressure surges the screen openings are to be backwashed, ie by generating negative pressure phases in the inlet space, liquid is to be sucked back out of the accept material space through the sieve openings into the inlet space in order to flush out contaminants and fiber aggregates accumulated on the inlet side of the sieve openings from the sieve openings.
  • a first measure which can be found in the prior art, is to design the screen openings in such a way that they widen in the passage direction (ie in the direction from the inlet space to the accept material space) (see, for example, US Pat. No. 3,581,903) by the Reduce the risk of clogging of the sieve openings.
  • the profile element segments of an axial rotor section each form a row in the rotor circumferential direction, with between There are two gaps in each case in two successive segments in the circumferential direction of the rotor and the lengths of the profile element segments and the gaps - measured in the circumferential direction of the rotor - are dimensioned in such a way and the offset mentioned was chosen such that - seen in the direction of the sieve or rotor axis - the profile element segments of an axial rotor section Cover gaps between the profile element segments of the adjacent axial rotor sections.
  • An example of such a rotor design can be found in DE-PS 37 01 669 (see in particular Fig.
  • the front faces or first flanks of the profile element segments lying in the direction of rotation were designed so that they have a concave, circular arc-shaped profile in section perpendicular to the rotor axis, which profile runs obliquely backwards and in the radial direction from the circumferential surface of the circular-cylindrical rotor body against the direction of rotation increases to the outside in order to reduce the impact effects of the pressure pulsations generated by the profile element segments (see column 1, lines 12-14 of DE-PS 37 01 669).
  • this known Pressure sorter on a circular cylindrical screen the inlet side (even if the screen openings are disregarded) is not smooth, but rather profiled.
  • the purpose of the design of the rotor and the inlet side of the sieve of this known pressure sorter is to continuously expose each area of the sieve to either a positive or a negative pressure pulse, due to the vertical front flanks of the profile elements and the resulting strong acceleration of the fiber suspension in the direction of rotation in Connection with the profiled inlet side of the sieve to generate strong turbulence in the fiber suspension located in the inlet area of the pressure sorter and finally, with the long, falling second flanks of the profile elements, to draw significant amounts of liquid from the accepted material space through the sieve back into the inlet area of the pressure sorter, in order to use a combination all of these measures to prevent the formation of a nonwoven on the inlet side of the screen with certainty.
  • a pressure sorter according to the preamble of claim 1 is known from US-A-4 744 894.
  • the invention had for its object to provide a pressure sorter of the type mentioned which, with relatively fine sieve openings, enables a good sorting result in all fiber suspensions to be processed which occur in practice and which in particular ensures trouble-free continuous operation.
  • Optimal sorting results can be achieved with a pressure sorter according to the invention, especially also with fiber suspensions of higher consistency to be processed, namely with a consistency of approx. 4% and more.
  • This is due to the fact that on the one hand relatively long (measured in the rotor circumferential direction) profile elements are used, the front first flanks of which generate relatively high positive pressure surges and accelerate the fiber suspension in the direction of rotation strongly and the long, falling second flanks of larger quantities of liquid from the accept material space through the sieve suck into the inlet space, effects which counteract the formation of a nonwoven fabric on the inlet side of the sieve, but which, on the other hand, provide gaps in the circumferential direction between the profile elements, which - in the direction of rotation - be dimensioned so long that between the pressure pulsations generated by the profile elements a weak non-woven fabric can form on the inlet side of the screen, which acts as an auxiliary filter layer.
  • Fiber suspensions to be prepared from waste paper usually contain adhesive particles which are either plastically deformable from the start or plastically deformable at the normal operating temperatures of pressure sorters.
  • a pressure sorter according to the invention avoids this disadvantage by producing a weakly formed nonwoven fabric due to the gaps between the profile elements.
  • a strong fiber fleece on the inlet side of the sieve leads to a strong fractionation of the fiber portion of a fiber suspension - long fibers, which are desirable per se in the accept, predominantly get into the reject, so that in the accept in an undesirable manner relatively short fibers predominate. Without any fiber fleece on the inlet side of the sieve, long-fiber impurities, such as hair, also get into the accept in an undesirable manner.
  • the pressure sorter according to the invention now leads to an optimization of the sorting effect, because a weakly formed non-woven fabric on the inlet side of the sieve allows long, brewable fibers to get into the accepted material to a considerable extent, while tests have shown that such a non-woven fabric has long-fiber impurities as it passes through through the sieve. In a pressure sorter according to the invention, the often undesirable strong fractionation of the fibers can be avoided.
  • the so-called rejects (the part of the fiber suspension to be reprocessed rejected by the sieve) is not thickened to such an extent that the sorting function of the device is permanently impaired in the region of the annular gap between the rotor and sieve adjacent to the second axial end of the inlet space.
  • the front end faces or first flanks of the profile elements of the rotor of the known pressure sorter according to US Pat. No. 4,855,038 run exactly parallel to the sieve or rotor axis.
  • the longitudinal direction of the first flank of each profile element forms an acute angle with the axial direction.
  • profile elements forming a step form at the front strong positive pressure surges and thus pressure forces acting on the screen, which in the known pressure sorter are introduced into the screen along a surface line (a line parallel to the screen axis) due to the axial course of the front edges of the profile elements.
  • the first flanks of the profile elements could be inclined in any direction with respect to the sieve axis. It would be conceivable, for example, that the inclination is chosen such that the first flanks of the profile elements exert an axial conveying effect on the fiber suspension located in the inflow space in the direction from the second axial end of the inflow space to its first axial end, as is the case with pressure sorters per se is known - in the rear part of the inlet space, already thickened fiber suspension to be reprocessed back in the axial direction and thereby to ensure a more uniform consistency of the fiber suspension to be sorted and an even more extensive separation of usable fibers into the accept material space.
