EP0643265B1 - Procédé et dispositif de commande de brûleurs à gaz avec prémélange et excès d'air - Google Patents

Procédé et dispositif de commande de brûleurs à gaz avec prémélange et excès d'air Download PDF

Info

Publication number
EP0643265B1
EP0643265B1 EP94113828A EP94113828A EP0643265B1 EP 0643265 B1 EP0643265 B1 EP 0643265B1 EP 94113828 A EP94113828 A EP 94113828A EP 94113828 A EP94113828 A EP 94113828A EP 0643265 B1 EP0643265 B1 EP 0643265B1
Authority
EP
European Patent Office
Prior art keywords
mean
value
threshold
value signal
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94113828A
Other languages
German (de)
English (en)
Other versions
EP0643265A1 (fr
Inventor
Detlef Dr.-Ing. Altemark
Hans-Jürgen Kruczek
Ulrich Prof.-Dr. Spicher
Jürgen Dr. Sterlepper
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EON Ruhrgas AG
Original Assignee
Ruhrgas AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ruhrgas AG filed Critical Ruhrgas AG
Publication of EP0643265A1 publication Critical patent/EP0643265A1/fr
Application granted granted Critical
Publication of EP0643265B1 publication Critical patent/EP0643265B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/08Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using light-sensitive elements
    • F23N5/082Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using light-sensitive elements using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2223/00Signal processing; Details thereof
    • F23N2223/08Microprocessor; Microcomputer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2235/00Valves, nozzles or pumps
    • F23N2235/02Air or combustion gas valves or dampers
    • F23N2235/06Air or combustion gas valves or dampers at the air intake
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2235/00Valves, nozzles or pumps
    • F23N2235/02Air or combustion gas valves or dampers
    • F23N2235/10Air or combustion gas valves or dampers power assisted, e.g. using electric motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2235/00Valves, nozzles or pumps
    • F23N2235/12Fuel valves
    • F23N2235/16Fuel valves variable flow or proportional valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2239/00Fuels
    • F23N2239/06Liquid fuels

