EP0613528A1 - Pumpe. - Google Patents

Pumpe.

Info

Publication number
EP0613528A1
EP0613528A1 EP92923450A EP92923450A EP0613528A1 EP 0613528 A1 EP0613528 A1 EP 0613528A1 EP 92923450 A EP92923450 A EP 92923450A EP 92923450 A EP92923450 A EP 92923450A EP 0613528 A1 EP0613528 A1 EP 0613528A1
Authority
EP
European Patent Office
Prior art keywords
injector
pump
pump according
fluid
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP92923450A
Other languages
English (en)
French (fr)
Other versions
EP0613528B1 (de
Inventor
Manfred Heise
Hans Juergen Lauth
Van Doan Nguyen
Erwin Staemmler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LuK Fahrzeug Hydraulik GmbH and Co KG
Original Assignee
LuK Fahrzeug Hydraulik GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LuK Fahrzeug Hydraulik GmbH and Co KG filed Critical LuK Fahrzeug Hydraulik GmbH and Co KG
Publication of EP0613528A1 publication Critical patent/EP0613528A1/de
Application granted granted Critical
Publication of EP0613528B1 publication Critical patent/EP0613528B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • F04C15/06Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • F04C15/062Arrangements for supercharging the working space
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C11/00Combinations of two or more machines or pumps, each being of rotary-piston or oscillating-piston type; Pumping installations
    • F04C11/005Combinations of two or more machines or pumps, each being of rotary-piston or oscillating-piston type; Pumping installations of dissimilar working principle
    • F04C11/006Combinations of two or more machines or pumps, each being of rotary-piston or oscillating-piston type; Pumping installations of dissimilar working principle having complementary function
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/30Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C2/34Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members
    • F04C2/344Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/44Component parts, details, or accessories not provided for in, or of interest apart from, groups F04F5/02 - F04F5/42
    • F04F5/46Arrangements of nozzles