  • embodiments of the pressure sorter according to the invention are preferred in which the longitudinal direction of the first flank of each profile element is inclined relative to the axial direction in such a way that the first flanks exert an axial conveying effect on the fiber suspension located in the inflow chamber towards the second axial end of the inflow chamber. It has been shown that the sorting result can be improved even further as a result of this type of conveying effect, fiber suspension which has not yet thickened is intensified from the inlet-side end of the inlet space in the rear end thereof Area (the area facing the second axial end of the inlet space) is promoted and thereby the consistency of the fiber suspension to be sorted along (in the axial direction) of the rotor or the sieve is evened out.
  • the first flanks of the profile elements at the front are intended to generate positive pressure surges and to drive the fiber suspension in the direction of rotation. Both can best be achieved by designing the profile elements in such a way that their first flank projects approximately in the radial direction over the rotor peripheral surface sector located in front of it.
  • first flank could also be slightly inclined with respect to the radial direction, namely obliquely inwards (in the direction of the rotor axis) and rear (counter to the direction of rotation), while first flanks inclined obliquely outwards and backwards (as in the DE- PS 37 01 669 shown) have the consequence that the fiber suspension located in front of a profile element is only pushed radially outwards against the screen and is not accelerated or is hardly accelerated in the direction of rotation.
  • each profile element can extend in the direction of the rotor axis over the entire length of the rotor circumference encompassed by the sieve; in this case the rotor has only one (in Rotor circumferential direction) row of profile elements and gaps arranged between them.
  • pressure sorters according to the invention with a different rotor design are recommended:
  • Such pressure sorters are characterized in that the rotor has at least one first axial rotor circumferential surface section facing the first axial end of the inlet space and one adjacent to the latter in the axial direction second axial circumferential surface section, the first flanks of the profile elements of the second section being set back in relation to the first flanks of the profiled elements of the first section against the direction of rotation, and the lengths of the profiled elements measured in the circumferential direction of the rotor are dimensioned such that adjacent circumferential rotor sectors (gaps) in the axial direction of the two axial rotor sections overlap in the direction of rotation.
  • the rotor of such a pressure sorter according to the invention thus has in particular two axial sections and thus two rows of profile elements (running in the rotor circumferential direction) and gaps arranged therebetween, the profile elements of one row and thus the gaps of this row compared to those of the other row only in the rotor circumferential direction are widely offset from one another that the gaps of both rows still form channels which extend in the axial direction over both rows or both rotor sections.
  • a staggered arrangement of the profile elements as described above now has the following effects, especially if the front first flanks are inclined relative to the axial direction in such a way that they have a conveying effect in the direction of the second axial end of the inlet space: that alone Axial flow through the annular gap between the rotor circumference and sieve (of the inlet space) caused by the delivery pressure in the inlet of the pressure sorter has the result that material accumulations on the first flanks of the profile elements of the first axial rotor section slide along these first flanks in the direction of the second axial end of the inlet space ; if these accumulations of material come to the edges of the profile elements of the first rotor section facing the second axial end of the inlet space, they are mixed there with fiber suspension due to the turbulence occurring there, so that the accumulations of material dissolve at least essentially before the fiber suspension of the next first flank Profile element of the second axial rotor section is detected.
  • the overlap of one another in the axial direction of adjacent rotor peripheral surface sectors (gaps) - measured in the rotor peripheral direction - is at least approximately 50% of the length of one of the rotor peripheral surface sectors.
  • the profile elements of different axial rotor sections could be designed identically. However, it is advisable to take into account the different consistency of the fiber suspension to be sorted in the different axial areas of the annular space between the rotor circumference and sieve by a correspondingly different design of the profile elements, in order not to cause unnecessarily strong positive and negative pressure impulses either in certain axial areas of this annular space generate or too small in other axial areas of this annulus generate positive and negative pressure impulses.
  • the height of the first flanks of the profile elements in the first axial rotor circumferential surface section measured in the radial direction can be dimensioned smaller than in the second rotor circumferential surface section for the same purpose.
  • first flank of the profile elements it is advisable to design the first flank of the profile elements in such a way that it can be used to effectively accelerate the fiber suspension in the direction of rotation.
  • First flanks of the profile elements designed in this way are particularly advantageous since they can be used to accelerate the fiber suspension in the direction of rotation up to the circumferential speed of the rotor, because then maximum positive pressure pulses and particularly strong turbulence are generated by the profile elements.
  • Pressure sorters which have become known to date have a rotor drive which only allows operation at a very specific rotor speed.
  • the invention now remedies this by proposing to use a three-phase motor as the motor for driving the rotor. which is preceded by a frequency converter that is controllable with regard to its output frequency.
  • the rotor speed can thus be varied solely by changing the setting of the frequency converter and thus the frequency of the feed current for the three-phase motor, and can thus be adapted to the desired sorting method or sorting result.
  • the strength of the nonwoven formation on the inlet side of the sieve depends crucially on the rotor speed and the strength of the nonwoven formation in turn influences the size of the pressure difference which occurs between the inlet side of the sieve and the other side of the sieve, i.e. there is between the inlet space and the accept material space, this pressure difference can be used according to the invention as a controlled variable for the frequency converter;
  • the frequency converter can thus be controlled by a measuring device for measuring the pressure difference between the inlet space and the accepting space. In this way, by specifying a desired pressure difference, the strength of the nonwoven formation on the inlet side of the screen and thus the sorting result can be specified.
  • the invention proposes some particularly advantageous embodiments of the rotor of the pressure sorter according to the invention.
