EP0605495B1 - Fettalkoholpolyalkylenglykole mit eingeengter homologenverteilung in schaumarmen tauchreinigern - Google Patents

Fettalkoholpolyalkylenglykole mit eingeengter homologenverteilung in schaumarmen tauchreinigern Download PDF

Info

Publication number
EP0605495B1
EP0605495B1 EP92919454A EP92919454A EP0605495B1 EP 0605495 B1 EP0605495 B1 EP 0605495B1 EP 92919454 A EP92919454 A EP 92919454A EP 92919454 A EP92919454 A EP 92919454A EP 0605495 B1 EP0605495 B1 EP 0605495B1
Authority
EP
European Patent Office
Prior art keywords
fatty alcohol
alkali metal
cleaners
contain
dip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92919454A
Other languages
English (en)
French (fr)
Other versions
EP0605495A1 (de
Inventor
Hans-Christian Raths
Achim Richling
Yves Guinomet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Publication of EP0605495A1 publication Critical patent/EP0605495A1/de
Application granted granted Critical
Publication of EP0605495B1 publication Critical patent/EP0605495B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/0005Other compounding ingredients characterised by their effect
    • C11D3/0026Low foaming or foam regulating compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/72Ethers of polyoxyalkylene glycols
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/04Water-soluble compounds
    • C11D3/06Phosphates, including polyphosphates
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/04Water-soluble compounds
    • C11D3/08Silicates
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/04Water-soluble compounds
    • C11D3/10Carbonates ; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/14Cleaning or pickling metallic material with solutions or molten salts with alkaline solutions

