EP0643255A1 - Elektrische Lampe - Google Patents

Elektrische Lampe Download PDF

Info

Publication number
EP0643255A1
EP0643255A1 EP94113510A EP94113510A EP0643255A1 EP 0643255 A1 EP0643255 A1 EP 0643255A1 EP 94113510 A EP94113510 A EP 94113510A EP 94113510 A EP94113510 A EP 94113510A EP 0643255 A1 EP0643255 A1 EP 0643255A1
Authority
EP
European Patent Office
Prior art keywords
sleeve
base
electric lamp
lamp according
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP94113510A
Other languages
English (en)
French (fr)
Other versions
EP0643255B1 (de
Inventor
Gerhard Behr
Peter Helbig
Hermann Steiner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osram GmbH
Original Assignee
Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH filed Critical Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH
Publication of EP0643255A1 publication Critical patent/EP0643255A1/de
Application granted granted Critical
Publication of EP0643255B1 publication Critical patent/EP0643255B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/19Attachment of light sources or lamp holders
    • F21S41/192Details of lamp holders, terminals or connectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V23/00Arrangement of electric circuit elements in or on lighting devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K99/00Subject matter not provided for in other groups of this subclass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V27/00Cable-stowing arrangements structurally associated with lighting devices, e.g. reels 
    • F21V27/02Cable inlets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J5/00Details relating to vessels or to leading-in conductors common to two or more basic types of discharge tubes or lamps
    • H01J5/50Means forming part of the tube or lamps for the purpose of providing electrical connection to it
    • H01J5/54Means forming part of the tube or lamps for the purpose of providing electrical connection to it supported by a separate part, e.g. base
    • H01J5/56Shape of the separate part
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2102/00Exterior vehicle lighting devices for illuminating purposes