  • the rotor has a circular-cylindrical and hollow rotor body, the peripheral surface of which Forms rotor circumferential surface sectors and in which the first flanks of the profile elements are formed by strips attached to the circumferential surface of the rotor body and the second flanks of the profile elements are formed by sheets which are curved in a side view, the front edges of which are fastened to the strips and the rear edges of which are fastened to the rotor body circumferential surface .
  • the strips and sheets could be fastened, for example, by screws to the rotor body or to the strips, but embodiments are preferred in which the strips are welded onto the rotor body and / or in which the sheets are welded onto the strips and the rotor body.
  • care is expediently taken to ensure that the cavities are closed in a liquid-tight manner in order to avoid the occurrence of imbalances.
  • this problem can also be remedied by filling the cavities formed by the circumferential surface of the rotor body and the profile elements with a plastic, which can be, for example, a hardenable casting resin, but it is more advantageous if an in-situ foamed plastic is used , because it allows these cavities to be filled easily and completely so that liquid cannot penetrate into these cavities.
  • a plastic which can be, for example, a hardenable casting resin
  • an embodiment of the pressure sorter according to the invention should be used which has a turbulence-generating profile on the inlet side of the sieve.
  • the actual pressure sorter 10 shown in FIG. 1 with a housing 14 standing on supports 12 also includes a motor 18 standing on a frame 16, which is a three-phase or three-phase AC motor, which is operated by means of a pulley 20 and V-belt 22 drives a pulley 24, which is fastened on a rotor shaft 26 rotatably mounted in the frame 16 and the housing 14.
  • a motor 18 standing on a frame 16 which is a three-phase or three-phase AC motor, which is operated by means of a pulley 20 and V-belt 22 drives a pulley 24, which is fastened on a rotor shaft 26 rotatably mounted in the frame 16 and the housing 14.
  • the housing 14 essentially consists of a left end wall 28 according to FIG. 1, a circular cylindrical housing jacket 30 arranged concentrically to the rotor shaft 26 and a housing cover 32 which are connected to one another in a pressure-tight manner.
  • the rotor shaft 26 which is passed through the end wall 28 in a pressure-tight manner, carries a rotor, designated as a whole by 36, which can be driven about the axis 34 by means of the rotor shaft 26 and is surrounded by a circular cylindrical sieve 38 which is concentric with the axis 34 and which is attached to two on the housing jacket 30 attached annular housing elements 40 and 42 is fixed and is held by these housing rings.
  • the axial length (in the direction of the axis 34) of the rotor 36 is equal to the axial length of the effective area of the screen 38 between the housing rings 40 and 42.
  • an inlet connection 46 is provided, through which - as indicated by the arrow F - the fiber suspension to be processed or sorted is conveyed into the pressure sorter, by means of a pump, not shown.
  • an outlet connection 48 is attached to the housing jacket 30, through which the so-called accept material - as indicated by the arrow A - leaves the pressure sorter.
  • the accepted substance is the part of the fiber suspension that has passed the sieve 38.
  • a second outlet connection 50 is finally fastened, through which the so-called rejects - as indicated by the arrow R in FIG. 2 - leaves the pressure sorter; the reject material is the part of the fiber suspension to be processed which cannot pass through the sieve 38.
  • the inlet connection 46 will be arranged contrary to the illustration in FIG. 1 so that the fiber suspension to be sorted flows approximately tangentially into the housing 14, just as the outlet connection 50 for the rejects is oriented tangentially (see FIG. 2).
  • the outlet connection 48 could of course also be arranged at the bottom of the housing jacket 30, insofar as the installation of the pressure sorter 10 permits the removal of the accepted substance downwards.
  • the fiber suspension to be processed which is fed into the pressure sorter 10 via an inlet connection 46, first arrives in an inlet space 52 and then enters an annular space between the circumference of the rotor 36 and the sieve 38, which will be referred to below as the inlet space 54, namely the fiber suspension to be sorted into the latter via a first axial end 54a of this inlet space.
  • the fiber suspension flows helically through the inlet space 54 from its first end 54a the second end 54b thereof, part of the fiber suspension passing through openings in the sieve 38 and thus entering the accepting material space 58.
  • the reject leaves the inlet space 54 at its second end 54b and thus arrives in the reject space 56, from which the reject leaves the pressure sorter via the second outlet connection 50.
  • the axis 34 runs at least approximately horizontally, but in principle it would also be conceivable to set up the pressure sorter in such a way that its axis 34 runs at least approximately vertically.
  • a measuring device 60 which comprises a first pressure transmitter 62 and a second pressure transmitter 64, which are arranged in the inlet connector 46 and in the first outlet connector 48, but also also in the inlet chamber 52 or in the accept material chamber 58 could be.
  • a difference former 74 which delivers at its output a control signal proportional to the pressure difference, which is applied via line 76 to the control input of a frequency converter 78.
  • This is fed from a current source, not shown, with a 3-phase alternating current or three-phase current of frequency f 1 and supplies a three-phase current of frequency f 2 for driving three-phase motor 18, frequency f 2 being a function of the control signal generated by difference generator 74.
  • the rotor 36 is driven at a speed which is a function of this control signal and thus the pressure difference between the inlet space 54 and the accept material space 58.
  • potentiometers or other actuating elements could also be provided in the lines 66 and 68, by means of which the signals supplied by the pressure transmitters 62 and 64 can be changed, in order in this way to make the dependence on the line 76 possible To be able to influence the control signal from the pressure difference mentioned.
  • a hub 80 fixedly connected to the rotor shaft 26 carries a closed, hollow circular cylindrical rotor body 82 with a circular cylindrical rotor jacket 84.
  • This has a first axial end 84a at the first axial end 54a of the inlet space 54 and a second axial end 84b at the second axial end 54b of the Inlet space and outside carries two sets of profile elements, namely a first set, which is formed by profile elements 86a, 86b, 86c and 86d, and a second set, formed by profile elements 88a, 88b, 88c and 88d.
  • the first set of profile elements forms a first row of profile elements extending in the rotor circumferential direction or direction of rotation U of the rotor and gaps 86a ', 86b', 86c 'and 86d' arranged between them, and this row defines a first axial rotor section 90 which defines the inlet space 52 faces;
  • the second set of profile elements 88a-88d forms a second, likewise row of profile elements and gaps 88a ', 88b', 88c 'and 88d' arranged between them, and this second row defines a second axial rotor section 92, which is adjacent to the rejects space 56.