Definitions

  • the invention relates to the use of fatty alcohol polyalkylene glycols with a narrow homolog distribution in low-foam immersion cleaners, in particular alkaline cleaners for industrial cleaning of metallic surfaces, based on concentrated aqueous solutions of alkaline builder substances and mixtures.
  • a large number of agents are used for the industrial cleaning of hard surfaces with aqueous solutions.
  • the most important components of these substances are builder and surfactant systems alone and in combination with each other.
  • the properties of these base mixtures of builders and surfactants often have to be adapted to the respective application for practical use by adding further ingredients, such as complexing agents and corrosion inhibitors.
  • the aqueous, mildly alkaline solutions of the immersion cleaners usually have a pH of about 10 to 11.5. They are used in particular for difficult cleaning tasks, for example for removing thick oil and pigment soiling in repair shops and for cleaning containers and systems. These alkaline immersion cleaners can also be used for fine cleaning of metallic surfaces, provided that clean metallic surfaces are required. This applies, for example, to cleaning before and after hardening processes, cleaning strip steel before annealing and coating, and pretreatment of workpieces in electroplating, phosphating, painting shops and Enamelling companies. With the aqueous solutions of the alkaline immersion cleaners, a very high level of purity of the workpiece surfaces and, at the same time, good dirt discharge capacity of the bath are expected.
  • Typical alkaline immersion cleaners are produced as a powder by mixing 80 to 100% alkaline builder substance and 0 to 20% of various anionic and / or nonionic surfactants.
  • the most common inorganic builders are alkaline hydroxides, silicates, phosphates and carbonates of sodium and / or potassium.
  • gluconates, polyalkanolamines, polycarboxylic acids, polyoxycarboxylic acids and phosphonates are also used as complexing agents.
  • the surfactant mixtures usually consist of low and highly ethoxylated or propoxylated alkylphenols and / or fatty alcohols with different chain lengths.
  • Nonylphenol alkoxylates are characterized by excellent technical properties and are universally applicable surfactants for a variety of detergents and cleaning agents, as well as emulsifiers for a variety of technical applications.
  • the degreasing properties of nonylphenol alkoxylates are particularly pronounced on both metallic surfaces and textile fabrics.
  • the ecological assessment is disadvantageous for this product group. It has been shown that alkylphenol ethoxylates form toxic metabolites during biodegradation.
  • GB-A-1 445 716 relates to detergent formulations, in particular for cleaning metallic surfaces, containing a mixture of certain nonionic surfactants of the linear alcohol ethoxylate type, optionally together with other customary detergent components such as inorganic builders.
  • This mixture is distinguished by the fact that it contains at least two such surfactants which have a chain length in the fatty alcohol residue of 8 to 13 carbon atoms and a degree of ethoxylation (EO%) of 55 to 85%, but they differ in the degree of ethoxylation.
  • the chain length of the fatty alcohol and the degree of ethoxylation are coordinated with one another such that the first surfactant has an EO content of less than 70% and the second surfactant has an EO content of more than 65%, the difference between these EO contents is at least 10.
  • the proportion by weight of the surfactant with the lower EO content is in the range from 10 to 100% based on that of the surfactant with the higher EO content.
  • US-A-4 048 121 describes metal cleaner formulations containing alkaline builders, sodium gluconate, sodium ethylenediaminetetraacetate, kerosene and a biodegradable wetting agent mixture consisting of three components. Two of these components are linear, primary alcohol polyethers, the first component having a cloud point of approximately 40 ° C. and the second component having a cloud point of approximately 26 ° C. The third component consists of a linear alcohol alkoxylate with a cloud point of approx. 20 ° C.
  • US-A-3 888 783 describes cleaner formulations for tinned metal surfaces.
  • the aqueous cleaners contain metasilicates, condensed phosphates, sodium borate and optionally surfactants.
  • Suitable surfactants are, for example, ethoxylated straight-chain alcohols or octyl- or nonylphenoxy-polyethoxyethanols.
  • the presentation of SU-A-372 250 in database WPI / DERWENT 73-68366 U relates to cleaners for metal surfaces to remove resinous deposits.
  • the cleaners contain oxyethylated fatty alcohols, alkylbenzylpyridinium chloride, pine oil extract, sodium metasilicate, sodium triphosphate and calcined soda.
  • Suitable processes for the production of fatty alcohol polyalkylene glycol ethers with a narrow homolog distribution are known, for example, from DE-A-38 43 713 and US-A-4 962 237. In both cases, the alkoxylation of fatty alcohols is carried out in the presence of inorganic layer compounds, for example calcined hydrotalcite.
  • the object of the present invention was to find substitution products for alkylphenol alkoxylates which have at least comparable application properties and which, according to the current state of knowledge, are also ecologically harmless.
  • alkaline immersion cleaners according to the invention have greatly improved application properties compared to comparable cleaners based on alkylphenol alkoxylates.
  • Corresponding advantages in terms of application technology have also been achieved in comparison with nonionic fatty alcohol polyalkylene glycol ethers which have been customary in the prior art and have a standard (read: broad) homolog distribution.
  • the dip cleaners according to the invention preferably contain at least one alkali metal silicate and / or one alkali metal phosphate as a builder.
  • the usual industrial industrial cleaners are usually divided into silicate and phosphate cleaners.
  • Such cleaners can be dissolved at room temperature up to a maximum concentration of approx. 100 g / l if the corresponding sodium salts and caustic soda are used.
  • solutions with a maximum concentration of 500 g / l result.
  • the alkaline immersion cleaners are characterized in that the In addition to an alkali metal silicate and / or an alkali metal phosphate, builder mixtures also contain alkali metal hydroxides and / or alkali metal carbonates and / or alkali metal gluconates and / or alkanolamines.
  • the alkaline immersion cleaners according to the invention can thus contain the following builder substances: either alkali metal silicate and alkali metal phosphate, in each case alone or in a mixture.
  • builder substances either alkali metal silicate and alkali metal phosphate, in each case alone or in a mixture.
  • these builder substances there is the preferred possibility within the meaning of the invention of combining these builder substances with alkali metal hydroxides, alkali metal carbonates, alkali metal gluconates and alkanolamines, it being possible for such combinations to contain one or more of the additional builder substances.
  • sodium and / or potassium are preferably used as alkali metals.
  • Mixtures of corresponding sodium and potassium compounds are preferably used, the proportion of potassium ions exceeding that of sodium ions.
  • alkali metal phosphates is understood to mean alkali metal orthophosphates, pyrophosphates and triphosphates (also called tripolyphosphates). Of these, however, the triphosphates are preferred according to the invention, in particular the potassium triphosphate.
  • the proportion of silicate in the aqueous builder solutions should generally predominate; i.e. the phosphate content is in the range from about 0.1 to 10% by weight, based on the aqueous builder solution.
  • alkanolamines mentioned are preferably 1 to 3 times amines substituted by hydroxylalkyl groups - having 1 to 4 carbon atoms in the alkyl radical.
  • Di- and / or triethanolamines are preferably used for the purposes of the invention.
  • Suitable starting materials for the fatty alcohol polyalkylene glycol ethers are fatty alcohols with 6 to 24 carbon atoms in the fatty alcohol residue and 0, 1, 2 or 3 double bonds. Typical examples of this are capronic alcohol, caprylic alcohol, capric alcohol, lauryl alcohol, myristyl alcohol, cetyl alcohol, palmitoleyl alcohol, stearyl alcohol, oleyl alcohol, elaidyl alcohol, petroselinyl alcohol, gadoleyl alcohol, behenyl alcohol or erucyl alcohol. Saturated fatty alcohols with 8 to 18 carbon atoms in the fatty alcohol radical, in particular lauryl alcohol, are preferably used.
  • these alcohols can also be in the form of technical mixtures, such as are obtainable, for example, by high-pressure hydrogenation of fatty acid methyl ester cuts of plant or animal origin or by hydrogenation of technical aldehyde fractions from Roelen's oxosynthesis.
  • the fatty alcohol polyalkylene glycol ethers are produced in the presence of layered compounds with ethylene and / or propylene oxide.
  • layered compounds are to be understood as natural or synthetic, optionally chemically modified hydrotalcites.
  • the layer compounds insoluble in the reaction mixture are colloidally dispersed, which generally means that the removal of the catalyst required after the alkoxylation is associated with considerable difficulties, for example clogging of the filter pores, frequent filter changes, etc.
  • it is generally not necessary to separate these catalysts since the presence of the layered compounds in the immersion cleaners according to the invention does not constitute a disadvantage. This represents an essential cost factor in the manufacture of the immersion cleaners according to the invention.
  • the fatty alcohol polyalkylene glycol ethers to be used for the purposes of the present invention contain an aliphatic hydrocarbon radical (fatty alcohol radical) having 6 to 24 carbon atoms and 0, 1, 2 or 3 olefinic double bonds with an average of 1 to 30 moles of ethylene and / or propylene oxide per mole of fatty alcohol.
  • those fatty alcohol polyalkylene glycol ethers are preferred according to the invention which contain an aliphatic hydrocarbon residue (fatty alcohol residue) with 8 to 18 carbon atoms and with an average of 6 to 20 moles of ethylene and / or propylene oxide per mole of fatty alcohol.
  • mixtures of two or more fatty alcohol polyalkylene glycol ethers which differ from fatty alcohol polyalkylene glycol ethers with a standard homolog distribution in that degrees of alkoxylation in the range from 0 to 3 and above 20 moles of alkylene glycol per mole of fatty alcohol are virtually non-existent occur when you start from a fatty alcohol polyalkylene glycol with a narrow homolog distribution and a degree of alkoxylation of 10 and 12 moles of alkylene glycol per mole of fatty alcohol.
  • the present invention furthermore relates to the use of the immersion cleaners according to the invention in the cleaning of metal surfaces, in particular steel, non-ferrous metals, copper and zinc, before finishing processes such as phosphating, galvanizing, Enamelling and painting as well as intermediate cleaning before processing, especially before the annealing.
  • dip cleaners according to the invention can of course also be used in undiluted form, it is preferred for the purposes of the present invention to use the dip cleaners in such a way that an aqueous solution containing 1 to 20% by weight of dip cleaner is used for the cleaning process mentioned above. Accordingly, preferably used solutions of the immersion cleaners contain 10 to 200 g / l of the cleaner concentrates according to the invention.
  • liquid, alkaline immersion cleaners according to the invention is, on the one hand, that they have a high active ingredient content in builders and at the same time contain surfactants in high concentration.
  • the combination of builder substances and fatty alcohol polyalkylene glycol ethers according to the invention within the immersion cleaners means that suitable products can be offered for all applications in industrial technical cleaning. Cleaners can be formulated for spraying, brushing, dipping and ultrasonic processes as well as for electrolytic cleaning. Using suitable combinations, predetermined cloud points can be set and high-temperature or low-temperature immersion cleaners can be prepared.
  • immersion cleaners according to the invention can of course also contain further constituents which are commonly used in alkaline cleaning agents, such as, for example, defoamers, corrosion inhibitors, complexing agents and / or the like.
  • alkaline cleaning agents such as, for example, defoamers, corrosion inhibitors, complexing agents and / or the like.
  • PLURAFAC PLURAFAC
  • benzotriazole for non-ferrous metals benzotriazole, tolyltriazole; each in amounts of 0.1 to 5 wt .-%, based on the immersion cleaner.
  • Polycarboxylic acids e.g. Polyacrylates
  • Phosphonic acids such as hydroxyethane-1,1-diphosphonic acid (HEDP), amino-tris (methylenephosphonic acid) (ATMP), or their water-soluble salts
  • Aminopolycarboxylic acids e.g. Ethylenediaminetetraacetic acid (EDTA), nitrilotriacetic acid (NTA) or their water-soluble salts
  • Polyoxycarboxylic acids e.g. Citric acid or its salts; each in amounts of 0.1 to 10 wt .-%, based on the immersion cleaner.
  • the immersion cleaners according to the invention are generally prepared in the following manner: the aqueous builder solutions are first mixed with one another with stirring and at room temperature, for example a water glass solution with potassium hydroxide solution and, if appropriate, potassium triphosphate solution. The remaining constituents, ie the surfactants and optionally additives, are then likewise added to the concentrated aqueous builder solution with stirring. To prepare dilute application solutions, ie cleaning solutions, the immersion cleaners are generally metered directly into the cleaning bath with stirring.
  • Alkaline immersion cleaners containing an aqueous solution of 36.8 g / l builder and 3.2 g / l surfactant each, were prepared by stirring the surfactant into the aqueous builder solution.
  • the builder each consisted of 3.7 g / l sodium pyrophosphate, 5.9 g / l sodium metasilicate and 9.9 g / l sodium carbonate.
  • the surfactant base can be found in each of the examples and comparative examples.
  • the immersion cleaner contained a 1: 1 mixture of a fatty alcohol ethoxylate with 12 to 18 carbon atoms in the fatty alcohol residue and an average degree of ethoxylation of 8 moles of fatty alcohol with a narrow homolog distribution and another fatty alcohol ethoxylate with 12 to 18 carbon atoms in the fatty alcohol residue and one average degree of ethoxylation of 16 moles per mole of fatty alcohol with a narrow homolog distribution.
  • Tables 1 and 2 show the properties of such an immersion cleaner.
  • Tables 1 and 2 also show the properties of this immersion cleaner.
  • Example 2 a fatty alcohol ethoxylate with 12 to 18 carbon atoms and an average degree of ethoxylation of 12 moles per mole of fatty alcohol with a narrow homolog distribution was used.
  • Tables 1 and 2 below show the data obtained from this immersion cleaner.
  • Table 1 example Primary foam (ml) Half-life (min) Cloud point (° C) 1 450 1.75 69 2nd 400 2.00 63 3rd 400 1.50 75 See 1 710 4.50 more than 100 See 2 550 2.0 more than 100 example Water wettability Carbon values Oil loading capacity (g / l) a) b) c) d) e) 1 + 9 10th - 3rd 5 20-23 2nd + 9 8th 5 3rd 7 14-17 3rd + - 9 4th - 5 17-20 See 1 + 10th 11 - 6 17th 8-11
  • the foam test for determining the primary foam was carried out at 60 ° C. according to DIN 53902, part 1. The primary foam and foam disintegration over 10 min were observed. To determine the cloud point, the solutions were slowly heated while observing the temperature. The cloud point of the surfactant mixtures should be above 60 ° C.
  • the immersion cleaners were greased with a corrosion protection oil "WD 40" in each case at 60 ° C and annealed at 75 ° C for 24 h.
  • Test sheets made of ST 1203 were immersed at 60 ° C for 5 minutes and then the water wettability was assessed optically and a combustion analysis was carried out at 400/600 ° C.
  • the data obtained are shown in column a) of Table 2.
  • Column b) shows the corresponding data obtained when the corrosion protection oil "WD 40" was replaced by a cutting oil "KS 212" from Shell Makron GmbH.
  • Column c) of Table 2 shows the data obtained when the sheets of ST 1203 were replaced by CuZn 37 sheets. While column d) shows the data when greased with the corrosion protection oil "WD 40", column e) contains the data when greased with the cutting oil "KS 212". Column e) shows the data obtained when the CuZn 37 sheets were immersed in immersion cleaning solutions after they had been greased with a cooling lubricant (P3-Multan R 86-7) containing non-ferrous metals.
  • a cooling lubricant P3-Multan R 86-7
  • the immersion cleaners were loaded with the corrosion protection oil "WD 40" to check the maximum oil load. Test plates were then immersed for 5 minutes and the water wettability after the sink was assessed optically.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Detergent Compositions (AREA)