Definitions

  • the invention relates to a method for operating a stoichiometric working Gas burner, a flame characteristic representative of the combustion state measured, a measurand obtained, from which an average signal is formed and this is used to regulate the gas and / or air mass flow.
  • One measure for reducing NO x emissions during combustion processes is to lower the flame temperature. This can be done by stoichiometric combustion. In addition to the amount of air required for complete combustion, the burner is supplied with cooling gas, which cooling gas can also include excess air. The combustion state depends on how much excess air or cooling gas is used.
  • the invention has for its object to remedy this situation and the possibility for automatic detection and consideration of the gas type.
  • the invention is based on the knowledge that a relationship dependent on the type of gas between the mean signal and the standard deviations. Depending on the type of gas, a defined value of the standard deviations is different Assigned mean signal. By capturing these relationships, the control system is able to recognize the type of gas and the setpoint of the mean signal - if necessary taking into account the set performance - to specify accordingly so that the burner in the desired area, e.g. B. in a desired one Distance from the flame stability limit or from a CO emission limit, is operated.
  • the desired area e.g. B. in a desired one Distance from the flame stability limit or from a CO emission limit
  • the threshold value can, for example, be set at the flame stability limit. It can also be assigned a critical value for CO emissions. These show the same course as the standard deviations.
  • the regulation ensures that the Burner at a reliable distance from the respective, by the threshold of the standard deviations represented limit remains.
  • the main advantage of this control concept is that no characteristics are required for the mean signal are.
  • the controller only gives a roughly set output for the starting process a "safe" gas / air mass flow ratio. Based on this, he drives then for the first time the threshold of the standard deviations and determines from them automatically the setpoint of the mean signal. For this he only needs one Specification for the distance that this setpoint is from that actual value of the mean value signal which is assigned to the threshold value of the standard deviations is.
  • the threshold value of the standard deviations is approached periodically, the length of the periods depending on the stability of the operating conditions can be.
  • the Target value it is preferable to adapt the Target value, as characterized for example in claims 2 and 3.
  • the setpoint can be adapted, for example, when changing the gas type Adjustment of performance, a change in air temperature or as a result of any disturbance to the state of the flame may be necessary.
  • a particularly good control behavior can be achieved in that in addition to the periodic adaptation of the setpoint of the mean value signal as required becomes.
  • the periods can be chosen to be relatively long.
  • a further improvement of the control concept is achieved in that gas type-dependent Characteristic values for the threshold of the standard deviations, this Threshold value assigned actual value of the mean value signal and the distance of the setpoint of the mean signal from this actual value are specified that when starting the threshold value of the standard deviations from the assigned st value of Average signal the gas type is recognized and that depending on the gas type associated threshold value and the associated distance of the target value of the mean value signal selected from the actual value of the mean value signal assigned to this threshold value will.
  • the burner can be very close, for example, to the flame stability limit or the CO emission limit. Because these limits are depending on the gas type, different threshold values of the standard deviations assigned. The distance that the setpoint of the mean value signal from the actual value assigned to the respective threshold value, depending on the gas type to get voted. By specifying these values specifically for the gas type very refine the control concept. However, this advantage is bought by that the controller must be given a larger number of characteristic values.
  • the time when approaching the threshold value of the standard deviations Frequency of threshold violations and the threshold of the To allow standard deviations to be considered reached only if the threshold values are exceeded occur with a predetermined frequency. That way ensures that the regulation does not respond to any short-term exceeding of the threshold value responds.
  • the level of the frequency limit e.g. 1000 / s is included not critical.
  • the measured value is preferably that which represents the combustion state Flame property used for flame monitoring, d. H. to turn off the Burner if the flame goes out.
  • An essential development of the invention is as for the combustion state representative flame property to measure the light intensity. It was found that the standard deviations in light intensity particularly at the Flame stability limit a concise course in precisely assignable assignment to the mean signal. Add to that the light intensity is instant The burner is switched off when the flame goes out. You can also use the light intensity Detect in a simple manner and convert it into corresponding measurement signals. Above all, the measurement of the light intensity enables a reliable one Detection of the respective gas type. The measurement is inertia and leaves the detection an integral flame area. Finally it was found that the Light intensity only depends on the power to a comparatively small extent. This is based above all on the map-free, adaptive control concept.
  • a flame property representative of the combustion state measure the light intensity over one or more radiation bands.
  • a suitable selection of the radiation bands can cause interference radiating system components can be avoided.
  • the different Radiation characteristics of the individual gas types when selecting the Radiation bands are taken into account and thus an optimal measurement signal for the gas type be generated. It is also possible to use the measured value acquisition via or to recognize several radiation bands of gas types.
  • the infrared radiation is preferably excluded when measuring the light intensity. The measurement is therefore not caused by heated parts in the vicinity of the Flame adulterated.
  • a photomultiplier or a semiconductor has proven to be an advantageous sensor.
  • the measurement of the light intensity is preferably carried out within an adjustable range Field of view of the flame area.
  • Optics for determination at the inlet of the light guide the field of view size.
  • the field of vision should be so large that a representative flame area is detected.
  • premix burners for example can be worked with a relatively small angle because of the flame has a very uniform structure. This applies all the more, the more intensive the premix is.