Definitions

  • the invention relates to an electric lamp, in which a bulb is held with a base, according to the preamble of claim 1.
  • Supply cables consisting of an insulation jacket and an inner conductor, are led out of the base, for which a strain relief mechanism is integrated in the base. If external forces occur on the supply cables, this mechanism is intended to prevent damage to the contacts between these supply cables and the power supplies to the lamp bulb.
  • a strain relief mechanism is integrated in the base.
  • a strain relief is known, which is based on the fact that a clamping wedge is pressed into a recess in the base, which is arranged transversely between two supply cables.
  • the clamping wedge is provided with longitudinal ribs, which simultaneously dig into the insulation jacket of the two supply cables.
  • the invention has for its object to eliminate these disadvantages and to realize a strain relief integrated in the base of high minimum strength.
  • the basic idea of the invention is to allow the strain relief in the area of the base to act essentially uniformly over the entire circumference of the supply cable. Forces are generated which are directed essentially radially onto a deformable insulation jacket which surrounds the supply cable and are distributed uniformly, approximately rotationally symmetrically.
  • the strain relief is realized according to the invention by a resilient sleeve plugged onto the insulation jacket of the supply cable, the original diameter or circumference of which is reduced by a suitable mechanism during assembly such that the inner wall of the sleeve engages with a squeeze on the deformable insulation jacket of the supply cable.
  • a suitable design of the entire strain relief mechanism it is achieved that the inner wall of the sleeve only deforms the insulation jacket or that it additionally at least partially penetrates into the insulation jacket. In both cases, a combination of positive and positive locking is created between the sleeve and the insulation jacket, which brings about the tensile strength.
  • the tensile strength can be influenced in a targeted manner by the depth of penetration and the crushing surface, by a suitable choice of the profile of the inner wall of the sleeve, and by the material properties of the insulation jacket and sleeve, in particular their modulus of elasticity and shear strength.
  • the inner wall of the sleeve can also have a rotationally symmetrical profile, as a result of which the positive engagement is reinforced accordingly becomes.
  • essentially circular-cylindrical surfaces are suitable which have at least one annular constriction, on which or on which the insulation jacket is particularly strongly squeezed.
  • the constriction can be arranged, for example, at one of the two ends of the sleeve or at any point in between.
  • the constriction can advantageously be arranged some distance away from that end of the sleeve which is first pushed over the supply cable.
  • this sleeve end preferably digs into the insulation jacket when subjected to tensile stress, so that the positive fit is additionally reinforced at this point and high tensile strength is produced.
  • a suitable shaping of the inner wall of the sleeve for a constriction is, for example, an essentially circular-cylindrical surface with a cam-like annular constriction.
  • two or more annular constrictions for example a rotationally symmetrical concave surface, or also a periodic structure of elevations and depressions, for example in the form of a sawtooth-like profile, it being possible to dispense with a rotationally symmetrical profile.
  • a particularly high tensile strength is achieved if the structure is perpendicular to the direction of the tensile load, i.e. is oriented essentially azimuthally.
  • Axial alignment of the structure results in lower tensile strength with the same material properties of the sleeve and insulation jacket.
  • the positive connection is based only on a deformation of the insulation jacket, or also on penetration of the profile into it.
  • the inside diameter or the profile of the sleeve When dimensioning the inside diameter or the profile of the sleeve, it must be ensured that the sleeve can be pushed over the insulation jacket of the supply cable at the beginning of assembly without any problems and that the insulation jacket is pinched or penetrated to ensure the desired tensile strength without the inner conductor is damaged.
  • the edges of a corresponding profile eg the sawtooth-like structure
  • the minimum inside diameter of the sleeve before installation should be between 0.1 and 1 mm or more larger than the outside diameter of the supply cable.
  • the sleeve is provided with at least one essentially axial slot.
  • the maximum possible reduction in the sleeve diameter can be influenced in a targeted manner by the width, number and length of the slots and the spring action of the materials used.
  • the sleeve material must be harder than the insulation jacket material to be squeezed. For example, plastics with appropriate properties are suitable.
  • the sleeve is only provided with a single continuous slot, which is advantageously made parallel to its longitudinal axis or does not deviate significantly therefrom.
  • the maximum possible reduction in the sleeve circumference is essentially given by the width of the slot and the spring action of the sleeve material used. It is reached at the latest when the two longitudinal edges of the sleeve, which form the slot, just touch.
  • a slot width of approximately 10 to 15% of the original sleeve circumference is advantageous.
  • the two edges of the slot need not necessarily be parallel, i.e. in principle, the slot width does not have to be constant along the sleeve. If, for example, a conical reduction in the circumference of the sleeve is sought, the slot can also taper in the direction of the corresponding end of the sleeve.
  • a spring effect can surprisingly also be achieved in particular through a plurality of slots, although these may not then be continuous, or at most one of the slots.
  • the slot width required for a desired reduction in the sleeve diameter is distributed over several slots, which also reduces the required spring travel per slot.
  • the slots can be designed and arranged in such a way that the circumference can be reduced a) uniformly over the entire length and b) unevenly over the length, for example conically or only over part of the length of the sleeve.
  • Case a) can be realized in that the sleeve is provided with at least two non-continuous slots, each of which begins at the opposite ends of the sleeve and extends over more than half the length of the sleeve.
  • opposite slots two slots - hereinafter referred to as "opposing slots” - it is achieved, similar to a continuous slot, that the circumference of the sleeve can be reduced approximately uniformly over its entire length, and the more uniformly, the more the lengths of the slots approximate the sleeve length, ie the narrower the remaining webs at the respective end of the slots, whereas if the slots are only made up to the middle of the sleeve or shorter, only the two ends of the sleeve can be tapered, whereas the Center area of the sleeve wall forcibly retains its original circumference.
  • the maximum possible reduction in the circumference of a multi-slotted sleeve is, in addition to the number and the respective width of the slots and the resilience of the sleeve material, also the length of the slots with respect to the length of the sleeve and the resilience of the web at the closed end of the respective slot influenceable.
  • Case b) can in principle also be realized by means of the sleeve described for case a) by not allowing the radial forces required for the reduction in circumference to act uniformly along the sleeve.
  • the slots of the opposing pairs of slots can also have different lengths.
  • the opposing slots need not be arranged in pairs, but the two ends of the Sleeves can also be provided with different numbers of slots. For a conical taper, for example, it is sufficient if the sleeve is provided with slots only at the end to be tapered. Because of the simpler manufacturability, costs can be saved.
  • the conical taper generated by radially inward forces is arranged in the opposite direction to the pulling direction, the resulting positive connection leads to a special strength against tensile loads.
  • profiling of the inner wall of the sleeve can also be dispensed with in this case, as a result of which further costs can be saved.
  • Two opposing pairs of slots which are preferably arranged diametrically on the circumference, are particularly advantageous. This alternately follows a slot that begins at a first end of the sleeve, a slot that begins at the second end of the sleeve, etc. Because of the symmetrical distribution of the slots, two slots at an angle distance of 180 ° are opposed at each sleeve end, whereby the two slots on the first sleeve end are rotated by 90 ° relative to the two slots on the second sleeve end. This divides the sleeve wall into four movable segments. This special arrangement of the slots allows a particularly strong, yet approximately uniformly distributed circumferential reduction along the sleeve.
  • the auxiliary part is used to reduce the original circumference of the sleeve according to the invention.
  • the auxiliary part is preferably part of the base.
  • the base is advantageously divided into two parts, an upper base part and a base base, the base base being provided with one hole per supply cable.
  • the base and upper base are connected so that the slotted sleeve is inserted into the hole.