Definitions

  • the invention relates to a pump according to the preamble of claim 1.
  • Pumps of the type mentioned here are used, for example, in power steering systems and convey a special fluid or oil in order to support the steering forces to be applied to the steering wheel, for example of a motor vehicle.
  • the pumps referred to here are preferably vane pumps which draw in oil from a supply provided outside the pump, for example from a tank.
  • Such pumps are equipped with a valve called a flow control valve, via which oil from the high pressure area can be directed into the suction area of the pump. From a certain pump speed and with a fixed adjustable delivery rate, the valve opens an outflow hole into which oil under high pressure can escape. The oil enters the intake area of the conveyor.
  • the pump is often not adequately filled with hydraulic oil. Moreover, in the oil-carrying channels due to cavitation damage.
  • Tor by the Injek ⁇ which is on the one hand acted upon with an effluent from a high pressure region of fluid and the other oil-changed from the Zubowka ⁇ nal in the intake area of the conveyor för ⁇ ', is for all operating conditions a ausrei ⁇ sponding filling of the suction area. Damage due to cavitation is thus avoided due to the good supply of hydraulic oil to the intake area.
  • An embodiment of the pump is preferred, in which the inlet region of the injector is arranged near the outlet of the control valve, which may allow fluid under high pressure to escape into an outflow bore.
  • the high-energy fluid is thus collected by the injector, so that damage within the pump housing is avoided. Due to the fact that the mouth of the injector in the supply channel is immediately in front of the suction area of the conveyor. is arranged, an optimal introduction of the fluid is ensured, so that cavitations are avoided even at high pumping rates.
  • an embodiment of the pump is preferred in which the base body of the injector is surrounded by an annular channel which is connected to the feed channel. Oil from an oil supply provided outside the pump, for example from a tank, is passed through the ring channel around the injector, so that a particularly good suction effect is ensured, the jet emerging from the injector being at its entire base or Mantle surface 'is used optimally.
  • the base body of the injector is designed as an essentially tubular sleeve. Its inlet opening is assigned to the fluid emerging from a control valve, its outlet opening to the suction chamber of the conveying device. Both the oil emerging from the valve and the entrained fluid from the inlet channel are directed in a predetermined direction, namely into the suction area of the delivery device. This ensures good filling of the suction area, so that cavitation is reliably avoided.
  • Figure 1 is a schematic longitudinal section through a first embodiment of a pump
  • FIG. 2 shows an enlarged longitudinal section through the injector shown in FIG. 1;
  • Figure 3 is a schematic longitudinal section through a further embodiment of a pump
  • FIG. 4 shows a section through the injector of the pump shown in FIG. 3, made perpendicular to the section plane in FIG. 3.
  • the pump 1 shown in the figure has a vane arrangement as a conveying device 3, which is arranged within the housing 5 of the pump.
  • the pump 1 can be provided with a bearing flange 7 ⁇ of any configuration. It is therefore only outlined in dashed lines.
  • the vanes are radially displaceably mounted in corresponding slots which are introduced into the rotor 19.
  • the ends of the vanes 17 lie outside the rotor 19 against a ring 23, so that closed volumes are formed between the individual vanes.
  • the inner surface of the ring 23 has different distances from the axis of rotation 25 of the pump 1 as seen over the circumference of the ring, so that the spaces enclosed between the vanes 17 become larger and smaller when the rotor rotates, so that fluid from a suction space 27 the pump 1 is conveyed into a pressure chamber 29.
  • the fluid penetrates the pressure plate 15.
  • the pressure plate carrier 11 and thus the pressure plate 15 are pressed against the ring 23 by the pressure spring 13, which in turn is pressed against the side plate 21.
  • the fluid conveyed by the pump 1 is supplied by an external storage container, for example a tank, which is connected to a suction connection 31 provided at the top in the housing 5.
  • the Suction port forms part of a supply channel 33 through which the oil reaches the suction chamber 27.
  • the feed channel 33 has an area 35 which extends under an arc and leads to a channel section 37 which opens directly into the suction space 27.
  • the central axis 39 of the channel section 37 is aligned with the central axis 41 of a bore 43 penetrating the wall of the housing 5. This means that the channel section 37 can be produced through a bore made in the housing 5.
  • the bore 43 is closed in a pressure-tight manner by a cover 45.
  • a control valve 47 referred to as a flow control valve, is arranged perpendicular to the image axis and can be displaced in the direction of its longitudinal axis, that is to say perpendicular to the image plane, within a valve bore 49.
  • the displacement takes place as a function of the pressure prevailing in the pressure chamber 29 against the force of a compression spring (not shown here).
  • the valve bore 49 is therefore connected to the pressure chamber 29 by suitable channels in the pump housing.
  • the position of the valve changes depending on the pressure and the speed of the pump.
  • the control valve opens from a fixed, predeterminable delivery rate of a certain pump speed, see above that a fluid jet under high pressure enters an outflow bore 51.
  • This is chosen to be very short and flows directly into an injector 53 which has an elongated, essentially tubular base body 55.
  • This is preferably made of erosion-resistant material.
  • the cross section through the base body shows that the thickness of its wall decreases from the inlet opening 57 to the outlet opening 59, whereby on the one hand the outer surface of the base body can have the shape of a truncated cone shell, while that in the interior of the injector 53 current flow area 61 is approximately cylindrical or in turn is frustoconical.
  • the central axis 63 of the injector 53 coincides here with the central axis 39 of the channel section 37 and also with the central axis 65 of the outflow bore 51.
  • the injector 53 is surrounded by an annular channel 67, which is connected on the one hand to the curved area 35 of the supply channel 33 and on the other hand to the channel section 37.
  • the housing 5 of the pump 1 is fastened to the bearing flange 7 in a suitable manner.
  • a screw 69 for connecting the two parts is indicated here as an example.
  • the interior of the housing 5 is designed such that the printing plate carrier 11 can be displaced in the direction of the axis of rotation 25. Between this and the housing 5 is a circumferential to separate the suction chamber 27 from the pressure chamber 29 Seal 69 'provided.
  • the pressure chamber 29 is preferably circumferential.
  • a bore 71 running through the pressure plate carrier 11, which penetrates the pressure plate 15 and opens in the foot region of the vanes 17 on the rotor 19, emanates from this. In this way, it is possible to pressurize the wings to facilitate the radial outward movement.
  • the feed channel 33 can be led directly to the outflow jet entering the outflow bore 51.
  • the outflow jet is caught by the injector 53 or by its base body 55, so that erosion of the housing 5 of the pump 1 is reliably avoided.
  • the jet of the fluid passing through the injector is accelerated, so that the oil under low pressure is very well entrained. Due to the annular channel 57, the fluid in the supply channel is brought up to the entire peripheral region of the jet leaving the injector 53, so that its effect is particularly pronounced.
  • the central axis 65 of the outflow bore 51, the central axis 63 of the injector 53 and the central axis 39 of the channel section 37 are aligned in a line.
  • the injector 53 thus allows both the fluid coming from the valve bore 49 and the entrained oil to be guided, so that the suction area of the pump is optimally filled with the fluid to be conveyed even if the individual parts are arranged differently.
  • the injector 53 shown here is characterized by a collar 71 surrounding its inlet opening 57, which leads to a reinforcement of the injector and enables this part to be pressed into the housing wall.
  • the collar 71 can also be made larger for other types of mounting than shown in FIG. 2.
  • both areas can be produced through a single bore in the material of the housing 5.
  • the annular channel 67 which runs concentrically to the channel section 37, is preferably cast into the base body of the housing 5.
  • an annular recess can be made in the base body of the housing through the bore 43.
  • Housing 5 are introduced, which then serves to accommodate the collar 71.
  • the outside diameter of the collar 71 is smaller than the inside diameter of the bore 43 but also of the channel section 37.
  • the injector can therefore be inserted into the housing 5 from outside through the bore 43 and through the channel section 37. Automation is therefore also possible when introducing the injector into the housing 5 of the pump 1.
  • the outflow bore 51 is in turn introduced with the aid of a drill which is guided through the bore 43 and thereby runs through the channel section 37. It can thus be seen that the installation of the injector 53 in the housing 5 is very simple, with the introduction of the fluid guide channels cooperating with the injector, that is to say the outflow bore 51, the channel section 37 and the annular channel 67, simple and therefore inexpensive to implement.