  • all profile elements are of the same height (measured in the direction of the axis 34), but depending on the desired sorting result and / or depending on the type of fiber suspension to be sorted, it could be expedient to increase or decrease the height of the first row choose as the height of the second row. It may also be expedient to provide the rotor with more than two such rows.
  • each profile element has a front lying in the direction of rotation U.
  • End face or first flank I which runs perpendicular to the circular-cylindrical outer circumferential surface of the rotor shell 84 and thus to the surface of the gap lying in front of it in the direction of rotation U, and a back surface or second flank II directly adjoining the first flank I, which runs counter to the direction of rotation U in a radial direction Direction inwards and thus falls towards the axis 34, so that the profile elements have a cross section perpendicular to the axis 34 which is similar to a very acute-angled triangle which was bent concentrically to the axis 34.
  • the fiber suspension in the inlet space 54 is strongly accelerated, at most up to the rotational speed of the profile elements.
  • the falling second flanks II generate negative pressure pulses, by means of which liquid is sucked back from the accept material space 58 through the sieve openings into the inlet space 54.
  • the first flanks I do not run parallel to the axis 34, but form an acute angle a with the direction of the axis 34, and in fact the flanks are inclined with respect to the direction of the axis 34, so that the direction the flow component of the fiber suspension in the axis 34 Inlet space 54 is reinforced in the direction from the first axial end 54a of the inlet space to the second axial end 54b thereof
  • the profile elements 86a-86d of the first row - measured in the rotor circumferential direction or direction of rotation U - are shorter than the profile elements 88a-88d of the second row.
  • This measure serves the purpose of adapting the effect of the profile elements to the different consistency of the fiber suspension, the consistency of which increases in the inlet space 54 from its first end 54a to its second end 54.
  • each of the profile elements 86a-86d of the first row extends over a circumferential angle of 45 ° (this is the maximum length L 1 of the profile elements)
  • the length of the profile elements to the second axial end 84b of the Rotor jacket 84 decreases because the first flanks run obliquely to the direction of the axis 34, while the rear edges of the second flanks II are aligned parallel to the axis 34.
  • the smallest length L 1 'of the gaps 86a' - 86d 'of the first row is also 45 ° and is therefore equal to the greatest length L 1 of the profile elements of this row, the length of the gaps in the direction of the second axial end 84b of the rotor shell 84 increases.
  • the maximum length L 2 of the profile elements 88a-88d of the second row is 53 ° in this embodiment; Since, according to the invention, the number of profile elements of the second row is equal to the number of profile elements of the first row, the minimum length L 2 'of the gaps 88a' - 88d 'of the second row results in a lower value of 37 ° here.
  • the profile elements 88a-88d of the second row and thus their gaps are offset relative to the profile elements of the first row or their gaps against the direction of rotation U, the size of the offset thus being based on the lengths of the profile elements or the gaps are coordinated so that adjacent gaps of the two rows in the axial direction overlap in the direction of rotation U or in the rotor circumferential direction to such an extent that they form a continuous channel in the axial direction which extends from one axial end 84a of the rotor shell 84 to whose other axial end 84b extends.
  • the inside width L 3 of this channel is 25 °, the inside width being understood as the width which the observer sees in the direction of the axis 34 when the rotor is viewed from the front.
  • the lengths of the profile elements of the first row are therefore approximately equal to the lengths of the gaps of the first row, the lengths of the profile elements of the second row are greater than the lengths of the profile elements of the first row, and the length of the gaps of the second row are smaller than the lengths of the profile elements in the second row and smaller than the lengths of the gaps in the first row.
  • steps 90 by means of which the following effect is achieved: accumulations of fibers and impurities, which can occur on the first flanks of the profile elements 86a-86d of the first row, slide due to the axial flow component of the Fiber suspension in the inlet space 54 along the first flanks I of the profile elements of the first row in the direction of the second axial end 54b of the inlet space 54 and thus reach the steps 90, in the area of which they are dissolved due to the strong turbulence there and mixed with the fiber suspension - accumulations of fibers and impurities on the first flanks I of the profile elements 88a-88d of the second Row are also transported in the axial direction and enter the reject space 56.
  • the lengths of the profile elements and the gaps were expressed in circumferential angles above.
  • the lengths L 1 and L 2 are in a range between approximately 200 mm and approximately 450 mm.
  • the circumferential speeds of the rotor achieved by adjusting the rotor speed are expediently between approximately 10 m / s and approximately 40 m / s, the best sorting results generally being achieved with circumferential speeds of approximately 15 to approximately 30 m / s.
  • the sieve openings 38a of the sieve 38 are bores, their diameter is expediently approximately 1 mm to approximately 3.5 mm if the rotor is operated at a peripheral speed of approximately 10 to approximately 15 m / s . Smaller holes can be used at higher peripheral speeds; expediently one operates a pressure sorter according to the invention with rotor peripheral speeds of approx. 15 to approx. 40 m / s and then chooses bores with a diameter of approx. 0.5 to approx. 1.5 mm for the sieve openings.
  • the screen openings 38a are slits, then these should have a rotor circumferential speed of approximately 10 to approximately 15 m / s Have a width of about 0.4 to about 0.6 mm; Even in the case of slots, finer screen openings can be used at higher rotor peripheral speeds, and since rotor peripheral speeds of approximately 15 to approximately 40 m / s are preferred, slot-shaped screen openings with a width of approximately 0.1 mm to approximately 0.35 mm recommended.
  • FIG. 3 and 4 show the structure of the profile elements 86a-86d and 88a-88d of the preferred embodiment shown.
  • Each of these profile elements consists - apart from the rotor casing 84 - of a strip 100 forming the first flank I, a bent sheet 102 forming the second flank II and two side walls 104, reference being made to FIG. 3 to indicate that in this figure because of the oblique course of the first flanks and thus the strips 100 the latter were not cut perpendicular to their longitudinal extension, but obliquely thereto.
  • the cavities 106 of the profile elements enclosed by the rotor jacket 84, the strips 100, the sheets 102 and the side walls 104 should be liquid-tight or filled with a filler such as e.g. a foam plastic, to avoid imbalances in the rotor. The same applies to the cavity of the rotor body 82.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Paper (AREA)