  • muzzle-mixing burners on the other hand, a relatively large one must be used Flame area can be detected.
  • the optics can also be designed as a heat shield be so that the light guide is close to the flame can be introduced.
  • the light guide can be as close as desired the flame will be approximated. Furthermore, through the use of coolants further optimizes the life of the light guide. It is also possible to use less expensive light guides use lower temperature resistance.
  • the light guide can with a gas curtain, preferably with an air curtain for Protection against contamination.
  • the device according to FIG. 1 comprises a stoichiometric one premixing gas burner 1 with a combustion chamber 2 and one of these upstream mixing chamber 3.
  • a gas line 4 in which an actuator 5 in the form of a motor-driven gas throttle valve is arranged.
  • a safety valve 6 To the mixing chamber 3 also leads an air line 7, in which an actuator 8 in Form a motor-driven air throttle valve is arranged.
  • the burner 1 is also provided with a light guide 9, which detects the light intensity within the combustion chamber 2. in the present case, the light guide 9 observes the combustion chamber 2 through a central opening in a burner plate 10. Das Field of view from a not shown, a heat shield visual optics is narrow, since the burner with intensive premixing works. The main transmission area lies between 200 and 600 nm, so infrared radiation is excluded out.
  • the light guide 9 is interposed by a transducer 11 in the form of a photomultiplier or semiconductor connected to a controller 12 designed as a computer. This is via a relay stage 13 with the actuators 5 and 8 and with the safety valve 6 in connection. Further the controller receives the feedback from the actuators.
  • controller 12 with an operating device 14, a digital-analog stage 15 and an output device 16 provided for the process control variables.
  • the light intensity represents a flame property that represents the combustion state within the combustion chamber 2 of the gas burner 1.
  • the light intensity is detected by the light guide 9 and fed to the controller 12 as a measurement signal. From the measurement signal, this forms an average signal Um and a signal SN for the averaged standard deviations.
  • the diagram in FIG. 2 shows the course of these two signals, plotted against the air ratio ⁇ , for a given gas type and a given power. As the air ratio increases, the mean signal signal decreases, while the standard deviations increase. When the flame stability limit is reached, the initially gradual increase turns into a steep characteristic curve.
  • the two curves shown in FIG. 2 simultaneously represent the pollutant emissions, namely around the NO x curve and SN the CO curve, see the diagram according to FIG. 3.
  • the course of the curves in the diagram according to FIG. 2 is gas type. and performance-dependent.
  • a diagram can be created for each gas type create with groups of curves for the two signals whose Parameter is the performance.
  • the invention is based on the knowledge that a gas type-dependent Relationship between the mean signal and the Standard deviations is present. So becomes a certain one Value of the standard deviations are defined, so are this value each Different mean signals are assigned according to the gas type. Out In this relationship, the controller recognizes the current gas type and gives a corresponding setpoint for the further control the mean signal before.
  • the Burner with a roughly specified output and one in safe air range. Then becomes the flame stability limit by increasing the air ratio approached, which is defined as the threshold value of the standard deviations is. As soon as this threshold value is reached, the Controller the associated actual value of the average signal and gives, based on this, a setpoint that is around a certain Amount is higher than the actual value entered. Because the recorded actual value at the flame stability limit, the instantaneous Represents the type of gas, the distance between the setpoint and the actual value can be varied depending on the gas type, if necessary under gas type Adjustment of the threshold.
  • the controller guides the flame stability limit depending on need, for example when changing the gas type, if the air temperature rises or if other conditions occur Disorders. He recognizes the need for example by that the value of the standard deviations compared to that of Every setpoint adaptation changes the stored value significantly.
  • the ratio of the actual values of the standard deviation can be the same and the mean value signal are monitored.
  • a significant one Deviation of this relationship from the relationship between the a value of the standard deviation stored in the setpoint adaptation and the setpoint itself can be used as an indication be taken for need.
  • a periodic approach to the flame stability limit is provided be.
  • the system does not respond to any brief exceedance of the threshold value defining the flame stability limit of the standard deviations is the frequency the threshold violations are recorded and a corresponding limit value is set, for example 1000 exceedances per second.
  • the level of this limit is not critical.
  • Maps worked as shown in Figures 4 to 8 are.
  • the standard deviations are called long-term standard deviations LSN detected to prevent the Regulator considers short-term malfunctions as a gas type change.
  • a setpoint characteristic curve of the mean value signal is provided for each gas type To be specified, and plotted against the performance.
  • the corresponding diagram is shown in Fig. 4.
  • the performance is reproduced here and also in the following diagrams as mass air flow.
  • Figures 5, 6 and 7 show corresponding ones Diagrams, namely Fig. 5 for butane, Fig. 6 for Natural gas and Fig. 7 for a known under the name G 110 Test gas, which is 51% hydrogen and 24% nitrogen and consists of 25% methane.
  • the first concept is that no maps for the Standard deviations are required. There is this when starting the flame stability limit there is a risk that it will there is a sharp rise in CO emissions. The danger is all the more larger, the lower the calorific value of the gas and the higher the performance is.
  • the threshold that defines the flame stability limit the standard deviations must not be chosen too low, because otherwise it does not differ from normal gas Burner operation can be distinguished. You put it on the other hand, close to the flame stability limit, is a corresponding level of CO emissions. The rise However, the CO emission occurs only briefly and can may be tolerated because it does not reduce the total output significantly increased. Otherwise, this disadvantage does not apply if afterburning is provided.
  • the second is Control concept more complex. For that it can always be in safe Work away from the flame stability limit.
  • the given Setpoints can be used for every gas type and every power level take into account the permissible CO values.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Regulation And Control Of Combustion (AREA)
  • Control Of Combustion (AREA)