  • the injector 53 can in turn be manufactured inexpensively, since its base body 55 can be realized as an essentially tubular sleeve.
  • the space requirement of the injector is extremely low, so that the pump 1 is very compact.
  • the flow control valve As shown in the sectional view, runs perpendicular to the axis of rotation 25 of the drive shaft 9. It is essential that the outflow jet is as close as possible to the control Valve 47 is picked up by the injector 53 and suction of the fluid to be brought in via the annular channel 67 is effected directly in this area.
  • the annular channel ensures good utilization of the fluid jet penetrating the injector, since it completely surrounds the base body 55.
  • the diameter of the ring channel and that of the outlet opening 59 of the injector 53 can be adapted as a function of the viscosity of the fluid used, the delivery rate of the pump and the flow rate of the fluid leaving the injector. In this way, an optimal filling of the suction space 27 is always to be ensured, so that cavitation-free operation of the pump is ensured with a wide variety of delivery rates.
  • the height of the annular channel 67 surrounding the base body 55 of the injector 53 is matched to the length of the injector 53 in such a way that there is optimal suction of the fluid under low pressure.
  • the effective length of the injector is approximately one and a half times the height of the ring channel.
  • the diameter of the curved area 35 is selected such that the mouth of this area has a diameter which corresponds to the height of the annular channel corresponds.
  • the outer diameter of the ring channel 67 is somewhat larger selected as the diameter of the channel section 37. This dimensioning of the ring channel allows a particularly good flow around the jacket of the injector 53, so that the suction effect of the jet leaving the injector 53 can be used particularly well.
  • the sectional view also shows that a low-loss entry of the outflow jet into the injector 53 is made possible by the fact that the inside diameter of the outflow bore 51 is selected to be the same size as the diameter of the inlet opening 57.
  • FIG. 2 which shows an enlarged longitudinal section through the injector 53, the size relationships in the area of the injector are to be shown more precisely.
  • the basic condition for the function of the injector results, which is only guaranteed if a sufficiently large volume flow can be sucked in from the outside, that is, from the storage container. Only with that is one To prevent cavitation in the pump.
  • the jet flowing out of the injector means that fluid must be sucked in from the tank (not shown here) via the suction connection 31, the feed channel 33, its curved region 35 and the ring channel 67.
  • cavitation initially manifests itself only as a drop in the delivery rate of the pump, but finally, with increasing suction problems, the operating noises of the pump become louder and louder.
  • the injector should be designed so that a slight reduction in the delivery rate is prevented.
  • FIG. 3 differs from that shown in FIG. 1 only in that the injector 53 is held in the housing 5 of the pump 1 by a fastening sleeve 73 serving as a securing element.
  • a fastening sleeve 73 serving as a securing element.
  • the fastening sleeve 73 has an anchoring ring 75 arranged in the channel section 37, the outer diameter of which is adapted to the inner diameter of the channel section 37 in such a way that the fastening sleeve is held securely at all temperatures which can occur when the pump 1 is used .
  • the height of the anchoring ring is selected such that it does not protrude, or practically does not protrude into the upstream ring channel 67, so that the medium conveyed by the pump can flow there unimpeded.
  • the anchoring ring 75 likewise does not protrude or practically does not protrude into the suction space 27, so that it does not hinder the medium drawn in by the pump here either.
  • the anchoring ring 75 is provided with at least one, preferably two diametrically opposite retaining webs, which extend upward through the ring channel 67 to the collar 71 of the injector 53.
  • the holding webs 77 press against the underside of the collar 71 and thus hold the injector 53 securely in its assembly position.
  • the collar 71 finds only little hold in the base body 5 of the pump 1, so that a high degree of functional reliability is obtained through the use of the fastening sleeve 73.
  • the injector 53 is held securely at the desired mounting position over the entire temperature range of the use of the pump 1.
  • fastening sleeve 73 it is possible to hold the fastening sleeve 73 in the channel section 73 by means of a press fit. It is also conceivable to achieve a positive fit between the fastening sleeve and the base body of the pump by means of corrugation on the inner surface of the channel section and suitable corrugation on the outer surface of the fastening sleeve or the anchoring ring 75. Finally, it is also conceivable to provide the channel section 37 on its inner surface with a thread which meshes with an external thread provided on the outside of the anchoring ring. This means that the fastening sleeve 73 can be screwed into the base body of the pump and thus hold the injector securely in its initial position.
  • the medium flowing out of the suction connection 31 into the annular space 67 is practically not hindered by the holding webs 77; it can also get freely through the interior of the fastening sleeve, that is, through the interior of the anchoring ring 75 into the suction space 27, the medium emerging from the outlet opening 59 of the injector 53 (see FIG. 4) under high pressure in the channel section 37, related Medium present in the interior of the anchoring ring 75 is entrained, so that the suction space 27 is optimally filled.
  • the fastening sleeve 73 is preferably arranged in such a way that the fluid passing from the bent region 35 into the annular channel 67 is not hindered by the retaining webs 77. This means that there are no retaining webs 77 in the mouth area between the curved area 35 and the ring channel 67.
  • FIG. 4 shows particularly clearly that the fastening sleeve 73, as the designation as a sleeve already indicates, is hollow on the inside.
  • the inner diameter of the fastening sleeve is selected such that the medium conveyed by the pump can pass unhindered from the annular channel 67 into the suction space 27.
  • the outlet opening 57 of the injector 53 is located approximately halfway up the anchoring ring 75.
  • the dimensions of the injector and the fastening sleeve 73 can be selected as was determined with reference to FIG. 2.
  • the reference size b is to be used as the inner diameter of the anchoring ring 75 or the fastening sleeve 73.
  • FIG. 4 clearly shows once again that the retaining webs 77 of the fastening sleeves 73 starting from the anchoring ring 75 extend through the annular channel 67 and end on the underside of the collar 71 of the injector 53.
  • the collar 71 has a low height and thus a low holding force of the injector within the housing 5.
  • This holding force is, as can be seen from the explanations for FIGS. 3 and 4, by the fastening sleeve 73 significantly increased, especially if, in addition to a normal pressing of the fastening sleeve 73 inside the housing 5, a positive connection between the sleeve and the housing is selected.
  • the width of the holding webs 77 can be chosen to be relatively small, since they have a high degree of dimensional stability due to the curvature of the sleeve.
  • the fastening sleeve 73 is formed overall as a hollow body, the inner and outer surfaces of which are circular-cylindrical. The holding webs 77 so domed that they are vertical
  • the easy-to-manufacture fastening sleeve which is preferably made of metal, achieves a high level of functional reliability of the pump, since the injector is held securely at the installation site even with small installation sizes.
  • the production costs of the pump do not increase practically, since the sleeve, like the injector 53, can easily be introduced through the bore 43 into the interior of the housing 5 of the pump 1 and anchored in the region of the channel section 37 .
  • the fastening sleeve 73 since the fastening sleeve 73 only serves to secure the injector 53, it must not hinder the flow of the medium conveyed by the pump.
  • the inside diameter of the sleeve is preferably selected so that the medium is optimally supplied to the outlet opening 59 of the injector 53 and is thus entrained by the medium emerging from the injector with a high degree of threading. In the area of the ring channel 67, the inflowing medium may be prevented as little as possible.
  • the fastening sleeve is designed as a perforated plate in the area of the ring channel.
  • narrow retaining webs 77 are preferably chosen, as shown particularly in FIG 3 are clearly visible in order to achieve a particularly low interference resistance.
  • the retaining webs 77 it is also possible for the retaining webs 77 to be inclined somewhat in the direction of the injector 53 and to be supported on its outer surface, so that it is held securely in its assembly position. This requires a coordination of the inner diameter left free by the holding webs with the outer diameter of the injector in the area of the engagement of the holding webs on the outer surface of the injector.
  • the cheapest way to implement the fastening sleeve 73 is if the holding webs 77 virtually form a continuation of the wall of the anchoring ring 75 and extend parallel to the central axis of the sleeve or the injector up to its collar 71 and hold it securely in the base body 5 of the pump 1 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Rotary Pumps (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Details Of Reciprocating Pumps (AREA)
  • External Artificial Organs (AREA)
  • Reciprocating Pumps (AREA)
  • Infusion, Injection, And Reservoir Apparatuses (AREA)