Abstract

Trieuse sous pression pour la préparation de suspensions fibreuses obtenues à partir de vieux papiers de récupération, qui comprend un tamis (38) entourant un rotor (38), une chambre d'alimentation (54) située entre la circonférence du rotor et le tamis, ainsi qu'une chambre de pâte acceptée (58) située à l'extérieur du tamis. La trieuse comprend également des éléments profilés (86a - 86d) placés sur la surface circonférentielle du rotor, afin de produire des coups de bélier positifs et négatifs. Afin d'obtenir de bons résultats au niveau du tri et d'arriver à ce que le tamis dure plus longtemps, un secteur de surface circonférentielle du rotor se trouve dans chacune des sections axiales de la surface circonférentielle du rotor qui agit sur le tamis, entre deux éléments profilés placés à la suite, dans le sens circonférentiel du rotor. Ledit secteur fait partie d'une surface d'enveloppe parallèle au côté d'alimentation du tamis. La longueur de chaque élément profilé, mesurée dans le sens circonférentiel du rotor, est au moins à peu près la même que celle du secteur de surface circonférentielle du rotor, qui suit. La longueur de ce dernier secteur représente cependant au moins environ 30 % de la longueur de l'élément profilé se trouvant devant. Les éléments profilés sont conçus et disposés sur la circonférence du rotor de manière que, vus dans le sens de l'axe du tamis, les secteurs de surface circonférentielle du rotor forment des canaux transversaux entre les éléments profilés le long de la zone du rotor entourée par le tamis.

Claims (28)