Claims (10)

  1. Procédé de commande d'un brûleur à gaz avec prémélange et excès d'air où une propriété de flamme représentative pour l'état de la combustion est mesurée, où une grandeur mesurée est obtenue, et où un signal de valeur moyenne en est formé et utilisé pour la commande du débit massique du gaz et/ou de l'air, caractérisé par le fait que l'écart quadratique moyen de la grandeur mesurée est saisi, attribué au signal de valeur moyenne pour la détermination de l'état de combustion et utilisé en plus pour l'ajustage de la commande, par quoi
    a) le débit massique de gaz et/ou d'air est varié jusqu'à ce qu'il atteint le seuil fixé pour l'écart quadratique moyen;
    b) la valeur actuelle du signal de valeur moyenne est saisie quand le seuil est atteint;
    c) une valeur de consigne du signal de valeur moyenne est fixée à une distance prédéterminée de la valeur actuelle du signal de valeur moyenne saisie suivant l'étape b);
    d) le débit massique de gaz et/ou d'air est réglé moyennant la valeur de consigne du signal de valeur moyenne suivant l'étape c);
    e) les étapes a) à d) sont répétées en fonction du besoin et/ou périodiquement.
  2. Procédé selon la revendication 1, caractérisé par le fait
    f) que la valeur de consigne du signal de valeur moyenne saisie suivant l'étape c) est mise en mémoire;
    g) qu'une valeur de l'écart quadratique moyen saisie une seule fois est mise en mémoire quand la valeur de consigne du signal de valeur moyenne est atteinte;
    h) que le rapport entre les valeurs actuelles du signal de valeur moyenne et de l'écart quadratique moyen sont surveillées;
    i) que le rapport suivant l'étape h) est comparé avec le rapport entre les valeurs mises en mémoire suivant les étapes f) et g); et
    k) que les étapes a) à d) sont répétées quand les rapports comparés suivant l'étape i) présentent des écarts significatifs.
  3. Procédé selon les revendications 1 et 2, caractérisé par le fait
    qu'une valeur de l'écart quadratique moyen saisie une seule fois est mise en mémoire quand la valeur de consigne du signal de valeur moyenne est atteinte;
    que la valeur actuelle de l'écart quadratique moyen est surveillée;
    que la valeur actuelle de l'écart quadratique moyen est comparée avec la valeur mise en mémoire de l'écart quadratique moyen; et
    que les étapes a) à d) sont répétées quand les valeurs comparées les unes avec les autres présentent des écarts significatifs.
  4. Procédé selon l'une des revendications 1 à 3, caractérisé par le fait que des valeurs d'identification en fonction du type de gaz sont fixées pour le seuil des écarts quadratiques moyens, pour la valeur actuelle attribuée à ce seuil du signal de valeur moyenne et pour la distance du seuil du signal de valeur moyenne de ladite valeur actuelle, que lors de l'approche du seuil de l'écart quadratique moyen le type du gaz est déterminé à partir de la valeur actuelle attribuée du signal de valeur moyenne, et que, en fonction du type de gaz, le seuil correspondant et la distance correspondante du seuil du signal de valeur moyenne sont choisis à partir de la valeur actuelle du signal de valeur moyenne attribuée audit seuil.
  5. Procédé selon l'une des revendications 1 à 4, caractérisé par le fait que lors de l'approche du seuil de l'écart quadratique moyen la fréquence des dépassements du seuil est saisie, et que le seuil de l'écart quadratique moyen n'est considéré comme atteint que si une fréquence prédéterminée pour les dépassements du seuil est atteinte.
  6. Procédé selon l'une des revendications 1 à 5, caractérisé par le fait que la valeur mesurée de la propriété de flamme représentative pour l'état de la combustion est utilisée pour la surveillance de la flamme.
  7. Procédé selon l'une des revendications 1 à 6, caractérisé par le fait que l'intensité lumineuse est mesurée comme propriété de flamme représentative pour l'état de la combustion.
  8. Procédé selon l'une des revendications 1 à 7, caractérisé par le fait que l'intensité lumineuse est mesurée comme propriété de flamme représentative pour l'état de la combustion sur une ou plusieurs bandes de rayonnement.
  9. Procédé selon l'une des revendications 1 à 8, caractérisé par le fait que lors de la mesure de l'intensité lumineuse le rayonnement infrarouge est exclu.
  10. Procédé selon l'une des revendications 1 à 9, caractérisé par le fait que la mesure de l'intensité lumineuse s'effectue à l'intérieur d'un champs visuel réglable de la flamme.
EP94113828A 1993-09-13 1994-09-03 Procédé et dispositif de commande de brûleurs à gaz avec prémélange et excès d'air Expired - Lifetime EP0643265B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4331048 1993-09-13
DE4331048A DE4331048A1 (de) 1993-09-13 1993-09-13 Verfahren und Vorrichtung zum Betreiben eines überstöchiometrisch vormischenden Gasbrenners