Description

Beschreibung
Pumpe
Die Erfindung betrifft eine Pumpe gemäß Oberbegriff des Anspruchs 1.
Pumpen der hier angesprochenen Art werden bei¬ spielsweise in LenkhilfSystemen eingesetzt und för¬ dern ein spezielles Fluid beziehungsweise öl, um eine Unterstützung der am Lenkrad beispielsweise eines Kraftfahrzeugs aufzubringenden Lenkkräfte zu bewirken. Vorzugsweise handelt es sich bei den hier angesprochenen Pumpen um Flügelzellenpumpen, die aus einem außerhalb der Pumpe vorgesehenen Vorrat, beispielsweise aus einem Tank, öl nachsaugen. Der¬ artige Pumpen sind mit einem als Stromregelventil bezeichneten Ventil ausgestattet, über das Öl aus dem Hochdruckbereich in den Ansaugbereich der Pumpe geleitet werden kann. Ab einer bestimmten Pumpen¬ drehzahl und bei einer fest einstellbaren Förder¬ menge öffnet das Ventil eine Abströ bohrung, in die unter hohem Druck stehendes Öl austreten kann. Das Öl gelangt in den Ansaugraum der Fördereinrichtung. Häufig ist eine ausreichende Füllung der Pumpe mit Hydraulikol nicht gegeben. Überdies treten in den öl führenden Kanälen aufgrund von Kavitation Schä¬ den auf.
Es ist daher Aufgabe der Erfindung, bei unter¬ schiedlichen Fördermengen einen für den ganzen Drehzahlbereich kavitationfreien Betrieb der Pumpe zu ermöglichen, wobei eine ausreichende Füllung der Pumpe mit Hydraulikol gewährleistet ist.
Diese Aufgabe wird bei einer Pumpe gemäß Oberbe¬ griff des Anspruchs 1 mit Hilfe der in diesem An¬ spruch genannten Merkmale gelöst. Durch den Injek¬ tor, der einerseits mit einem aus einem unter hohem Druck stehenden Bereich ausströmenden Fluid beauf¬ schlagt wird und andererseits öl aus dem Zufuhrka¬ nal in den Ansaugbereich der Fördereinrichtung för¬ dert', wird für alle Betriebszustände eine ausrei¬ chende Füllung des Ansaugbereichs gesorgt. Somit werden aufgrund der guten Versorgung des Ansaugbe¬ reichs mit Hydraulikol auf Kavitation beruhende Schäden vermieden.
Bevorzugt wird eine Ausführungsform der Pumpe, bei welcher der Einlaßbereich des Injektors nahe des Auslasses des Regelventils angeordnet ist, welches gegebenenfalls unter hohem Druck stehendes Fluid in eine Abströmbohrung austreten läßt. Das ener¬ giereiche Fluid wird somit von dem Injektor aufge¬ fangen, so daß Schäden innerhalb des Pumpengehäuses vermieden werden. Aufgrund der Tatsache, daß die Mündung des Injektors im Zufuhrkanal unmittelbar vor dem Ansaugbereich der Fördereinrichtung ange- ordnet ist, wird eine optimale Heranführung des Fluids sichergestellt, so daß auch bei hohen För¬ derleistungen der Pumpe Kavitationen vermieden wer¬ den.
Des weiteren wird eine Ausführungsform der Pumpe bevorzugt, bei welcher der Grundkörper des Injek¬ tors von einem Ringkanal umgeben ist, der mit dem Zufuhrkanal in Verbindung steht. Öl aus einem außerhalb der Pumpe vorgesehenen ölvorrat, bei¬ spielsweise aus einem Tank, wird durch den Ring¬ kanal um den Injektor herumgeleitet, so daß eine besonders gute Ansaugwirkung sichergestellt ist, wobei der aus dem Injektor austretende Strahl an seiner gesamten U fangs- beziehungsweise Mantel¬ fläche' optimal genutzt wird.
Weiterhin wird eine Ausführungsform der Pumpe be¬ vorzugt, bei welcher der Grundkörper des Injektors als im wesentlichen rohrförmige Hülse ausgebildet ist. Ihre Eintrittsöffnung ist dem aus einem Re¬ gelventil austretenden Fluid zugeordnet, ihre Aus- trittsöffnung der Ansaugkammer der Fördereinrich¬ tung. Sowohl das aus dem Ventil austretende Öl als auch das mitgerissene Fluid aus dem Zulaufkanal werden in eine vorgegebene Richtung gelenkt, näm¬ lich in den Ansaugbereich der Fördereinrichtung. Dies gewährleistet eine gute Füllung des Ansaugbe- reichs, so daß Kavitationen sicher vermieden wer¬ den.
Weitere Ausgestaltungen der Pumpe ergeben sich aus den übrigen Unteransprüchen. Die Erfindung wird im folgenden anhand der Zeich¬ nung näher erläutert. Es zeigen:
Figur 1 einen schematisierten Längsschnitt durch ein erstes Ausführungsbeispiel einer Pumpe;
Figur 2 einen vergrößerten Längsschnitt durch den in Figur 1 dargestellten Injektor;
Figur 3 einen schematisierten Längsschnitt durch ein weiteres Ausführungsbeispiel einer Pumpe und
Figur 4 einen senkrecht zu der Schnittebene in Figur 3 geführten Schnitt durch den In¬ jektor der in Figur 3 dargestellten Pumpe.
Im folgenden wird davon ausgegangen, daß die in der Figur dargestellte Pumpe 1 als Fördereinrichtung 3 eine Flügelzellenanordnung aufweist, die innerhalb des Gehäuses 5 der Pumpe angeordnet ist.
Die Pumpe 1 kann mit einem Lagerflansch 7 versehen seinΛ der beliebig ausgestaltet ist. Er ist hier daher lediglich gestrichelt umrissen.
Die in der Darstellung horizontal verlaufende An¬ triebswelle 9 durchdringt den Lagerflansch 7 und wird dort von geeigneten Lagern gehalten. Er kann auf seinem im Inneren des Pumpengehäuses 5 angeord¬ neten rechten Ende in einem Druckplattenträger 11 drehbar gelagert sein. Letzterer wird durch eine geeignete Druckfeder 13, die sich einerseits an dem Druckplattenträger 11 und andererseits am Gehäuse 5 abstützt, gegen eine Druckplatte 15 gedrückt. Diese liegt ihrerseits an einem Flügel 17 aufnehmenden Rotor 19 an. Die Flügel sind radial verschiebbar in entsprechenden Schlitzen gelagert, die in den Rotor 19 eingebracht sind.
An der linken Seite des drehfest mit der Antriebs¬ welle 9 verbundenen Rotors 19 liegt eine Seiten¬ platte 21 an, die sich auf ihrer dem Rotor abge¬ wandten Seite am Lagerflanεch 7 abstützt.
Die Flügel 17 liegen mit ihren außerhalb des Rotors 19 liegenden Enden an einem Ring 23 an, so daß zwi¬ schen den einzelnen Flügeln abgeschlossene Volumina gebildet werden. Die Innenfläche des Rings 23 weist über den Umfang des Rings gesehen verschiedene Ab¬ stände zur Drehachse 25 der Pumpe 1 auf, so daß die zwischen den Flügeln 17 eingeschlossenen Räume bei einer Drehung des Rotors größer und kleiner werden, so daß Fluid aus einem Ansaugraum 27 der Pumpe 1 in einen Druckraum 29 gefördert wird. Dabei durch¬ dringt das Fluid die Druckplatte 15. Durch die Druckfeder 13 wird der Druckplattenträger 11 und damit die Druckplatte 15 gegen den Ring 23, dieser seinerseits gegen die Seitenplatte 21 gedrückt.
Das von der Pumpe 1 geförderte Fluid wird von einem externen Vorratsbehälter, beispielsweise einem Tank, geliefert, der mit einem oben im Gehäuse 5 vorgesehenen Sauganschluß 31 verbunden ist. Der Sauganschluß bildet einen Teil eines Zufuhrkanals 33, über den das öl zum Ansaugraum 27 gelangt.
Der Zuf hrkanal 33 weist einen unter einem Bogen verlaufenden Bereich 35 auf, der zu einem unmittel¬ bar in den Ansaugraum 27 mündenden Kanalabschnitt 37 führt.
Die Mittelachse 39 des Kanalabschnitts 37 fluchtet mit der Mittelachse 41 einer die Wandung des Gehäu¬ ses 5 durchdringenden Bohrung 43. Das heißt, der Kanalabschnitt 37 kann durch eine in das Gehäuse 5 eingebrachte Bohrung hergestellt werden. Die Boh¬ rung 43 ist durch einen Deckel 45 druckdicht abge¬ schlossen.
Senkrecht zur Bildachse ist hier ein als Strom¬ regelventil bezeichnetes Regelventil 47 angeordnet, welches in Richtung seiner Längsachse, also senk¬ recht zur Bildebene, innerhalb einer Ventilbohrung 49 verlagerbar ist. Die Verlagerung erfolgt in Ab¬ hängigkeit von dem im Druckraum 29 herrschenden Druck gegen die Kraft einer hier nicht dargestell¬ ten Druckfeder. Die Ventilbohrung 49 ist also durch geeignete Kanäle im Pumpengehäuse mit dem Druckraum 29 verbunden. Die Funktion eines derartigen Strom¬ regelventils ist bekannt, so daß hier nicht weiter darauf eingegangen wird.
Die Stellung des Ventils ändert sich in Abhängig¬ keit vom Druck und von der Drehzahl der Pumpe. Ab einer festen vorgebbaren Fördermenge einer bestimm¬ ten Pumpendrehzahl öffnet sich das Regelventil, so daß ein unter hohem Druck stehender Fluidstrahl in eine Abstrombohrung 51 eintritt. Diese ist sehr kurz gewählt und mundet unmittelbar in einen Injek¬ tor 53, der einen langgestreckten, im wesentlichen rohrformigen Grundkorper 55 aufweist. Dieser ist vorzugsweise aus errosionsfestem Material herge¬ stellt. Der Querschnitt durch den Grundkorper zeigt, daß die Dicke seiner Wandung von der Ein- trittsoffnung 57 aus zur Austrittsoffnung 59 ab¬ nimmt, wobei einerseits die Außenflache des Grund- korpers die Form eines Kegelstumpfmantels aufweisen kann, wahrend der im Innern des Injektors 53 durch¬ gehende Stromungsbereich 61 etwa zylindrisch oder seinerseits kegelstumpfformig ausgebildet ist.
Die Mittelachse 63 des Injektors 53 fallt hier zu¬ sammen mit der Mittelachse 39 des Kanalabschnitts 37 und auch mit der Mittelachse 65 der Abstromboh¬ rung 51.
Der Injektor 53 ist umgeben von einem Ringkanal 67, der einerseits mit dem gebogenen Bereich 35 des Zu- fuhrkanalε 33 und andererseits mit dem Kanalab¬ schnitt 37 in Verbindung steht.