  • the smallest outside diameter of the sleeve is made smaller than the largest inside diameter of the bore.
  • Appropriate dimensioning reduces the original sleeve circumference in such a way that the sleeve engages with a desired tensile strength in a squeezing manner in the insulation jacket of the supply cable.
  • a reduction in the circumference of the slotted sleeve is achieved by converting the axial force applied during assembly - when connecting the upper base part and base base - at least partially into radially inward forces.
  • This can be achieved in that either the outer wall of the sleeve or the inner wall of the bore or both are at least partially tapered, in the latter case the taper of the sleeve and the bore need not necessarily match.
  • the outer wall of the sleeve and / or the inner wall of the bore can also be of essentially circular cylindrical design, in which case at least one of the two walls must be provided with a ramp-like axial bulge which tapers in the axial direction. So that the sleeve can be inserted into the bore, the smallest original outside diameter of the sleeve is dimensioned smaller than the largest inside diameter of the bore.
  • V of the angles ⁇ and ⁇ (in each case based on the longitudinal axis of the supply cable) of the outer cone of the sleeve or the inner cone of the bore in the base base allows the distribution of the forces acting radially on the sleeve in the longitudinal direction of the sleeve to be set.
  • these three cases can be realized with constant angle ⁇ , or with variable angles ⁇ and ⁇ .
  • V 1
  • V ⁇ 1 the situation is reversed. Depending on the absolute value of V ⁇ 1, this results in a particularly strong deformation of the insulation jacket in the area of one of the two sleeve ends.
  • the circumference is only reduced when the outer wall of the sleeve touches the inner wall of the bore. If the sleeve is then further shifted in the axial direction by the distance a, a circumferential reduction ⁇ U is achieved.
  • s denotes the annular gap between the inner wall of the sleeve and the insulation jacket.
  • the case V> 1 prevents the sleeve from "slipping" on the insulation jacket of the supply cable during assembly of the base base. Since the end of the sleeve pointing in the direction of the upper base part is tapered and thereby engages canting in the insulation jacket, the Movement of the sleeve along the insulation jacket of the supply cable is prevented even during assembly, ie before the base and part of the base have reached their end position and the sleeve has been reduced to its final diameter, and the strength of the strain relief is increased, since the tensile load on the supply cable increases end of the sleeve facing away from the base bottom increasingly digs into the insulation jacket against the direction of pull.
  • the upper base part can be provided with a stop, for example with an annular one.
  • the upper base part is provided with one hole per supply cable, the diameter of each hole being so dimensioned is that only the supply cable, but not the attached sleeve, fits in.
  • the sleeve engages radially squeezing the insulation jacket without that the sleeve can move in the axial direction of the supply cable during assembly, thereby preventing cable movement and thus possible damage to the welding points between the inner conductor of the supply cable and the current supply of the lamp bulb.
  • a lamp 1 with strain relief integrated in a base 2 is shown partially in section. It is a discharge lamp that is preferably used in motor vehicle headlights.
  • Two electrodes 3a, b are arranged inside a hermetically sealed gas-filled discharge vessel 4, the pinch of which is extended to a continuation 4a which is held by the ceramic base 2.
  • the electrodes 3a, b are connected in an electrically conductive manner via the current leads 5a, b to supply cables 6a, b, each consisting of an inner conductor and an elastic insulation jacket 12a, b, within the base 2 by means of welding spots 13a, b.
  • the base 2 consists of a disk-shaped cover 2a and a pot-like base part 7 facing the discharge vessel 4, which is provided on the end surface remote from the bulb with two openings for the supply cables 6a, b, the walls of which remote from the bulb form two annular stops 8a, b, and one the end face snapped-on disc-like base 9, which is provided with two conical bores 10a, b.
  • the two conical bores 10a, b enclose outer-conical sleeves 11a, b, which surround the supply cables, fix them in each case by squeezing them to the insulation jacket 6a, b and rest against the annular stops 8a, b on their end faces facing the discharge vessel 4.
  • FIG. 2a shows the longitudinal section and in FIG. 2b the front view of the embodiment of an outer conical sleeve 11 used in FIG. 1, which is provided with two pairs of opposing slots 14a-d, two diametrically opposite slots 14b, d from a first end 15 the sleeve 11 and rotated by 90 °, two further slots 14a, c start from a second end 16, so that four movable segments 17a-d are formed.
  • the desired reduction in the sleeve circumference, in particular as a result of forces acting radially from the outside, and the spring travel required for this are distributed over four slots 14a-d.
  • the cylindrical inner wall 18 is provided at the first end 15 with a cam-like annular constriction 19, so that in this case, as in FIG. 1 and FIG. 5b can be seen, the squeezing engagement of the sleeve 11 in the insulation jacket 12 of the supply cable 6 is reinforced at this point.
  • the special shape of the sleeve 11 enables a tilt-free attachment to the insulation jacket of a supply cable, which predestines this embodiment for use in the automated manufacture of the lamp.
  • FIG. 3 shows the longitudinal section of a further embodiment of a sleeve 11 ', which differs from the embodiment in FIGS. 2a, b by the profiling of the inner wall.
  • the outer wall 20 is straight.
  • the sawtooth-like structure 21 leads, by means of corresponding squeezing of the insulation jacket, to an improved form fit between the sleeve 11 'and the supply cable, which results in increased strength against tensile loads.
  • the dimensioning of the sawtooth-like structure 21 must be matched to the desired reduction in the sleeve diameter and the wall thickness of the insulation jacket in such a way that the desired tensile strength is ensured without the supply cable being damaged.
  • the annular edges of the sawtooth-like structure 21 can be provided with curves (not shown in FIG. 3).
  • FIG. 4a shows the longitudinal section and FIG. 4b the front view of an exemplary embodiment of an outer conical sleeve 11 ′′, which is provided with a continuous slot 14 ′′.
  • the inner wall 18 '' is cylindrical.
  • This single-slit sleeve 11 ′′ is suitable for reductions in the sleeve circumference, which extend essentially uniformly over the entire length of the outer-conical sleeve 11 ′′. Due to the simple design of this sleeve, the production is relatively inexpensive.
  • Figure 5a shows the longitudinal section and Figure 5b the front view of a further embodiment of a sleeve 11 ''', which is provided with a continuous slot 14'''.
  • the inner wall 18 ''' is designed as a rotationally symmetrical, essentially concave surface.
  • the chamfer 18a ''' makes it easier to attach the sleeve to a supply cable.
  • the outer wall 20 ''' is essentially circular-cylindrical with a ramp-like axial bulge 20a''' which tapers along the sleeve 11 '''. This bulge fulfills the same function as a conical outer wall.
  • FIG. 8a the supply cable 6, consisting of inner conductor 22 and insulation jacket 12 and the functional units of the strain relief - base part 7 ', (shown in FIG. 2a, b) outer conical sleeve 11 and base base 9' - are shown schematically in the preassembled state in partial longitudinal section.
  • the base 9 ', the outer conical sleeve 11 and the base part 7' are placed in this order on the stripped end of the supply cable 6.
  • the base base 9 ' is pushed in the direction of the base part 7' (see arrow direction) and takes the sleeve 11 with it until it rests on the stop 8.
  • the conical bore 10 is then pushed over the sleeve 11, as a result of which the sleeve 11 is squeezed together until the outer bevels 23 of the base 9 'sit on the inner bevel 24 of the base part 7'.
  • FIG. 8b shows the aforementioned parts in the assembled final state, the conical bore 10 and the special arrangement of the slots bringing about a uniform reduction in the original diameter of the sleeve 11. This maintains the inclined position of the inner wall of the sleeve 11, so that it deforms the insulation jacket 12 of the supply cable 6 in the desired manner.
  • the resultant rotationally symmetrical form fit between the inner wall of the sleeve 11 and the insulation jacket 12 of the supply cable 6 is clearly recognizable, which enables the required high tensile strength.
  • a sleeve with a straight outer wall can be mounted by means of a slightly conically shaped bore in the base base, the contact pressure not being evenly distributed, but being concentrated on the narrowest diameter of the bore.
  • Both electrodes and incandescent filaments are suitable as illuminants.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Insulating Bodies (AREA)
  • Common Detailed Techniques For Electron Tubes Or Discharge Tubes (AREA)
  • Connections Effected By Soldering, Adhesion, Or Permanent Deformation (AREA)
  • Vessels And Coating Films For Discharge Lamps (AREA)
  • Circuit Arrangements For Discharge Lamps (AREA)
  • Glass Compositions (AREA)
  • Liquid Developers In Electrophotography (AREA)
  • Details Of Connecting Devices For Male And Female Coupling (AREA)