Abstract

Die Erfindung betrifft den Einsatz von Fettalkoholpolyalkylenglykolethern mit eingeengter Homologenverteilung in alkalischen Tauchreinigern neben Builderstoffen und/oder Buildergemischen.

Description

  • Die Erfindung betrifft den Einsatz von Fettalkoholpolyalkylenglykolen mit eingeengter Homologenverteilung in schaumarmen Tauchreinigern, insbesondere alkalischen Reinigern für die industrielle Reinigung von metallischen Oberflächen, auf Basis konzentrierter wäßriger Lösungen von alkalischen Builderstoffen und -gemischen.
  • Für die industrielle Reinigung von harten Oberflächen mit wäßrigen Lösungen wird eine Vielzahl von Mitteln eingesetzt. Die wichtigsten Komponenten dieser Stoffe sind Builder- und Tensidsysteme allein und in Kombination miteinander. Die Eigenschaften dieser Basismischungen aus Buildern und Tensiden müssen für den praktischen Einsatz häufig noch durch den Zusatz von weiteren Inhaltsstoffe, wie Komplexbildnern und Korrosionsinhibitoren, dem jeweils vorliegenden Anwendungsfall angepaßt werden.
  • Die wäßrigen, mild alkalischen Lösungen der Tauchreiniger besitzen üblicherweise einen pH-Wert von etwa 10 bis 11,5. Sie werden insbesondere für schwierige Reinigungsaufgaben, beispielsweise zur Entfernung von dicken Öl- und Pigmentverschmutzungen in Reparaturbetrieben und zur Behälter- und Anlagenreinigung, eingesetzt. Auch können diese alkalischen Tauchreiniger zur Feinreinigung von metallischen Oberflächen eingesetzt werden, sofern metallisch reine Oberflächen gefordert sind. Dies gilt beispielsweise bei der Reinigung vor und nach Härteprozessen, bei der Reinigung von Bandstahl vor der Glühe und vor dem Beschichten sowie bei der Vorbehandlung von Werkstücken in Galvaniken, Phosphatierungen, Lackierereien und Emaillierbetrieben. Mit den wäßrigen Lösungen der alkalischen Tauchreiniger wird eine sehr hohe Reinheit der Werkstückoberflächen bei einem gleichzeitig guten Schmutzaustragevermögen des Bades erwartet. Neben der manuellen Reinigung haben auch Verfahren wie Tauchen, Bürsten, Spritzen, Ultraschall und Elektrolyse allein oder in Kombination miteinander eine mehr oder weniger große Bedeutung. Typische alkalische Tauchreiniger werden als Pulver durch Mischen von 80 bis 100 % alkalischer Buildersubstanz und 0 bis 20 % verschiedener anionischer und/oder nichtionischer Tenside hergestellt. Die gebräuchlichsten anorganischen Builder sind alkalisch reagierende Hydroxide, Silikate, Phosphate und Carbonate von Natrium und/oder Kalium. Je nach Bedarf kommen als Komplexbildner noch Gluconate, Polyalkanolamine, Polycarbonsäuren, Polyoxycarbonsäuren und Phosphonate zum Einsatz. Üblicherweise bestehen die Tensidmischungen aus niedrig und hoch ethoxylierten oder propoxylierten Alkylphenolen und/oder Fettalkoholen mit verschiedener Kettenlänge. Nonylphenolalkoxylate zeichnen sich durch hervorragende anwendungstechnische Eigenschaften aus und sind universell einsetzbare Tenside für eine Vielzahl von Wasch- und Reinigungsmitteln, darüber hinaus auch als Emulgatoren für eine Vielzahl von technischen Anwendungen. Die entfettenden Eigenschaften der Nonylphenolalkoxylate sind sowohl an metallischen Oberflächen als auch an textilen Geweben besonders ausgeprägt. Nachteilig für diese Produktgruppe ist jedoch die ökologische Bewertung. So gilt als erwiesen, daß Alkylphenolethoxylate während des biologischen Abbaus toxische Metabolite bilden.
  • Die GB-A-1 445 716 betrifft Reiniger-Formulierungen, insbesondere zur Reinigung metallischer Oberflächen, enthaltend ein Gemisch bestimmter nichtionischer Tenside vom Typ der linearen Alkoholethoxylate, gegebenenfalls zusammen mit weiteren üblichen Reinigerbestandteilen wie anorganischen Builderstoffen. Dieses Gemisch zeichnet sich dadurch aus, daß es mindestens zwei derartige Tenside enthält, die eine Kettenlänge im Fettalkoholrest von 8 bis 13 C-Atomen und einen Ethoxylierungsgrad (EO %) von 55 bis 85 % aufweisen, wobei sie sich jedoch im Ethoxylierungsgrad unterscheiden. Bei diesen Tensiden sind die Kettenlänge des Fettalkohols und der Ethoxylierungsgrad so aufeinander abgestimmt, daß das erste Tensid einen EO-Gehalt von unter 70 % und das zweite Tensid einen EO-Gehalt von mehr als 65 % aufweisen, wobei die Differenz zwischen diesen EO-Gehalten mindestens 10 beträgt. Der Gewichtsanteil des Tensids mit dem niederen EO-Gehalt liegt im Bereich von 10 bis 100 % bezogen auf den des Tensids mit dem höheren EO-Gehalt. Derartige Formulierungen entfalten eine verbesserte Reinigungswirkung.
  • US-A-4 048 121 beschreibt Metallreiniger-Formulierungen, enthaltend alkalische Builderstoffe, Natriumgluconat, Natrium-ethylendiamintetraacetat, Kerosin sowie ein biologisch-abbaubares Netzmittel-Gemisch bestehend aus drei Komponenten. Zwei dieser Komponenten sind lineare, primäre Alkohol-polyether, wobei die erste Komponente einen Trübungspunkt von ca. 40 °C und die zweite Komponente einen Trübungspunkt von ca. 26 °C aufweist. Die dritte Komponente besteht aus einem linearen Alkoholalkoxylat mit einem Trübungspunkt von ca. 20 °C.
  • In der US-A-3 888 783 werden Reiniger-Formulierungen für verzinnte Metalloberflächen beschrieben. Die wäßrigen Reiniger enthalten Metasilikate, kondensierte Phosphate, Natriumborat sowie gegebenenfalls Tenside. Als Tenside kommen beispielsweise ethoxylierte geradkettige Alkohole oder Octyl- bzw. Nonyl-phenoxy-polyethoxyethanole in Frage.
  • Das Referat der SU-A-372 250 in Database WPI/DERWENT 73-68366 U betrifft Reiniger für Metalloberflächen zur Entfernung harzartiger Ablagerungen. Die Reiniger enthalten oxethylierte Fettalkohole, Alkylbenzylpyridinium-chloride, Pineoil-extrakt, Natrium-metasilikat, Natriumtriphosphat und calcinierte Soda.
  • Die Anlagerungsprodukte von Ethylen- und/oder Propylenoxid an primäre Alkohole, sogenannte Fettalkoholpolyalkylenglykolether, besitzen als nichtionische Tenside infolge ihrer ausgezeichneten Detergenzeigenschaft und ihrer hohen Kaltwasserlöslichkeit große Bedeutung für die Herstellung von Wasch-, Spül- und Reinigungsmitteln. Im Verlauf der Alkoxylierung, die in der Regel in Gegenwart von leicht löslichen Alkalihydroxiden oder -alkoholaten durchgeführt wird, kommt es jedoch nicht zu einer selektiven Anlagerung einer diskreten Anzahl von Ethylen- und/oder Propylenoxideinheiten an jeweils ein Molekül des Alkohols; die Reaktion folgt mehr oder weniger statistischen Gesetzen und führt zu einem Gemisch homologer Additionsprodukte, deren Alkoxylierungsgrade ein breites Spektrum umfassen.