Publications (2)

Publication Number Publication Date
EP0643265A1 EP0643265A1 (fr) 1995-03-15
EP0643265B1 true EP0643265B1 (fr) 1998-04-22

Family

ID=6497597

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94113828A Expired - Lifetime EP0643265B1 (fr) 1993-09-13 1994-09-03 Procédé et dispositif de commande de brûleurs à gaz avec prémélange et excès d'air

Country Status (2)

Country Link
EP (1) EP0643265B1 (fr)
DE (2) DE4331048A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1283699B1 (it) * 1996-03-25 1998-04-30 Enrico Sebastiani Regolazione della velocita'di efflusso della miscela aria-gas dalle uscite di fiamma di bruciatori a gas
DE20114065U1 (de) * 2001-08-25 2003-01-16 Viessmann Werke Kg Modulierender Gasbrenner
DE10200128B4 (de) * 2002-01-04 2005-12-29 Fa.Josef Reichenbruch Verfahren zur Erkennung von Gasarten und Verfahren zum Betrieb einer Brennvorrichtung sowie Brennvorrichtung für die Durchführung dieser Verfahren
DE102012108268A1 (de) 2012-09-05 2014-03-06 Ebm-Papst Landshut Gmbh Verfahren zur Erkennung der Gasfamilie sowie Gasbrennvorrichtung

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1068665A1 (ru) * 1982-01-29 1984-01-23 Специальное Проектно-Конструкторское Бюро Всесоюзного Объединения "Союзнефтеавтоматика" Способ автоматического регулировани процесса горени
US4913647A (en) * 1986-03-19 1990-04-03 Honeywell Inc. Air fuel ratio control
DE3630177A1 (de) * 1986-09-04 1988-03-10 Ruhrgas Ag Verfahren zum betreiben von vormischbrennern und vorrichtung zum durchfuehren dieses verfahrens
GB2204428A (en) * 1987-05-06 1988-11-09 British Gas Plc Control of burner air/fuel ratio
FR2638819A1 (fr) * 1988-11-10 1990-05-11 Vaillant Sarl Procede et un dispositif pour la preparation d'un melange combustible-air destine a une combustion
DE3915247A1 (de) * 1989-05-10 1990-11-15 Messer Griesheim Gmbh Verfahren zum automatischen einstellen von brenngas/sauerstoff- oder luft-gemischen von waerm- oder schneidbrennern
DE9011973U1 (de) * 1989-09-28 1990-11-08 Mindermann, Kurt-Henry, Dipl.-Ing., 4030 Ratingen Einrichtung zur Überwachung und Bewertung von Flammen
US5037291A (en) * 1990-07-25 1991-08-06 Carrier Corporation Method and apparatus for optimizing fuel-to-air ratio in the combustible gas supply of a radiant burner
JP2755807B2 (ja) * 1990-10-11 1998-05-25 東京電力株式会社 バーナ詰まり識別方法
DE4042025C2 (de) * 1990-12-28 2001-04-26 Hitachi Ltd Vorrichtung und Verfahren zur Auswertung des Verbrennungszustands in einer Brennkraftmaschine
GB2261944A (en) * 1991-11-12 1993-06-02 Nat Power Plc Flame monitoring apparatus and method