Abstract

Eine elektrische Lampe (1), insbesondere Metallhalogenid-Hochdruckentladungslampe für Kfz-Scheinwerfer weist eine im Sockel (2) integrierte Zugentlastung für die Zuleitungskabel (6a, 6b) auf. Die Zugentlastung enthält federnde Hülsen (11a, 11b), welche die Zuleitungskabel (6a, 6b) kraft- und/oder formschlüssig umgeben. Zu diesem Zweck sind die Hülsen (11a, 11b) jeweils mit mindestens einem Schlitz so versehen, daß eine Reduzierung des ursprünglichen Umfangs durch von außen radial auf die Hülse wirkende Kräfte möglich ist. Vorteilhaft werden die radialen Kräfte erzeugt, indem während der Montage die Hülsen (11a, 11b) in konische Bohrungen (10a, 10b) des Sockelbodens (9) gepreßt werden. <IMAGE>

Description

  • Die Erfindung betrifft eine elektrische Lampe, bei der ein Kolben mit einem Sockel gehalten ist, gemäß dem Oberbegriff des Anspruchs 1.
  • Aus dem Sockel sind Zuleitungskabel, bestehend aus Isolationsmantel und Innenleiter, herausgeführt, für die ein Zugentlastungsmechanismus im Sockel integriert ist. Treten an den Zuleitungskabeln äußere Kräfte auf, soll dieser Mechanismus eine Beschädigung der Kontakte zwischen diesen Zuleitungskabeln und den Stromzuführungen des Lampenkolbens verhindern. Nach der Norm ISO 8092-2 wird beispielsweise bei einer Querschnittsfläche des Innenleiters von 0,75 mm² eine Mindestfestigkeit der Zugentlastung in Höhe von 70 N gefordert.
  • Aus der DE-OS 40 37 964 ist eine Zugentlastung bekannt, die darauf beruht, daß ein Klemmkeil in eine Ausnehmung im Sockel, die querliegend zwischen zwei Zuleitungskabel angeordnet ist, eingedrückt wird. Der Klemmkeil ist mit Längsrippen versehen, die sich gleichzeitig in den Isolationsmantel der beiden Zuleitungskabel eingraben.
  • Nachteilig bei dieser Lösung ist, daß die Zuleitungskabel durch den Klemmkeil nur einseitig belastet werden, wodurch bei der Montage unerwünschte Kabelbewegungen (insbesondere Verdrehungen) auftreten können. Wird eine hohe Festigkeit der Zugentlastung gefordert, müssen die Längsrippen so ausgeführt sein, daß der Isolationsmantel des Zuleitungskabels entsprechend stark einseitig gequetscht wird, bzw. daß die Längsrippen in den Isolationsmantel eindringen. Dadurch erhöht sich die Gefahr der Beschädigung des Innenleiters des Zuleitungskabels durch die Längsrippen des Klemmkeils.
  • Der Erfindung liegt die Aufgabe zugrunde, diese Nachteile zu beseitigen und eine im Sockel integrierte Zugentlastung hoher Mindestfestigkeit zu realisieren.
  • Diese Aufgabe wird erfindungsgemäß durch die kennzeichnenden Merkmale des Anspruchs 1 gelöst. Weitere vorteilhafte Ausführungen der Erfindung sind in den Unteransprüchen erläutert.
  • Der Grundgedanke der Erfindung besteht darin, die Zugentlastung im Bereich des Sockels im wesentlichen gleichmäßig über den gesamten Umfangs des Zuleitungskabels wirken zu lassen. Dabei werden Kräfte erzeugt, die im wesentlichen radial auf einen verformbaren Isolationsmantel, der das Zuleitungskabel umgibt, gerichtet sind und gleichmäßig, näherungsweise rotationssymmetrisch, verteilt sind.
  • Dadurch werden zum einen lokale Maxima der Kraftverteilung vermieden, d.h. die Gefahr der Beschädigung des Innenleiters ist bei gleicher Zugfestigkeit erheblich geringer. Zum anderen treten während der Montage der Zuleitungskabel keine unerwünschten Kabelbewegungen durch Zug- und Drehkräfte mehr auf, d.h. eine Beschädigung des Kontaktes zwischen Zuleitungskabel und Stromzuführung des Lampenkolbens ist ausgeschlossen.
  • Dabei ist weder die Anzahl noch die räumliche Anordnung der Zuleitungskabel in der Ebene des Sockelbodens besonderen Einschränkungen unterworfen, da jedes Zuleitungskabel seine eigene Anordnung zur Zugentlastung aufweist.
  • Die Zugentlastung wird erfindungsgemäß durch eine auf den Isolationsmantel des Zuleitungskabels aufgesteckte federnde Hülse realisiert, deren ursprünglicher Durchmesser bzw. Umfang durch einen geeigneten Mechanismus während der Montage so verringert wird, daß die Innenwandung der Hülse an dem verformbaren Isolationsmantel des Zuleitungskabels quetschend eingreift. Dies bedeutet, daß bei geeigneter Ausführung des gesamten Zugentlastungsmechanismus erreicht wird, daß die Innenwandung der Hülse den Isolationsmantel nur deformiert, oder daß sie zusätzlich mindestens teilweise in den Isolationsmantel eindringt. In beiden Fällen entsteht zwischen Hülse und Isolationsmantel eine Kombination aus Kraft- und Formschluß, welche die Zugfestigkeit bewirkt. Die Zugfestigkeit kann durch die Eindringtiefe und die Quetschfläche, durch eine geeignete Wahl des Profils der Innenwandung der Hülse, sowie durch die Materialeigenschaften von Isolationsmantel und Hülse, insbesondere deren Elastizitätsmodul und Scherfestigkeit gezielt beeinflußt werden.
  • Die Innenwandung der Hülse kann auch in einer bevorzugten Ausführungsform ein rotationssymmetrisches Profil aufweisen, wodurch der Formschluß entsprechend verstärkt wird. Geeignet sind beispielsweise im wesentlichen kreiszylinderförmige Flächen, die mindestens eine ringförmige Verengung aufweisen, an der bzw. an denen der Isolationsmantel besonders stark gequetscht wird. Die Verengung kann dabei beispielsweise an einer der beiden Enden der Hülse oder auch an einer beliebigen Stelle dazwischen angeordnet sein. Um das Aufstecken der Hülse über das Zuleitungskabel zu erleichtern, kann die Verengung vorteilhaft in einiger Entfernung von jenem Ende der Hülse angeordnet sein, welches zuerst über das Zuleitungskabel geschoben wird. Außerdem ist die Verengung dann eher in der Nähe desjenigen Endes der Hülse, welches entgegen der Zugrichtung zeigt. Dadurch gräbt sich bevorzugt dieses Hülsenende bei Zugbelastung in den Isolationsmantel ein, so daß der Formschluß an dieser Stelle zusätzlich verstärkt wird und eine hohe Zugfestigkeit entsteht.
  • Eine geeignete Formgebung der Innenwandung der Hülse für eine Verengung ist beispielsweise eine im wesentlichen kreiszylinderförmige Fläche mit einer nockenartigen ringförmigen Verengung. Vorteilhaft sind auch zwei oder mehr ringförmige Verengungen, beispielsweise eine rotationssymmetrische konkave Fläche, oder auch eine periodische Struktur von Erhebungen und Vertiefungen, beispielsweise in Form einer sägezahnähnlichen Profilierung, wobei dabei auf ein rotationssymmetrisches Profil verzichtet werden kann. Eine besonders hohe Zugfestigkeit wird erreicht, wenn die Struktur senkrecht zur Richtung der Zugbelastung, d.h. im wesentlichen azimutal orientiert ist. Eine axiale Ausrichtung der Struktur hat hingegen bei gleicher Materialbeschaffenheit von Hülse und Isolationsmantel eine geringere Zugfestigkeit zur Folge. Je nach Art des gewählten Profils und Materials von Hülse und Isolationsmantel beruht der Formschluß lediglich auf einem Verformen des Isolationsmantels, oder auch auf einem Eindringen des Profils in ihn.
  • Bei der Dimensionierung des Innendurchmessers bzw. des Profils der Hülse ist darauf zu achten, daß sich die Hülse zu Beginn der Montage problemlos über den Isolationsmantel des Zuleitungskabels schieben läßt und die Quetschung des Isolationsmantels bzw. das Eindringen in ihn die gewünschte Zugfestigkeit gewährleistet, ohne daß der Innenleiter beschädigt wird. Insbesondere können die Kanten eines entsprechenden Profils (z.B. der sägezahnähnlichen Struktur) mit Rundungen versehen sein. Vorzugsweise sollte der minimale Innendurchmesser der Hülse vor dem Einbau zwischen 0,1 und 1 mm oder mehr größer als der Außendurchmesser des Zuleitungskabels sein.
  • Um eine erfindungsgemäße Verringerung des ursprünglichen Durchmessers bzw. der damit einhergehenden Reduzierung des Umfangs der Hülse sicherzustellen, ist die Hülse mit mindestens einem im wesentlichen axialen Schlitz versehen. Durch die Breite, Anzahl und Länge der Schlitze, sowie die Federwirkung der verwendeten Materialien kann die maximal mögliche Verringerung des Hülsendurchmessers gezielt beeinflußt werden. Das Hülsenmaterial muß dabei härter als das zu quetschende Material des Isolationsmantels sein. Geeignet sind beispielsweise Kunststoffe mit entsprechenden Eigenschaften.
  • Im einfachsten Fall wird die Hülse nur mit einem einzigen durchgängigen Schlitz versehen, der vorteilhaft parallel zu ihrer Längsachse ausgeführt ist, oder nicht wesentlich davon abweicht. Die maximal mögliche Reduzierung des Hülsenumfangs ist in diesem Fall im wesentlichen durch die Breite des Schlitzes und die Federwirkung des verwendeten Hülsenmaterials gegeben. Sie ist spätestens dann erreicht, wenn sich die beiden Längskanten der Hülse, welche den Schlitz bilden, gerade berühren. Bei unprofilierter kreiszylindrischer Innenwandung ergibt sich eine nahezu gleichmäßige im wesentlichen zylinderförmige Quetschung des Isolationsmantels. Ein Überlappen beider Kanten ist unerwünscht, da dann eine lokale, d.h. deutlich nichtrotationssymmetrische Quetschung des Isolationsmantels auftreten würde. Eine zu starke Verringerung des ursprünglichen Durchmessers der Hülse mittels eines zu breiten Schlitzes hat ebenfalls eine nicht mehr akzeptabel große Abweichung der Innenwandung von der Kreiszylindersymmetrie und daraus resultierend eine nicht mehr ausreichend rotationssymmetrische Kräfteverteilung zur Folge. Vorteilhaft ist eine Schlitzbreite von ca. 10 bis 15 % des ursprünglichen Hülsenumfangs. Die beiden Kanten des Schlitzes brauchen nicht notwendigerweise parallel zu sein, d.h. die Schlitzbreite muß nicht prinzipiell längs der Hülse konstant sein. Wird beispielsweise eine konische Umfangsreduzierung der Hülse angestrebt, kann sich der Schlitz auch in Richtung des entsprechenden Endes der Hülse verjüngen.