  1. Classeur sous pression (10) pour suspensions fibreuses, en particulier pour le traitement des suspensions fibreuses obtenues à partir des vieux papiers, comprenant un carter (14), dans lequel est disposé un crible (38) fixe à symétrie de révolution par rapport à un axe du crible (34), ledit crible formant dans le carter une séparation entre un récipient d'admission (54) entouré du crible, et un récipient de pâte à papier finie (58), situé à l'extérieur du crible, et comprenant un rotor (36) actionné par un moteur (18) autour de l'axe du crible, la surface périphérique dudit rotor délimitant avec un côté d'admission du crible le récipient d'admission dans le sens radial, un système d'admission (46) qui communique avec la première extrémité axiale (54a) du récipient d'admission (54), destiné à recevoir la suspension fibreuse à traiter, et un système d'évacuation des détritus (50) qui communique avec une deuxième extrémité axiale (54b) du récipient d'admission (54), des éléments profilés (86a - 86d, 88a - 88d) destinés à produire des chocs de pression positifs et négatifs dans la suspension fibreuse étant montés sur la surface périphérique du rotor (36), lesdits éléments profilés s'étendant dans le sens de rotation du rotor et dans le sens de l'axe du crible (34) et étant munis chacun d'un premier flanc (I) situé à l'avant par rapport au sens de rotation (U) et destiné à activer la suspension fibreuse dans le sens de la rotation, ainsi que d'un deuxième flanc (II) situé en aval du premier flanc (I) dans le sens inverse de la rotation et destiné à réintroduire dans le récipient d'admission (54) le liquide contenu dans le récipient de pâte à papier finie (58) en le faisant passer à travers le crible (38), caractérisé en ce que, dans chaque section axiale (90, 92) de la périphérie du rotor agissant sur le crible (38), il est prévu d'agencer entre deux éléments profilés (86a - 86d, 88a - 88d) consécutifs dans le sens de rotation du rotor, un secteur de la périphérie du rotor (86a' - 86d', 88a' - 88d') au-dessus duquel ces éléments profilés sont en saillie dans le sens radial, cette partie constituant une enveloppe (84), parallèle au côté d'admission du crible et avec une symétrie de révolution par rapport à l'axe du crible (34), la longueur maximale (L1, L2) - considérée dans le sens de rotation du rotor - de chaque élément profilé (86a - 86d, 88a - 88d) correspondant au moins à la longueur minimale approximative (L1', L2') du secteur de la périphérie du rotor (86a' - 86d', 88a' - 88d') consécutif dans le sens opposé à la rotation (U), la longueur minimale (Ll', L2') de ce dernier mesurant au moins 30 % de la longueur maximale approximative (L1, L2) de l'élément profilé précédent dans le sens de la rotation, et les éléments profilés (86a - 86d, 88a - 88d) étant conçus et disposés sur la périphérie du rotor de telle sorte que - considéré dans le sens de l'axe du crible (34) - les secteurs de la périphérie du rotor (86a' - 86d', 88a' - 88d') forment entre les éléments profilés des canaux (200) continus le long de la zone du rotor (36) entourée par le crible (38), et en ce que le sens longitudinal du premier flanc (I) forme un angle aigu (α) avec l'axe (34).
  2. Classeur sous pression selon la revendication 1, caractérisé en ce que le sens longitudinal du premier flanc est incliné par rapport à l'axe du crible, de telle sorte que le premier flanc exerce un effet de poussée dans le sens axial sur la suspension fibreuse contenue dans le récipient d'admission pour la transporter vers la deuxième extrémité axiale du récipient d'admission.
  3. Classeur sous pression selon la revendication 1 ou 2, caractérisé en ce que le bord arrière du deuxième flanc est parallèle à l'axe du crible.
  4. Classeur sous pression selon l'une quelconque des revendications 1 à 3, caractérisé en ce que le premier flanc avance en saillie, pratiquement dans le sens radial, au-dessus du secteur de la périphérie du rotor situé en amont.
  5. Classeur sous pression selon l'une quelconque des revendications 1 à 4, caractérisé en ce que le rotor comprend au moins une première section axiale de la périphérie du rotor, orientée vers la première extrémité axiale du récipient d'admission, ainsi qu'une deuxième section axiale de la périphérie du rotor, contiguë dans le sens axial à la première section axiale, les premier flancs des éléments profilés de la deuxième section étant décalés dans le sens inverse de la rotation par rapport aux premiers flancs des éléments profilés de la première section de telle sorte que, et les longueurs des éléments profilés étant déterminées dans le sens de la rotation de telle sorte que des secteurs contigus dans le sens axial de la périphérie du rotor des deux sections axiales se chevauchent les uns les autres dans le sens de la rotation.
  6. Classeur sous pression selon la revendication 5, caractérisé en ce que le chevauchement - considéré dans le sens de la rotation - correspond au moins approximativment à 50 % de la longueur de l'un des secteurs de la périphérie du rotor.
  7. Classeur sous pression selon la revendication 5 ou 6, caractérisé en ce que les éléments profilés dans la première section axiale de la périphérie du rotor - considéré dans le sens de la rotation - sont plus courts que ceux dans la deuxième section.
  8. Classeur sous pression selon l'une quelconque des revendications 5 à 7, caractérisé en ce que - considéré dans le sens radial - la hauteur des premiers flancs des éléments profilés dans la première section axiale de la périphérie du rotor est inférieure à celle dans la deuxième section.
  9. Classeur sous pression selon l'une quelconque des revendications précédentes, caractérisé en ce que le moteur est un moteur à courant triphasé, un convertisseur de fréquence, qui peut être commandé en fonction de la fréquence de sortie dudit moteur, étant monté en aval de ce dernier.
  10. Classeur sous pression selon la revendication 9, caractérisé en ce que le convertisseur de fréquence peut être commandé par l'intermédiaire d'un dispositif de mesure destiné à mesurer la différence de pression entre le récipient d'admission et le récipient de pâte à papier finie.
  11. Classeur sous pression selon l'une quelconque des revendications précédentes, caractérisé en ce que le rotor comporte un corps cylindrique creux, dont la surface périphérique constitue les secteurs de la périphérie du rotor, en ce que les premiers flancs des éléments profilés sont constitués par des baguettes fixées sur la périphérie du corps du rotor et les deuxièmes flancs sont constitués par des pièces en tôle coudées en arc, par rapport à une vue latérale, dont les bords avant sont fixés aux baguettes et les bords arrières sont fixés à la périphérie du corps du rotor.
  12. Classeur sous pression selon la revendication 11, caractérisé en ce que les baguettes sont soudées sur le corps du rotor.
  13. Classeur sous pression selon la revendication 11 ou 12, caractérisé en ce que les pièces en tôle sont soudées sur les baguettes et le corps du rotor.
  14. Classeur sous pression selon l'une quelconque des revendications 11 à 13, caractérisé en ce que les cavités formées par la paroi périphérique du corps du rotor et les éléments profilés sont étanchéifiées.
  15. Classeur sous pression selon l'une quelconque des revendications 11 à 14, caractérisé en ce que les cavités formées par la paroi périphérique du corps du rotor et les éléments profilés sont remplies par une matière synthétique.
  16. Classeur sous pression selon la revendication 15, caractérisé en ce que la matière synthétique est un caoutchouc synthétique moussé in situ.
  17. Classeur sous pression selon l'une quelconque des revendications 1 à 10, caractéérisé en ce que les éléments profilés sont des corps pleins en matière synthétique.
  18. Classeur sous pression selon la revendication 17, caractérisé en ce que la surface frontale des éléments profilés, située à l'avant dans le sens de la rotation, est formée par une baguette métallique.
  19. Classeur sous pression selon l'une quelconque des revendications précédentes, caractérisé en ce que le côté d'admission du crible présente un profil permettant de produire des turbulences.
  20. Classeur sous pression selon l'une quelconque des revendications précédentes, caractérisé en ce que la longueur des éléments profilés, déterminée dans le sens de rotation du rotor, mesure environ 200 mm à 450 mm.
  21. Classeur sous pression selon l'une quelconque des revendications précédentes, caractérisé en ce que le rotor peut être actionné par le moteur avec une vitesse de rotation de 10 à 40 m/s environ.
  22. Classeur sous pression selon la revendication 21, caractérisé en ce que le rotor peut être actionné par le moteur avec une vitesse de rotation de 15 à 30 m/s environ.
  23. Classeur sous pression selon l'une quelconque des revendications précédentes, caractérisé en ce que, pour un rotor avec une vitesse de rotation de 10 à 15 m/s environ, le crible est muni de forures, formant les orifices du crible, dont le diamètre est compris entre 1 et 3,5 mm environ.
  24. Classeur sous pression selon l'une quelconque des revendications 1 à 22, caractérisé en ce que, pour un rotor avec une vitesse de rotation de 15 à 40 m/s environ, le crible est muni de forures, formant les orifices du crible, dont le diamètre est compris entre 0,5 et 1,5 mm environ.
  25. Classeur sous pression selon l'une quelconque des revendications 1 à 22, caractérisé en ce que, pour un rotor avec une vitesse de rotation de 10 à 15 m/s environ, le crible est muni de fentes, formant les orifices du crible, dont la largeur est comprise entre 0,4 et 0,6 mm environ.
  26. Classeur sous pression selon l'une quelconque des revendications 1 à 22, caractérisé en ce que, pour un rotor avec une vitesse de rotation de 15 à 40 m/s environ, le crible est muni de fentes, formant les orifices du crible, dont la largeur est comprise entre 0,1 et 0,35 mm environ.
  27. Classeur sous pression selon l'une quelconque des revendications précédentes, caractérisé en ce que le premier flanc des éléments profilés est conçu de telle sorte qu'il permette d'accélérer la suspension fibreuse dans le sens de la rotation jusqu'à ce qu'elle atteigne la vitesse de rotation du rotor.
  28. Classeur sous pression selon l'une quelconque des revendications 5 à 8, caractérisé en ce que les éléments profilés, contigus dans le sens axial, se raccordent directement les uns aux autres dans le sens axial.
EP92912886A 1992-06-20 1992-06-20 Trieuse sous pression pour suspensions fibreuses Expired - Lifetime EP0646199B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT92912886T ATE146239T1 (de) 1992-06-20 1992-06-20 Drucksortierer für fasersuspensionen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP1992/001393 WO1994000634A1 (fr) 1992-06-20 1992-06-20 Trieuse sous pression pour suspensions fibreuses