  • Aus J. Am. Oil Chem. Soc. 63, 691 (1986) und HAPPI (Household & Personal Products Industry), 23, (1986), 32, ist bekannt, daß die Verteilung der Alkoxylierungsgrade im Gemisch der Alkohol-Alkoxylate, die sogenannte "Homologenverteilung", die Eigenschaften der erhaltenen Additionsprodukte maßgeblich beeinflußt.
  • Geeignete Verfahren zur Herstellung von Fettalkoholpolyalkylenglykolethern mit eingeengter Homologenverteilung sind beispielsweise aus der DE-A-38 43 713 und der US-A-4 962 237 bekannt. In beiden Fälle wird die Alkoxylierung von Fettalkoholen in Gegenwart von anorganischen Schichtverbindungen, beispielsweise calciniertem Hydrotalcit, durchgeführt.
  • Die Aufgabe der vorliegenden Erfindung bestand nun darin, Substitutionsprodukte für Alkylphenolalkoxylate aufzufinden, die wenigstens vergleichbare anwendungstechnische Eigenschaften haben und darüber hinaus nach heutigem Wissensstand ökologisch unbedenklich sind.
  • Die Lösung der vorgenannten Aufgabe besteht daher in alkalischen Tauchreinigern auf der Basis alkalischer Builderstoffe und Tenside, dadurch gekennzeichnet, daß sie enthalten:
    • (a) 85 bis 98 Gew.-% eines Builderstoffes oder eines Buildergemisches und
    • (b) 2 bis 15 Gew.-% Fettalkoholpolyalkylenglykolether mit eingeengter Homologenverteilung, enthaltend einen aliphatischen Kohlenwasserstoffrest mit 6 bis 24 C-Atomen und 0, 1, 2 oder 3 olefinischen Doppelbindungen mit durchschnittlich 1 bis 30 Mol Ethylen- und/oder Propylenoxid pro Mol Fettalkohol, gewonnen durch Alkoxylierung der entsprechenden Fettalkohole in Gegenwart von anorganischen Schichtverbindungen vom Typ calcinierter natürlicher oder synthetischer Hydrotalcite.
  • Überraschenderweise wurde gefunden, daß erfindungsgemäße alkalische Tauchreiniger gegenüber vergleichbaren Reinigern auf der Basis von Alkylphenolalkoxylaten stark verbesserte anwendungstechnische Eigenschaften aufweisen. Auch gegenüber bisher im Stand der Technik üblichen nichtionischen Fettalkoholpolyalkylenglykolethern mit standardmäßiger (sprich: breiter) Homologenverteilung konnten entsprechende anwendungstechnische Vorteile erzielt werden.
  • Die erfindungsgemäßen Tauchreiniger enthalten als Builder vorzugsweise mindestens ein Alkalimetallsilikat und/oder ein Alkalimetallphosphat.
  • Die gebräuchlichen technischen Industriereiniger werden üblicherweise in Silikat- und Phosphatreiniger eingeteilt. Hierbei charakterisiert man die pulverförmigen Silikatreiniger auf der Basis von Natriummetasilikat und Ätznatron in der Regel durch das SiO₂/Na₂O-Gewichts- bzw. -Molverhältnis, das sich beim Auflösen der Produkte in Wasser einstellt und in der Regel im Bereich von SiO₂/Na₂O = (0,1 bis 2,2) : 1 liegt. Derartige Reiniger können bei Raumtemperatur bis zu einer maximalen Konzentration von ca. 100 g/l aufgelöst werden, sofern die entsprechenden Natriumsalze und Ätznatron eingesetzt werden. Finden hingegen die entsprechenden Kaliumsalze und Kaliumhydroxid Verwendung, so resultieren Lösungen mit einer maximalen Konzentration von 500 g/l.
  • Gemäß einer bevorzugten Ausführungform der vorliegenden Erfindung sind die alkalischen Tauchreiniger dadurch gekennzeichnet, daß die Buildergemische neben einem Alkalimetallsilikat und/oder einem Alkalimetallphosphat ferner Alkalimetallhydroxide und/oder Alkalimetallcarbonate und/oder Alkalimetallgluconate und/oder Alkanolamine enthalten.
  • Somit können die erfindungsgemäßen alkalischen Tauchreiniger die folgenden Builderstoffe enthalten: Entweder Alkalimetallsilikat und Alkalimetallphosphat, jeweils allein oder aber im Gemisch. Außerdem besteht die im Sinne der Erfindung bevorzugte Möglicheit, diese Builderstoffe mit Alkalimetallhydroxiden, Alkalimetallcarbonaten, Alkalimetallgluconaten und Alkanolaminen zu kombinieren, wobei solche Kombinationen einen oder mehrere der zusätzlichen Builderstoffe enthalten können.
  • Als Alkalimetalle finden im Sinne der Erfindung vorzugsweise Natrium und/oder Kalium Verwendung. Hierbei werden bevorzugt Mischungen entsprechender Natrium- und Kaliumverbindungen eingesetzt, wobei der Anteil der Kaliumionen denjenigen der Natriumionen übertrifft.
  • Wenn hier von Alkalimetallsilikaten die Rede ist, so werden erfindungsgemäß hierunter Alkalimetallsilikate mit einem Molverhältnis SiO₂/Me₂O im Bereich von (1 bis 3,5) : 1 (Me = Na und/oder K) verstanden. Vorzugsweise werden im Sinne der Erfindung pulverförmige Natriumsilikate mit dem vorstehend genannten SiO₂/Na₂O-Molverhältnis eingesetzt, insbesondere Natriummetasilikat, Molverhältnis SiO₂/Na₂O = 1 : 1, entweder wasserfrei oder in Form des Pentahydrats oder Nonahydrats, oder leichtlösliches, pulverförmiges Natronwasserglas mit einem Molverhältnis SiO₂/Na₂O = (2,0 bis 2,1) : 1 (Handelsprodukt PORTIL(R)AW, Fa. Henkel KGaA).
  • Unter dem Begriff Alkalimetallphosphate sind im Sinne der Erfindung Alkalimetallorthophosphate, -pyrophosphate und -triphosphate (auch Tripolyphosphate genannt) zu verstehen. Von diesen werden jedoch erfindungsgemäß die Triphosphate bevorzugt, insbesondere das Kaliumtriphosphat.
  • Werden derartige Phosphate in Kombination mit den vorstehend erörterten Silikaten eingesetzt, so soll in der Regel der Silikatanteil in den wäßrigen Builderlösungen überwiegen; d.h. der Phosphatanteil liegt im Bereich von etwa 0,1 bis 10 Gew.-%, bezogen auf die wäßrige Builderlösung.
  • Bei den genannten Alkanolaminen handelt es sich vorzugsweise um 1-bis 3-fach durch Hydroxylalkylgruppen - mit 1 bis 4 C-Atomen im Alkylrest - substituierte Amine. Vorzugsweise werden im Sinne der Erfindung Di- und/oder Triethanolamine eingesetzt.
  • Als Ausgangsstoffe für die Fettalkoholpolyalkylenglykolether kommen Fettalkohole mit 6 bis 24 C-Atomen im Fettalkoholrest und 0, 1, 2 oder 3 Doppelbindungen in Betracht. Typische Beispiele hierfür sind Capronalkohol, Caprylalkohol, Caprinalkohol, Laurylalkohol, Myristylalkohol, Cetylalkohol, Palmitoleylalkohol, Stearylalkohol, Oleylalkohol, Elaidylalkohol, Petroselinylalkohol, Gadoleylalkohol, Behenylalkohol oder Erucylalkohol. Bevorzugt werden gesättigte Fettalkohole mit 8 bis 18 C-Atomen im Fettalkoholrest, insbesondere Laurylalkohol, eingesetzt.