  • Eine Federwirkung kann überraschenderweise insbesondere auch durch mehrere Schlitze erzielt werden, obwohl diese dann nicht durchgängig sein dürfen, oder allenfalls einer der Schlitze. Auf diese Weise verteilt sich die für eine gewünschte Verringerung des Hülsendurchmessers erforderliche Schlitzbreite auf mehrere Schlitze, wodurch sich auch der erforderliche Federweg pro Schlitz verringert. Die Schlitze können gezielt so ausgeführt und angeordnet sein, daß die Umfangsreduzierung a) gleichmäßig über die gesamte Länge und b) ungleichmäßig über die Länge, beispielsweise konisch oder nur über einen Teil der Länge der Hülse erfolgen kann.
  • Fall a) kann dadurch realisiert werden, daß die Hülse mit mindestens zwei nicht durchgängigen Schlitzen versehen ist, die jeweils an den entgegengesetzten Enden der Hülse beginnen und sich über mehr als die halbe Länge der Hülse erstrecken. Durch diese besondere Kombination zweier Schlitze -- im folgenden als ,,gegensinnige Schlitze" bezeichnet -- wird ähnlich wie bei einem durchgängigen Schlitz erreicht, daß sich der Umfang der Hülse näherungsweise über ihre gesamte Länge gleichmäßig verringern läßt und zwar um so gleichmäßiger, je mehr sich die Längen der Schlitze der Hülsenlänge annähern, d.h. je schmaler die noch verbleibenden Stege am jeweiligen Ende der Schlitze sind. Sind die Schlitze hingegen nur bis zur Mitte der Hülse oder kürzer ausgeführt, so lassen sich nur die beiden Enden der Hülse verjüngen, wohingegen der Mittenbereich der Hülsenwandung seinen ursprünglichen Umfang zwangsweise beibehält.
  • Der besondere Vorteil des gegensinnigen Schlitzpaares gegenüber einem durchgängigen Schlitz kommt allerdings erst zum Tragen, wenn die Hülse mit mehr als einem gegensinnigen Schlitzpaar versehen ist. Werden nämlich diese Schlitzpaare symmetrisch über den Umfang der Hülse verteilt angeordnet, so läßt sich die Umfangsreduzierung wesentlich gleichmäßiger über die Hülsenwandung verteilt ausführen, als bei einem Schlitz, d.h. die ursprüngliche kreiszylindrische Grundform der Innenwandung der Hülse bleibt in einer besseren Näherung erhalten.
  • Prinzipiell ist es auch möglich die Schlitze völlig unsymmetrisch über den Umfang der Hülse zu verteilen, wobei dann allerdings eine Umfangsreduzierung eine entsprechend größere Abweichung von der ursprünglich kreiszylindrischen Grundform bewirkt.
  • Die maximal mögliche Verringerung des Umfangs bei einer mehrfach geschlitzten Hülse ist außer durch die Anzahl und die jeweilige Breite der Schlitze und das Federvermögen des Hülsenmaterials zusätzlich durch die Länge der Schlitze bezüglich der Länge der Hülse und das Federvermögen des Steges am geschlossenen Ende des jeweiligen Schlitzes gezielt beeinflußbar.
  • Fall b) kann prinzipiell auch mittels der für Fall a) beschriebenen Hülse realisiert werden, indem man die für die Umfangsreduzierung erforderlichen radialen Kräfte nicht gleichmäßig längs der Hülse wirken läßt. Außerdem können die Schlitze der gegensinnigen Schlitzpaare auch unterschiedlich lang sein. Ferner brauchen die gegensinnigen Schlitze nicht paarweise angeordnet sein, sondern die beiden Enden der Hülse können auch mit unterschiedlich vielen Schlitzen versehen sein. Für eine konische Verjüngung beispielsweise ist es ausreichend, wenn die Hülse nur an dem zu verjüngendem Ende mit Schlitzen versehen ist. Aufgrund der einfacheren Herstellbarkeit können so Kosten eingespart werden. Wird die durch radial nach innen gerichtete Kräfte erzeugte konische Verjüngung entgegen der Zugrichtung angeordnet, so führt der dadurch erzielte Formschluß zu einer besonderen Festigkeit gegenüber Zugbelastungen. Außerdem kann in diesem Fall auch auf eine Profilierung der Innenwandung der Hülse verzichtet werden, wodurch weitere Kosten eingespart werden können.
  • Besonders vorteilhaft sind zwei gegensinnige Schlitzpaare, die bevorzugt diametral auf dem Umfang angeordnet sind. Dadurch folgt abwechselnd auf einen Schlitz, der an einem ersten Ende der Hülse beginnt, ein Schlitz, der am zweiten Ende der Hülse beginnt usw.. Aufgrund der symmetrischen Verteilung der Schlitze stehen sich an jedem Hülsenende zwei Schlitze im Winkelabstand von 180° gegenüber, wobei die beiden Schlitze am ersten Hülsenende gegenüber den beiden Schlitzen am zweiten Hülsenende um 90° verdreht angeordnet sind. Dadurch wird die Hülsenwand in vier bewegliche Segmente unterteilt. Diese besondere Anordnung der Schlitze erlaubt so eine besonders starke und dennoch annähernd gleichmäßig verteilte Umfangsreduzierung längs der Hülse.
  • Die Anzahl der gegensinnigen Schlitzpaare ist prinzipiell nicht beschränkt. Der mit steigender Anzahl einhergehenden Verbesserung der Annäherung an eine ideal rotationssymmetrische Umfangsreduzierung stehen allerdings entsprechend steigende Fertigungskosten gegenüber.
  • Zur erfindungsgemäßen Verringerung des ursprünglichen Umfangs der Hülse wird ein Hilfsteil verwendet. Bevorzugt ist das Hilfsteil Bestandteil des Sockels. Dazu ist der Sockel vorteilhaft zweigeteilt in einen oberen Sockelteil und einen Sockelboden, wobei der Sockelboden mit je einer Bohrung pro Zuleitungskabel versehen ist. Während der Montage werden Sockelboden und oberes Sockelteil so miteinander verbunden, daß die geschlitzte Hülse in die Bohrung eingeführt wird. Um dies zu ermöglichen, ist der kleinste Außendurchmesser der Hülse kleiner als der größte Innendurchmesser der Bohrung ausgeführt. Durch eine geeignete Dimensionierung wird dabei der ursprüngliche Hülsenumfang definiert so vermindert, daß die Hülse in den Isolationsmantel des Zuleitungskabels mit einer gewünschten Zugfestigkeit quetschend eingreift.
  • Eine Umfangsreduzierung der geschlitzten Hülse wird bewirkt, indem die während der Montage - beim Verbinden von oberem Sockelteil und Sockelboden - aufgebrachte axiale Kraft mindestens teilweise in radial nach innen gerichtete Kräfte umgewandelt wird. Das kann dadurch realisiert werden, daß entweder die Außenwandung der Hülse oder die Innenwandung der Bohrung oder aber beide mindestens teilweise konisch verjüngt sind, wobei im letzteren Fall die Konizität von Hülse und Bohrung nicht notwendig miteinander übereinstimmen müssen. Die Außenwandung der Hülse und/oder die Innenwandung der Bohrung kann/können auch im wesentlichen kreiszylindrisch ausgeführt sein, wobei in diesem Fall mindestens eine der beiden Wandungen mit einer rampenähnlichen axialen Ausbuchtung versehen sein muß, die sich in axialer Richtung verjüngt. Damit die Hülse in die Bohrung eingeführt werden kann, ist der kleinste ursprüngliche Außendurchmesser der Hülse kleiner bemessen als der größte Innendurchmesser der Bohrung.
  • Durch das Verhältnis V der Winkel α und β (jeweils bezogen auf die Längsachse des Zuleitungskabels) von Außenkonus der Hülse bzw. Innenkonus der Bohrung des Sockelbodens läßt sich die Verteilung der radial auf die Hülse wirkenden Kräfte in Längsrichtung der Hülse einstellen. In den Figuren 6a-c ist dies durch drei unterschiedliche Verhältnisse V = α/β = 1
    Figure imgb0001
    , V > 1 und V < 1 am schematischen Beispiel einer einfach geschlitzten außenkonischen Hülse mit kreiszylindrischer Innenwandung verdeutlicht, wobei der Winkel β hier konstant ist. Ebenso können diese drei Fälle mit konstantem Winkel α, oder auch mit jeweils variablen Winkeln α und β realisiert werden. Bei gleicher Konizität (V = 1) wird die Hülse über ihre gesamte Außenfläche gleichmäßig radial zusammengedrückt, so daß eine längs der Hülse gleichmäßige Verringerung des Innendurchmessers erzielt wird. Für V > 1 erfolgt an dem ersten Ende der Hülse, das von der Bohrung des Sockelbodens abgewandt ist eine stärkere Verringerung des Durchmessers, als am gegenüberliegenden zweiten, der Bohrung des Sockelbodens zugewandten Ende, d.h. es wird eine Verjüngung der Hülse am ersten Ende der Hülse erzielt. Für V < 1 sind die Verhältnisse hingegen umgekehrt. Je nach Absolutwert von V ≠ 1 ergibt sich dadurch im Bereich einer der beiden Hülsenenden eine besonders starke Verformung des Isolationsmantels.
  • Während der Montage tritt eine Umfangsreduzierung in jedem Fall erst dann ein, wenn die Außenwandung der Hülse die Innenwandung der Bohrung berührt. Wird danach die Hülse weiterhin in axialer Richtung um die Wegstrecke a verschoben, erzielt man eine Umfangsreduziervng ΔU. In Figur 7 - hier ist als Beispiel der Fall V = 1 gezeigt - sind zur Verdeutlichung drei verschiedene Stadien beim Einführen der Hülse in die Bohrung dargestellt. Im Stadium A ist die Hülse auf das Zuleitungskabel aufgesteckt, hat aber noch keinen Kontakt mit der Bohrung. Im Stadium B berührt die Hülse die Bohrung, hat aber noch den ursprünglichen Umfang. Im Stadium C schließlich ist die Hülse um dem Weg a in axialer Richtung verschoben, wodurch sich die Innenwandung der Hülse in den Isolationsmantel eingräbt um die Wegstrecke