Das Gehäuse 5 der Pumpe 1 ist auf geeignete Weise mit dem Lagerflansch 7 befestigt. Hier ist bei¬ spielhaft eine Schraube 69 zur Verbindung der bei¬ den Teile angedeutet. Das Innere des Gehäuses 5 ist so ausgestaltet, daß der Druckplattentrager 11 in Richtung der Drehachse 25 verschiebbar ist. Zwi¬ schen diesem und dem Gehäuse 5 ist zur Trennung des Ansaugraums 27 vom Druckraum 29 eine umlaufende Dichtung 69' vorgesehen. Der Druckraum 29 ist vor¬ zugsweise umlaufend ausgebildet. Von diesem geht eine den Druckplattenträger 11 durchlaufende Boh¬ rung 71 aus, die die Druckplatte 15 durchdringt und im Fußbereich der Flügel 17 am Rotor 19 mündet. Auf diese Weise ist eine Druckbeaufschlagung der Flügel zur Erleichterung der radialen Auswärtsbewegung möglich.
Aus der Schnittdarstellung ist ersichtlich, daß der Zufuhrkanal 33 unmittelbar an den in die Abström¬ bohrung 51 eintretenden Abströmstrahl herangeführt werden kann. Der Abströmstrahl wird von dem Injek¬ tor 53 beziehungsweise von dessen Grundkörper 55 aufgefangen, so daß eine Erosion des Gehäuses 5 der Pumpe 1 sicher vermieden wird. Gleichzeitig wird, insbesondere bei einer Verjüngung der Aus¬ trittsöffnung 59 gegenüber der Eintrittsöffnung 57 der den Injektor durchlaufende Strahl des Fluids noch beschleunigt, so daß das unter niedrigen Druck stehende öl sehr gut mitgerissen wird. Aufgrund des Ringkanals 57 wird das Fluid im Zufuhrkanal an dem gesamten Umfangsbereich des den Injektor 53 verlas¬ senden Strahls herangeführt, so daß dessen Wirkung besonders ausgeprägt ist. Es wird also von dem den Injektor verlassenden Strahl sehr viel von dem im Ringkanal befindlichen Fluid mitgerissen, so daß eine sehr gute Füllung des Ansaugraums 27 sicherge¬ stellt ist. Auch bei einer hohen Ansaugleistung der Fördereinrichtung werden daher Kavitationen sicher vermieden. Bei der Darstellung sind die Mittelachse 65 der Ab¬ strömbohrung 51, die Mittelachse 63 des Injektors 53 sowie die Mittelachse 39 des Kanalabschnitts 37 in einer Linie ausgerichtet. Es ist aber auch mög¬ lich, die Mittelachse des Injektors 53 gegenüber den beiden anderen Achsen zu verschwenken, so daß die Austrittsöffnung 59 des Injektors nicht, wie in der Schnittdarstellung gezeigt, direkt nach unten weist, sondern beispielsweise nach rechts ver¬ schwenkt ist. Der Injektor 53 erlaubt also eine Führung sowohl des aus der Ventilbohrung 49 stam¬ menden Fluids als auch des mitgerissenen Öls, so daß der Ansaugbereich der Pumpe auch bei einer ab¬ weichenden Anordnung der Einzelteile optimal mit dem zu fördernden Fluid gefüllt wird.
Der hier dargestellte Injektor 53 zeichnet sich durch einen dessen Eintrittsöffnung 57 umgebenden Kragen 71 aus, der zu einer Verstärkung des Injek¬ tors führt und eine Einpressung dieses Teils in die Gehäusewandung ermöglicht. Der Kragen 71 kann für andere Montagearten auch größer ausgebildet werden als in Figur 2 dargestellt.
Angesichts der Tatsache, daß die Mittelachse 41 der Bohrung 43 und die Mittelachse 39 des Kanalab¬ schnitts 37 fluchtet, können beide Bereiche durch eine einzige Bohrung in das Material des Gehäuses 5 hergestellt werden. Der konzentrisch zum Kanalab¬ schnitt 37 verlaufende Ringkanal 67 ist vorzugs¬ weise in den Grundkörper des Gehäuses 5 eingegos¬ sen. Darüber hinaus kann durch die Bohrung 43 eine ringförmige Ausnehmung in den Grundkörper des Ge- häuses 5 eingebracht werden, die dann der Aufnahme des Kragens 71 dient. Der Außendurchmesser des Kra¬ gens 71 ist kleiner als der Innendurchmesser der Bohrung 43 aber auch des Kanalabschnitts 37. Der Injektor kann also ohne weiteres durch die Bohrung 43 und durch den Kanalabschnitt 37 von außen in das Gehäuse 5 eingesetzt werden. Es ist also auch eine Automatisierung bei der Einbringung des Injektors in das Gehäuse 5 der Pumpe 1 möglich.
Die Abströmbohrung 51 wird ihrerseits mit Hilfe ei¬ nes Bohrers eingebracht, der durch die Bohrung 43 geführt wird und dabei durch den Kanalabschnitt 37 verläuft. Es zeigt sich also, daß der Einbau des Injektors 53 in das Gehäuse 5 sehr einfach ist, wo¬ bei auch die Einbringung der mit- dem Injektor zu¬ sammenwirkenden Fluid-Führungskanäle, das heißt, der Abströmbohrung 51, des Kanalabschnitts 37 und des Ringkanals 67, einfach und damit kostengünstig realisierbar ist.
Der Injektor 53 kann seinerseits preiswert herge¬ stellt werden , da sein Grundkörper 55 als im we¬ sentlichen rohrformige Hülse realisierbar ist. Der Platzbedarf des Injektors ist außerordentlich ge¬ ring, so daß die Pumpe 1 sehr kompakt aufgebaut ist.
Für die Funktion des Injektors 53 ist es letztlich belanglos, daß das Stromregelventil, wie in der Schnittdarstellung gezeigt, senkrecht zur Drehachse 25 der Antriebswelle 9 verläuft. Wesentlich ist, daß der Abströmstrahl möglichst nahe an dem Regel- ventil 47 von dem Injektor 53 aufgenommen und un¬ mittelbar in diesem Bereich eine Ansaugung des heranzuführenden Fluids über den Ringkanal 67 be¬ werkstelligt wird.
Der Ringkanal gewährleistet eine gute Ausnutzung des den Injektor durchdringenden Fluidstrahls, da er den Grundkörper 55 vollständig umgibt. Der Durchmesser des Ringkanalε und der der Austritts¬ öffnung 59 des Injektors 53 können in Abhängigkeit von der Viskosität des verwendeten Fluids von der Fördermenge der Pumpe und von der Strömungsge¬ schwindigkeit des den Injektor verlassenden Fluids angepaßt werden. Auf diese Weise ist immer eine op¬ timale Füllung des Ansaugraums 27 zu gewährleisten, so daß ein kavitationsfreier Betrieb der Pumpe bei verschiedensten Förderleistungen sichergestellt ist.
Bei dem hier dargestellten Ausführungsbeispiel ist die Höhe des den Grundkörper 55 des Injektor 53 um¬ gebenden Ringkanals 67 so auf die Länge des Injek¬ tors 53 abgestimmt, daß sich eine optimale Ansau¬ gung des unter niedrigen Druck stehenden Fluids er¬ gibt. Hier beträgt die wirksame Länge des Injektors etwa die anderthalbfache Höhe des Ringkanals. Um eine verwirblungsfreie Einströmung des Fluids aus dem Zufuhrkanal 33 und aus dem gebogenen Kanal 35 in den Ringkanal 67 sicherzustellen, ist der Durch¬ messer des gebogenen Bereichs 35 so gewählt, daß die Mündung dieses Bereichs einen Durchmesser auf¬ weist, der der Höhe des Ringkanals entspricht. Der Außendurchmesser des Ringkanals 67 ist etwas größer gewählt als der Durchmesser des Kanalabschnitts 37. Durch diese Dimensionierung des Ringkanals ist eine besonders gute Umströmung des Mantels des Injektors 53 zu erreichen, so daß die Ansaugwirkung des den Injektor 53 verlassenden Strahls besonders gut aus¬ genutzt werden kann.
Die Schnittdarstellung zeigt darüber hinaus, daß ein verlustarmer Eintritt des Abströmstrahls in den Injektor 53 dadurch ermöglicht wird, daß der Innen¬ durchmesser der Abströmbohrung 51 gleich groß ge¬ wählt ist wie der Durchmesser der Eintrittsöffnung 57.
Anhand von Figur 2, die einen vergrößerten Längs¬ schnitt durch den Injektor 53 zeigt, sollen die Größenverhältnisse im Bereich des Injektors genauer dargestellt werden.
Mit a wird der Durchmesser des Ringkanals 67, mit b der Durchmesser des Kanalabschnitts 37, mit c der Durchmesser der Austrittsöffnung 59, mit d die freie Strecke, die für den den Injektor 53 verlas¬ senden Strahl innerhalb des Kanalabschnitts 37 ver¬ bleibt, mit e die Teillänge des Injektors 53 in¬ nerhalb des Kanalabschnitts 37 und mit f die Höhe des Ringkanals 67 bezeichnet.
Aus dem oben Gesagten ergibt sich die Grundbedin¬ gung für die Funktion des Injektors, die nur dann gewährleistet ist, wenn ein ausreichend großer Vo¬ lumenstrom von außen, das heißt aus dem Vorratsbe¬ hälter, nachgesaugt werden kann. Nur damit ist eine Kavitation in der Pumpe zu verhindern. Durch den aus dem Injektor strömenden Strahl muß also Fluid aus dem hier nicht dargestellten Tank über den Sauganschluß 31, den Zufuhrkanal 33, dessen geboge¬ nen Bereich 35 und über den Ringkanal 67 angesaugt werden.
Im Betrieb der Pumpe äußert sich eine Kavitation zunächst nur durch einen Abfall der Fördermenge der Pumpe, schließlich werden jedoch bei größer werden¬ den Ansaugproblemen die Betriebsgeräusche der Pumpe immer lauter.
Der Injektor ist so auszulegen, daß bereits eine geringfügige Absenkung der Fördermenge verhindert wird. Grundsätzlich ist der Injektor für einen För¬ derstrom ausgelegt, der in einem Bereich von 14 bis 28 liegt. Änderungen der Abmessungen des In¬ jektors und des ihn umgebenden Bereichs sind daher besonders kritisch. Bei dem hier dargestellten Ausführungsbeispiel dürfen daher die Maße für den Durchmesser b des Kanalabschnitts 37 und für den Durchmesser c der Austrittsöffnung 59 sowie für die freie Strecke d und die Teillänge e nur ganz geringfügig geändert werden, vorzugsweise im Be¬ reich von 1/10 mm, um eine optimale Funktion des Injektors zu gewährleisten. Besonders bewährt hat sich -ausgehend von der Dimensionierung c = 1- die folgende Auslegung eines Injektors:
a:b:c = 3,7:2,3:1
d:e:f = 1,6:0,86:1,1 Das in Figur 3 dargestellte Ausführungsbeispiel un¬ terscheidet sich von dem in Figur l dargestellten lediglich dadurch, daß der Injektor 53 von einer als Sicherungselement dienenden Befestigungshülse 73 im Gehäuse 5 der Pumpe 1 gehalten wird. Bei der hier gewählten Darstellung werden Teile, die mit denen der Figuren 1 und 2 übereinstimmen, mit glei¬ chen Bezugsziffern versehen, so daß auf deren aus¬ führliche Beschreibung hier verzichtet werden kann.
Die Befestigungshülse 73 weist einen im Kanalab¬ schnitt 37 angeordneten Verankerungsring 75 auf, dessen Außendurchmesser so an den Innendurchmesser des Kanalabschnitts 37 angepaßt ist, daß die Befe¬ stigungshülse bei allen Temperaturen, die bei Ein¬ satz der Pumpe 1 auftreten können, sicher gehalten wird. Die Höhe des Verankerungsrings ist so ge¬ wählt, daß dieser nicht beziehungsweise praktisch nicht in den stromaufwärts angeordneten Ringkanal 67 hineinragt, so daß das von der Pumpe geförderte Medium dort ungehindert strömen kann. Auf der ge¬ genüberliegenden Seite ragt der Verankerungsring 75 ebenfalls nicht beziehungsweise praktisch nicht in den Ansaugraum 27, so daß er das von der Pumpe an¬ gesaugte Medium auch hier nicht behindert.
Der Verankerungsring 75 ist mit mindestens einem, vorzugsweise zwei diametral gegenüberliegenden Hal¬ testegen versehen, die sich durch den Ringkanal 67 nach oben bis zu dem Kragen 71 des in Injektors 53 erstrecken. Die Haltestege 77 drücken gegen die Un¬ terseite des Kragens 71 und halten somit den Injek¬ tor 53 sicher in seiner Montageposition. Insbeson- dere bei kleinen Abmessungen der Pumpe 1 findet der Kragen 71 nur wenig Halt im Grundkörper 5 der Pumpe 1, so daß ein hohes Maß an Funktionssicherheit durch den Einsatz der Befestigungshülse 73 gewonnen wird. Der Injektor 53 wird im gesamten Temperatur¬ bereich des Einsatzes der Pumpe 1 sicher an der ge¬ wünschten Montagepoεition gehalten.
Dabei ist es möglich, die Befestigungshülse 73 durch einen Pressitz in dem Kanalabschnitt 73 zu halten. Es ist auch denkbar, durch eine Riffeiung auf der Innenfläche des Kanalabschnitts und eine geeignete Riffelung auf der Außenfläche der Befe¬ stigungshulse beziehungsweise des Verankerungsrings 75 einen Formschluß zwischen Befestigungshulse und Grundkörper der Pumpe zu erreichen. Schließlich ist es auch denkbar, den Kanalabschnitt 37 auf seiner Innenfläche mit einem Gewinde zu versehen, welches mit einem auf der Außenseite des Verankerungsrings vorgesehenen Außengewinde kämmt. Das heißt, die Be¬ festigungshülse 73 kann in den Grundkörper der Pumpe eingeschraubt werden und somit den Injektor sicher in seiner Ausgangslage halten.
Es zeigt sich deutlich, daß das aus dem Saugan¬ schluß 31 in den Ringraum 67 strömende Medium durch die Haltestege 77 praktisch nicht behindert wird; es kann überdies ungehindert durch den Innenraum der Befestigungshülse, das heißt, durch das Innere des Verankerungsrings 75 in den Ansaugraum 27 ge¬ langen, wobei das aus der Austrittsöffnung 59 des Injektors 53 (siehe Figur 4) unter hohem Druck her¬ ausschießende Medium im Kanalabschnitt 37, bezie- hungsweise im Inneren des Verankerungsrings 75 vor¬ handenes Medium mitreißt, so daß der Ansaugraum 27 optimal gefüllt wird.
Die Befestigungshülse 73 wird vorzugsweise so ange¬ ordnet, daß das aus dem gebogenen Bereich 35 in den Ringkanal 67 übertretende Fluid durch die Halte- stege 77 nicht behindert wird. Das heißt also, im Mündungsbereich zwischen dem gebogenen Bereich 35 und dem Ringkanal 67 befinden sich keine Haltestege 77.
Die Anordnung der Befestigungshülse 73 ergibt sich auch noch einmal deutlich aus der Schnittdarstel¬ lung in Figur 4, deren Schnittebene senkrecht zu der in Figur 3 gewählten angeordnet ist. Teile, die mit denen in den Figuren 1 bis 3 beschriebenen übereinstimmen, tragen hier gleiche Bezugsziffern, so daß auf deren ausführliche Beschreibung verzich¬ tet wird. Bei der Darstellung in Figur 4 sind weite Teile der Pumpe 1 abgebrochen, die hier zur Ver¬ deutlichung der Montageposition der Befestigungs¬ hulse 73 keine Rolle spielen.
Figur 4 zeigt besonders deutlich, daß die Befesti¬ gungshülse 73, wie die Bezeichnung als Hülse be¬ reits aussagt, innen hohl ausgebildet ist. Der In¬ nendurchmesser der Befestigungshülse ist so ge¬ wählt, daß das von der Pumpe geförderte Medium un¬ gehindert aus dem Ringkanal 67 in den Ansaugraum 27 gelangen kann. Die Austrittsöffnung 57 des Injek¬ tors 53 befindet sich etwa auf halber Höhe des Ver¬ ankerungsrings 75. Die Dimensionen des Injektors und der Befestigungshulse 73 können so gewählt wer¬ den, wie dies anhand von Figur 2 festgelegt wurde. Dabei ist als Innendurchmesser des Verankerungs¬ rings 75 beziehungsweise der Befestigungshulse 73 die Bezugsgroße b anzusetzen.
Figur 4 zeigt noch einmal deutlich, daß die von dem Verankerungsring 75 ausgehenden Haltestege 77 der Befestigungshulse 73 sich durch den Ringkanal 67 erstrecken und an der Unterseite des Kragens 71 des Injektors 53 enden. Sie können auf diese Weise bei fester Montage der Befestigungshulse 73 im Grund¬ korper 5 der Pumpe 1 den Injektor sicher in seiner Montageposition halten. Auf diese Weise ist ein si¬ cherer Halt des Injektors 53 im Inneren der Pumpe 1 bei allen Temperaturen gewahrleistet, die im Be¬ trieb der Pumpe auftreten. Insbesondere bei kleinen Abmessungen der Pumpe 1 ergibt sich eine geringe Hohe des Kragens 71 und damit eine geringe Halte¬ kraft des Injektors innerhalb des Gehäuses 5. Diese Haltekraft wird, wie aus den Erläuterungen zu den Figuren 3 und 4 ersichtlich, durch die Befesti¬ gungshulse 73 wesentlich erhöht, zumal, wenn außer einer normalen Pressung der Befestigungshulse 73 im Inneren des Gehäuses 5 ein Formschluß zwischen Hülse und Gehäuse gewählt wird.
Die Breite der Haltestege 77 kann relativ klein ge¬ wählt werden, da sie aufgrund der Wölbung der Hülse eine hohe Formstabilitat aufweisen. Die Befesti¬ gungshulse 73 ist insgesamt als Hohlkörper ausge¬ bildet, dessen Innen- und Außenflachen kreiszylin¬ drisch ausgebildet sind. Damit sind auch die Halte- stege 77 in sich so gewölbt, daß sie in senkrechter
Richtung wirkende Kräfte, also Kräfte die in Rich¬ tung der Mittelachse 39 wirken, die auch die Mitte- lachse der Befestigungshülse 73 ist, sicher abfan¬ gen.
Insgesamt ist ersichtlich, daß durch die einfach herstellbare Befestigungshülse, die vorzugsweise aus Metall besteht, eine hohe Funktionssicherheit der Pumpe erreicht wird, da auch bei kleinen Ein¬ baugrößen der Injektor sicher an der Montagestelle gehalten wird. Dabei erhöhen sich die Herstellungs¬ kosten der Pumpe praktisch nicht, da die Hülse ohne weiteres, wie der Injektor 53, durch die Bohrung 43 in das Innere des Gehäuses 5 der Pumpe 1 einge¬ bracht und im Bereich des Kanalabschnitts 37 veran¬ kert werden kann.
Da die Befestigungshülse 73 ausschließlich der Si¬ cherung des Injektors 53 dient, darf sie die Strö¬ mung des von der Pumpe geförderten Mediums nicht behindern. Vorzugsweise ist der Innendurchmesser der Hülse so gewählt, daß das Medium optimal der Austrittsöffnung 59 des Injektors 53 zugeführt und somit von dem mit hoher Gewindigkeit aus dem Injek¬ tor austretenden Medium mitgerissen wird. Im Be¬ reich des Ringkanals 67 darf das einströmende Me¬ dium möglichst wenig behindert werden. Dies kann auch dadurch erreicht werden, daß die Befestigungs¬ hulse im Bereich des Ringkanals als Lochblech aus¬ gebildet ist. Vorzugsweise werden jedoch schmale Haltestege 77 gewählt, wie sie besonders aus Figur 3 deutlich ersichtlich sind, um einen besonders ge¬ ringen Störungswiderstand zu erzielen.
Grundsätzlich ist es auch möglich, daß die Halte¬ stege 77 etwas in Richtung auf den Injektor 53 ge¬ neigt sind und sich auf dessen Außenfläche abstüt¬ zen, so daß dieser sicher in seiner Montagestellung gehalten wird. Dabei bedarf es einer Abstimmung des von den Haltestegen freigelassenen Innendurchmes¬ sers auf den Außendurch esser des Injektors im Be¬ reich des Eingriffs der Haltestege auf der Außen¬ fläche des Injektors. Am preisgünstigsten ist die Realisierung der Befestigungshülse 73, wenn die Haltestege 77 guasi eine Fortsetzung der Wandung des Verankerungsrings 75 bilden und sich parallel zur Mittelachse der Hülse beziehungweise des Injek¬ tors bis zu dessen Kragen 71 erstrecken und diesen sicher im Grundkörper 5 der Pumpe 1 halten.