  • Wie in der Fettchemie üblich, können diese Alkohole auch in Form technischer Gemische vorliegen, wie sie z.B. durch Hochdruckhydrierung von Fettsäuremethylesterschnitten pflanzlicher oder tierischer Herkunft oder durch Hydrierung von technischen Aldehydfraktionen aus der Roelen'schen Oxosynthese zugänglich sind. Bevorzugt wird technischer Kokosalkohol, ein Gemisch von Fettalkoholen mit 12 bis 18 C-Atomen im Fettalkoholrest, eingesetzt.
  • Die Fettalkoholpolyalkylenglykolether werden in Gegenwart von Schichtverbindungen mit Ethylen und/oder Propylenoxid hergestellt.
  • Unter Schichtverbindungen sind im Sinne der vorliegenden Erfindung natürliche oder synthetische, gegebenenfalls chemisch modifizierte Hydrotalcite zu verstehen. Im Verlauf der Reaktion werden die im Reaktionsgemisch unlöslichen Schichtverbindungen kolloiddispergiert, was in der Regel dazu führt, daß die im Anschluß an die Alkoxylierung erforderliche Abtrennung des Katalysators mit erheblichen Schwierigkeiten, beispielsweise Verstopfen der Filterporen, häufiges Filterwechseln etc., verbunden ist. Gemäß der vorliegenden Erfindung ist jedoch eine Abtrennung dieser Katalysatoren in der Regel nicht erforderlich, da die Anwesenheit der Schichtverbindungen in den erfindungsgemäßen Tauchreinigern keine nachteilige Beeinträchtigung darstellt. Dies stellt einen wesentlichen Kostenfaktor bei der Herstellung der erfindungsgemäßen Tauchreiniger dar.
  • Die im Sinne der vorliegenden Erfindung zu verwendenden Fettalkoholpolyalkylenglykolether enthalten einen aliphatischen Kohlenwasserstoffrest (Fettalkoholrest) mit 6 bis 24 C-Atomen und 0, 1, 2 oder 3 olefinischen Doppelbindungen mit durchschnittlich 1 bis 30 Mol Ethylen- und/oder Propylenoxid pro Mol Fettalkohol. Insbesondere sind erfindungsgemäß solche Fettalkoholpolyalkylenglykolether bevorzugt, die einen aliphatischen Kohlenwasserstoffrest (Fettalkoholrest) mit 8 bis 18 C-Atomen und mit durchschnittlich 6 bis 20 Mol Ethylen- und/oder Propylenoxid pro Mol Fettalkohol enthalten.
  • Wenn vorstehend von Fettalkoholpolyalkylenglykolethern mit einer definierten durchschnittlichen Stoffmenge an Ethylen- und/oder Propylenoxid pro Mol Fettalkohol die Rede ist, so bedeutet dies eine enge Homologenverteilung, die sich dadurch auszeichnet, daß die Anteile an niedrig alkoxyliertem Fettalkohol mit beispielsweise 1, 2 oder 3 Mol Alkylenoxid pro Mol ebenso in verminderter Form anwesend sind wie hochalkoxylierte Produkte mit 14 bis 20 Mol Alkylenoxid pro Mol Fettalkohol, wenn beispielsweise von einem Fettalkohol mit 7 Mol Ethylenoxid pro Mol die Rede ist. Bei Fettalkoholpolyalkylenglykolethern mit Standard-Homologenverteilung ist in den technischen Produkten in der Regel ein mehr oder weniger großer Anteil an niedrigalkoxyliertem Produkt ebenso enthalten wie Produkte mit einem sehr hohen Alkoxylierungsgrad. Darüber hinaus sind hierbei noch beträchtliche Anteile an alkylenoxidfreiem Fettalkohol enthalten, die als solche praktisch keine oberflächenentspannende Wirkung zeigen.
  • Dementsprechend ist es auch möglich, gemäß der vorliegenden Erfindung Gemische aus zwei oder mehreren Fettalkoholpolyalkylenglykolethern einzusetzen, die sich gegenüber Fettalkoholpolyalkylenglykolethern mit Standarad-Homologenverteilung dadurch unterscheiden, daß auch hier Alkoxylierungsgrade im Bereich von 0 bis 3 und oberhalb von 20 Mol Alkylenglykol pro Mol Fettalkohol praktisch nicht auftreten, wenn man von einem Fettalkoholpolyalkylenglykol mit eingeengter Homologenverteilung und einem Alkoxylierungsgrad von 10 und 12 Mol Alkylenglykol pro Mol Fettalkohol ausgeht.
  • Weiterhin ist Gegenstand der vorliegenden Erfindung die Verwendung der erfindungsgemäßen Tauchreiniger bei der Reinigung von Metalloberflächen, insbesondere von Stahl, Buntmetallen, Kupfer und Zink vor Veredelungsprozessen wie Phosphatieren, Galvanisieren, Emaillieren und Lackieren sowie bei der Zwischenreinigung vor Verarbeitungsprozessen, insbesondere vor der Glühe.
  • Obwohl die erfindungsgemäßen Tauchreiniger selbstverständlich auch in unverdünnter Form angewendet werden können, ist es jedoch im Sinne der vorliegenden Erfindung bevorzugt, die Tauchreiniger derart zu verwenden, daß man eine 1 bis 20 Gew.-% Tauchreiniger enthaltende wäßrige Lösung für den oben genannten Reinigungsprozeß einsetzt. Dementsprechend enthalten bevorzugt verwendete Lösungen der Tauchreiniger 10 bis 200 g/l der erfindungsgemäßen Reinigerkonzentrate.
  • Der Vorteil der erfindungsgemäßen flüssigen, alkalischen Tauchreiniger besteht zum einen darin, daß diese einen hohen Wirkstoffgehalt an Buildern aufweisen und gleichzeitig Tenside in hoher Konzentration enthalten.
  • Durch die erfindungsgemäße Kombination von Builderstoffen und Fettalkoholpolyalkylenglykolethern innerhalb der Tauchreiniger können für alle Anwendungsfälle in der industriellen technischen Reinigung geeignete Produkte angeboten werden. Es können Reiniger für das Spritz-, Bürst-, Tauch- und Ultraschallverfahren sowie für die elektrolytische Reinigung formuliert werden. Durch geeignete Kombinationen können vorgegebene Trübungspunkte eingestellt und so Hochtemperatur- oder Niedertemperatur-Tauchreiniger zubereitet werden.
  • Neben den oben genannten Wirkstoffkomponenten können erfindungsgemäße Tauchreiniger selbstverständlich auch weitere, in alkalischen Reinigungsmitteln üblicherweise verwendete Bestandteile, wie beispielsweise Entschäumer, Korrosionsinhibitoren, Komplexbildner und/oder dergleichen enthalten. Beispielhaft für im Sinne der Erfindung besonders geeignete Verbindungen seien genannt:
  • Entschäumer:
  • C12/18-Fettalkohol(Kokosalkohol)-Polyethylenglykol-Butylether, Anlagerungsprodukte von Ethylenoxid und Propylenoxid an Fettalkohole, wie sie beispielsweise von der Firma BASF AG, Ludwigshafen, unter der Bezeichnung PLURAFAC(R) vertrieben werden, jeweils in Mengen von 0,1 bis 5 Gew.-%, bezogen auf den alkalischen Tauchreiniger.
  • Korrosionsinhibitoren:
  • (für Buntmetalle) Benztriazol, Tolyltriazol; jeweils in Mengen von 0,1 bis 5 Gew.-%, bezogen auf den Tauchreiniger.
  • Komplexbildner:
  • Polycarbonsäuren, z.B. Polyacrylate; Phosphonsäuren, wie Hydroxyethan-1,1-diphosphonsäure (HEDP), Amino-tris(methylenphosphonsäure) (ATMP), bzw. deren wasserlösliche Salze; Aminopolycarbonsäuren, z.B. Ethylendiamintetraessigsäure (EDTA), Nitrilotriessigsäure (NTA) bzw. deren wasserlösliche Salze; Polyoxycarbonsäuren, z.B. Citronensäure bzw. deren Salze; jeweils in Mengen von 0,1 bis 10 Gew.-%, bezogen auf den Tauchreiniger.
  • Ein Zusatz derartiger Verbindungen ist im Rahmen der vorliegenden Erfindung keinesfalls generell erforderlich; solche Additive können vielmehr - je nach Anwendungsfall - von Vorteil sein, wobei die jeweils erforderlichen Mengen auf den Bedarfsfall abzustimmen sind.
  • Zur Herstellung der erfindungsgemäßen Tauchreiniger geht man in der Regel in der folgenden Weise vor: Die wäßrigen Builderlösungen werden zunächst unter Rühren und bei Raumtemperatur miteinander vermischt, beispielsweise eine Wasserglaslösung mit Kalilauge und gegebenenfalls Kaliumtriphosphatlösung. Anschließend werden die übrigen Bestandteile, d.h. die Tenside und gegebenenfalls Additive, gleichfalls unter Rühren in die konzentrierte wäßrige Builderlösung eingetragen. Zur Bereitung von verdünnten Anwendungslösungen, d.h. Reinigungslösungen, werden die Tauchreiniger in der Regel unter Rühren direkt in das Reinigungsbad eindosiert.
  • Die nachfolgend genannten Beispiele dienen der Erläuterung der Erfindung, ohne diese jedoch auf die hierbei speziell genannten Builder und Tenside zu beschränken.
  • Beispiele Allgemeine Arbeitsvorschrift
  • Alkalische Tauchreiniger, enthaltend eine wäßrige Lösung aus jeweils 36,8 g/l Builder und jeweils 3,2 g/l Tensid, wurden durch Einrühren des Tensids in die wäßrige Builderlösung hergestellt. In den nachfolgenden Beispielen 1 bis 3 und den Vergleichsbeispielen 1 und 2 bestand der Builder jeweils aus 3,7 g/l Natrium-pyrophosphat, 5,9 g/l Natrium-metasilikat und 9,9 g/l Natrium-carbonat. Die Tensidbasis ist den Beispielen und Vergleichsbeispielen jeweils im einzelnen zu entnehmen.
  • Beispiel 1
  • Neben dem oben genanten Builder enthielt der Tauchreiniger ein 1 : 1 Gemisch eines Fettalkoholethoxylats mit 12 bis 18 C-Atomen im Fettalkoholrest und einem mittleren Ethoxylierungsgrad von 8 Mol Fettalkohol mit eingeengter Homologenverteilung und eines weiteren Fettalkoholethoxylats mit 12 bis 18 C-Atomen im Fettalkoholrest und einem mittleren Ethoxylierungsgrad von 16 Mol pro Mol Fettalkohol mit eingeengter Homologenverteilung. In den Tabellen 1 und 2 sind die Eigenschaften eines derartigen Tauchreinigers dargestellt.
  • Beispiel 2
  • Anstelle der in Beispiel 1 genannten Kombination von Tensiden wurde ein 1 : 1 Gemisch eines Fettalkoholethoxylats mit 12 bis 18 C-Atomen im Fettalkoholrest und einem mittleren Ethoxylierungsgrad von 6 Mol pro Mol Fettalkohol mit eingeengter Homologenverteilung und eines weiteren Fettalkoholethoxylats mit 12 bis 18 C-Atomen im Fettalkoholrest und einem mittleren Ethoxylierungsgrad von 20 Mol pro Mol Fettalkohol mit eingeengter Homologenverteilung eingesetzt. In den Tabellen 1 und 2 sind auch die Eigenschaften dieses Tauchreinigers wiedergegeben.
  • Beispiel 3
  • Anstelle der Tensidkombination des Beispiels 1 wurde ein Fettalkoholethoxylat mit 12 bis 18 C-Atomen und einem mittleren Ethoxylierungsgrad von 12 Mol pro Mol Fettalkohol mit eingeengter Homologenverteilung eingesetzt.
  • Die nachfolgenden Tabellen 1 und 2 geben die erhaltenen Daten dieses Tauchreinigers wieder.
  • Vergleichsbeispiel 1
  • Anstelle der Tensidkombination des Beispiels 1 wurde ein 1 : 1 Gemisch eines Fettalkoholethoxylats mit 12 bis 18 C-Atomen und einem mittleren Ethoxylierungsgrad von 9,5 pro Mol Fettalkohol mit Standardhomologenverteilung und eines Alkylbenzolsulfonats mit 10 bis 13 C-Atomen im Alkylrest eingesetzt. Die nachfolgenden Tabellen 1 und 2 geben auch hier die erhaltenen Daten wieder.
  • Vergleichsbeispiel 2
  • Anstelle der Tensidkombination des Beispiels 1 wurde ein Fettalkoholpolyalkylenglykolether eines Fettalkoholethoxylats mit 10 bis 18 C-Atomen und einem mittleren Ethoxylierungsgrad von 10 Mol pro Mol Fettalkohol mit Standard-Homologenverteilung eingesetzt. In den Tabellen 1 und 2 sind auch hier die Daten wiedergegeben. Tabelle 1
    Beispiel Primärschaum (ml) Halbwertszeit (min) Trübungspunkt (°C)
    1 450 1,75 69
    2 400 2,00 63
    3 400 1,50 75
    Vgl. 1 710 4,50 mehr als 100
    Vgl. 2 550 2,0 mehr als 100
    Tabelle 2
    Beispiel Wasserbenetzbarkeit Kohlenstoffwerte Ölbelastbarkeit (g/l)
    a) b) c) d) e)
    1 + 9 10 - 3 5 20 - 23
    2 + 9 8 5 3 7 14 - 17
    3 + - 9 4 - 5 17 - 20
    Vgl. 1 + 10 11 - 6 17 8 - 11
  • Der Schaumtest zur Bestimmung des Primärschaums wurde bei 60 °C nach DIN 53902, Teil 1, durchgeführt. Der Primärschaum und der Schaumzerfall über 10 min wurden beobachtet. Zur Bestimmung des Trübungspunktes wurden die Lösungen langsam unter Beobachtung der Temperatur aufgeheizt. Der Trübungspunkt der Tensidgemische sollte über 60 °C liegen.
  • Zur Bestimmung der Reinigungswirkung wurden in Lösungen der Tauchreiniger jeweils bei 60 °C Testbleche mit einem Korrosionsschutzöl "WD 40" befettet und 24 h bei 75 °C getempert.
  • Bei 60 °C wurden Testbleche aus ST 1203 5 min getaucht und anschließend die Wasserbenetzbarkeit optisch beurteilt und eine Verbrennungsanalyse bei 400/600 °C durchgeführt. In der Spalte a) der Tabelle 2 sind die erhaltenen Daten wiedergegeben. In der Spalte b) werden die entsprechenden Daten wiedergegeben, die beim Ersatz des Korrosionsschutzöls "WD 40" durch ein Schneidöl "KS 212" der Shell Makron GmbH erhalten wurden.
  • In der Spalte c) der Tabelle 2 sind die Daten wiedergegeben, die bei Ersatz der Bleche von ST 1203 durch CuZn 37-Bleche erhalten wurden. Während in Spalte d) die Daten bei Befettung mit dem Korrosionsschutzöl "WD 40" wiedergegeben sind, enthält die Spalte e) die Daten bei Befettung mit dem Schneidöl "KS 212". In der Spalte e) sind die Daten wiedergegeben, die beim Eintauchen der CuZn 37-Bleche in Tauchreinigerlösungen erhalten werden, nachdem diese vorher mit einem Buntmetallinhibitor-haltigen Kühlschmierstoff (P3-MultanR 86-7) befettet wurden.
  • Zur Prüfung der maximalen Ölbelastbarkeit wurden die Tauchreiniger mit dem Korrosionsschutzöl "WD 40" belastet. Anschließend wurden Testbleche 5 min getaucht und die Wasserbenetzbarkeit nach der Spüle optisch beurteilt.