    Δ w = a ·tanβ- s ,
    Figure imgb0002


    wobei s den Ringspalt zwischen Hülseninnenwandung und Isolationsmantel bezeichnet. Die dabei erzielte Umfangsreduzierung ΔU der Innenwandung der Hülse - das ist die Differenz zwischen dem ursprünglichen Umfang U₀ und dem Umfang U(a,β) nach der Montage - läßt sich quantifizieren zu

    Δ U = U ₀ - U ( α ,β) = 2π·(Δ w + s ) = 2π· a ·tanβ .
    Figure imgb0003

  • Insbesondere der Fall V > 1 verhindert, daß während der Montage des Sockelbodens die Hülse auf dem Isolationsmantel des Zuleitungskabels ,,durchrutscht". Da hier das in Richtung des oberen Sockelteils zeigende Ende der Hülse verjüngt wird und dadurch verkantend in den Isolationsmantel eingreift, wird die Bewegung der Hülse längs des Isolationsmantels des Zuleitungskabels schon während der Montage verhindert, d.h. noch bevor Sockelboden und -teil ihre Endlage erreicht haben und die Hülse auf ihren endgültigen Durchmesser verringert wurde. Außerdem wird die Festigkeit der Zugentlastung erhöht, da sich bei Zugbelastung des Zuleitungskabels das dem Sockelboden abgewandte Ende der Hülse entgegen der Zugrichtung in den Isolationsmantel zunehmend eingräbt.
  • Um für den Fall V = 1 ein ,,Durchrutschen" zu verhindern, kann der obere Sockelteil mit einem Anschlag versehen sein, beispielsweise mit einem ringförmigen. Dazu wird das obere Sockelteil mit je einer Bohrung pro Zuleitungskabel versehen, wobei der Durchmesser jeder Bohrung so bemessen ist, daß nur das Zuleitungskabel, nicht aber die aufgesteckte Hülse hindurchpaßt. Wird die Hülse bis zu diesem Anschlag über den Isolationsmantel des Zuleitungskabels geschoben und dann erst der Sockelboden auf das obere Sockelteil gesteckt, so greift die Hülse radial quetschend in den Isolationsmantel ein, ohne daß die Hülse während der Montage in Achsrichtung des Zuleitungskabels ausweichen kann. Dadurch werden Kabelbewegungen und damit mögliche Beschädigungen der Schweißpunkte zwischen Innenleiter der Zuleitungskabel und den Stromzuführungen des Lampenkolbens verhindert.
  • Die Erfindung wird im folgenden anhand einiger Ausführungsbeispiele näher erläutert. Es zeigen
  • Fig. 1
    eine erfindungsgemäße Lampe mit im Sockel integrierter Zugentlastung,
    Fig. 2a
    den Längsschnitt der in Figur 1 verwendeten außenkonischen Hülse,
    Fig. 2b
    die Frontansicht der außenkonischen Hülse gemäß Figur 2a,
    Fig. 3
    den Längsschnitt eines weiteren Ausführungsbeispiels einer Hülse,
    Fig. 4a
    den Längsschnitt eines Ausführungsbeispiels einer außenkonischen Hülse,
    Fig. 4b
    die Frontansicht des Ausführungsbeispiels gemäß Figur 4a,
    Fig. 5a
    den Längsschnitt eines Ausführungsbeispiels einer Hülse mit im wesentlichen kreiszylindrischer Außenwandung und einer sich axial verjüngenden Ausbuchtung,
    Fig. 5b
    die Frontansicht des Ausführungsbeispiels gemäß Figur 5a,
    Fig. 6a
    den schematischen Längsschnitt einer einfach geschlitzten außenkonischen Hülse und eines Sockelbodens mit konischer Bohrung, wobei die Konuswinkel α und β identisch sind (V = 1),
    Fig. 6b
    den schematischen Längsschnitt gemäß Figur 6a, aber mit α > β (V > 1),
    Fig. 6c
    den schematischen Längsschnitt gemäß Figur 6a, aber mit α < β (V < 1),
    Fig. 7
    die teilweise geschnittene schematische Darstellung eines Zuleitungskabels, welches durch eine konische Bohrung des Sockelbodens geführt ist und auf das eine außenkonische Hülse gesteckt ist, wobei drei verschiedene Positionen A-C dieser Hülse angedeutet sind,
    Fig. 8a
    ein Zuleitungskabel und den schematischen Längsschnitt eines Ausführungsbeispiels der Zugentlastung mit den Funktionseinheiten Sockelteil, außenkonische Hülse und Sockelboden vor der Montage,
    Fig. 8b
    den schematischen Längsschnitt des Ausführungsbeispiels von Figur 8a nach der Montage.
  • In Figur 1 ist eine Lampe 1 mit in einem Sockel 2 integrierter Zugentlastung teilweise geschnitten dargestellt. Es handelt sich hierbei um eine Entladungslampe, die bevorzugt in Kfz-Scheinwerfern verwendet wird. Zwei Elektroden 3a,b sind innerhalb eines hermetisch abgeschlossenen gasgefüllten Entladungsgefäßes 4 angeordnet, dessen eine Quetschung zu einer Fortführung 4a verlängert ist, die vom Sockel 2 aus Keramik gehalten wird. Die Elektroden 3a,b sind über die Stromzuführungen 5a,b mit Zuleitungskabeln 6a,b, bestehend jeweils aus einem Innenleiter und einem elastischen Isolationsmantel 12a,b, innerhalb des Sockels 2 mittels Schweißpunkte 13a,b elektrisch leitend verbunden.
  • Der Sockel 2 besteht aus einer scheibenförmigen Abdeckung 2a sowie einem dem Entladungsgefäß 4 zugewandten topfartigen Sockelteil 7, das an der kolbenfernen Endfläche mit zwei Öffnungen für die Zuleitungskabel 6a,b versehen ist, deren kolbenferne Wandungen zwei ringförmige Anschläge 8a,b bilden, und einem an der Endfläche aufgeschnappten scheibenähnlichen Sockelboden 9, der mit zwei konischen Bohrungen 10a,b versehen ist. Die zwei konischen Bohrungen 10a,b umschließen außenkonische Hülsen 11a,b, die die Zuleitungskabel umgeben, diese jeweils am Isolationsmantel 6a,b quetschend fixieren und an ihren dem Entladungsgefäß 4 zugewandten Stirnseiten an den ringförmigen Anschlägen 8a,b anliegen. Dadurch wird während der Montage eine Längsbewegung der zwei Zuleitungskabel 6a,b in Richtung Entladungsgefäß verhindert. Auf diese Weise werden die zwei Schweißpunkte 13a,b vor einer Beschädigung bei Zugbelastungen wirksam geschützt. Die erfindungsgemäße Funktionsweise der zwei außenkonischen Hülsen 11a,b wird anhand von Figur 2a,b erläutert. Die Quetschungen der Isolationsmäntel 12a,b sind durch die zwei außenkonischen Hülsen 11a,b im wesentlichen gleichmäßig und rotationssymmetrisch auf den gesamten Umfang verteilt.
  • In Figur 2a ist der Längsschnitt und in Figur 2b die Frontansicht der in Figur 1 verwendeten Ausführungsform einer außenkonischen Hülse 11 dargestellt, die mit zwei Paaren von gegensinnigen Schlitzen 14a-d versehen ist, wobei zwei diametral gegenüberliegende Schlitze 14b,d von einem ersten Ende 15 der Hülse 11 und um 90° verdreht zwei weitere Schlitze 14a,c von einem zweiten Ende 16 ausgehen, so daß vier bewegliche Segmente 17a-d gebildet werden. Die angestrebte Verminderung des Hülsenumfangs, insbesondere durch radial von außen wirkende Kräfte, und der dazu notwendige Federweg verteilt sich dadurch auf vier Schlitze 14a-d. Die zylinderförmige Innenwandung 18 ist am ersten Ende 15 mit einer nockenartigen ringförmigen Verengung 19 versehen, so daß in diesem Fall, wie in Figur 1 und Figur 5b zu erkennen ist, der quetschende Eingriff der Hülse 11 in den Isolationsmantel 12 des Zuleitungskabels 6 an dieser Stelle verstärkt wird. Durch die besondere Formgebung der Hülse 11 wird ein verkantungsfreies Aufstecken auf den Isolationsmantel eines Zuleitungskabels ermöglicht, was diese Ausführungsform für eine Verwendung in der automatisierten Fertigung der Lampe prädestiniert.
  • In Figur 3 ist der Längsschnitt einer weiteren Ausführungsform einer Hülse 11' dargestellt, die sich von der Ausführungsform in den Figuren 2a,b durch die Profilierung der Innenwandung unterscheidet. Außerdem ist die Außenwandung 20 gerade. Die sägezahnähnliche Struktur 21 führt mittels entsprechender Quetschung des Isolationsmantels zu einem verbesserten Formschluß zwischen Hülse 11' und Zuleitungskabel, wodurch eine erhöhte Festigkeit gegenüber Zugbelastungen entsteht. Die Dimensionierung der sägezahnähnlichen Struktur 21 muß dabei so auf die angestrebte Verminderung des Hülsendurchmessers und der Wandstärke des Isolationsmantels abgestimmt werden, daß die gewünschte Zugfestigkeit gewährleistet ist, ohne daß das Zuleitungskabel beschädigt wird. Insbesondere können die ringförmigen Kanten der sägezahnähnlichen Struktur 21 mit Rundungen (in Figur 3 nicht dargestellt) versehen werden.
  • Figur 4a zeigt den Längsschnitt und Figur 4b die Frontansicht eines Ausführungsbeispiels einer außenkonischen Hülse 11'', die mit einem durchgängigen Schlitz 14'' versehen ist. Die Innenwandung 18'' ist zylinderförmig ausgeführt. Diese einfach geschlitzte Hülse 11'' ist für Verminderungen des Hülsenumfangs geeignet, die sich im wesentlichen gleichmäßig über die gesamte Länge der außenkonischen Hülse 11'' erstrecken. Aufgrund der einfachen Ausführung dieser Hülse ist die Herstellung relativ kostengünstig.
  • Figur 5a zeigt den Längsschnitt und Figur 5b die Frontansicht eines weiteren Ausführungsbeispiels einer Hülse 11''', die mit einem durchgängigen Schlitz 14''' versehen ist. Die Innenwandung 18''' ist als rotationssymmetrische im wesentlichen konkave Fläche ausgeführt. Die Fase 18a''' erleichtert das Aufstecken der Hülse auf ein Zuleitungskabel. Die Außenwandung 20''' ist im wesentlichen kreiszylindrisch mit einer rampenähnlichen axialen Ausbuchtung 20a''', die sich längs der Hülse 11''' verjüngend erstreckt. Diese Ausbuchtung erfüllt die gleiche Funktion, wie eine konische Außenwandung.
  • In Figur 8a sind das Zuleitungskabel 6, bestehend aus Innenleiter 22 und Isolationsmantel 12 und die Funktionseinheiten der Zugentlastung - Sockelteil 7', (in Figur 2a,b gezeigte) außenkonische Hülse 11 und Sockelboden 9' - im vormontierten Zustand im teilweisen Längsschnitt schematisch dargestellt. Dazu sind der Sockelboden 9', die außenkonische Hülse 11 und das Sockelteil 7' in dieser Reihenfolge auf das abisolierte Ende des Zuleitungskabels 6 gesteckt. Der Sockelboden 9' wird in Richtung Sockelteil 7' geschoben (s. Pfeilrichtung) und nimmt dabei die Hülse 11 mit, bis diese am Anschlag 8 aufsitzt. Danach wird die konische Bohrung 10 über die Hülse 11 geschoben, wodurch die Hülse 11 zusammengequetscht wird, bis die Außenschrägen 23 des Sockelbodens 9' auf der Innenschräge 24 des Sockelteils 7' aufsitzt. Dabei schnappt die vorspringende Ringnase 25 des Sockelbodens 9' in die Ringnut 26 des Sockelteils ein, wodurch der Sockelboden 9' arretiert wird. Die Schrägstellung der Außenwandung der Hülse 11 hat näherungsweise den gleichen Winkel wie der Konus der Bohrung 10 (V=1).
  • Figur 8b zeigt die vorgenannten Teile im montierten Endzustand, wobei die konische Bohrung 10 und die besondere Anordnung der Schlitze eine gleichmäßige Verminderung des ursprünglichen Durchmessers der Hülse 11 bewirkt. Dadurch bleibt die Schrägstellung der Innenwandung der Hülse 11 erhalten, so daß diese in der gewünschten Weise den Isolationsmantel 12 des Zuleitungskabels 6 elastisch verformt. Deutlich ist der dadurch erzielte rotationssymmetrische Formschluß zwischen Innenwandung der Hülse 11 und Isolationsmantel 12 des Zuleitungskabels 6 erkennbar, welcher die geforderte hohe Zugfestigkeit ermöglicht.
  • In entsprechender Weise läßt sich eine Hülse mit gerader Außenwand (Fig. 3) mittels einer leicht konisch geformten Bohrung des Sockelbodens montieren, wobei die Anpreßkraft nicht gleichmäßig verteilt ist, sondern auf den engsten Durchmesser der Bohrung konzentriert ist.
  • Als Leuchtmittel kommen sowohl Elektroden als auch Glühwendeln in Frage.
  • Die Erfindung ist nicht auf die gezeigten Ausführungsbeispiele beschränkt. Insbesondere können einzelne Merkmale verschiedener Ausführungsbeispiele in geeigneter Weise miteinander kombiniert werden.