Claims

Ansprüche
1. Pumpe zum Fördern eines Fluids mit
- einer in einem Pumpengehäuse untergebrachten För¬ dereinrichtung (3) ,
- einem im Pumpengehäuse verlaufenden Zufuhrkanal (33) für das Fluid und mit
- einem zwischen Druck- und Ansaugbereich (27) der Fördereinrichtung (3) angeordneten Regelventil,
gekennzeichnet durch einen mit unter hohem Druck stehenden Fluid beaufschagbaren, Fluid aus dem Zu¬ fuhrkanal (33) in den Ansaugbereich (27) der För¬ dereinrichtung (3) fördernden Injektor (53) .
2. Pumpe nach Anspruch 1, dadurch gekennzeichnet, daß der Einlaßbereich (57) des Injektors (53) in unmittelbarer Nähe des Auslasses (51) des Regelven¬ tils (47) angeordnet ist, und daß die Mündung (59) des Injektors (53) im Zufuhrkanal (33;37) unmit¬ telbar vor dem Ansaugbereich (27) der Förderein¬ richtung (3) angeordnet ist.
3. Pumpe nach Anspruch 1 oder 2, dadurch gekenn¬ zeichnet, daß der Grundkörper (55) des Injektors (53) von einem Ringkanal (67) umgeben ist, der mit dem Zufuhrkanal (33) in Verbindung steht.
4. Pumpe nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß der Grundkörper (55) des Injek¬ tors (53) im wesentlichen rohrför ig ausgebildet ist, daß dessen Eintrittsöffnung (57) dem Auslaß (51) und dessen Austrittsöffnung (59) dem Ansaug¬ raum (27) der Fördereinrichtung (3) zugeordnet ist, und daß sowohl das unter hoher Geschwindigkeit strömende Fluid als auch das mitgerissene Fluid aus dem Zufuhrkanal (33) in eine vorgegebene Richtung gelenkt wird.
5. Pumpe nach Anspruch 4, dadurch gekennzeichnet, daß die Mittelachse (63) des Injektors (53) mit der Mittelachse (65) der das Regelventil (47) ver¬ lassende Fluid aufnehmenden Abströmbohrung (51) zu¬ sammenfällt, gegenüber dieser parallel versetzt ist oder mit dieser einen Winkel (α) einschließt.
6. Pumpe nach Anspruch 5, dadurch gekennzeichnet, daß der Winkel (α) in einem Bereich zwischen 0° und 80°, vorzugsweise in einem Bereich von 0° bis 20", insbesondere ca. 5° bis 10° liegt.
7. Pumpe nach einem der Ansprüche 4 bis 6, dadurch gekennzeichnet, daß die Wandstärke des Grundkorpers (55) von der Eintrittsöffnung (57) zur Austritts- öffnung (59) abnimmt, und daß die Innenfläche und/oder die Außenfläche des Grundkorpers (55) des Injektors (53) konisch ausgebildet ist, wobei an der Eintrittsöffnung der Innendurchmesser größer ist als der Außendurchmesser.
8. Pumpe nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß der Grundkörper (55) des Injek¬ tors (53) aus errosionsfestem Material besteht.
9. Pumpe nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß die' Fördereinrichtung (3) der Pumpe (1) als FlügelZellenanordnung ausgebildet ist.
10. Pumpe nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß für den Durchmesser a des Ring¬ kanals (67) , den Durchmesser b des Kanalabschnitts (37) , den Durchmesser c der Austrittsöffnung, die Verhältnisse a:b:c = 3,7:2,3:1 gewählt werden und/oder für eine freie Strecke d des den Injektor (53) durchströmenden Strahls, eine Teillänge e des Injektors und für die Höhe f des Ringkanals (67) die Verhältnisse d:e:f = 1,6:0,85:1,1, wobei als Grundlage der Wert c = 1 gewählt ist.
11. Pumpe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß dem Injektor (53) ein als Befestigungshülse (73) ausgebildetes Siche¬ rungselement zugeordnet ist, welches sich einer¬ seits im Grundgehäuse (5) der Pumpe (1) und ande¬ rerseits am Injektor (53) abstützt.
12. Pumpe nach Anspruch 11, dadurch gekennzeichnet, daß die Befestigungshülse (73) einen Verankerungs- ring (75) aufweist, der im Gehäuse (5) der Pumpe (1) verankerbar ist, und von dem Haltestege (77) entspringen, die sich am Injektor (53), vorzugs¬ weise an dessen Kragen (71) abstützen.
13. Pumpe nach Anspruch 12, dadurch gekennzeichnet, daß die Befestigungshülse (73) zwei vom Veranke¬ rungsring (75) entspringende Haltestege (77) auf¬ weist.
14. Pumpe nach Anspruch 13 oder 14, dadurch gekenn¬ zeichnet, daß die Haltestege (77) so angeordnet sind, daß das von der Pumpe angesaugte Fluid unge¬ hindert in das Innere der Befestigungshülse (73) einströmen kann.
EP92923450A 1991-11-23 1992-11-11 Pumpe Expired - Lifetime EP0613528B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4138516A DE4138516A1 (de) 1991-11-23 1991-11-23 Pumpe
DE4138516 1991-11-23
PCT/EP1992/002584 WO1993010354A1 (de) 1991-11-23 1992-11-11 Pumpe

Publications (2)

Publication Number Publication Date
EP0613528A1 true EP0613528A1 (de) 1994-09-07
EP0613528B1 EP0613528B1 (de) 1996-03-20