Claims (7)

  1. Alkalische Tauchreiniger auf der Basis alkalischer Builderstoffe und Tenside, dadurch gekennzeichnet, daß sie enthalten:
    (a) 85 bis 98 Gew.-% eines Builderstoffes oder eines Buildergemisches und
    (b) 2 bis 15 Gew.-% Fettalkoholpolyalkylenglykolether mit eingeengter Homologenverteilung, enthaltend einen aliphatischen Kohlenwasserstoffrest mit 6 bis 24 C-Atomen und 0, 1, 2 oder 3 olefinischen Doppelbindungen mit durchschnittlich 1 bis 30 Mol Ethylen- und/oder Propylenoxid pro Mol Fettalkohol, gewonnen durch Alkoxylierung der entsprechenden Fettalkohole in Gegenwart von anorganischen Schichtverbindungen vom Typ calcinierter natürlicher oder synthetischer Hydrotalcite.
  2. Tauchreiniger nach Anspruch 1, dadurch gekennzeichnet, daß sie als Builder mindestens ein Alkalimetallsilikat und/oder ein Alkalimetallphosphat enthalten.
  3. Tauchreiniger nach Anspruch 1 und/oder 2, dadurch gekennzeichnet, daß neben Alkalimetallsilikat und/oder Alkalimetallphosphat ferner Alkalimetallhydroxide und/oder Alkalimetallcarbonate und/oder Alkalimetallgluconate und/oder Alkanolamine enthalten sind.
  4. Tauchreiniger nach einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß das Alkalimetall Natrium und/oder Kalium ist.
  5. Tauchreiniger nach einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Fettalkoholpolyalkylenglykolether einen aliphatischen Kohlenwasserstoffrest mit 8 bis 18 C-Atomen mit durchschnittlich 6 bis 20 Mol Ethylen- und/oder Propylenoxid pro Mol Fettalkohol enthalten.
  6. Tauchreiniger nach einem oder mehreren der Ansprüche 1 bis 5, enthaltend Gemische aus zwei oder mehreren Fettalkoholpolyalkylenglykolethern mit eingeengter Homologenverteilung.
  7. Verwendung der Tauchreiniger nach einem oder mehreren der Ansprüche 1 bis 6 zur Reinigung von Metalloberflächen, insbesondere von Stahl, Buntmetallen, Kupfer und Zink, vor Veredelungsprozessen wie Phosphatieren, Galvanisieren, Emaillieren und Lackieren sowie bei der Zwischenreinigung vor Verarbeitungsprozessen, insbesondere vor der Glühe.
EP92919454A 1991-09-25 1992-09-16 Fettalkoholpolyalkylenglykole mit eingeengter homologenverteilung in schaumarmen tauchreinigern Expired - Lifetime EP0605495B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4131877 1991-09-25
DE4131877A DE4131877A1 (de) 1991-09-25 1991-09-25 Fettalkoholpolyalkylenglykole mit eingeengter homologenverteilung in schaumarmen tauchreinigern
PCT/EP1992/002128 WO1993006200A1 (de) 1991-09-25 1992-09-16 Fettalkoholpolyalkylenglykole mit eingeengter homologenverteilung in schaumarmen tauchreinigern