Claims (22)

  1. Elektrische Lampe (1) mit einem Lampenkolben (4), der von einem Sockel (2) gehalten ist, wobei der Sockel (2) einen dem Lampenkolben (4) zugewandten Sockelteil (7) und einen vom Lampenkolben (4) abgewandten Sockelhoden (9) aufweist, wobei ein Leuchtmittel (3a,b) im Lampenkolben (4) mittels Stromzuführungen (5a,b) mit Zuleitungskabeln (6a,b) elektrisch leitend verbunden ist, die je einen verformbaren Isolationsmantel (12a,b) besitzen und aus dem Sockelboden (9,9') herausgeführt sind, wobei ein Zugentlastungsmechanismus für die elektrischen Zuleitungskabel (6a,b) im Sockel integriert ist, gekennzeichnet durch eine Zugentlastung, die dadurch gebildet ist, daß
    - jeweils eine federnde Hülse (11a,b) ein elektrisches Zuleitungskabel (6a,b) kraft- und/oder formschlüssig umgibt,
    - der Sockelhoden (9) mit dem oberen Sockelteil (7) verbunden ist, wobei die federnden Hülsen (11a,b) von Bohrungen (10a,b) eines Hilfsteils kraft- und/oder formschlüssig so umgeben sind, daß im wesentlichen radial nach innen wirkende Kräfte auf die Hülse ausgeübt werden, wodurch eine aufgrund der Federwirkung mögliche Verringerung des Hülsenumfangs erzielt wird, so daß jeweils die Innenwandung (18) der Hülsen (11a,b) die verformbaren Isolationsmäntel (12a,b) der elektrischen Zuleitungskabel (6a,b) elastisch quetscht und/oder in die Isolationsmäntel (12a,b) eingreift.
  2. Elektrische Lampe nach Anspruch 1, dadurch gekennzeichnet, daß das Hilfsteil Bestandteil des Sockelbodens (5) ist.
  3. Elektrische Lampe nach Anspruch 1, dadurch gekennzeichnet, daß der kleinste ursprüngliche Außendurchmesser der Hülsen (11a,b) kleiner ist, als der größte Innendurchmesser der zugehörigen Bohrungen (10a,b), so daß die Hülsen (11a,b) in die zugehörigen Bohrungen (10a,b) eingeführt werden können.
  4. Elektrische Lampe nach Anspruch 3, dadurch gekennzeichnet, daß die Außenwandungen der Hülsen (11a,b) mindestens teilweise konisch ausgebildet sind.
  5. Elektrische Lampe nach Anspruch 3, dadurch gekennzeichnet, daß die Außenwandungen der Hülsen (11a,b) im wesentlichen kreiszylindrisch sind und je mindestens eine axiale Ausbuchtung aufweisen, die sich mindestens über einen Teilbereich längs der Hülsen verjüngend erstreckt.
  6. Elektrische Lampe nach Anspruch 3, dadurch gekennzeichnet, daß die Innenwandungen der Bohrungen (10a,b) mindestens teilweise konisch ausgebildet sind.
  7. Elektrische Lampe nach Anspruch 3, dadurch gekennzeichnet, daß die Innenwandungen der Bohrungen (10a,b) je mindestens eine axiale Ausbuchtung aufweist, die sich mindestens über einen Teilbereich längs der Bohrung verjüngend erstreckt.
  8. Elektrische Lampe nach Anspruch 3, dadurch gekennzeichnet, daß die Innenwandung (18) der außenkonischen Hülsen (11a,b) ein Profil aufweist, welches den quetschenden Eingriff erleichtert und damit den Form- und/oder Kraftschluß zwischen Hülse und Isolationsmantel verstärkt.
  9. Elektrische Lampe nach Anspruch 8, dadurch gekennzeichnet, daß das Profil der Innenwandung (18) durch eine im wesentlichen kreiszylinderförmige Fläche gebildet wird, die mindestens an einem Ende (15) der Hülse eine Verengung (19) aufweist.
  10. Elektrische Lampe nach Anspruch 8, dadurch gekennzeichnet, daß das Profil der Innenwandung (18) durch eine konkave Fläche gebildet ist.
  11. Elektrische Lampe nach Anspruch 8, dadurch gekennzeichnet, daß das Profil der Innenwandung (18) durch eine rotationssymmetrische sägezahnähnliche Struktur gebildet ist.
  12. Elektrische Lampe nach Anspruch 8 bis 11, dadurch gekennzeichnet, daß die Kanten des Profils der Innenwandung (18) mit Rundungen versehen sind.
  13. Elektrische Lampe nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß die Federwirkung der Hülse (11) durch mindestens einen im wesentlichen achsparallelen Schlitz (14) erzielt ist.
  14. Elektrische Lampe nach Anspruch 13, dadurch gekennzeichnet, daß die Hülse (11'',11''') einen einzigen durchgängigen Schlitz (14'',14''') aufweist.
  15. Elektrische Lampe nach Anspruch 13, dadurch gekennzeichnet, daß der oder die Schlitz(e) von einem bzw. abwechselnd von beiden Enden der Hülse (11) ausgehen, und sich über einen Teil der Länge der Hülse (11) erstrecken.
  16. Elektrische Lampe nach Anspruch 15, dadurch gekennzeichnet, daß die Hülse (11) zwei Paare von Schlitzen (14a-d) so aufweist, daß zwei diametral gegenüberliegende Schlitze (14b,d) vom ersten Ende der Hülse (11) und um 90° verdreht zwei diametral gegenüberliegende Schlitze (14a,c) vom zweiten Ende ausgehen, wodurch vier bewegliche Hülsensegmente gebildet sind.
  17. Elektrische Lampe nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß im oberen Sockelteil (7) Bohrungen angeordnet sind, deren Durchmesser an den Außendurchmesser der Isolationsmäntel (12a,b) der Zuleitungskabel (6a,b) angepaßt sind, wobei die die Bohrung umgebende Wandung des Sockelteils einen Anschlag für die Hülse bildet.
  18. Elektrische Lampe nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß die dem Sockelboden (9,9') zugewandte Endfläche des Sockelteils (7,7') im Bereich der Bohrungen aufgeweitete Sacklöcher (36) besitzt, in die Vorsprünge am Sockelboden zentrisch eingepaßt sind und die die Hülsen (11,11''') aufnehmen.
  19. Elektrische Lampe nach Anspruch 1, dadurch gekennzeichnet, daß entweder die Außenwandung der Hülse (11), oder die Innenwandung der Bohrung (10) oder beide konisch ausgeführt sind.
  20. Elektrische Lampe nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß der Winkel, der von der Außenwandung der Hülse (11) und der Hülsenlängsachse gebildet wird, größer ist, als der Winkel, der von der Innenwandung der konischen Bohrung (10) und der Längsachse der Bohrung (10) gebildet wird, so daß der ursprüngliche äußere Hülsenumfang an dem Ende der Hülse (11), welches dem Lampenkolben (14) zugewandt ist stärker verringert ist, als an dem entgegengesetzten Ende der Hülse (11).
  21. Elektrische Lampe nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß der Winkel, der von der Außenwandung der Hülse (11) und der Hülsenlängsachse gebildet wird, kleiner ist, als der Winkel, der von der Innenwandung der konischen Bohrung (10) und der Längsachse der Bohrung (10) gebildet wird, so daß der ursprüngliche äußere Hülsenumfang an dem Ende der Hülse (11), welches dem Lampenkolben (4) abgewandt ist stärker verringert ist, als an dem entgegengesetzten Ende der Hülse (11).
  22. Elektrische Lampe nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß der Winkel, der von der Außenwandung der Hülse (11) und der Hülsenlängsachse gebildet wird und der Winkel, der von der Innenwandung der konischen Bohrung (10) und der Längsachse der Bohrung (10) gebildet wird identisch sind, so daß der ursprüngliche Umfang längs der Hülse um den gleichen Betrag verringert wird.
EP94113510A 1993-09-13 1994-08-30 Elektrische Lampe Expired - Lifetime EP0643255B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE9313823U 1993-09-13
DE9313823U DE9313823U1 (de) 1993-09-13 1993-09-13 Elektrische Lampe