Also Published As

Publication number Publication date
DE4331048A1 (de) 1995-03-16
EP0643265A1 (fr) 1995-03-15
DE59405770D1 (de) 1998-05-28

Similar Documents

Publication Publication Date Title
EP1621811B1 (fr) Procédé de fonctionnement pour un dispositif de combustion
EP0259382B1 (fr) Dispositif de regulation de la proportion d'air de combustion au gaz
DE19539568C1 (de) Verfahren und Schaltung zur Regelung eines Gasbrenners
EP0770824A2 (fr) Procédé et circuit pour commander un brûleur à gaz
DE3638410C2 (fr)
DE19627539A1 (de) Verfahren und Vorrichtung zum Steuern der Flammengröße gasbetriebener Koch- oder Backgeräte
EP0030736A2 (fr) Appareil de régulation de la quantité d'air de combustion pour un brûleur
DE3407552A1 (de) Gasregeleinrichtung zur regelung der brenngas- und oxidanszufuhr zu einem brenner bei einem atomabsorptions-spektrometer
EP0833106B1 (fr) Procédé et dispositif d'optimisation du fonctionnement d'un brûleur à gaz
EP0643265B1 (fr) Procédé et dispositif de commande de brûleurs à gaz avec prémélange et excès d'air
DE19839160B4 (de) Verfahren und Schaltung zur Regelung eines Gasbrenners
EP1971804B1 (fr) Procédé de fonctionnement d'un foyer
EP1597518B1 (fr) Mode de fonctionnement d'une turbine a gaz
DE19632983C2 (de) Regeleinrichtung für einen Gasbrenner
EP1293728B1 (fr) Procédé pour commander la puissance d'un appareil de cuisson à gaz et appareil de cuisson utilisant ce procédé
EP0339135A1 (fr) Dispositif de contrôle composite pour brûleur
EP3746705A1 (fr) Procédé de réglage d'un mélange gazeux au moyen d'un capteur de mélange gazeux
DE19921045A1 (de) Brenner zur Verbrennung von flüssigen und/oder gasförmigen Brennstoffen in Feuerungsanlagen
DE102019110976A1 (de) Verfahren zur Überprüfung eines Gasgemischsensors und Ionisationssensors bei einem brenngasbetriebenen Heizgerät
EP3767174B1 (fr) Procédé et dispositif d'étalonnage ultérieur d'un système de mesure permettant de réguler un mélange gaz-air de combustion dans un appareil de chauffage
DE3203675C2 (de) Verfahren zur Regelung des Luftüberschusses an Feuerungen sowie Einrichtung zum Regeln des Luftüberschusses
EP1176364B1 (fr) Dispositif de combustion et procédé de commande d'un dispositif de combustion
DE3737354C1 (en) Control method for adjusting the individual air/fuel ratios of the individual burners of a furnace with several burners
EP0697565A1 (fr) Procédé et dispositif de régulation et de surveillance
EP0655583B1 (fr) Procédé pour le réglage et la surveillance de combustion

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

17P Request for examination filed

Effective date: 19950329

17Q First examination report despatched

Effective date: 19960328

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19980422

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19980422

REF Corresponds to:

Ref document number: 59405770

Country of ref document: DE

Date of ref document: 19980528

EN Fr: translation not filed
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 19980422

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20000830

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020501