Publications (2)

Publication Number Publication Date
EP0646199A1 EP0646199A1 (fr) 1995-04-05
EP0646199B1 true EP0646199B1 (fr) 1996-12-11

Family

ID=37429236

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92912886A Expired - Lifetime EP0646199B1 (fr) 1992-06-20 1992-06-20 Trieuse sous pression pour suspensions fibreuses

Country Status (8)

Country Link
US (1) US5601192A (fr)
EP (1) EP0646199B1 (fr)
JP (1) JP3542594B2 (fr)
AU (1) AU2018492A (fr)
CA (1) CA2138371C (fr)
DE (1) DE59207688D1 (fr)
FI (1) FI110011B (fr)
WO (1) WO1994000634A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10304621A1 (de) * 2003-02-05 2004-08-26 Voith Paper Patent Gmbh Verfahren zur Bestimmung von rheologischen Eigenschaften einer Faserstoffsuspension
WO2024033112A1 (fr) 2022-08-09 2024-02-15 Vogelsang Gmbh & Co. Kg Séparateur pour la séparation de milieu

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3542594B2 (ja) * 1992-06-20 2004-07-14 ボイト フィンク ファイバー システムズ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディト ゲゼルシャフト 繊維懸濁液用加圧分離装置
US5566833A (en) * 1995-01-25 1996-10-22 Hermannfinckh Maschinenfabrik Gmbh & Co. Pressure sorter for fiber suspensions as well as a process for the preparation of fiber suspensions
CA2210877C (fr) * 1995-02-03 1999-12-21 Hermann Finckh Maschinenfabrik Gmbh & Co. Trieuse sous pression de suspensions de fibres et crible pour ces trieuses sous pression
US5954956A (en) * 1997-07-22 1999-09-21 J&L Fiber Services Modular screen cylinder and a method for its manufacture
DE19801070B4 (de) * 1998-01-14 2006-01-05 Horst Brenner Dosiereinrichtung zur Pufferung und Dosierung
WO1999046026A1 (fr) * 1998-03-11 1999-09-16 Thermo Black Clawson Inc. Epuration a pression variable
US6138838A (en) * 1998-05-29 2000-10-31 J&L Fiber Services, Inc. Screen media and a screening passage therefore
US6324490B1 (en) 1999-01-25 2001-11-27 J&L Fiber Services, Inc. Monitoring system and method for a fiber processing apparatus
AT408773B (de) * 2000-02-03 2002-03-25 Andritz Ag Maschf Sieb und verfahren zur herstellung eines derartigen siebes
AT408770B (de) * 2000-02-03 2002-03-25 Andritz Ag Maschf Sortierer zur reinigung einer faserstoffsuspension
CA2403127A1 (fr) * 2000-02-19 2002-10-11 Voith Finckh Fiber Systems Gmbh & Co. Kg Tamis pour suspensions de fibres et son procede de production
AT408997B (de) * 2000-04-03 2002-04-25 Andritz Ag Maschf Sortierer für die papier-erzeugung und flügel für sortierer
ITVI20010039A1 (it) * 2001-02-15 2002-08-16 Comer Spa Filtro rotante per sospensioni fibrose
JP4931096B2 (ja) * 2001-07-03 2012-05-16 臼井国際産業株式会社 温度感応型流体式ファン・カップリング装置
JP4577065B2 (ja) * 2005-03-31 2010-11-10 王子製紙株式会社 スクリーン装置およびこれを用いた再生パルプの製造方法
FI120913B (fi) 2007-09-28 2010-04-30 Andritz Oy Laite massan lajittelemiseksi
PL3684972T3 (pl) 2017-09-18 2023-12-18 International Paper Company Sposób i aparatura do kontroli układu frakcjonowania włókien

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE129814C (fr) *
DE1905832U (de) * 1964-09-16 1964-12-03 Hermann Finckh G M B H Sichter fuer papierstoff-suspensionen.
US3400820A (en) * 1965-03-30 1968-09-10 Bird Machine Co Screening apparatus with rotary pulsing member
US3680696A (en) * 1970-03-23 1972-08-01 Bird Machine Co Screening
US3726401A (en) * 1970-12-16 1973-04-10 Bird Machine Co Screening machine
AT336392B (de) * 1974-03-20 1977-05-10 Finckh Metalltuch Maschf Drucksichter fur faserstoffsuspensionen
US3912622A (en) * 1974-05-30 1975-10-14 Bird Machine Co Screening machine with lights removal
DE2526657C3 (de) * 1975-06-14 1978-10-26 Hermann Finckh, Maschinenfabrik, 7417 Pfullingen Drucksichter für Fasersuspensionen
US4155841A (en) * 1977-03-22 1979-05-22 The Black Clawson Company High turbulence screen
FR2410081A1 (fr) * 1977-11-23 1979-06-22 Lamort Ingenieurs Construc E E Appareil pour l'epuration des pates a papier
FR2461060A1 (fr) * 1979-07-06 1981-01-30 Lamort E & M Dispositif pour l'epuration et la recuperation de pate a papier
US4410424A (en) * 1980-05-02 1983-10-18 The Black Clawson Company Screening apparatus for paper making stock
US4276159A (en) * 1980-06-19 1981-06-30 The Black Clawson Company Apparatus for screening paper fiber stock
FI67588C (fi) * 1983-01-26 1985-04-10 Ahlstroem Oy Silplaot
US5192438A (en) * 1983-03-07 1993-03-09 A. Ahlstrom Corporation Rotating element for screening apparatus with a contour surface produced by a plurality of protrusions in the direction of the axial length of the rotor
DE3427390A1 (de) * 1984-07-25 1986-02-06 J.M. Voith Gmbh, 7920 Heidenheim Sortierer, insbesondere vertikalsichter
US5110456A (en) * 1985-06-20 1992-05-05 Beloit Corporation High consistency pressure screen and method of separating accepts and rejects
US4855038A (en) * 1985-06-20 1989-08-08 Beloit Corporation High consistency pressure screen and method of separating accepts and rejects
US4744894A (en) * 1986-06-30 1988-05-17 Gauld W Thomas Fibrous stock screening apparatus
DE3701669A1 (de) * 1987-01-22 1988-08-04 Voith Gmbh J M Sortierfluegel
FI77279C (fi) * 1987-04-30 1989-02-10 Ahlstroem Oy Foerfarande och anordning foer behandling av fibersuspension.
JP3542594B2 (ja) * 1992-06-20 2004-07-14 ボイト フィンク ファイバー システムズ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディト ゲゼルシャフト 繊維懸濁液用加圧分離装置
US5307939A (en) * 1992-07-13 1994-05-03 Ingersoll-Rand Company Screening apparatus for papermaking pulp
FR2706495B1 (fr) * 1993-06-16 1995-09-08 Lamort E & M Rotor pour l'épuration hydrodynamique sous pression de pâte à papier, et appareil muni de ce rotor.