Publications (2)

Publication Number Publication Date
EP0643255A1 true EP0643255A1 (de) 1995-03-15
EP0643255B1 EP0643255B1 (de) 1996-10-23

Family

ID=6898044

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94113510A Expired - Lifetime EP0643255B1 (de) 1993-09-13 1994-08-30 Elektrische Lampe

Country Status (8)

Country Link
US (1) US5495138A (de)
EP (1) EP0643255B1 (de)
JP (1) JP3008963U (de)
KR (1) KR200162258Y1 (de)
CN (1) CN2221713Y (de)
CA (1) CA2131114C (de)
DE (2) DE9313823U1 (de)
HU (1) HU456U (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0756304A1 (de) * 1995-07-04 1997-01-29 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Kittlos gesockelte elektrische Lampe

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6773908B1 (en) * 1992-10-30 2004-08-10 Iowa State University Research Foundation, Inc. Proteins encoded by polynucleic acids of porcine reproductive and respiratory syndrome virus (PRRSV)
DE4427593A1 (de) * 1994-08-04 1996-02-08 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Einseitig gesockelte Hochdruckentladungslampe
US5598499A (en) * 1995-11-01 1997-01-28 Lucent Technologies, Inc. Seal for cable splice closure
DE19709928A1 (de) * 1997-03-11 1998-09-17 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Halogenglühlampe und Fassung
JP4329845B2 (ja) * 2007-06-06 2009-09-09 ウシオ電機株式会社 放電ランプ保持機構
US9464790B2 (en) * 2012-05-08 2016-10-11 Cooper Technologies Company Systems, methods, and devices for providing rotatable light modules and hinged mount in a luminaire
KR101704340B1 (ko) 2016-03-03 2017-02-07 현대자동차주식회사 에어컨 시스템과 통합된 하이브리드형 인터쿨러 시스템 및 그 제어방법
US11258189B2 (en) * 2019-10-03 2022-02-22 Japan Aviation Electronics Industry, Limited Connector and connecting method
JP2022098027A (ja) * 2020-12-21 2022-07-01 キヤノン電子管デバイス株式会社 X線管

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB445864A (en) * 1933-10-27 1936-04-15 Alfred Percy Turnbull Improvements in electric lamp holders and the like
EP0172779A1 (de) * 1984-07-30 1986-02-26 Didier Borloz Mehrpoliger elektrischer Verbinder
EP0567925A2 (de) * 1992-04-24 1993-11-03 Gte Products Corporation Zusammensetzung einer Entladungslampe hoher Intensität für Kraftfahrzeugscheinwerfer

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3603753A1 (de) * 1986-02-06 1987-08-20 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Elektrische lampe
DE4014745A1 (de) * 1990-05-08 1991-11-14 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Einseitig gesockelte elektrische lampe
DE4037964A1 (de) * 1990-11-29 1992-06-04 Albrecht Paul Halterung fuer eine elektrische kleingluehlampe

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB445864A (en) * 1933-10-27 1936-04-15 Alfred Percy Turnbull Improvements in electric lamp holders and the like
EP0172779A1 (de) * 1984-07-30 1986-02-26 Didier Borloz Mehrpoliger elektrischer Verbinder
EP0567925A2 (de) * 1992-04-24 1993-11-03 Gte Products Corporation Zusammensetzung einer Entladungslampe hoher Intensität für Kraftfahrzeugscheinwerfer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0756304A1 (de) * 1995-07-04 1997-01-29 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Kittlos gesockelte elektrische Lampe
US5686783A (en) * 1995-07-04 1997-11-11 Patent-Treuhand-Gesellschaft Fuer Elektrische Gluehlampen Mbh Cementless electrical lamp-base combination

Also Published As

Publication number Publication date
HU9400127V0 (en) 1994-11-28
HU456U (en) 1995-03-28
DE59400891D1 (de) 1996-11-28
KR200162258Y1 (ko) 1999-12-15
CA2131114A1 (en) 1995-03-14
CA2131114C (en) 2003-02-25
EP0643255B1 (de) 1996-10-23
JP3008963U (ja) 1995-03-28
KR950009398U (ko) 1995-04-19
CN2221713Y (zh) 1996-03-06
DE9313823U1 (de) 1993-11-11
US5495138A (en) 1996-02-27

Similar Documents

Publication Publication Date Title
EP0494438B1 (de) Vorrichtung für den Anschluss eines Kabelendes
EP0897202B1 (de) Steckverbinder für Koaxialkabel
DE2425070C3 (de) Elektrischer Steckverbinder für Koaxialkabel
EP1028498B1 (de) Steckverbinder für Koaxialkabel mit glattem Aussenleiter
EP0886156B1 (de) Einrichtung zur Zugentlastung elektrischer und/oder optischer Leiter eines Kabels
EP0350835A2 (de) Elektrischer Steckverbinder
EP1573862B1 (de) Elektrische anschlussverbindung, insbesondere für den anschluss eines aussenleiters eines koaxialkabels
EP0901209A1 (de) Kabelverschraubung für Erdungs- oder Abschirmkabel mit einem gegen das Kabel pressbaren Klemmeinsatz
EP1359642A1 (de) Kontaktelement mit einem Anschluss für Litzenleiter
EP0643255B1 (de) Elektrische Lampe
DE4226904C2 (de) Crimphülse
DE2138715C3 (de) Elektrische Klemmbuchse mit elastischer Klemmung
EP0156956B1 (de) Vorrichtung zum Halten eines elektrischen Kabels in einem Steckergehäuse
WO2005020375A1 (de) Kabelanschussystem
DE19548168C2 (de) Einteiliges Kontaktelement
DE2306136A1 (de) Zuendkerzenklemmschraube und verfahren zu deren herstellung
DE29705134U1 (de) Steckerbuchse
DE4300243C1 (de) Koaxialer 7/16-Buchsensteckverbinder
EP3123566B1 (de) Kontaktbuchse für eine steckdose oder kupplung
DE3441294C2 (de) Elektrischer Steckverbinder
EP0721679B1 (de) Presshülse
EP4092835B1 (de) Elektrischer steckverbinder, elektrische steckverbinderanordnung und elektrische steckverbindung
DE3637626C2 (de) Verfahren zum Festlegen eines Metallstifts innerhalb eines keramischen Isolierkörpers
DE102008062597B3 (de) Verbindungselement mit mindestens einem elektrischen Steckkontakt und Verfahen zur Herstellung desselben
DE202016102388U1 (de) Konfektionierbarer Kontakt mit axialer Verschraubung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE FR GB IT NL SE

17P Request for examination filed

Effective date: 19950404

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19960201

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB IT NL SE

REF Corresponds to:

Ref document number: 59400891

Country of ref document: DE

Date of ref document: 19961128

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19970121

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20020808

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20020813

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20020820

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20020822

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20020829

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20021021

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030830

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030831

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030831

BERE Be: lapsed

Owner name: *PATENT-TREUHAND-G.- FUR ELEKTRISCHE GLUHLAMPEN M.

Effective date: 20030831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040302

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040430

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20040301

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050830