Family

ID=6445403

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92923450A Expired - Lifetime EP0613528B1 (de) 1991-11-23 1992-11-11 Pumpe

Country Status (5)

Country Link
US (1) US5496152A (de)
EP (1) EP0613528B1 (de)
JP (1) JP3616808B2 (de)
DE (2) DE4138516A1 (de)
WO (1) WO1993010354A1 (de)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0763659B1 (de) * 1995-09-14 2002-12-18 LuK Fahrzeug-Hydraulik GmbH & Co. KG Pumpe
NL1009256C1 (nl) * 1998-05-25 1999-06-25 Scipio Pieter Sjoerd Beerlings Cyclonale ejectiepomp.
DE19836630A1 (de) * 1998-08-13 2000-02-17 Luk Fahrzeug Hydraulik Pumpe
DE19836628A1 (de) * 1998-08-13 2000-02-17 Luk Fahrzeug Hydraulik Pumpe
DE19836620C2 (de) * 1998-08-13 2003-12-24 Luk Fahrzeug Hydraulik Pumpe
US6413063B1 (en) 1998-08-13 2002-07-02 Luk Fahrzeug-Hydraulik Gmbh & Co. Kg Pump
JP2002522707A (ja) * 1998-08-13 2002-07-23 ルーク ファールチョイグ−ヒドラウリク ゲーエムベーハー アンド カンパニー カーゲー ポンプ
DE19952144B4 (de) * 1998-11-17 2014-01-16 Ixetic Bad Homburg Gmbh Druckmittelfördereinrichtung mit einer Pumpeneinrichtung oberhalb einer Druckmittelvorratsmenge mit Verbindung zur zugehörigen Druckleitung
JP2002021748A (ja) * 2000-06-30 2002-01-23 Showa Corp ベーンポンプ
EP1303701B1 (de) 2000-07-27 2005-08-31 LuK Fahrzeug-Hydraulik GmbH & Co. KG Pumpe
WO2002010592A1 (de) * 2000-08-01 2002-02-07 Luk Fahrzeug-Hydraulik Gmbh & Co. Kg Pumpe mit stromregelventileinrichtung und injektoreinrichtung
US20080273992A1 (en) * 2007-05-03 2008-11-06 Metaldyne Company Llc. Cavitation-deterring energy-efficient fluid pump system and method of operation
IN2009KO01235A (de) 2008-10-20 2015-08-14 Fmo Technology Gmbh
DE102011084405B4 (de) * 2011-10-13 2021-05-27 Zf Friedrichshafen Ag Saugaufgeladene Pumpe zum Fördern einer Flüssigkeit
DE102012100702A1 (de) * 2012-01-30 2013-08-01 Zf Lenksysteme Gmbh Pumpe, insbesondere Flügelzellenpumpe für eine Hilfskraftlenkung
DE102012010939B4 (de) * 2012-06-04 2016-06-02 Ibs Filtran Kunststoff- / Metallerzeugnisse Gmbh Saugölfiltereinheit für Getriebe oder Verbrennungsmotoren
DE102016102433B3 (de) * 2016-02-11 2017-05-11 Steyr Motors Gmbh Gear Pump
US11143208B2 (en) * 2018-12-17 2021-10-12 Goodrich Corporation Aspirators for evacuation assemblies

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2724335A (en) * 1951-12-14 1955-11-22 Eaton Mfg Co Pumping unit with flow director
US2983226A (en) * 1953-01-16 1961-05-09 William T Livermore Injection filled liquid pump
US2985357A (en) * 1959-03-19 1961-05-23 Bendix Corp Injectors
US3207077A (en) * 1963-05-27 1965-09-21 Gen Motors Corp Pump
JPS504835B1 (de) * 1968-08-14 1975-02-24
US3551073A (en) * 1968-12-16 1970-12-29 Chandler Evans Inc Pumping system with improved jet inducer
US3614266A (en) * 1969-12-24 1971-10-19 Ford Motor Co Compact positive displacement pump
US3922113A (en) * 1972-01-06 1975-11-25 Plessey Co Ltd Metered supply of liquids
SU690161A1 (ru) * 1974-04-12 1979-10-05 Panin Nikolaj M Промывочный узел гидромониторного долота
FR2443598A1 (fr) * 1978-12-08 1980-07-04 Renault Dispositif d'alimentation a recuperation d'energie d'une pompe
DE3210729A1 (de) * 1982-03-24 1983-10-06 Hoechst Ag Verfahren zur herstellung von titandioxid-konzentraten
EP0125328B1 (de) * 1983-05-14 1987-03-04 Vickers Systems GmbH Flügelzellenpumpe, insbesondere zur Lenkhilfe
US4712739A (en) * 1986-10-03 1987-12-15 Champion Spark Plug Company Spray gun nozzle assembly retainer clip and spray gun nozzle assembly
US4823550A (en) * 1987-06-23 1989-04-25 Templeton, Kenly & Co. Rotary valve with jet pump aspirator
GB2266342B (en) * 1989-08-04 1994-01-26 Ph Pool Services Ltd Jet units for whirlpool-bath systems
FR2666382B1 (fr) * 1990-08-28 1992-10-16 Cit Alcatel Dispositif de pompage d'un gaz par une pompe a palettes et a joint d'huile et application aux detecteurs de fuites a helium.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9310354A1 *

Also Published As

Publication number Publication date
WO1993010354A1 (de) 1993-05-27
JPH07504245A (ja) 1995-05-11
JP3616808B2 (ja) 2005-02-02
DE59205785D1 (de) 1996-04-25
DE4138516A1 (de) 1993-05-27
EP0613528B1 (de) 1996-03-20
US5496152A (en) 1996-03-05

Similar Documents

Publication Publication Date Title
EP0613528A1 (de) Pumpe.
DE10240409B4 (de) Variable Verdrängungspumpe
DE102004003335B4 (de) Motorölsystem mit Verstellpumpe
DE3128385C2 (de)
EP0934466B1 (de) Förderpumpe
EP0640183B1 (de) Hydrostatische maschine mit leckölabführung
DE4428633C2 (de) Peripheralpumpe zum Zuführen von Kraftstoff zu einem Fahrzeugmotor
DE3414605C2 (de) Rotierender Siphon zum Abführen des Kondensats aus einem dampfbeheizten Hohlzylinder
DE69026758T2 (de) Kreiselpumpengehäuse
DE3804843A1 (de) Kraftstoffeinspritzpumpe fuer brennkraftmaschinen
DE3228038A1 (de) Fluessigkeit/gas-abscheider
EP0021315B1 (de) Kolbenmaschine, insbesondere Kolbenpumpe
DE19614350C2 (de) Pumpe, insbesondere Faßpumpe
EP1071885A1 (de) Seitenkanalpumpe
DE2702727B2 (de) Dichtungseinrichtung für auf einer Drehbewegung beruhende Hydraulikmaschinen
DE102015007100A1 (de) Selbstansaugende Pumpenaggregation
DE4108126C2 (de) Flügelzellenpumpe
DE2730091C2 (de) Schrägkantengesteuerte Kraftstoffeinspritzpumpe für Brennkraftmaschinen
DE10040711C2 (de) Flügelzellenpumpe
DE3513923C2 (de)
EP0017829B1 (de) Kreiselpumpe und ihr Gehäuse
DE19711970A1 (de) Vorrichtung zum Regulieren der Fördermenge einer vertikalachsigen Kreiselpumpe
WO1998021479A1 (de) Innenzahnradpumpe mit antrieb über das hohlrad
DE10016924A1 (de) Strahlpumpe und ihre Verwendung
DE19918393B4 (de) Hydraulische Fördereinrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19940520

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 19950428

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REF Corresponds to:

Ref document number: 59205785

Country of ref document: DE

Date of ref document: 19960425

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO MILANO S.P.A.

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960626

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19981008

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19981020

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991111

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19991111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000731

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051111

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20101201

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59205785

Country of ref document: DE

Effective date: 20120601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120601