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10304621A1 (de) * 2003-02-05 2004-08-26 Voith Paper Patent Gmbh Verfahren zur Bestimmung von rheologischen Eigenschaften einer Faserstoffsuspension
DE10304621B4 (de) * 2003-02-05 2005-04-28 Voith Paper Patent Gmbh Verfahren zur Bestimmung von rheologischen Eigenschaften einer Faserstoffsuspension
WO2024033112A1 (fr) 2022-08-09 2024-02-15 Vogelsang Gmbh & Co. Kg Séparateur pour la séparation de milieu

Also Published As

Publication number Publication date
FI110011B (fi) 2002-11-15
FI945949A0 (fi) 1994-12-19
WO1994000634A1 (fr) 1994-01-06
JPH07508077A (ja) 1995-09-07
FI945949A (fi) 1994-12-19
JP3542594B2 (ja) 2004-07-14
EP0646199A1 (fr) 1995-04-05
DE59207688D1 (de) 1997-01-23
CA2138371C (fr) 1999-12-07
CA2138371A1 (fr) 1994-01-06
US5601192A (en) 1997-02-11
AU2018492A (en) 1994-01-24

Similar Documents

Publication Publication Date Title
EP0646199B1 (fr) Trieuse sous pression pour suspensions fibreuses
DE3006482C2 (de) Rotationssortierer
DE69311898T2 (de) Vorrichtung zur behandlung von fasersuspensionen
DE4000248C2 (fr)
DE2830386C2 (de) Verfahren zum Sortieren von Fasersuspensionen sowie Drucksortierer zur Durchführung des Verfahrens
CH669610A5 (fr)
DE69003112T2 (de) Profil für eine siebkorbplatte.
DE19911884A1 (de) Drucksortierer zum Sieben einer Papierfaserstoffsuspension und Siebräumer für einen solchen
WO2012084562A1 (fr) Trieuse à pression
WO2016193364A1 (fr) Classeur sous pression
EP2732094B1 (fr) Classeur sous pression
DE3016211A1 (de) Siebabscheider fuer papierstoff
EP0805890B1 (fr) Trieuse sous pression de suspensions de fibres et crible pour ces trieuses sous pression
EP0905309B1 (fr) Tamis et appareil de tamisage sous pression pour suspensions fibreuses
DE102015109025A1 (de) Refiner und Klingenelement für einen Refiner
DE19805448C2 (de) Verfahren und Vorrichtung zur Reinigung und Zuführung einer Papierstoffsuspension in den Stoffauflauf einer Papiermaschine
DE19747653C2 (de) Sieb für Faserstoffsuspensionen
DE20304303U1 (de) Drucksortierer zum Sieben einer Papierfaserstoffsuspension und Siebräumer für einen solchen
DE3121855A1 (de) "rotationssortierer fuer faserstoffsuspensionen"
WO2020193003A1 (fr) Trieur sous pression, élément de tamisage et procédé pour la fabrication d'un élément de tamisage
WO2022063643A1 (fr) Segment de garniture de raffinage
DE19736127A1 (de) Verfahren und Siebvorrichtung zum Sortieren von nassen schmutzstoffhaltigen Faserstoffen
DE10356377A1 (de) Verfahren zur Mahlung von wässrig suspendierten Papier- oder Zellstofffasern
CH501067A (de) Karde
EP1571256A1 (fr) Procédé pour pomper et dépastiller une suspension fibreuse contenant des impuretés

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19941202

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE FR GB IT LI NL SE

17Q First examination report despatched

Effective date: 19951204

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO MILANO S.P.A.

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE FR GB IT LI NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19961211

Ref country code: GB

Effective date: 19961211

Ref country code: FR

Effective date: 19961211

REF Corresponds to:

Ref document number: 146239

Country of ref document: AT

Date of ref document: 19961215

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59207688

Country of ref document: DE

Date of ref document: 19970123

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
EN Fr: translation not filed
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 19961211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970630

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

26 Opposition filed

Opponent name: VOITH SULZER STOFFAUFBEREITUNG GMBH

Effective date: 19970910

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: VOITH SULZER STOFFAUFBEREITUNG GMBH

Effective date: 19970910

PLBO Opposition rejected

Free format text: ORIGINAL CODE: EPIDOS REJO

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 19990414

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20100621

Year of fee payment: 19

Ref country code: AT

Payment date: 20100614

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20100614

Year of fee payment: 19

Ref country code: DE

Payment date: 20100625

Year of fee payment: 19

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110620

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110620

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 146239

Country of ref document: AT

Kind code of ref document: T

Effective date: 20110620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120103

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59207688

Country of ref document: DE

Effective date: 20120103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110621