Publications (2)

Publication Number Publication Date
EP0605495A1 EP0605495A1 (de) 1994-07-13
EP0605495B1 true EP0605495B1 (de) 1995-12-20

Family

ID=6441439

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92919454A Expired - Lifetime EP0605495B1 (de) 1991-09-25 1992-09-16 Fettalkoholpolyalkylenglykole mit eingeengter homologenverteilung in schaumarmen tauchreinigern

Country Status (3)

Country Link
EP (1) EP0605495B1 (de)
DE (2) DE4131877A1 (de)
WO (1) WO1993006200A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19515086A1 (de) * 1995-04-25 1996-10-31 Hoechst Ag Verfahren zur Entfernung von verunreinigenden Beschichtungen von Metalloberflächen
JP4361605B2 (ja) * 1995-11-17 2009-11-11 ジョンソンディバーシー・インコーポレーテッド 清浄処方物、清浄処方物用添加剤並びにかかる処方物を用いてボトルを清浄にする方法
DE19948413A1 (de) * 1999-10-07 2001-04-12 Unruh Stephan Reinigungslösung und Verfahren zur Reinigung von Werkstücken

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1445716A (en) * 1973-04-24 1976-08-11 Diversey Ltd Cleaning compositions
US3888783A (en) * 1973-10-10 1975-06-10 Amchem Prod Cleaner for tin plated ferrous metal surfaces, comprising phosphate, silicate and borax
US4048121A (en) * 1977-01-24 1977-09-13 Fremont Industries, Inc. Low temperature metal cleaning composition
DE3018173A1 (de) * 1980-05-12 1981-11-19 Henkel KGaA, 4000 Düsseldorf Schaumarme reinigungsmittel

Also Published As

Publication number Publication date
EP0605495A1 (de) 1994-07-13
DE59204782D1 (de) 1996-02-01
WO1993006200A1 (de) 1993-04-01
DE4131877A1 (de) 1993-04-01

Similar Documents

Publication Publication Date Title
EP0254208B1 (de) Schaumarme und/oder schaumdämpfende Tensidgemische und ihre Verwendung
EP0642575B1 (de) Pumpfähige alkalische reinigerkonzentrate
EP0527824B1 (de) Verwendung einer kombination ionischer und nichtionischer tenside
EP0340704B1 (de) Wässrige saure Reinigerformulierungen
DE69734427T2 (de) Hydrotrop enthaltende reiniger für harte oberflächen mit verminderter rückstandsbildung
DE69420357T2 (de) Wässrige, alkalische Zubereitung
EP0282863A2 (de) Flüssige, alkalische Reinigerkonzentrate
DE3708938A1 (de) Fluessige, phosphatfreie einphasen-entfettungsmittel fuer aluminiumoberflaechen
DD296697A5 (de) Saures, waessriges reinigungsmittel fuer harte oberflaechen
EP0511253B1 (de) Demulgierende reinigungsmittel und deren verwendung
DE19723990A1 (de) Schaumarmes Reinigungsmittel
EP0506751B1 (de) Verwendung einer kombination nichtionischer tenside
DE1243313B (de) Fluessiges Reinigungsmittelkonzentrat
EP0376367A1 (de) Wässriger Reiniger für Metalloberflächen
EP0605495B1 (de) Fettalkoholpolyalkylenglykole mit eingeengter homologenverteilung in schaumarmen tauchreinigern
DE19854592A1 (de) Metallbearbeitungs- und Reinigungsverfahren
DE60009721T2 (de) Verwendung von polyoxypropylenierten/polyoxyethlenierten Terpenderivaten als Entfettungsmittel von harten Oberflächen
DE1621592B2 (de) Verwendung alkalischer Reinigungsmittel als lagerstabile, schaumarme Metallreinigungsmittel
EP0694606A2 (de) Mischungen von Alkoxylaten als schaumdämpfendes Mittel und deren Verwendung
EP0755428B1 (de) Verwendung von fettamin-ethoxylaten in wässrigen reinigern für harte oberflächen
EP0489769B1 (de) Verwendung von polyglykolethergemischen als antischaummittel
DE4102709C1 (en) Degreasing metal surfaces using aq. prepn. - contg. biologically degradable adducts of lower alkylene oxide(s), fatty alcohol(s) and cationic surfactants
AT398577B (de) Hochviskoses reinigungsmittel für harte oberflächen
DE69000812T2 (de) Tensidzusammensetzung, entfettungsmittel und entfettungsbad.
EP0497790B1 (de) Alkylpolyethylenglykolether als schaumdrückende zusätze für reinigungsmittel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19940316

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE FR

17Q First examination report despatched

Effective date: 19940822

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE

RBV Designated contracting states (corrected)

Designated state(s): DE

REF Corresponds to:

Ref document number: 59204782

Country of ref document: DE

Date of ref document: 19960201

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19960816

Year of fee payment: 5

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980603